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4 Hamiltonian systems with several space

variables:

dressing, explicit solutions and energy relations

Alexander Sakhnovich ∗

Abstract

We construct so-called Darboux transformations and solutions of

the dynamical Hamiltonian systems with several space variables ∂ψ
∂t =∑r

k=1
Hk(t)

∂ψ
∂ζk

(Hk(t) = Hk(t)
∗). In particular, such systems are

analogs of the port-Hamiltonian systems in the important and insuf-

ficiently studied case of several space variables. The corresponding

energy relations are written down. The method is illustrated by sev-

eral examples, where explicit solutions are given.

MSC(2020): 37J06, 37N35, 47A05, 15A24

Keywords: Dynamical system, several space variables, port variable,

dressing, transfer matrix function, energy.

1 Introduction

1. In this paper, we study dynamical systems of the form

∂ψ

∂t
= Jψ, J :=

r∑

k=1

Hk(t)
∂

∂ζk

(
Hk(t) = Hk(t)

∗
)
, (1.1)
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where ψ = ψ(t, ζ1, . . . , ζr) may be a vector or an m × n matrix, Hk(t) are

m×m matrix-valued functions (matrix functions) and Hk(t)
∗ stands for the

conjugate transpose of the matrix Hk(t). The paper may be considered as

an essential development of [15, 22, 24]. We note that systems ∂ψ
∂t

= Jψ

with symmetric operators J appear in [24]. Here, we deal with an equally

(or more) important case of skew-symmetric J . In particular, system (1.1)

with skew-symmetric J is of essential interest in the control theory and

in the theory of port-Hamiltonian systems. For instance, the case of the

constant matrices Hk(t) ≡ const was dealt with in well-known thesis [28,

Chapter 8]. So-called port-Hamiltonian systems with one space variable have

been actively studied but much less results are known for the case of several

space variables.

System (1.1) is of general interest as well. We call sometimes matrix

functions Hk(t) Hamiltonians without requiring Hk(t) ≥ 0 (i.e., without re-

quiring that the eigenvalues of Hk are nonnegative). This terminology comes

from the one dimensional canonical systems, see the references in [7,23,25,27].

2. We construct so-called Darboux transformations and explicit solu-

tions of the dynamical systems of the form (1.1). Explicit solutions are

essential in modelling and optimization problems. Dressing procedure (also

called Bäcklund-Darboux transformation or commutation method) is a fruit-

ful tool in the construction of the explicit solutions of linear and integrable

nonlinear differential equations (see, e.g., [1, 2, 5, 6, 8, 10, 11, 13, 14, 16, 25, 29]

and numerous references therein). Furthermore, dressing may be considered

as an important part of the general symmetry theory [18–20]. Here, we use

our GBDT (generalised Bäcklund-Darboux transformation) approach, which

was initially introduced in [21]. For further references on GBDT, see, for

instance, [1, 4, 9, 11, 23–25].

For systems (1.1), we assume that t is considered on some interval I

(0 ∈ I). Given an initial system (1.1) (or, equivalently, a set of Hamiltonians

Hk(t)), GBDT is determined by a triple of matrices {A, S(0),Π(0)} satisfying

A, S(0) ∈ C
n×n, Π(0) ∈ C

n×m, n,m ∈ N, (1.2)

AS(0)− S(0)A∗ = iΠ(0)Π(0)∗, S(0) = S(0)∗, (1.3)
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and by a set of scalars {ck}:

ck ∈ R, ck 6∈ σ(A) (1 ≤ k ≤ r); ci 6= ck for i 6= k. (1.4)

Here, as usual, N stands for the set of positive integer numbers, R stands for

the real numbers, C stands for the complex plane, and Cn×m denotes the set

of n×m matrices with complex-valued entries. The notation i stands for the

imaginary unit (i2 = −1) and σ(A) stands for the spectrum of the matrix A.

