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ON PROJECTIVE VARIETIES OF GENERAL TYPE

WITH MANY GLOBAL K-FORMS

MENG CHEN, ZHI JIANG

Abstract. We prove the following results: (1) for any nonsin-
gular projective 3-folds X of general type with χ(OX) 6= 2, 3,
the canonical volume Vol(X) has the optimal lower bound 1

420
;

(2) for nonsingular projective 3-folds (resp. 4-folds) X of general
type with h2,0(X) ≥ 108 · 423 + 4 (resp. with sufficiently large
h2,0(X)), the 3-canonical map (resp. 5-canonical map) is stably
birational; (3) for any nonsingular projective n-fold X of general
type with q(X) > n ≥ 4, the canonical stability index rs(X) is
upper bounded by the (n− 1)-th canonical stability index rn−1.

1. Introduction

We work over an algebraically closed field of characteristic zero.
Given a nonsingular projective variety V of general type, it has been of
great importance to calculate the canonical stability index rs(V ). For
any n ∈ Z>0, both the n-th canonical stability index

rn := sup
W

{rs(W )|W is a smooth projective n-fold of general type}

and the n-th minimal volume

vn := inf
W

{Vol(W )|W is a smooth projective n-fold of general type}

are key global quantities of birational geometry. It is known that r1 = 3
and, by Bombieri [3], r2 = 5. Iano-Fletcher’s example in [27] shows
r3 ≥ 27, v3 ≤ 1

420
and, by Chen-Chen [9, 10, 11] and [16], r3 ≤ 57

and v3 ≥ 1
1680

. For any n ≥ 4, the theorem of Hacon-McKernan [26],
Takayama [45] and Tsuji [47] tells rn < +∞. However, no effective

upper bound is know beside the fact that rn > 22
n−2

2 due to those
interesting examples found by Esser-Totaro-Wang [21].

According to [11], the untameable 3-folds of general type are those
admitting global 2-forms. So, in the first part of this paper, we prove
the Noether type of inequality between the canonical volume and the
Hodge number h0,k = hk,0:
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Theorem 1.1. (=Theorem 2.1) Fix two integers n and k with n > 0
and 0 ≤ k ≤ n. There exist positive numbers an,k and bn,k such that
the inequality

vol(X) ≥ an,kh
0(X,Ωk

X)− bn,k

holds for every smooth projective n-fold X of general type.

The constants an,k and bn,k are related to minimal volumes of vari-
eties of general type of dimensions ≤ n − 1. When n is small, these
numbers are explicit. These inequalities also suggest that the pluri-
canonical systems on varieties with many global k-forms should behave
well. Indeed, as an interesting application, we show the following result
which improves [9, Theorem A(iii)]:

Theorem 1.2. (=Corollary 2.7) Let X be a nonsingular projective
3-fold of general type. Then

Vol(X) ≥ 1

420

provided that χ(OX) 6= 2, 3.

The second part of this paper devotes to studying explicit birational
geometry. Let us recall the following known results:

• When dim(V ) = 3 and pg(V ) ≥ 4, rs(V ) ≤ 5(= r+2 ) by [13,
Theorem 1.2]; when dim(V ) = 3 and vol(V ) > 123, rs(V ) ≤
5(= r5) by Todorov [46, Theorem 1.2] and [15, Theorem 1.1];

• There are constants K(4), L(4) and L(5). When dim(V ) = 4
and vol(V ) ≥ K(4) (resp. pg(V ) ≥ L(4)), rs(V ) ≤ r3 (resp.
≤ r+3 ) by [18, Theorem 1.4, Theorem 1.5]; When dim(V ) = 5
and pg(V ) ≥ L(5), rs(V ) ≤ r+4 by [18, Theorem 1.5]; (see [18,
P. 2044] for the definition of r+n )

• When dim(V ) = n ≥ 4, rs(V ) ≤ max{rn−1, (n− 1)rn−2+2} by
Lacini [37, Theorem 1.3].

We shall consider 3-folds and 4-folds with many global two forms
and varieties in any dimension with many global 1-forms. It turns out
that the pluricanonical system of these varieties behaves very well.

Theorem 1.3. Let X be any nonsingular projective 3-fold of general
type with h2,0(X) ≥ 108 · 183 + 4. Then the m-canonical map ϕm,X is
birational for all m ≥ 3.

Note that χ(OX) = 1 + h2,0(X)− q(X)− pg(X). Hence we can also
provide an alternative form of Theorem 1.3 as follows.

Theorem 1.4. Let X be any nonsingular projective 3-fold of general
type with χ(OX) ≥ 108 ·183+5. Then ϕm,X is birational for all m ≥ 3.

A typical 3-fold of general type with arbitrarily large χ(O) can be
constructed as follows.
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Example 1.5. Let Ci be a hyperelliptic curve of genus gi > 1 for
i = 1, 2, 3. We denote by τi the hyperelliptic involution on Ci and let
fi : Ci → P1 be the hyperelliptic quotient for i = 1, 2, 3. We then have
fi∗OCi

= OP1 ⊕OP1(−(gi + 1)).
Let X := (C1 × C2 × C3)/〈τ1 × τ2 × τ3〉 be the diagonal quotient

and let f : X → P1 × P1 × P1 be the natural morphism. Then X
has finitely many singular points, which are isolated terminal quotient
singularities. Let τ : V → X be a desingularization. Since X has
rational singularities, Rτ∗OV = OX . Considering the composition of
morphisms

g : V
τ−→ X

f−→ P1 × P1 × P1,

we have

Rg∗OV = Rf∗Rτ∗OV = f∗OX

=
(
(f1∗OC1

)⊠ (f2∗OC2
)⊠ (f3∗OC3

)
)〈τ1×τ2×τ3〉

=
(
OP1 ⊠OP1 ⊠OP1

)
⊕(

OP1(−(g1 + 1))⊠OP1(−(g2 + 1))⊠OP1

)
⊕(

OP1 ⊠OP1(−(g2 + 1))⊠OP1(−(g3 + 1))
)

⊕(
OP1(−(g1 + 1))⊠OP1 ⊠OP1(−(g3 + 1))

)
.

We then see that h1(V,OV ) = h3(V,OV ) = 0 and h2(V,OV ) = g1g2 +
g1g3 + g2g3. Moreover, vol(V ) = vol(KX) = 1

8
vol(C1 × C2 × C3) =

(g1 − 1)(g2 − 1)(g3 − 1).
If g1 is large, so is vol(V ). Let g2 = 2, then V has a genus 2 fibration,

|2KV | cannot be birational. Therefore, rs(V ) = 3 which means the
statement in Theorem 1.3 is sharp.

We can extend Theorem 1.3 to dimension 4.

Theorem 1.6. There exists a constant M(4) such that, for any non-
singular projective 4-fold X of general type with h0(X,Ω2

X) ≥ M(4),
ϕm,X is birational for all m ≥ 5.

The next two examples show that the statement in Theorem 1.6 is
sharp as well.

Example 1.7. Let Y be a minimal irregular threefold of general type
with q(Y ) = 1 such that the general fiber of the Albanese morphism
of Y is an (1, 2)-surface (namely, the minimal model of this fiber has
invariants (K2, pg) = (1, 2)). Let V = Y × C, where C is a smooth
projective curve of any genus g ≥ 2. Then, as g is sufficiently large, V
is a fourfold with sufficiently large h2,0(V ), but |4KV | cannot induce a
birational map since rs(S) = 5. Thus, when g is large enough, rs(V ) =
5.
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Example 1.8. We still denote by S a minimal (1, 2)-surface. Let S ′

be a smooth minimal surface of general type with pg(S
′) = g. Let

V = S × S ′. Then, when g is large enough, so is h2,0(V ), but |4KV |
cannot induce a birational map. Hence rs(V ) = 5.

It is interesting to mention that, though constructions in Examples
1.7 and 1.8 are simple, those varieties with similar structures are exactly
the most difficult cases while proving Theorem 1.6.

Observing that two digits “3” and “5” in the statements of Theorem
1.3 and Theorem 1.6 can be understood as rn−2 where n = dim(X) =
3, 4, one might put the higher dimensional analog as an interesting
conjecture (see Section 7)! However the next example shows that,
unlike in dimension 3, one cannot replace the condition “h2,0(X) ≫ 0”
with the condition “χ(OX) = χ(ωX) ≫ 0” even in dimension 4. Thus
the higher dimensional analog of Theorem 1.4 seems to be impossible.
At least it fails in dimension 4.

Example 1.9. Let C be a smooth projective curve and let L be a
very ample line bundle on C with d = deg(L) ≫ 1. Let µ : Y →
P := P(1, 3, 4, 5, 14) be a resolution of the weighted projective space
of dimension 4 such that |µ∗OP(28)| = |M | + E, where the effective
Q-divisor E is the fixed part and the mobile part |M | is base point
free. Let V ⊂ C × Y be a general hypersurface of |L⊠M |. Then V is
a smooth 4-fold and ωV =

(
(KC ⊗ L)⊠ (KY ⊗M)

)
|V . Let f : V → C

be the natural fibration. One sees that Rif∗ωV = 0 for i = 1, 2, since
a genearl fiber of f is birational to a hypersurface of degree 28 in
P(1, 3, 4, 5, 14). Moreover, an easy computation shows that f∗ωV =
KC ⊗ L and R3f∗ωV = KC . Hence, χ(ωV ) = d ≫ 0, h2,0(V ) = 0
and that |13KV | cannot induce a birational map of V . In a word,
rs(V ) > 13 > r2 = 5.

Finally we study irregular varieties of general type and prove the
following theorem:

Theorem 1.10. (=Theorem 7.2) Let X be a smooth projective variety
of general type of dimension n ≥ 4. Assume that q(X) > n. Then
|mKX | induces a birational map for all m ≥ rn−1.

1.1. Notions and notations.

A variety X is an integral separated scheme of finite type over an
algebraic closed field of characteristic 0. We will always work on normal
projective varieties. Let D1 and D2 be two Q-Weil divisors on a normal
variety X . We say that D1 ≥ D2 if D1 − D2 is an effective Q-Weil
divisor. We say that D1 ≥Q D2 if there exits a positive integer M
such that M(D1 − D2) is a Cartier divisor and is linearly equivalent
to an effective Cartier divisor. We write D1 ∼Q D2 if M(D1 − D2) is
a principal Cartier divisor for M sufficiently large and divisible. We
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say a Q-Cartier divisor D on a normal projective variety X is psuedo-
effective if for any ample Cartier divisor H on X and any rational
number b > 0, D + bH is a big Q-Cartier divisor.

Let X be a normal variety and D an effective Q-Weil divisor on X .
Let µ : X ′ → X be a log resolution of (X,D). We may write

KX′ = µ∗(KX +D) +
∑

E

a(E;X,D)E,

where E runs over all the distinct prime divisors ofX ′ and a(E;X,D) ∈
Q. We call a(E;X,D) the discrepancy of E with respect to (X,D). We
say that (X,D) is log canonical at x ∈ X if a(E;X,D) ≥ −1 for each
E such that x ∈ µ(E). Let E ⊂ X ′ be a prime divisor with discrepancy
−1. We say that µ(E) is a log canonical center or lc center of (X,D)
if (X,D) is log canonical at a general point of µ(E). A log canonical
center which is minimal with respect to the inclusion is called a minimal
log canonical center. Assume (X,D) is log canonical at x ∈ X and let
C1 and C2 be two lc centers of (X,D) containing x. By [31, Proposition
1.5], each irreducible component of C1 ∩ C2 containing x is also a lc
center of (X,D). In particular, the minimal lc center of (X,D) at x is
well-defined. Let E1, . . . , Em be the divisors with discrepancy ≤ −1 of
(X,D). Then µ(E1 ∪ · · · ∪ Em) is called the non-klt locus of (X,D),
usually denoted by Nklt(X,D). When X is smooth, we denote by
J (D) = J (X,D) = µ∗OX′(

∑
E⌈−a(E;X,D)E⌉) the multiplier ideal

of D (see [39, Section 9]). Then it is clear that Nklt(X,D) is the
support of the subscheme of X defined by J (D). Let D be an effective
Q-divisor on a smooth variety X . We denote by lct(X ;D) the maximal
positive rational number t such that (X, tD) is log canonical at each
point of X . We call lct(X ;D) the log canonical threshold of D.

Let F be a torsion-free coherent sheaf of rank r on a smooth vari-
ety X . Let j : U ⊂ X be the locus where F is locally free. Then,
codimX(X \ U) ≥ 2. We write detF to be the unique Cartier divisor
on X , which extends ∧rF on U . We also denote by F∗∗ the reflexive
hull j∗(j

∗F) of F .
We say that a set X of varieties is birationally bounded if there is a

projective morphism between schemes, say τ : X → T , where T is of
finite type, such that for every element X ∈ X, there is a closed point
t ∈ T and a birational equivalence X 99K Zt.

We usually denote by ǫ a sufficiently small positive rational number.

2. Inequalities among birational invariants

2.1. General inequalities.

According to Hacon-McKernan [26], Takayama [45] and Tsuji [47],
given any positive rational number M , the set of smooth projective
general type n-folds whose canonical volumes are upper bounded by
M is birationally bounded. Denote by νn the minimal volume among
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all smooth projective n-folds of general type. By the MMP and Birkar-
Cascini-Hacon-McKernan [2], any variety of general type has a minimal
model.

Theorem 2.1. Fix two integers n and k with n > 0 and 0 ≤ k ≤ n.
There exist positive numbers an,k and bn,k such that the inequality

vol(X) ≥ an,kh
0(X,Ωk

X)− bn,k

holds for every smooth projective n-fold X of general type.

When k = n, we have hn(X,OX) = h0(X,KX) = pg(X) and hence
Theorem 2.1 is a generalization of the Noether type inequality (see
Chen-Jiang [18, Corollary 5.1]). When n = 2, we have Debarre’s in-
equality (see [19]): vol(X) ≥ 2pg + 2(q(X)− 4).

Proof. By Lemma 2.2 below, there exists a subsheaf F of Ωk
X such that

h0(X, detF) ≥ h0(X,Ωk
X
)

(nk)
. We may replace F by its saturation in Ωk

X

and denote by Q the corresponding quotient bundle. Set H := detF
and L := detQ. Then

(
n− 1

k − 1

)
KX ∼ det(Ωk

X) ∼ H + L.

By Campana and Paun [7, Theorem 1.2], we know that L is pseudo-
effective.

Modulo birational modifications, we may assume that |H| is base
point free. We consider the following commutative diagram:

X
π

//

ϕH

��

Xmin

P(H0(X,H)),

where Xmin is the minimal model of X and ϕH is the morphism induced

by the linear system |H|. Denote by ϕH : X
f−→ Γ

s−→ P(H0(X,H)) the
Stein factorization of ϕH and let d = dimΓ. Let F be a general fiber
of f .

Take d−1 general hyperplane sections H1, . . . , Hd−1 of P(H0(X,H)).
Let W = s∗(H1)∩· · ·∩s∗(Hd−1) and XW = f−1(W ). Then the induced
morphism fW := f |XW

: XW → W is a fibration from a smooth projec-
tive variety XW of dimension n − d + 1 to a smooth projective curve.
Let a ≥ 1 be the degree of s∗H1 on W . Note that a ≥ h0(X,H)− d.

Then, by Kawamata’s restriction theorem (see [32]), for each m ≥ 2,

|am(KXW
+

1

a
H|XW

)||F = |amKF |.
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Repeatedly applying Kawamata’s restriction theorem, one gets, for
m ≥ 2,

|ma(KX + (d− 1 +
1

a
)H)||F (2.1)

= |ma(KX + ϕ∗
HH1 + · · ·+ ϕ∗

HHd−1 +
1

a
H)||F

= |ma(KXW
+

1

a
H|XW

)||F
= |maKF |.

We take a rational number 0 < ǫ ≪ 1 and consider the Q-divisor
(d− 1 + 1

a
)L+ ǫKX . Since L is pseudo-effective and KX is big,

M((d− 1 +
1

a
)L+ ǫKX)

is effective for sufficiently large and divisible integer M . Therefore,

|M
((n− 1

k − 1

)
(d− 1 +

1

a
) + 1 + ǫ

)
KX |

= |M(KX + (d− 1 +
1

a
)H) +M((d− 1 +

1

a
)L+ ǫKX)|

⊃ |M(KX + (d− 1 +
1

a
)H)|+D,

where D ∈ |M((d− 1+ 1
a
)L+ ǫKX)| is an effective divisor. Restricting

on F , by (2.1), we get

|M
((n− 1

k − 1

)
(d− 1 +

1

a
) + 1 + ǫ

)
KX ||F ⊃ |MKF |+D|F .

Modulo a further birational modification to π, we may assume that
θ : F → Fmin is a morphism onto one of its minimal model. Note that
the free part of

|M
((n− 1

k − 1

)
(d− 1 +

1

a
) + 1 + ǫ

)
KX |

is

|M
((n− 1

k − 1

)
(d− 1 +

1

a
) + 1 + ǫ

)
π∗KXmin

|.

Thus

((n− 1

k − 1

)
(d− 1 +

1

a
) + 1 + ǫ

)
π∗KXmin

|F ≥Q θ∗KFmin
.
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We finally conclude that

vol(X) = (π∗Kn
Xmin

) ≥ 1(
n−1
k−1

) ·
(
(L+H) · π∗Kn−1

Xmin

)

≥ 1
(
n−1
k−1

)d ·
(
Hd · π∗Kn−d

Xmin

)
≥ a

(
n−1
k−1

)d ·
(
(π∗KXmin

)|n−d
F

)

≥ a
(
n−1
k−1

)d · vol(F )
((

n−1
k−1

)
(d− 1 + 1

a
) + 1

)n−d

≥ h0(X,H)− d
(
n−1
k−1

)d · vol(F )
((

n−1
k−1

)
d+ 1

)n−d

≥
h0(X,Ωk

X )

(nk)
− d

(
n−1
k−1

)d · vol(F )
((

n−1
k−1

)
d+ 1

)n−d

≥ νn−d((
n−1
k−1

)
d+ 1

)n−d(n−1
k−1

)d(n
k

) ·
(
hk,0(X)− d

(
n

k

))
. (2.2)

�

Lemma 2.2. Let E be a torsion-free sheaf of rank r over a projective
variety X. Assume that h0(X, E) > 0. There exists a torsion-free

subsheaf F ⊂ E such that h0(X, detF) ≥ h0(X,E)
r

.

Proof. We run induction on r. When r = 1, it is a trivial statement.
We now assume that rank(E) = r > 1. We may assume that the
evaluation

ev : H0(X, E)⊗OX → E
is generically surjective. Otherwise, the image E ′ of the evaluation map
is of rank ≤ r − 1 and we replace E by E ′.

We then take s1, . . . , sr−1 ∈ H0(X, E), which generate a subspace W
of H0(X, E), and the evaluation map ev|W : W ⊗OX → E is injective.
We then take the wedge product:

φW : H0(X, E) → H0(X, det E)
s → s1 ∧ · · · ∧ sr−1 ∧ s.

If h0(X, det E) ≥ h0(X,E)
r

, we are done. Otherwise,

dim kerφW >
r − 1

r
· h0(X, E).

Let W ′ := ker φW . We now consider

ev|W ′ : W ′ ⊗OX → E .
Since for each s ∈ W ′, s is linearly dependent with s1, . . . , sr−1 at a
general point of X , the image of ev|W ′ is a subsheaf E ′′ ⊂ E of rank
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r − 1. Note that H0(X, E ′′) ⊃ W ′. Thus, by induction, E ′′ contain a

subsheaf F with h0(X, detF) ≥ h0(X,E ′′)
r−1

> h0(X,E)
r

. �

The linear bound (2.2) is probably far from being optimal, but to the
authors’ knowledge, this is the first explicit inequality between canon-
ical volumes and intermediate Hodge numbers in high dimensions.

Corollary 2.3. Let X be a 3-fold of general type,

vol(X) ≥
{

h2,0(X)−9
24

, h2,0(X) ≤ 13
h2,0(X)−3

54
, h2,0(X) ≥ 14,

and

vol(X) ≥
{

χ(OX)−10
24

, χ(OX) ≤ 14
χ(OX)−4

54
, χ(OX) ≥ 15.

Proof. We note that ν1 = 2 and ν2 = 1. Hence, by (2.2), when n = 3
and k = 2, we have

vol(X) ≥ min{h
2,0(X)− 9

24
,
h2,0(X)− 6

30
,
h2,0(X)− 3

54
}.

Since χ(OX) = 1−q(X)+h2,0(X)−pg(X), we have h2,0(X) ≥ χ(OX)−
1. �

2.2. A stronger inequality between vol and q.
Here we deduce a stronger inequality between the canonical volume

and the irregularity via the Albanese morphism using generic vanishing
theory. One may compare it with various Severi inequalities (see, for
instance, [29]).

We first recall some results from generic vanishing. For a coherent
sheaf F on an abelian variety A, we define the i-th cohomological
support locus

V i(F) := {P ∈ Pic0(A) | H i(A,F ⊗ P ) 6= 0}.
We say that F is a GV sheaf if codimPic0(A)V

i(F) ≥ i for each i ≥ 1.
Following [42], we define the generic vanishing index

gv(F) := min
1≤i≤dimA

{codimPic0(A)V
i(F)− i}

for a GV sheaf F . Note that, if V i(F) = ∅, we let codimPic0(A)V
i(F) =

∞. The main result of [42] states that, if F is a GV sheaf on A with
gv(F) < ∞, χ(F) ≥ gv(F). Given a morphism f : X → A from a
smooth projective variety X to an abelian variety, the higher direct
images Rif∗ωX are GV for each i ≥ 0 (see [25]). Moreover, by Green-
Lazarsfeld [24] and Simpson [44], V j(Rif∗ωX) is a union of torsion
translates of abelian subvarieties of Pic0(A) for each i, j ≥ 0.

The following lemma is a kind of geometric version of Lemma 2.2 for
h1,0(X).
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Lemma 2.4. Let f : Z → A be a morphism from a smooth projective
variety Z to an abelian variety A. Assume that f is generically finite
onto its image and f(Z) $ A generates A. Then there exists a quotient
between abelian varieties qB : A → B with connected fibers such that,
when taking the Stein factorization of qB ◦ f : Z → B:

Z
f

//

qZ
��

A

qB
��

ZB
fB

// B,

fB(ZB) $ B generates B, any smooth model Z ′
B of ZB is of general

type, and

χ(ωZ′
B
) ≥ dimA− dimZ

dimZ
.