The transformed (GBDT-transformed) system has the same structure as the

system (1.1):

∂ψ̃

∂t
=

r∑

k=1

H̃k(t)
∂ψ̃

∂ζk
, H̃k(t) = H̃k(t)

∗. (1.5)

The construction of the transformed Hamiltonians H̃k(t) and m× n ma-

trix function ψ̃ satisfying (1.5) is presented in Section 2. The corresponding

vector solutions of (1.5) have the form ψ̃(t, ζ1, . . . , ζr)h
(
h ∈ Cn×1

)
.

In the cases of canonical systems and port-Hamiltonian systems with

one space variable, the energy is usually introduced in terms of
∫
ψ∗Hψ.

However, in the case of several space variables (and taking into account

that Hk depend on time) it seems reasonable to introduce the energy as the

standard norm
( ∫

V
h∗ψ∗ψh

)
1/2

, h ∈ Cn×1. We note that the expressions

ψ∗Hkψ appear in energy relations (3.1) and (3.2) as well.

Finally, in Section 4 we consider some examples and explicit solutions.

Our conclusions are presented in Section 5.

Notations. Many notations have been explained above. The notation Im
denotes the m×m identity matrix and the matrix inequality S > 0 (S ≥ 0)

means that the eigenvalues of the matrix S = S∗ are positive (nonnegative).

In a similar way, one interprets the inequalities S < 0 and S ≤ 0. The

notation diag{A1,A2, . . . ,As} means diagonal matrix with the entries (or

blocks) A1,A2, . . . on the main diagonal.

2 Preliminaries: GBDT for systems (1.1)

1. As explained in the introduction, GBDT of the initial system (1.1) (i.e.,

GBDT for a set of Hamiltonians Hk(t)) is determined by a triple of matrices
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{A, S(0),Π(0)} and a set of scalars ck (1 ≤ k ≤ r). The transformed Hamil-

tonians {H̃k(t)} and solutions of the transformed system (1.5) are expressed

via the generalised eigenfunctions (matrix functions) Π(t) and matrix func-

tions S(t), which take values Π(0) and S(0), respectively, at t = 0. In order

to construct Π(t) and S(t) and to apply our theory (see [24, Appendix A]

and references therein), we write down an auxiliary system

dy

dt
= G(t, z)y, G(t, z) := i

r∑

k=1

(z − ck)
−1Hk(t). (2.1)

This system coincides with the system [24, (19), (22)] if we put j = Im in [24].

The strong restrictions on Hk, which appear in [24], are non-essential for the

facts derived below similar to [24, Section 3]. Note that spectral theory of

the important particular cases of (2.1) have been studied in [15, 22].

Similar to the case j = J = Im from [24], the matrix functions Π(t) and

S(t) are determined (for the case of the initial system (2.1)) by their values

Π(0) and S(0) and by the equations

Π′(t) = −i

r∑

k=1

(A− ckIn)
−1Π(t)Hk(t)

(
Π′ :=

d

dt
Π
)
, (2.2)

S ′(t) = −
r∑

k=1

(A− ckIn)
−1Π(t)Hk(t)Π(t)

∗(A∗ − ckIn)
−1, (2.3)

which follow from [24, (52) and (54)]. These relations jointly with (1.3) yield

the matrix identity

AS(t)− S(t)A∗ = iΠ(t)Π(t)∗, (2.4)

which also follows from [24, (55)] and [24, Corollary A.2]. In view of the

formula (2.1) and [24, Corollary A.2], important formula [25, (7.61)] takes

the form

(
Π(t)∗S(t)−1

)
′

= i
r∑

k=1

H̃k(t)Π(t)
∗S(t)−1(A− ckIn)

−1, (2.5)

where the transformed Hamiltonians H̃k(t) are expressed (at each t) in terms

of the initial HamiltoniansHk(t) and transfer matrix function (in Lev Sakhnovich
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sense [26, 27]) wA(t, ·):

wA(t, z) = Im − iΠ(t)∗S(t)−1(A− zIn)
−1Π(t). (2.6)

Namely, we have (see [24, (28) and (29)])

H̃k(t) = wA(t, ck)Hk(t)wA(t, ck)
−1. (2.7)

Moreover, according to [24, (29)] the matrix functions wA(t, ck) are unitary:

wA(t, ck)
−1 = wA(t, ck)

∗. (2.8)

Here, wA(t, z) is a so-called Darboux matrix of the auxiliary system (2.1).