Proof. Let n = dimZ and g = dimA. We run induction on n. When
n = 1, the conclusion follows from the assumption that f(Z) generates
A. We then assume that n ≥ 2.

Note that f∗ωZ is a GV sheaf and, since f is generically finite,
Rif∗ωZ = 0. We consider gv(f∗ωZ). SinceH

n(A, f∗ωZ⊗P ) = Hn(Z, ωZ⊗
f ∗P ) for each P ∈ Pic0(A),

V n(f∗ωZ) = ker(f ∗ : Pic0(A) → Pic0(Z))

consists of finitely many points. In particular, gv(f∗ωZ) < ∞. If
gv(f∗ωZ) ≥ g−n

n
, we conclude from Pareschi-Popa [42] that χ(ωZ) ≥

g−n
n
.

We then assume that gv(f∗ωZ) = k < g
n
− 1 and

codimPic0(A)V
i0(f∗ωZ)− i0 = k

for some 1 ≤ i0 ≤ n. Since n ≥ 2 and dimV n(f∗ωZ) = 0, we see that
1 ≤ i0 ≤ n − 1. Pick an irreducible component W of V i0(f∗ωZ) of

codimension i0 + k, then W must be of the form Q + Ĉ where Ĉ ⊂
Pic0(A) is an abelian subvariety and Q ∈ Pic0(A) is a torsion point.

We then consider the dual quotient qC : A → C := Pic0(Ĉ). After
taking further necessary birational modification to qC ◦ f : Z → C,

we obtain the Stein factorization: Z
qC−→ ZC

fC−→ C, where ZC may be
assumed smooth.

We claim that dimZC ≤ n − i0. Indeed, since Q + Ĉ ⊂ V i0(f∗ωZ),

for general P ∈ Ĉ,

H i0(Z, ωZ ⊗ f ∗(Q⊗ q∗CP )) = H i0(A, f∗ωZ ⊗Q⊗ q∗CP ) 6= 0.
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On the other hand, by Kollár’s splitting (see [34, the main theorem]),

H i0(Z, ωZ ⊗ f ∗(Q⊗ q∗CP )) ∼=
⊕

0≤j≤i0

Hj(ZC, R
i0−jqC∗(ωZ ⊗ f ∗Q)⊗ f ∗

CP )

∼=
⊕

0≤j≤i0

Hj(C, fC∗R
i0−jqC∗(ωZ ⊗ f ∗Q)⊗ P ).

By Hacon’s theorem (see [25]), all sheaves fC∗R
i0−jqC∗(ωZ ⊗ f ∗Q) are

GV on C for 0 ≤ j ≤ i0. Thus

H i0(Z, ωZ ⊗ f ∗(Q⊗ q∗CP )) ≃ H0(C, fC∗R
i0qC∗(ωZ ⊗ f ∗Q)⊗ P ) 6= 0.

This implies that Ri0qC∗(ωZ ⊗ f ∗Q) 6= 0 and, by Kollár’s theorem [33,
Theorem 2.1], dimZ − dimZC ≥ i0.

We then have

dimC − dimZC

dimZC
≥ g − i0 − k

n− i0
− 1 ≥ g − n− k

n− i0

>
g − n− g

n
+ 1

n− 1
=

g

n
− 1.

Since fC(ZC) $ C generates C and, by induction, there exists a further
quotient qCB : C → B with connected fibers between abelian varieties
such that for the Stein factorization ZC → ZB → B of qCB ◦ fC , any
smooth model of ZB or its image in B is of general type, and

χ(ωZ′
B
) ≥ dimC − dimZC

dimZC
>

g

n
− 1.

�

Given any smooth projective n-fold X of general type, for the case
k = 1, Theorem 2.1 gives

vol(X) ≥ min
1≤d≤n

νn−d

n(d+ 1)n−d
(q(X)− dn),

which can be greatly improved as follows.

Theorem 2.5. Let n > 0 and 1 ≤ d ≤ n. Set λn := min1≤d≤n
νn−d

(n−d)!
.

The inequality

vol(X) ≥ 2(n− 1)!λn(q(X)− n)

holds for any nonsingular projective n-fold X of general type.

Proof. We may assume that q(X) ≥ n + 1. Let aX : X → AX be the
Albanese morphism of X . Taking the Stein factorization of aX ,

aX : X
h−→ Z

f−→ AX .

Moduolo further birational modifications, we may assume that Z is
smooth. Let 1 ≤ dimZ = m ≤ n. By taking further birational mod-
ifications and applying Lemma 2.4, we get the following commutative
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diagram:

X

hB

��

aX

!!
❉❉

❉❉
❉❉

❉❉

h
��

Z
f

//

��

AX

��

ZB
fB

// B,

where ZB is smooth of general type, χ(ωZB
) ≥ q(X)−m

m
≥ q(X)−n

n
, and

hB is a fibration. Let d = dimZB ≤ m and let F be a general fiber of
hB.

By the Severi inequality (see [1] and [51]), vol(ZB) ≥ 2d!χ(ωZB
) ≥

2d! q(X)−n
n

.
We have

vol(X) ≥ n!

d!(n− d)!
vol(ZB)vol(F )

by [50, Theorem 7.1]. Therefore

vol(X) ≥ 2(n− 1)! · νn−d

(n− d)!
(q(X)− n).

�

Remark 1. By considering the product, we see that νd ≤ 2dνd−1.
Thus νd

d!
≤ 2

νd−1

(d−1)!
. It is natural to expect that νd < νd−1 when d ≥ 2.

If this is the case, we would have

vol(X) ≥ 2νn−1(q(X)− n)

for any smooth projective n-fold (n ≥ 3) of general type.

2.3. Volumes of threefolds of general type.

We excavate information from the method of Corollary 2.3 to study
the volume of 3-folds when h2,0(X) is small. This subsection is devoted
to proving the following two results.

Theorem 2.6. Let X be a smooth projective threefold of general type
with h2,0(X) ≥ 3. Then vol(X) ≥ 1

224
.

Corollary 2.7. Let X be a smooth projective threefold of general type
with χ(OX) 6= 2 or 3. Then vol(X) ≥ 1

420
.

Corollary 2.7 improves an earlier result of Chen-Chen [9, Theorem
A] where the condition is χ(OX) ≤ 1.

In order to treat the situation with χ(OX) ≥ 2, one necessarily has
h2,0(X) = h2(OX) ≥ 1. Since h2,0(X) = h0(X,Ω2

X) ≥ 1, it is natural
to consider the evaluation map

ev2 : H
0(X,Ω2

X) → Ω2
X .
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Lemma 2.8. Assume that there exists a coherent subsheaf F of Ω2
X

such that h0(detF) ≥ 2. Then vol(X) ≥ 1
18
.

Proof. We may assume that F is saturated with h0(detF) ≥ 2. Let
Q be the corresponding quotient sheaf. We have 2KX ∼ det(Ω2

X) ∼
detF +detQ, where detQ is pseudo-effective by [7]. We then consider
the map ϕF induced by | detF| and, by repeatedly apply Kawamata’s
extension theorem, get an estimation the lower bound of vol(X) similar
to the proof of (2.2).

Precisely, if the image of ϕF is a curve and, modulo a further birationl
modification over X , let S be a irreducible component of a general
member of | detF|, we have vol(X) ≥ 1

18
vol(S) ≥ 1

18
. If the image of

ϕF is a surface, then vol(X) ≥ 1
8
by [11, Table A2]. If ϕF is generically

finite, we simply have vol(X) ≥ 1
4
. �

Proposition 2.9. Let X be a threefold of general type. Assume that
h2,0(X) ≥ 3, then either vol(X) ≥ 1

18
or P2(X) ≥ 1. In the latter case,

vol(X) ≥ 1
224

.

Proof. If h2,0(X) ≥ 4, let F be the image of the evaluation map ev2.
By Lemma 2.2, h0(detF) ≥ 2. The statement follows from Lemma
2.8.

Assume that h2,0(X) = 3. If the image of the evaluation map is
of rank ≤ 2, by Lemma 2.2, there exists a subsheaf F of Ω2

X with
h0(detF) ≥ 2. Then by Lemma 2.8, we have vol(X) ≥ 1

18
. If the eval-

uation map is generically surjective, we have P2(X) = h0(det Ω2
X) ≥ 1.

By [9, (3.10)], we know that

P4(X) + P5(X) + P6(X) ≥ 3P2(X) + P3(X) + P7(X).

Since P2(X) ≥ 1, we have P7(X) ≥ P5(X) and P6(X) ≥ P4(X). Thus
2P6(X) ≥ 3P2(X) ≥ 3. We have P6(X) ≥ 2. Denote by δ(X) =
min{m ∈ Z | Pm(X) ≥ 2}. Then δ(X) ≤ 6. By [11, Theorem 4.3], one
has vol(X) ≥ 1

224
. �

Proposition 2.9 directly implies Theorem 2.6.

Proof of Corollary 2.7. By [9, Theorem A], it suffices to study the case
χ(OX) ≥ 4.

If pg(X) ≥ 1, by [11, Corollary 1.7] and [14, Theorem 1.4], vol(X) ≥
1
75
. If q(X) ≥ 1, by [29, Theorem 1.5], vol(X) ≥ 3

8
.

If pg(X) = q(X) = 0 and χ(OX) ≥ 4, we have h2,0(X) ≥ 3 and the
statement follows directly from Theorem 2.6. We are done. �

3. Proof of Theorem 1.3

Let V be a nonsingular projective 3-fold of general type. We show
that |3KV | induces a birational map under the condition that h0(V,Ω2

V ) ≥
108 · 183 + 4. The method naturally works for all |mKV | with m ≥ 4.
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By Corollary 2.3, we have vol(V ) > 2 · 183. Applying Fujita’s ap-
proximation (see [39, Subsection 11.4]), we write KV ∼Q A+E, where
E is an effective Q-divisor and A is an ample Q-divisor such that
0 < vol(V )− vol(A) ≪ 1.

We now apply the method of cutting non-klt locus in Hacon-McKernan
[26], Takayama [45] and Tsuji [47], which is also exploited in Todorov
[46] and in our previous work [18, Subsection 4.2].

Pick very general points x, y ∈ V . There exists an effective Q-divisor

D1 ∼Q t1KV with t1 < 3 3

√
2

vol(V )
+ ǫ < 1

6
, where 0 < ǫ ≪ 1 such that

(V,D1) is log canonical but not klt at x, and that (V,D1) is not klt at
y. Modulo a small perturbation, we may also assume that the non-klt
locus of (V,D1), passing through x, is the minimal log canonical center
V1.

3.1. The case with dim V1 = 1.
We apply Takayama’s induction to conclude that there exists a di-

visor D2 ∼Q t2KV such that t2 ≤ t1 +
2

volV |V1
(KV )

+ ǫ, (X,D2) is log

canonical at x, {x} is an isolated component of Nklt(X,D2) at x, and
(X,D2) is not klt at y. Moreover, by Takayama [45, Theorem 4.5], we
know that volV |V1

(KV +D1) ≥ vol(V1), where V1 is the normalization
of V1. Thus

t2 ≤ t1 +
2(1 + t1)

2g(V1)− 2
+ ǫ ≤ 1 + 2t1 + ǫ.