However, in our study of the dynamical systems of the (1.1) type, the basic

relation is (2.5) (instead of the differential equation on wA used in the study

of systems (2.1)). Note also that H̃k(t) is unitarily similar to Hk(t).

2. Relations (2.5), (2.7), and (2.8) yield our next theorem.

Theorem 2.1 Let a set of numbers ck and a set of m×m matrix functions

Hk(t) = Hk(t)
∗ (1 ≤ k ≤ r) as well as a triple {A, S(0), Π(0)} be given.

Assume that relations (1.2)–(1.4) hold and that Π(t) and S(t) satisfy (2.2)

and (2.3), respectively.

Then, in the points of invertibility of S(t), the matrix function

ψ̃(t, ζ1, . . . , ζr) = Π(t)∗S(t)−1 exp
{
i

r∑

k=1

ζk(A− ckIn)
−1

}
(2.9)

satisfies the transformed dynamical system

∂ψ̃

∂t
=

r∑

k=1

H̃k(t)
∂ψ̃

∂ζk
, H̃k(t) = H̃k(t)

∗ = wA(t, ck)Hk(t)wA(t, ck)
∗. (2.10)

The first equality in (2.10) means that each column of ψ̃ satisfies the

same linear dynamical system above.

Remark 2.2 Clearly, (2.10) implies that in the case Hk(t) ≥ 0 we have

H̃k(t) ≥ 0 as well. Moreover, if

Hk(t) ≥ 0 (1 ≤ k ≤ r), (2.11)
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then, according to (2.3), we have S ′(t) ≤ 0. Thus, if (2.11) holds, it follows

that S(t) < 0 in the case

S(0) < 0, I = [0, a] (a > 0),

and S(t) > 0 in the case

S(0) > 0, I = [−a, 0] (a > 0).

In both cases, S(t) is invertible.

The next proposition may be considered as some kind of conservation law.

Proposition 2.3 Let relations (1.2), (1.3), (2.2), and (2.3) hold. Then, in

the points of invertibility of S(t) we have

(
Π(t)∗S(t)−1Π(t)

)
′

=

r∑

k=1

(
H̃k(t)−Hk(t)

)
, (2.12)

where H̃k is given by (2.7).

P r o o f. Relations (2.5) and (2.6) yield

(
Π(t)∗S(t)−1

)
′

Π(t) =

r∑

k=1

H̃k(t)
(
Im − wA(t, ck)

)
. (2.13)

From (2.2) and (2.13), it follows that

(
Π(t)∗S(t)−1Π(t)

)
′

=

r∑

k=1

H̃k(t)
(
Im − wA(t, ck)

)

+

r∑

k=1

(
wA(t, ck)− Im

)
Hk(t). (2.14)

Finally, the equalities (2.7) and (2.14) imply (2.12). �
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3 Energy relations

Since Hk = H∗

k , one can easily see that the following energy relation holds

for ψ satisfying (1.1):

∂

∂t

∫

V

ψ(t, ζ)∗ψ(t, ζ)dζ =

r∑

k=1

∫

V

∂

∂ζk

(
ψ(t, ζ)∗Hk(t)ψ(t, ζ)

)
dζ, (3.1)

where V is some bounded (for simplicity) domain and ζ = (ζ1, . . . , ζr), dζ

stands for dζ1 . . . dζr. If V has the simplest form: ak ≤ ζk ≤ bk (1 ≤ k ≤ r)

formula (3.1) may be rewritten as:

∂

∂t

∫

V

ψ(t, ζ)∗ψ(t, ζ)dζ =

r∑

k=1

(∫

V b

k

ψ(t, ζ)∗Hk(t)ψ(t, ζ)dµk(ζ)

−

∫

V a

k

ψ(t, ζ)∗Hk(t)ψ(t, ζ)dµk(ζ)

)
; (3.2)

where V b
k and V a

k belong to boundary of V , more precisely,

V b
k = V ∩ {ζ : ζk = bk}, V a

k = V ∩ {ζ : ζk = ak},

and dµk(ζ) is obtained by the removing of dζk from the expression dζ1 . . . dζr.