Since t1 <
1
6
, we can choose t2 < 2.

We now conclude by using Nadel vanishing. Indeed, since x and y
are very general, both x and y are not contained in the support of
E. Thus we still have x, y ∈ Nklt(V,D2 + (2 − t2)E) and {x} is an
isolated component of Nklt(V,D2 + (2 − t2)E). Consider the short
exact sequence

0 → OV (3KV )⊗J (D2 + (2− t2)E) → OV (3KV )

→ OV (3KV )⊗ (OV /J (D2 + (2− t2)E)).

Since 2KV −D2 − (2− t2)E ∼Q (2− t2)A is ample, H1(V,OV (3KV )⊗
J (D2 + (2 − t2)E)) = 0 by Nadel vanishing. Thus |3KV | separates x
and y.

3.2. The case with dim V1 = 2 and vol(V1) ≥ 128.
Similarly, there exists a divisor D2 ∼Q t2KV such that (X,D2) is log

canonical at x, V2 $ V1 is the minimal log canonical center of (X,D2)
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at x and (X,D2) is not klt at y, where

t2 ≤ t1 + 2

√
2

volV |V1
(KV )

+ ǫ

≤ t1 + 2(1 + t1)

√
2

vol(V1)
+ ǫ.

Thus, if vol(V1) ≥ 128, since t1 <
1
6
, t2 <

1
2
, the statement follows from

the argument in Subsection 3.1.

3.3. The case with dimV1 = 2 and vol(V1) ≤ 127. We apply a result
of Todorov in [46, Lemma 3.2] to spread the minimal log canonical
centers into a family. More precisely, there exists a smooth projective

threefold Ṽ with the following diagram:

Ṽ
π

//

f

��

V

C,

where

(i) f : Ṽ → C is a surjective morphism to a smooth projective
curve whose general fiber F is a smooth projective surface of
volume ≤ 127;

(ii) π is generically finite;

(iii) for v ∈ Ṽ general, let Fv be the fiber of f passing through v and
z = π(v), then π|Fv

: Fv → π(Fv) is birational onto its image
and there exists an effective Q-divisor Dv ∼Q t1KV such that
π(Fv) is the minimal log canonical center of (V,Dv) at z.

3.3.1. The subcase with deg π = m ≥ 2. For a general point z of V ,
the pre-image π−1(z) lies on m distinct fibers of f and we denote by Sz

the set of these fibers. We also observe that, for such a general z ∈ V
and for any v ∈ π−1(z), z is a smooth point of Dv. In fact, locally Fv

maps onto Dv. The following argument is due to Todorov [46, Lemma
3.3].

If Sx 6= Sy, we may take F1 ∈ Sx, F2 ∈ Sx \Sy, and F3 ∈ Sy \Sx. Let
D′

x, D
′′
x ∼Q t1KV be the corresponding effective Q-divisors such that

π(F1) and π(F2) are respectively the minimal log canonical center of
(V,D′

x) and (V,D′′
x) at x. Let Dy ∼Q t1KV be the effective Q-divisors

such that π(F3) is the minimal log canonical center of (V,Dy) at y.
Note that (V,D′

x +D′′
x +Dy) is not klt at both x and y. We set

c := max{t | (V, t(D′
x +D′′

x) +Dy) is log canonical at x}.
Then c ∈ (0, 1] is a rational number. Moreover, since x /∈ Dy and x
is a smooth point of D′

x and D′′
x, the minimal log canonical center of
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(V, c(D′
x +D′′

x) +Dy) at x is contained in π(F1) ∩ π(F2) and, hence, is
of dimension ≤ 1. It is also clear that (V, c(D′

x +D′′
x) +Dy) is not klt

at y.
If Sx = Sy, we take Fi ∈ Sx = Sy for i = 1, 2 and similarly denote

by D′ and D′′ the corresponding effective Q-divisors. Both x and y are
smooth point of D′ and D′′. Let

c = max{lctx(V,D′ +D′′), lcty(V,D
′ +D′′)}.

Similarly, 0 < c ≤ 1 is a rational number. After switching x and y,
we may assume that (V, c(D′ + D′′)) is log canonical at x. Then the
minimal log canonical center of (V, c(D′ + D′′)) is again contained in
π(F1) ∩ π(F2).

In conclusion, if deg π ≥ 2, there exists an effective Q-divisor D2 ∼Q

t2KV such that (V,D2) is log canonical at x, V2 $ V1 is the minimal
log canonical center of (X,D2) at x and (X,D2) is not klt at y, where
0 < t2 ≤ 3t1 < 1

2
. The statement also follows from the argument in

Subsection 3.1

3.3.2. The subcase with π being birational. Since π is birational, we

may simply assume that V = Ṽ . Hence we have a fibration f : V → C
such that a general fiber F of f has its canonical volume vol(F ) ≤ 127.

We now apply the assumption that h1(ωV ) = h0(Ω2
V ) ≥ 108 ·183+4.

We have
h1(V, ωV ) = h0(C,R1f∗ωV ) + h1(C, f∗ωV )

by Leray’s spectral sequence. Note that h1(C, f∗ωV ) = h0(C, (f∗ωV/C)
∗)

by Serre duality. Moreover, f∗ωV/C is a locally free sheaf of rank pg(F ).
Since vol(F ) ≤ 127, by Noether inequality pg(F ) ≤ 250. Moreover, by
Fujita’s theorem (see [22]), f∗ωV/C is nef. By considering the Harder-
Narasimhan filtraion of f∗ωV/C , we see that

h0(C, (f∗ωV/C)
∗) ≤ pg(F ) ≤ 250.

Therefore h0(C,R1f∗ωV ) is very large. In particular,

q(F ) = rank(R1f∗ωV ) > 0.

We may run the relative minimal model program for f : V → C.
After resolving the finitely many terminal singularities of the relative
minimal model, we may assume that a general fiber F of f is a minimal
surface. Since F is irregular, pg(F ) ≥ q(F ) ≥ 1. Hence the linear
system |2KF | is base point free (see [4, Chapter VII. Theorem 7.4])
and |3KF | induces a birational morphism of F (see [4, Proposition
7.3]). By the main theorem of Kawamata [32], the restriction map

|m(KX + F )| → |mKF |
is surjective for m ≥ 2. Fix a general divisor G ∈ |M(KV + F )| for M
sufficiently large. We also write KV ∼Q A + E, where A is an ample
Q-divisor and E is an effective Q-divisor.
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Since vol(F ) ≤ 127 and vol(V ) > 2 · 183, there exists an effective
Q-divisor D such that D ∼Q λKV and D = F +D′, where D′ is also

an effective Q-divisor and λ−1 ≈ vol(V )
3vol(F )

> 2·183

3·127
> 91. (see, for instance,

[18, the last paragraph of Page 2055]).
Fix two general fibers F1 and F2 of f , we introduce an effective Q-

divisor

Z := 4D +
2− 4λ− ǫ

M
G+ (4λ− 4 + ǫ)F + ǫE.

Note that Z is Q-effective. We denote by J (Z) the multiplier ideal of
Z. Since Z ∼Q (2−ǫ)KV −2F +ǫE and thus 2KV −F1−F2−Z ∼Q ǫA,
by the Nadel vanishing theorem,

H1(V,OV (3KV − F1 − F2)⊗ J (Z)) = 0.

Thus the restriction map

H0(V,OV (3KV )⊗J (Z))

→ H0(F1,OF1
(3KF1

)⊗ J (Z)|F1
)
⊕

H0(F2,OF2
(3KF2

)⊗ J (Z)|F2
)

is surjective.
By the restriction theorem ([39, Theorem 9.5.1]), J (F1, Z|F1

) ⊂
J (Z)|F1

. Since M can be sufficiently large, |MKF1
| is base point free,

and ǫ can be sufficiently small, J (F1, Z|F1
) = J (F1, 4D|F1

).
When vol(F ) ≥ 3, since D|F1

∼Q λKF1
, we finish the proof by

Lemma 3.1.
When vol(F ) = 2, we have pg(F ) = q(F ) = 1. We may choose λ

such that

λ−1 ≈
vol(V )

3vol(F )
>

2 · 183
3 · 2 = 1944.

We finish the proof by Lemma 3.2. �

Lemma 3.1. Let F be a minimal surface of general type with K2
F ≥ 3.

The linear system
|3KF ⊗J (µDF )|

induces a birational map for any effective Q-divisor DF ∼Q KF and

rational number 0 < µ < 2−
√
3.

Proof. It is convenient to apply the Q-divisor method on surfaces.
Let σ : F̃ → F be a log resolution of (F,DF ). Then J (µDF ) =
σ∗OF̃ (KF̃ /F − ⌊µσ∗DF ⌋).

Hence σ∗ induces an isomorphism:

H0(F̃ , KF̃ + ⌈2σ∗KF − σ∗(µDF )⌉)) ∼= H0(F, 3KF ⊗ J (µDF )).

Recall the following theorem of Langer (see [38]), for a nef Q-divisor

Q := 2σ∗KF − σ∗(µDF ) on the surface F̃ , if Q2 > 8 and (Q · C) >
4

1+
√

1− 8

Q2

for any curve C passing through a very general point of F̃ ,

then |KF̃ + ⌈Q⌉| induces a birational map of F̃ .
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Now we have Q2 = (2σ∗KF − σ∗(µDF ))
2 > 3(K2

F ) ≥ 9. Thus it
suffices to verify that

(Q · C) > 3 =
4

1 +
√
1− 8

9

≥ 4

1 +
√
1− 8

Q2

for any curve C passing through a very general point of F̃ . This is the
case since, by Chen-Chen [11, Lemma 2.5], we always have (σ∗KF ·C) ≥
2. �

Lemma 3.2. Assume that F is a minimal surface of general type with
K2

F = 2 and pg(F ) = q(F ) = 1. Then J (F, µDF ) = OF for any
effective Q-divisor DF ∼Q KF and any rational number µ: 0 < µ < 1

26
.

Proof. We have h0(F, 2KF ) = 3.
Let σ : F → F0 be the contraction onto the canonical model of F .

Then KF = σ∗KF0
. We denote by H0 ∼ KF0

the ample Cartier divisor
on F0. By the birational transformation rule (see [39, Theorem 9.2.33]),
it suffices to show that lct(F0;DF0

) ≥ 1
26

for any DF0
∼Q H0.

We apply Kollár’ s method (see the appendix of [17]). Since H2
0 = 2

and h0(F0, KF0
+H0) = 3, we have

3 ≥ mcd(lct(F0;
1

2
DF0

)),

for any DF0
∼Q H0 (see [17, Proposition A.3 and Remark A.7]). By

[17, Proposition A.4], lct(F0;
1
2
DF0

) ≥ 1
13
. �

4. Extension theorems

We prove two extension theorems in this section. Both are crucial
ingredients in the proof of Theorem 1.6. We hope that they are useful
in other contexts.