In particular, if the right-hand side of (3.2) tends to zero when ak → −∞,

bk → +∞ (1 ≤ k ≤ r) formula (3.2) yields

∂

∂t

∫

Rr

ψ(t, ζ1, . . . , ζr)
∗ψ(t, ζ1, . . . , ζr)dζ = 0. (3.3)

Remark 3.1 Clearly, if the conditions of Theorem 2.1 are fulfilled, one can

substitute ψ̃ and H̃k (instead of ψ and Hk, respectively) into (3.1)–(3.3).

Let us (in addition to Remark 3.1) simplify the expression for ψ̃∗H̃kψ̃.

Proposition 3.2 Let the conditions of Theorem 2.1 be fulfilled. Then, we

have

ψ̃(t, ξ1, . . . , ξr)
∗H̃k(t)ψ̃(t, ξ1, . . . , ξr)

= exp
{
i

r∑

k=1

ξk(A− ckIn)
−1

}
∗

(A∗ − ckIn)S(t)
−1(A− ckIn)Π(t)Hk(t)Π(t)

∗

× (A∗ − ckIn)S(t)
−1(A− ckIn) exp

{
i

r∑

k=1

ξk(A− ckIn)
−1

}
, (3.4)
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where ψ̃ is given by (2.9) and H̃k is given in (2.10).

P r o o f. According to (2.9) and (2.10) we have

ψ̃(t, ξ1, . . . , ξr)
∗H̃k(t)ψ̃(t, ξ1, . . . , ξr)

= exp
{
i

r∑

k=1

ξk(A− ckIn)
−1

}
∗

S(t)−1Π(t)wA(t, ck)Hk(t)wA(t, ck)
∗Π(t)∗S(t)−1

× exp
{
i

r∑

k=1

ξk(A− ckIn)
−1

}
. (3.5)

It follows from (2.6) that

S(t)−1Π(t)wA(t, ck) =S(t)
−1Π(t) (3.6)

−
(
iS(t)−1Π(t)Π(t)∗S(t)−1

)
(A− ckIn)

−1Π(t).

Moreover, (2.4) yields

iS(t)−1Π(t)Π(t)∗S(t)−1 = S(t)−1(A− ckIn)− (A∗ − ckIn)S(t)
−1. (3.7)

Substituting (3.7) into (3.6), we obtain

S(t)−1Π(t)wA(t, ck) = (A∗ − ckIn)S(t)
−1(A− ckIn)Π(t). (3.8)

Equalities (3.5) and (3.8) imply (3.4). �

4 Examples

Relations (2.6), (2.9) and (2.10) show that the explicit construction of Π(t)

and S(t) is the main part of the construction of the transformed dynamical

systems (2.10) and their solutions. That is, given Π(t) and S(t), the matrix

functions H̃k and ψ̃ are standardly calculated explicitly. Therefore, this sec-

tion is dedicated to the construction of Π(t) and S(t). For this purpose, we

modify for the skew-symmetric J the case of [24, Example 3.4] (see Example

4.1) as well as consider a more complicated Example 4.2.