4.1. The first theorem.

Theorem 4.1. Given a birationally bounded set X of varieties of gen-
eral type of dimension n. Let f : V → S be a fibration from a smooth
projective variety V onto a smooth projective surface S, whose general
fiber F is birationally equivalent to an element of X, and h : S → C a fi-
bration from S onto a smooth projective curve C. Let g = f◦h : V → C
be the composition of fibrations and denote by Y a general fiber of g.
For any integer m ≥ 2, there exists a constant M depending only on
m and X such that either of the following statements holds for any V
with KV ≥Q MY :

(1) the restriction map H0(V,mKV ) → H0(Y,mKY ) is surjective;
(2) the restriction map H0(V,mKV ) → H0(F,mKF ) is surjective.
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Proof. Let p ∈ C be a general point and let Y and Z be respectively the
fiber of g and h over p. We have the following commutative diagram:

Y � �
//

fY
��

V

f
����

g

��

Z � �
//

��

S

h
��

p �
�

// C.

Since KV � MY , by the proof of [18, Theorem 3.7], the image of
the restriction map

H0(V,mKV ) → H0(Y,mKY )

contains

H0(Y,OY (mKY )⊗ J (||(m− 1− ǫ)KY ||+ ǫDY )), (4.1)

where ǫ = m
M+1

and DY ∼Q KY is an effective Q-divisor, and the

definition of the multiplier ideal sheaf J (||(m−1− ǫ)KY ||+ ǫDY )) can
be found in [18, Subsection 2.3].

Since F is birational to an element of X, by Lemma 4.2 below, there
exist constants M1 and ǫ1, depending only on m and X, such that
whenever vol(Y ) > M1 and ǫ < ǫ1, the restriction map

H0(Y,OY (mKY )⊗ J (||(m− 1− ǫ)KY ||+ ǫDY )) → H0(F,mKF )

is surjective.
Thus, when M > m

ǫ1
and vol(Y ) > M1, the restriction map

H0(V,mKV ) → H0(F,mKF )

is surjective.
If vol(Y ) ≤ M1, Y belongs to a birationally bounded family. By [18,

Theorem 3.5], there exists a positive constant ǫ2, depending only on
m and M1, such that for any effective Q-divisor DY ∼Q KY and any
positive rational number τ < ǫ2,

H0(Y,OY (mKY )⊗ J (||(m− 1− τ)KY ||+ τDY )) ≃ H0(Y,mKY ).

Thus, by (4.1), we see that when M > m
ǫ2
, the restriction map

H0(V,mKV ) → H0(Y,mKY )

is surjective.
Hence we can take M = max{m

ǫ1
, m
ǫ2
} and finish the proof of Theorem

4.1. �

Lemma 4.2. Under the assumption of Theorem 4.1, let fY : Y → Z
be the induced morphism. There exist constants ǫ1 and M1, depending
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only on m and X, such that whenever vol(Y ) > M1 and 0 < η < ǫ1,
for any effective Q-divisor D ∼Q KY , the restriction map

H0(Y,OY (mKY )⊗J (||(m− 1− η)KY ||+ ηD)) → H0(F,OF (mKF ))

is surjective, where F is a general fiber of fY .

Proof. After suitable birational modifications, we denote by r : Y → Y0

(resp. rF : F → F0) the contraction morphism onto a minimal model
Y0 (resp. F0). We writeKY = r∗KY0

+EY andKF = r∗FKF0
+EF . Note

that EY and EF are effective Q-divisors and for N sufficiently large and
divisible, |NKY0

| and |NKF0
| are base point free and we have

|NKY | = r∗|NKY0
|+NEY ,

|NKF | = r∗F |NKF0
|+NEF . (4.2)

Let µ : Ỹ → Y be a log resolution of (Y,EY +D), let F̃ be the strict
transform of F , and let µF : F̃ → F be the induced morphism. We
have the following commutative diagram

F̃� _

��

µF
// F� _

��

rF
// F0

Ỹ

��
❄❄

❄❄
❄❄

❄❄

µ
// Y

f

��

r
// Y0

Z.

Define

J := J (||(m− 1− η)KY ||+ ηD)

= µ∗OỸ (KỸ /Y − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋).
Then

H0(Y,OY (mKY )⊗ J )

∼= H0(Ỹ , KỸ + (m− 1)µ∗KY − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋).
We consider the restriction map:

H0(Ỹ , KỸ + (m− 1)µ∗KY − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋)
Ψ→ H0(F̃ , KF̃ + (m− 1)µ∗

FKF − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋|F̃ )
⊂ H0(F̃ ,mKF̃ ).

Since F is birationally equivalent to an element in X, vol(F ) ≤ NX.
Thus, by considering the asymptotic Riemann-Roch (see, for instance,
[18, the proof of Theorem 3.7]), one has τKY ≥Q F for any number
τ > NX·dimY

vol(Y )
. In particular, by Kawamata’s extension theorem, for N

sufficiently large and divisible, there exists an effective divisor VN ∼
NτKF on F such that

|N(1 + τ)KY ||F ⊃ |NKF |+ VN . (4.3)
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Combining (4.2) and (4.3), we have

(1 + τ)r∗KY0
|F ∼Q r∗FKF0

+ Z1, (4.4)

(1 + τ)EY |F ∼Q EF + Z2,

τr∗KY0
∼Q F + Z3,

where Z1 and Z2 are effective Q-divisors on F such that Z1+Z2 ∼Q τKF

and Z3 is an effective Q-divisor on Y . Note that

Z3|F ∼Q τr∗KY0
|F =

τ

1 + τ
r∗FKF0

+
τ

1 + τ
Z1.

We may and will choose ǫ1 sufficiently small andM1 sufficiently large
such that ǫ1 +

NX dimY
M1

< 1 and choose a rational number τ such that

0 < τ − NX dimY
M1

≪ 1. Then

(m− 1)µ∗KY − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋ − F̃

≥Q (m− 1− η)(r ◦ µ)∗KY0
− µ∗F

≥Q (m− 1− η − τ)(r ◦ µ)∗KY0

is big. Define

J ′ := J (||(m− 1)µ∗KY − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋ − F̃ ||).
By Nadel vanishing (see [39, Theorem 11.2.12]),

H1
(
Ỹ ,OỸ (KỸ+(m−1)µ∗KY−⌊(m−1−η)µ∗EY +ηµ∗D⌋−F̃ )⊗J ′

)
= 0.

Thus the image of the restriction map Ψ contains the subspace

H0(F̃ ,OF̃ (KF̃ +(m−1)µ∗
FKF −⌊(m−1−η)µ∗EY +ηµ∗D⌋|F̃ )⊗J ′|F̃ ).

We want to show that

H0(F̃ ,OF̃ (KF̃ + (m− 1)µ∗
FKF − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋|F̃ )⊗ J ′|F̃ )

= H0(F̃ ,OF̃ (KF̃ + (m− 1)µ∗
FKF ))

≃−→ H0(F,mKF ).

We now study the sheaf J ′|F̃ . By (4.4), we have

(m− 1)µ∗KY − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋ − F̃

∼Q (m− 1− η)(r ◦ µ)∗KY0
+ V ′ − F̃

∼Q (m− 1− η − τ)(r ◦ µ)∗KY0
+ V ′′,

where V ′ = {(m− 1− η)µ∗EY + ηµ∗D} and V ′′ = V ′ + µ∗(Z3).
Since KY0

is semiample, J ′ ⊃ J (||V ′′||) ⊃ J (V ′′). By the restriction
theorem of asymptotic multiplier ideals (see [39, Theorem 11.2.1]), we
see that J ′|F̃ ⊃ J (F̃ , V ′′|F̃ ).

We then have

OF̃ (−⌊(m− 1− η)µ∗EY + ηµ∗D⌋|F̃ )⊗ J ′|F̃
⊃ J (((m− 1− η)µ∗EY + ηµ∗D)|F̃ + µ∗(Z3)|F̃ ).



22 M. Chen, Z. Jiang

By (4.4), we have

((m− 1− η)µ∗EY + ηµ∗D)|F̃ + Z3|F̃
∼Q

m− 1− η

1 + τ
µ∗
F (EF + Z2) +

τ

1 + τ
µ∗
F r

∗
FKF0

+
τ

1 + τ
µ∗
FZ1 + ηµ∗D|F̃

∼Q
m− 1− η − τ

1 + τ
µ∗
FEF +

m− 1− η − τ

1 + τ
µ∗
FZ2 +

τ

1 + τ
µ∗
F (r

∗
FKF0

+ EF )

+
τ

1 + τ
µ∗
F (Z1 + Z2) + ηµ∗D|F̃ .

We observe that
m− 1− η − τ

1 + τ
µ∗
FZ2 +

τ

1 + τ
µ∗
F (r

∗
FKF0

+ EF ) +
τ

1 + τ
µ∗
F (Z1 + Z2) + ηµ∗D|F̃

∼Q
m− 1− η − τ

1 + τ
µ∗
FZ2 + (τ + η)µ∗

FKF

≤Q
m− 1− η − τ

1 + τ
τµ∗

FKF + (τ + η)µ∗
FKF

=
mτ + η

1 + τ
µ∗
FKF ,

and
m− 1− η − τ

1 + τ
µ∗
FEF = (m− 1− mτ + η

1 + τ
)µ∗

FEF .

Set ρ = mτ+η
1+τ

and choose an effective Q-divisor DF ∼Q KF so that

m− 1− η − τ

1 + τ
µ∗
FZ2 +

τ

1 + τ
µ∗
F (r

∗
FKF0

+ EF ) +
τ

1 + τ
µ∗
F (Z1 + Z2) + ηµ∗D|F̃

≤Q ρµ∗
FDF .

We then have

OF̃ (−⌊(m− 1− η)µ∗EY + ηµ∗D⌋|F̃ )⊗J ′|F̃
⊃ J (F̃ , (m− 1− ρ)µ∗

FEF + ρµ∗
FDF )

= J (||(m− 1− ρ)µ∗
FKF ||+ ρµ∗

FDF ).

Therefore we have

H0(F̃ ,OF̃ (KF̃ + (m− 1)µ∗
FKF − ⌊(m− 1− η)µ∗EY + ηµ∗D⌋|F̃ )⊗J ′|F̃ )

⊃ H0(F̃ ,OF̃ (KF̃ + (m− 1)µ∗
FKF )⊗ J (||(m− 1− ρ)µ∗KF ||+ ρµ∗DF )).

By the birational transformation rule (see [39, Theorem 9.2.33]),

µF∗(OF̃ (KF̃ /F )⊗ J (||(m− 1− ρ)µ∗KF ||+ ρµ∗DF ))

= J (F, ||(m− 1− ρ)KF ||+ ρDF )).

Therefore it follows that

µF∗Im(Ψ) ⊃ H0(F,OF (mKF )⊗ J (F, ||(m− 1− ρ)KF ||+ ρDF ))).

By [18, Theorem 3.5], there exists a positive constant ǫX, depending
only on m and X, such that for each 0 < ǫ < ǫX and DF ∼Q KF ,

H0(F,OF (mKF )⊗J (F, ||(m− 1− ǫ)KF ||+ ǫDF ))) = H0(F,mKF ).
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Thus we may choose M1 and ǫ1 such that ǫ1+
m·dimY ·NX

M1

< ǫX. Then,

for 0 < τ − NX·dimY
M1

≪ 1 and 0 < η < ǫ1, we have ρ = mτ+η
1+τ

<

ǫ1 +
m·dimY ·NX

M1

< ǫX and hence the restriction map Ψ is surjective. �

4.2. The second theorem.

Theorem 4.3. Let f : V → S be a fibration from a smooth projective
variety of general type to a smooth projective variety S and let F be a
general fiber of f . Assume that there exists an effective Q-divisor ∆ on
S such that KS +∆ is big and nef, and

(1) for any big divisor H on S, 0 < ǫ ≪ 1 and N ∈ Z>0 sufficiently
large and divisible, the restriction map

H0(V,N(KV − f ∗(KS +∆)) +Nǫf ∗H) → H0(F,NKF )

is surjective;
(2) there exists a rational number a > 0 such that, for a general

point s ∈ S, there exists an effective Q-divisor Ds ∼Q a(KS+∆)
such that (S,Ds) is log canonical at s and s is a lc center of
(S,Ds).

Then the restriction map

H0(V,mKV ) → H0(F,mKF )

is surjective for m ≥ ⌈a + ǫ⌉+ 1.

Proof. Let f0 : V0 → S be a f -minimal model. After necessary bi-
rational modifications of V , we may and do assume that we have a
birational morphism ρ : V → V0. Write KV = ρ∗KV0

+
∑n

i=1 aiEi.
We also fix KV ∼Q A + E, where E is an effective Q-divisor and A is
an ample Q-divisor. Modulo further birational modifications, we may
assume that

∑n
i=1Ei + E has SNC support and its restriction on a

general fiber F of f also has SNC support. We may assume that Ei

is f -horizontal for 1 ≤ i ≤ n0 and Ei is f -vertical for n0 + 1 ≤ i ≤ n.
Since V0 is a f -minimal model, for sufficiently large and divisible N ,

|NKF | = |Nρ∗KV0
|F |+N(

n∑

i=1

aiEi)|F

= |Nρ∗KV0
|F |+N(

n0∑

i=1

aiEi)|F , (4.5)

where N(
∑n

i=1 aiEi)|F = N(
∑m0

i=1 aiEi)|F is the fixed part of |NKF |
and the mobile part |Nρ∗KV0

|F | is base point free.
For s ∈ S general, by assumption, there exists an effective Q-divisor

Ds ∼Q a(KS + ∆) such that (S,Ds) is log canonical at s and s is
a lc center. By Tie breaking (see, for instance, [36]), after a small
perturbation of Ds (thus Ds ∼Q (a + η)(KS +∆), where 0 < η ≪ 1),
we may assume that (S,Ds) is log canonical at s, s is an isolated
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component of Nklt(S,Ds), and there is a unique exceptional divisor
with discrepancy −1 over s. Let F be the fiber of f over s.

Let ρS : S ′ → S be a log resolution of (S,Ds). Then we have

KS′ + ES + E ′
S = ρ∗S(KS +Ds) + E ′′

S,

where ES, E
′
S and E ′′

S are effective Q-divisors with no common compo-
nent, E ′′

S is ρS-exceptional, ES is the unique exceptional divisor with
discrepancy −1 over s, and each component of E ′

S meeting ES has
coefficient < 1.

Since (V, Supp(
∑n

i=1Ei + E)) is log smooth over an open neighbor-
hood of s ∈ S, we may take a log resolution of (V, f ∗Ds+

∑n
i=1Ei+E),

which is isomorphic to V ×S S ′ over an open neighborhood of F =
f−1(s). Namely, there exists an open neighborhood U of s such that
(f ◦ ρV )−1(U) ≃ f−1(U)×U ρ−1

S (U). We have

V ′ ρV
//

f ′

��

V
ρ

//

f

��

V0

f0
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S ′ ρS
// S,

which summarizes all morphisms. Then we have

KV ′ + EV + E ′
V = ρ∗V (KV + f ∗Ds) + E ′′

V ,

where EV , E
′
V , and E ′′

V are effective Q-divisors without common com-
ponent, E ′′

V is ρV -exceptional, EV is the unique exceptional divisor
with discrepancy −1 over F , each component of E ′

V meeting EV has
coefficient < 1, and E ′

V is f ′-vertical.
We then have

KV ′ + EV + E ′
V + ǫρ∗V E = ρ∗V (KV + f ∗Ds + ǫE) + E ′′

V .

Since F * Supp(E), the coefficient of each component of E ′
V + ǫρ∗V E

meeting EV is < 1, while 0 < ǫ ≪ 1.
For 0 < ǫ ≪ 1 and the sufficiently large and divisible M , let b =

m− 1− ǫ− (a+ η) > 0 and let

G ∈ |M((m− 1− ǫ)(KV − f ∗(KS +∆)) + bf ∗(KS +∆))|
be a general element. By the first assumption, for the sufficiently large
and divisible M , the restriction map

H0(V,M((m− 1− ǫ)(KV − f ∗(KS +∆)) + bf ∗(KS +∆))

→ H0(F,M(m− 1− ǫ)KF ) (4.6)

is surjective. Thus we may write

|M((m− 1− ǫ)(KV − f ∗(KS +∆) + bf ∗(KS +∆))|

= |LM |+M(m− 1− ǫ)

n∑

i=1

aiEi,
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where |LM | is a linear system with Bs|LM | ∩ F = ∅ by (4.5) and (4.6).
After shrinking U , we may assume that the base locus on |LM | is con-
tained in f−1(S\U). Hence, we write G = G1+M(m−1−ǫ)

∑n
i=1 aiEi,

where (V, Supp(
∑m

i=1Ei + E +G1)) is log smooth over U and G1|F is
linearly equivalent to an irreducible smooth divisor which does not con-
tain any component of ρV (Supp(E

′
V + ǫρ∗V E)) ∩ F . After blowing-up

centers in (f ◦ ρV )−1(S \U), we may assume that ρV is a log resolution
of (V,G+ f ∗Ds + E +

∑n
i=1Ei).

We now study the multiplier ideal J := J ( 1
M
G + f ∗Ds + ǫE). We

have

KV ′ + EV + E ′
V + ǫρ∗VE +

1

M
ρ∗VG1 + (m− 1− ǫ)

m∑

i=1

aiρ
∗
V Ei

= ρ∗V (KV +
1

M
G+ f ∗Ds + ǫE) + E ′′

V .

Note that ρ∗VEi = Ẽi+E ′
i, where Ẽi = ρ−1

V ∗(Ei) is the strict transform
of Ei and E ′

i does not meet EV for 1 ≤ i ≤ n0 and ρ∗VEi does not meet

EV for n0 + 1 ≤ i ≤ m. Let bi be the coefficient of Ẽi in ρ∗V E for
1 ≤ i ≤ m0.

LetDV ′ = E ′
V +ǫρ∗V E+ 1

M
ρ∗VG1+(m−1−ǫ)

∑n
i=1 aiρ

∗
VEi. We observe

that the coefficient of Ẽi in DV ′ is (m − 1 − ǫ)ai + ǫbi for 1 ≤ i ≤ n0.
The coefficient of other component of DV ′, meeting EV , is < 1.

By definition,

J = ρV ∗OV ′((⌈E ′′
V − EV −DV ′⌉)).

After shrinking U , we may assume that for any component of DV ′ not
meeting EV , its image in S is contained in the complement of U .

We claim that, for 0 < ǫ ≪ 1,

J |f−1(U) = IF · Of−1(U)(−D),

where 0 ≤ D ≤ ∑n0

i=1⌊mai⌋Ei and IF is the ideal sheaf of F .
Indeed,

⌈E ′′
V − EV −DV ′⌉ = −EV −

m0∑

i=1

ciẼi − Z1 + Z2,

where Z1 and Z2 are effective divisors without common components,
Z2 is ρV -exceptional, each component of Z1 does not meet EV .

Thus

J |f−1(U) (4.7)

= ρV ∗Oρ−1

V
(f−1(U))(−EV −

n0∑

i=1

ciẼi)

= IF · Of−1(U)(−
n0∑

i=1

ciEi) (4.8)
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where ci = ⌊(m − 1 − ǫ)ai + ǫbi⌋. Since 0 < ǫ ≪ 1, we have (m − 1 −
ǫ)ai + ǫbi < mai and, hence, ci ≤ ⌊mai⌋. Set D =

∑n0

i=1 ciEi. The
claim is proved.

Note that (m−1)KV −( 1
M
G+f ∗Ds+ǫE) ∼Q ǫA. By Nadel vanishing,

we have H1(V,OV (mKV )⊗J ) = 0.
Moreover, let Q be the quotient sheaf OV (−D)/J . By (4.7), we see

that
Q = OF (−D)⊕Q1

where Supp(Q1) ⊂ V \f−1(U). By considering the short exact sequence

0 → J → OV (−D) → Q → 0,

we have the surjective map:

H0(V,mKV −D) → H0(F,mKF −D|F )⊕H0(Q1(mKV )).

Since D ≤ ∑n0

i=1⌊mai⌋Ei and
∑n0

i=1⌊mai⌋Ei|F is contained in the fixed
part of |mKF |, we conclude that the restriction map

H0(V,mKV ) → H0(F,mKF )

is surjective. �

Corollary 4.4. Let f : V → S be a fibration from a smooth projective
variety of general type onto a smooth projective surface S and let F be
a general fiber of f . Assume that there exists an effective Q-divisor ∆
on S such that KS +∆ is big and nef, and

(1) for any big divisor H on S, 0 < ǫ ≪ 1 and any sufficiently large
and divisible number N , the restriction map

H0(V,N(KV − f ∗(KS +∆)) +Nǫf ∗H) → H0(F,NKF )

is surjective;
(2) (KS +∆)2 = α > 0 and ((KS +∆) · C) = β > 0 for any curve

C ⊂ S passing through very general points of S.

Then the restriction map

H0(V,mKV ) → H0(F,mKF )

is surjective for m ≥ ⌈ 2
α
+ 1

β
+ ǫ⌉ + 1.

Proof. It is a direct application of Theorem 4.3. We just need to apply
[35, Example-Theorm 6.3], which states that, for a very general point
s ∈ S, there exists an effective Q-divisor Ds ∼Q ( 2

α
+ 1

β
)(KS +∆) such

that (S,Ds) is log canonical at s and s is a lc center of (S,Ds). �

5. The proof of Theorem 1.6

The proof of Theorem 1.6 follows the same strategy as that of The-
orem 1.3. A very difficult case appears, however, when the 4-fold V
admits a fibration f : V → S onto a surface, whose general fibers are
surfaces with small birational invariants. The usual inductive argu-
ment is not sufficient to show the birationality of Φ|5KV |. We need to
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apply Theorem 4.1, as well as a great deal of extra arguments, to deal
with this difficult case.

First we remark that, by Theorem 2.1, vol(V ) ≫ 0 since h0(Ω2
V ) ≫ 0.

Let x, y ∈ V be two very general points of V .

We take an effective Q-divisorD1 ∼Q t1KV such that t1 < 4 4

√
2

vol(V )
+

ǫ, x, y ∈ Nklt(V,D1), and after switching x and y, we may assume that
(V,D1) is log canonical at x. Let V1 be the minimal log canonical center
of (V,D1) through x.