Example 4.1 Consider a simple example of the constant initial Hamiltoni-

ans:

Hk ≡ j = diag{Im1
,−Im2

} (1 ≤ k ≤ r); m1, m2 ∈ N, m1 +m2 = m. (4.1)

8



Here, we partition Π(0) into the n × m1 and n × m2 blocks ϑ1 and ϑ2,

respectively: Π(0) =
[
ϑ1 ϑ2

]
. Hence, it follows from (2.2) that

Π(t) =
[
exp

{
− i t

∑r
k=1

(A− ckIn)
−1

}
ϑ1 exp

{
i t
∑r

k=1
(A− ckIn)

−1

}
ϑ2

]
.

(4.2)

If σ(A) ∩ σ(A∗) = ∅, there are unique matrices Ci (i = 1, 2) such that

ACi − CiA
∗ = iϑiϑ

∗

i . (4.3)

Moreover, in view of (4.2), (4.3) and equality σ(A) ∩ σ(A∗) = ∅, there is a

unique solution S(t) of (2.4) which is given by

S(t) = exp
{
− i t

r∑

k=1

(A− ckIn)
−1

}
C1 exp

{
i t

r∑

k=1

(A∗ − ckIn)
−1

}

+ exp
{
i t

r∑

k=1

(A− ckIn)
−1

}
C2 exp

{
− i t

r∑

k=1

(A∗ − ckIn)
−1

}
. (4.4)

Equality (2.4) for S(t) of the form (4.4) is checked by direct substitution. In

particular, we have S(0) = C1 + C2.

Example 4.2 Next, assume that

r = m, Hk ≡ β∗

kβk, βkβ
∗

k = 1 (1 ≤ k ≤ m), βiβ
∗

k = 0 (i 6= k), (4.5)

that is, βk are constant orthonormal 1×m row vectors.

Equalities (4.5) yield that the matrix β∗ :=
[
β∗

1
β∗

2
. . . β∗

m

]
is unitary, and

it suffices to recover Π(t)β∗ instead of Π(t). Using (4.5), we rewrite (2.2) in

the form

Π(t)′β∗ = −i
[
(A− c1In)

−1Π(t)β∗

1
. . . (A− cmIn)

−1Π(t)β∗

m

]
.

Thus, we obtain

Π(t)β∗ =
[
Λ1(t) . . . Λm(t)

]
, Λk(t) = exp

{
− i t(A− ckIn)

−1
}
Π(0)β∗

k ,

(4.6)
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where Λk(t) is the k-th column of Π(t)β∗.

Let us assume again σ(A)∩ σ(A∗) = ∅. Recall that the matrix identities

(equations) AC−CA∗ = Q have, in this case, unique solutions C. Therefore,

relation (2.4) and the first equality in (4.6) show that

S(t) =
m∑

k=1

Sk(t), ASk(t)− Sk(t)A
∗ = iΛk(t)Λk(t)

∗. (4.7)

Moreover, the second equality in (4.6) implies that the matrix function

Sk(t) = exp
{
− i t(A− ckIn)

−1
}
Ck exp

{
i t(A∗ − ckIn)

−1
}

(4.8)

satisfies the second equality in (4.7) if

ACk − CkA
∗ = iΠ(0)β∗

kβkΠ(0). (4.9)

In other words, S(t) is given by the first equality in (4.7) and by relations

(4.8) and (4.9).

5 Conclusion

In this paper, we constructed GBDT-transformed dynamical systems (1.5)

and their solutions including the case of explicit solutions. We studied en-

ergy relations for these solutions as well. The studies of solutions and energy

relations are important in itself and may be further applied in optimisation

and control problems. For instance, in analogy with port-Hamiltonian the-

ory, the triples {A, S(0),Π(0)} and the scalars {ck}, which determine GBDT,

could be considered as the so-called port-variables. In that case, the optimi-

sation and control would consist in choosing both systems and their solutions

and we work further on this approach. We note that Hamiltonian systems

as well as energy functionals and control problems for dynamical systems

are actively studied in mathematical and applied literature (see, e.g., some

references in the recent publications [3, 12, 17, 23, 24]).

Funding details. This work was supported by the Austrian Science

Fund (FWF) grant, DOI: 10.55776/Y963.
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