5.1. The case with dim V1 = 3.
We have two ways, according to the value of vol(V1), to cut down

the log canonical center through x.
If vol(V1) ≫ 0, by Takayama’s method, there exists an effective Q-

divisor D2 ∼Q t2KV such that

t2 < t1 + 3(1 + t1)
3

√
2

vol(V1)
+ ǫ,

x, y ∈ Nklt(V,D2), and the minimal log canonical center of (V,D2)
through x is a closed subvariety V2 ( V1. Note that 0 < t1 < t2 ≪ 1 in
this case. The problem is reduced to Subcase 5.2 and Subcase 5.3.

If vol(V1) is upper bounded, we still apply Todorov’s inductions and
spread the centers V1 into a family in the similar way to that of Sub-
section 3.3. We have the following diagram:

Ṽ
π

//

f

��

V

C,

where π : Ṽ → V is a generically finite and surjective morphism onto
V , Ṽ is nonsingular projective, f is a fibration onto a smooth curve C
such that a general fiber F is birational onto V1 via π. There exists an
effective Q-divisor D ∼Q t1KV such that D = V1 +D′, where D′ is an
effective Q-divisor and V1 /∈ Supp(D′).

Assume that deg π ≥ 2. We conclude as in Subsection 3.3.1 that
there exists an effective Q-divisor D2 ∼Q t2KV such that t2 ≤ 3t1,
x, y ∈ Nklt(V,D2), and that the minimal log canonical center of (V,D2)
through x is a closed subvariety V2 ( V1. Note that 0 < t2 < 3t1 ≪ 1
under the condition of Theorem 1.6. The problem is also reduced to
Subcase 5.2 and Subcase 5.3.

Assume that π is birational. We simply identify Ṽ with V to save
symbols. Note that

h2(V, ωV ) = h0(V,Ω2
V ) ≫ 0

and
h2(V, ωV ) = h1(C,R1f∗ωV ) + h0(C,R2f∗ωV ).
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Both R1f∗ωV and R2f∗ωV are torsion-free sheaves on C by Kollár’s the-
orem ([33]). Moreover, R1f∗ωV/C is weakly positive (see, for instance,
[48] or [43, Theorem 1.4]) and, hence, nef on C.

Since vol(F ) is bounded, rank(R1f∗ωV ) = h2,0(F ), hence by Serre du-
ality, h1(C,R1f∗ωV ) = h0(C, (R1f∗ωV/C)

∗) ≤ h2,0(F ). Hence h0(C,R2f∗ωV )
is sufficiently large. In particular, we have R2f∗ωV 6= 0. Thus F is an
irregular 3-fold of general type. By the main theorem of [8], |5KF |
induces a birational map of F .

Since vol(V ) ≫ 0 and fibers of f are birationally bounded, by [18,
Theorem 3.4], the restriction map

H0(V, 5KV ) → H0(F1, 5KF1
)⊕H0(F2, 5KF2

)

is surjective for any two different general fibers F1 and F2 of f . Thus
|5KV | induces a birational map of V .

5.2. The case with dim V2 = 2 and 0 < t2 ≪ 1.
After discussions in the previous subsection, we may assume that

there exists an effective Q-divisor D2 ∼Q t2KV such that 0 < t2 ≪ 1,
x, y ∈ Nklt(V,D2), and that the minimal log canonical center V2 of
(V,D2) through x is of dimension 2. Modulo a small perturbation, we
may and do assume that Nklt(V,D2) = V2 locally around x.

Let Ṽ2 be a smooth model of V2. By Takayama’s induction, there
exists an effective Q-divisor D3 ∼Q t3KV such that

0 < t3 < t2 + 2(1 + t2)

√
2

vol(Ṽ2)
+ ǫ,

x, y ∈ Nklt(V,D2), and that the minimal log canonical center V3 of
(V,D3) through x is a proper subset of V2.

If vol(Ṽ2) ≥ 4, t3 <
√
2 + (1 +

√
2)t2 + ǫ. The problem is reduced to

Subcase 5.3, noting that 0 < t3 −
√
2 ≪ 1.

If vol(Ṽ2) ≤ 3, the bound for t3 is not good enough for our purpose.
We still apply Todorov’s method to discuss the following exclusive sit-
uations:

5.2.1. There exists an effective Q-divisor D3 ∼Q t3KV such that 0 <
t3 ≤ 3t2, x, y ∈ Nklt(V,D2), and that the minimal log canonical
center V3 of (V,D3) through x is a proper subset of V2, for which
the problem is reduced to Subcase 5.3 with 0 < t3 ≪ 1;

5.2.2. (⋆) Modulo birational modifications, there exists a fibration
f : V → S onto a smooth projective surface S such that a
general fiber F of f is a surface whose canonical volume is ≤ 3,
that there exists an effective Q-divisor D2 ∼Q t2KV such that
x, y ∈ Nklt(V,D2), (V,D2) is log canonical at x (after possibly
switching x and y), and that the minimal log canonical center at
x is the fiber Fx of f through x, Fx is an irreducible component
of Nklt(V,D2). The statement follows from Theorem 6.1.
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5.3. The case with dim V3 ≤ 1, 0 < t2 ≪ 1 and 0 < t3 −
√
2 ≪ 1.

So far, except Situation (⋆) (i.e., 5.2.2.), we always have the following:

we already have a rational number 0 < t2 ≪ 1; there
exists an effective Q-divisor D3 ∼Q t3KV such that

0 < t3 ≤ max{3t2,
√
2 + (1 +

√
2)t2 + ǫ}

(0 < ǫ ≪ 1), x, y ∈ Nklt(V,D3), and that the minimal
log canonical center V3 of (V,D3) through x is of dimen-
sion ≤ 1.

By Takayama’s induction, there exists an effective Q-divisor D4 ∼Q

t4KV such that
0 < t4 ≤ 2t3 + 1 + ǫ,

x, y ∈ Nklt(V,D4), and that {x} is an isolated component of Nklt(V,D4).
Since 0 < t2 ≪ 1 and 2

√
2 + 1 < 4, we conclude by Nadel vanshing,

as in Subsection 3.1, that |5KV | separates x and y. Hence we have
finished the proof of Theorem 1.6.

6. Proof for Subcase 5.2.2.

We deal with Subcase (⋆) in this section.

Theorem 6.1. Under Assumption (⋆) (i.e., Subcase 5.2.2), |5KV | in-
duces a birational map of V .

The proof of Theorem 6.1 is elaborate. Recall that we have a fibra-
tion f : V −→ S onto a smooth projective surface S. We start with
the following simple reduction.

Lemma 6.2. Under Assumption (⋆) (i.e., Subcase 5.2.2), if x and y
are in different fibers of f , |5KV | separates x and y.

Proof. By assumption, each component of Nklt(V,D2) containing y
does not contain x. It is then easier to cut down the log canonical
centers.

Note that

dim Im(H0(V,mKV ) → H0(Fx, mKFx
)) ∼ volV |Fx

(KX)

2
m2 +O(m)

for sufficiently large integers m. Hence we can choose an effective Q-
divisor D ∼Q KV such that Fx is not contained in the support of D
and that, by Takayama [45, Theorem 4.5],

multx(D|Fx
) >

√
volV |Fx

(KX)− ǫ ≥
√
vol(KF )

1 + t2
− ǫ.

Let t′3 be the maximal rational number such that (V,D2 + t′3D) is

log canonical at x. It is known that t′3 ≤ 2
multx(D|Fx)

< 2(1+t2)√
vol(KF )

+ ǫ.

Let D3 = D2 + t′3D ∼Q t3KV and t3 = t2 + t′3. Then the minimal
log canonical center V3 of (V,D3) is a proper subset of Fx and there
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exists an irreducible component of Nklt(V,D3) containing y and not
containing x.

Note that t3 < 2+3t2+ǫ. If V3 = {x}, since there exists an irreducible
component of Nklt(V,D3) containing y and not containing x, we can
take a small perturbation of D3 such that x is an isolated component
of Nklt(X,D3) and y ∈ Nklt(X,D3). Note t3 < 4. We can conclude
the statement by Nadel vanishing.

If V3 is a curve, we denote by V3 its normalization. Similarly, there
exists an effective Q-divisor D4 ∼Q t4KV such that

t4 < t3 +
1 + t3

vol(V3)
+ ǫ ≤ 3

2
t3 +

1

2
+ ǫ <

7

2
+

9

2
t2 + ǫ,

{x} is a log canonical center of (V,D4), (V,D4) is not klt at y, and there
exists an irreducible component of Nklt(V,D4) containing y, while not
containing x. Since t2 ≪ 1 and then t4 < 4, we conclude the statement
as before. �

We then focus on proving that |5KV ||F induces a birational map for
the general fiber F of f .

6.1. The case with κ(S) = 2 or κ(S) ≤ 1 and pg(S) ≫ 0.

Lemma 6.3. Under Assumption (⋆) (i.e., Subcase 5.2.2), if S is of
general type, |5KV | induces a birational map of V .

Proof. By Lemma 6.2, it suffices to show that |5KV ||F = |5KF |, since
|5KF | induces a birational map of F . By simply blowing down S, we
may assume that S is minimal. Set ∆ = 0 and we will apply Corollary
4.4. Note that vol(S) ≥ 1 and (KS · C) ≥ 1 for each irreducible curve
C through a general point of S. Moreover, f∗OV (NKV/S) is weakly
positive by Viehweg’s theorem (see [48]) and hence condition (1) in
Corollary 4.4 is also satisfied. �

Now we assume that κ(S) ≤ 1. By Hodge symmetry, Serre duality
and the assumption that h0(V,Ω2

V ) ≫ 0, we see that h2(V, ωV ) ≫ 0.
Thus we have

h0(S,R2f∗ωV ) + h1(S,R1f∗ωV ) + h2(S, f∗ωV ) = h2(V, ωV ) ≫ 0.

We observe that h2(S, f∗ωV ) ≤ 3. Indeed, since vol(F ) ≤ 3, we have
pg(F ) ≤ 3 by the Noether inequality. We take a general member H
in a very ample linear system of S. Let fH : VH → H be the induced
morphism, where VH := f−1(H). By Kollár [33, Theorem 2.1], we have
the short exact sequence:

0 → f∗ωV → f∗ωV (H) → fH∗ωVH
→ 0

and H2(S, f∗ωV (H)) = 0. Thus we have the surjective map

H1(H, fH∗ωVH
) → H2(V, f∗ωV ).
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We have already seen that h1(H, fH∗ωVH
) ≤ pg(F ) ≤ 3 using the semi-

positivity of fH∗(ωVH/H).
By Kollár [34], we know that R2f∗ωV = ωS and hence

h0(S,R2f∗ωV ) = h0(S, ωS) = pg(S).

Lemma 6.4. Under Assumption (⋆) (i.e., Subcase 5.2.2), if pg(S) ≫ 0,
then |5KV | induces a birational map of V

Proof. Since κ(S) ≤ 1, we have κ(S) = 1. We may assume that S is
minimal and denote by IS : S → C the Iitaka fibration of S. By the
canonical bundle formula, KS = I∗S(H + B), where H = IS∗ωS and B
is an effective Q-divisor on C depending on the singular fibers of IS.
We also have pg(S) = h0(S,KS) = h0(C,H). Hence degH ≫ 0.

Let g : V
f−→ S

IS−→ C be the composition of fibrations and let Y be a
general fiber of g. Since a general fiber of IS is an elliptic curve, Y is
an irregular threefold of general type.

By Viehweg’s weak positivity (see, for instance, [48]), we know that
KV/S + ǫKV is big. Thus (1 + ǫ)KV ≥Q f ∗KS ≥Q g∗H . By Theorem
4.1, one of the restriction maps:

H0(V, 5KV ) → H0(Y, 5KY ),

H0(V, 5KV ) → H0(F, 5KF )

is surjective. In the latter case, we are done since |5KF | induces a
birational map of F . In the former case, we conclude by the main
theorem of [8]. �

6.2. The case with κ(S) ≤ 1 and pg(S) being upper bounded.

From now on within this section, we assume that κ(S) ≤ 1 and pg(S)
is upper bounded. As discussed above, the condition of Theorem 1.6
forces h1(S,R1f∗ωV ) ≫ 0. Note that R1f∗ωX 6= 0 implies that F is an
irregular surface. Moreover, since vol(F ) ≤ 3, we have pg(F ) = q(F ) =
1 and 2 ≤ vol(F ) ≤ 3 by Debarre’s inequality that vol(F ) ≥ 2pg(F )
(see [19]). Let g : V → X be the relative Albanese morphism of f .
Note that g exists by [5, Théorème 1] or [23, Theorem 2]. We have the
commutative diagram:

V

f
  
❅❅

❅❅
❅❅

❅❅

g
// X

h
��

S.

By the definition of the relative Albanese morphism, for s ∈ S general,
let gs : Vs → Xs be the fibers of g : V → X over s, then gs is the
Albanese morphism of Vs. Since q(Vs) = 1 and the Albanese morphism
of Vs is a fibration. Thus a general fiber of h is a genus 1 curve and
a general fiber of g is connected. Modulo birational modifications, we
may also assume that the 3-fold X is nonsingular and projective.
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By Kollár [34, Theorem 3.4], R1f∗ωV
∼= h∗R

1g∗ωV ⊕ R1h∗g∗ωV .
Moreover, since h1(Xs, gs∗ωVs

) = 0 by the fact that q(Vs) = 1, we
conclude that R1h∗g∗ωV = 0. Thus

h1(S, h∗ωX) = h1(S, h∗R
1g∗ωV ) = h1(S,R1f∗ωV ) ≫ 0.

Therefore X is a 3-fold with many global two forms, i.e. h0(X,Ω2
X) ≫

0. By the easy addition (see [41, Corollary 2.3]), we also have κ(X) ≤
dimS = 2.

Next we follow Campana and Peternell’s results in [6] to trace 2-
forms on non-general type 3-folds to study the structure of h : X → S
and to finish the proof of Theorem 1.6. We organize the argument
according to the value of κ(X).

6.2.1. The case with κ(X) = −∞. The global holomorphic 2-forms on
X are induced from the maximal rationally connected quotient of X .
More precisely, by Campana-Peternell [6, Theorem 3.1], there exists a
morphism h′ : X → S ′ onto a minimal smooth projective surface S ′

with κ(S ′) ≥ 0 such that H0(X,Ω2
X)

∼= H0(S ′, KS′) has sufficiently
large dimension. In particular, h and h′ are not birational to each
other. Since a general fiber E of h is an elliptic curve, the family of
h′(E) covers S ′. Thus κ(S ′) = 1 and E ′ → h′(E ′) is an isogeny, since
otherwise S ′ couldn’t have non-negative Kodaira dimension. Denote
by I ′ : S ′ → C the Iitaka fibration of S ′. Note that I ′ is simply
the morphism contracting the family of h′(E). Thus we also have an
induced morphism

I : S → C

s → I ′ ◦ h′(h−1(s)),

so that we have the following commutative diagram:

V

f
��

g
// X

h
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ h′

  
❆❆

❆❆
❆❆

❆❆

S

I
  
❅❅

❅❅
❅❅

❅❅
S ′

I′
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

C

Since pg(S
′) ≫ 0, there exists a line bundle H on C such that degH ≫

0 and KS′ ≥Q I ′∗H . We then again have

(1 + ǫ)KV ≥Q (h′ ◦ g)∗KS′ ≥ (I ′ ◦ h′ ◦ g)∗H.

Let Y be a general fiber of I ◦ f . Then, by Theorem 4.1, one of the
restriction maps:

H0(V, 5KV ) → H0(Y, 5KY ),

H0(V, 5KV ) → H0(F, 5KF )
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is surjective. Note that Y is again an irregular threefold of general
type, because I ′ is an elliptic fibration. We then conclude as in the
proof of Lemma 6.4.

6.2.2. The case with κ(X) = 0. By Campana-Peternell [6, Theorem
3.2], we see h0(X,Ω2

X) ≤ 3, contradicting to our assumption h0(X,Ω2
X) ≫

0.

6.2.3. The case with κ(X) = 1. Let IX : X → C be the Iitaka fibration
of X .

A general fiber of IX is birational either to an abelian surface, or to
a hyperelliptic surface, or to a K3 surface, or to a Kummer surface.
For a general point p ∈ C, let Xp be the corresponding fiber of IX . We
have exact sequences

0 → Ω2
X(−Xp) → Ω2

X → Ω2
X |Xp

→ 0

and

0 → ΩXp
→ Ω2

X |Xp
→ Ω2

Xp
→ 0.

In all cases, we have

h0(Ω2
X |Xp

) ≤ h0(ΩXp
) + h0(Ω2

Xp
) ≤ 3.

Let N = ⌊h0(Ω2

X
)−1

3
⌋. For p1, . . . , pN be general points of C and let

Xpi be the corresponding fiber over pi. Considering

0 → Ω2
X(−

N∑

i=1

Xpi) → Ω2
X → ⊕N

i=1Ω
2
X |Xpi

→ 0,

we have h0(Ω2
X(−

∑N
i=1Xpi)) > 0.

Let L = OX(L) be the saturation of I∗XΩC ⊂ ΩX and denote by F
the torsion-free quotient. Note that L = I∗XωC ⊗ OX(E), where E is
an effective divisor supported on the singular fibers of IX . We have the
exact sequence:

0 → L → ΩX → F → 0,

0 → KX ⊗F∗ → Ω2
X → detF ⊗ IZ → 0,

where Z ⊂ X is a subscheme of codimension ≥ 2.
If h0(X, detF(−∑N

i=1Xpi)) > 0, we have

KX ∼ L+ detF ≥ I∗X(KC) +
N∑

i=1

Xpi

where KC +
∑N

i=1Xpi is an ample divisor on C of degree ≥ N − 2.

If h0(X,KX ⊗F∗(−∑N
i=1Xpi)) > 0, then we have a non-trivial map

F → KX ⊗OX(−
N∑

i=1

Xpi).
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Since any torsion-free quotient of F is pseudo-effective by the main
result of [40], we have

KX =
N∑

i=1

Xpi + P

where P is an pseudo-effective divisor.
In both cases, (1+ ǫ)KV = ǫKV +KV/X +KX ≥Q (IX ◦ g)∗HC where

HC is an ample divisor of degree ≥ N − 2 on the curve C.
We now consider the commutative diagram

V

f
��

g
// X

h
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ IX

  
❆❆

❆❆
❆❆

❆❆

S C.

If the fibration IX ◦ g : X → C does not factor through f , a general
fiber F of f dominates C. Let gF := (IX ◦g)|F : F → C be the induced
morphism. We then have

(1 + ǫ)KF = (1 + ǫ)KV |F � g∗FHC .

It is then clear that (1 + ǫ)vol(F ) ≥ degHC ≥ N − 2, which is a
contradiction since vol(F ) ≤ 3 and N ≫ 0.

Thus IX ◦g factors as IX ◦g : V
g−→ X

h−→ S
fS−→ C. Let Y be a general

fiber of IX ◦ g and let Z be the corresponding fiber of IX . Note that

0 ≪ h1(S, h∗ωX) = h1(C, IX∗ωX) + h0(C,R1fS∗h∗ωX).

Since IX∗ωX/C is a nef line bundle on C, h1(C, IX∗ωX) ≤ 1. Hence we
have h0(C,R1fS∗h∗ωX) ≫ 0 and thus

R1IX∗ωX = R1fS∗h∗ωX ⊕ fS∗R
1h∗ωX

is non-zero. Therefore q(Z) > 0 and Y is an irregular threefold of
general type.

Since N ≫ 0, by Theorem 4.1, either

H0(V, 5KV ) → H0(F, 5KF )

is surjective or
H0(V, 5KV ) → H0(Y, 5KY )

is surjective. We finish the proof as before.

6.2.4. The case with κ(X) = 2. In this case, h : X → S is exactly the
Iitaka fibration of X . Since h1(S, h∗ωX) ≫ 0, X has sufficiently many
non-h-vertical holomorphic 2 forms in the terminology of [6, Definition
1.9]. Indeed, the Hodge pairing between the conjugate of h-vertical
holomoprhic 2-forms and forms of H1(S, f∗ωX)

(
⊂ H1(X,KX)

)
is zero.

Note that h : X → S is a genus 1 curve fibration. There are two cases
to discuss depending on whether or not the j-invariant of h is constant.



Projective varieties of general type with many global k-forms 35

If the j-invariant is constant, let E be a general fiber of h. After
a Galois base change Ŝ → S and birational modifications, we get a
trivial elliptic fibration ĥ : X̂ → Ŝ, i.e. ĥ is birational to the projection
Ŝ × E → Ŝ. Let π : X̂ → X be the generically finite cover, which is a
Galois cover over an open dense subset of X with Galois group G. Note
that, since Ŝ is of general type, G acts on Ŝ and E diagonally. We may
and do assume that G acts on Ŝ and E faithfully, hence G →֒ Aut(E).

Then X is birationally equivalent to the diagonal quotient (Ŝ ×E)/G.

For simplicity, we assume that Ŝ is minimal and identify X with the
diagonal quotient (Ŝ × E)/G. Then X is a normal threefold with
quotient singularities and the quotient morphism π is quasi-étale. It is
known that the neutral component Aut0(E) of the automorphism group
Aut(E) of the elliptic curve E is isomorphic to E and Aut(E)/Aut0(E)
is either Z2, or Z3, or Z6. Set G0 = G∩Aut0(E) and G := G/G0. Note

that G0 acts trivially on H0(E,ΩE) and |G| ≤ 6. Let X := (Ŝ×E)/G0

and S := Ŝ/G0. Note that X is smooth and S is normal with quotient
singularities. We have the commutative diagram:

V

g

��

f

��

Ŝ ×E //

ĥ
��

X

h
��

πX
// X

h
��

Ŝ // S
πS

// S.

(6.1)

Since X has many non-h-vertical global 2-forms, X has many non-
h-vertical global 2-forms. Moreover, since the space of non-ĥ-vertical
global 2-forms on Ŝ × E is ĥ∗H0(Ŝ,ΩŜ) ⊗ p∗EH

0(E,ΩE), where pE :

Ŝ×E → E is the second projection and G0 acts trivially onH0(E,ΩE),
we conclude that the space of non-h-vertical global 2-forms on X is

(
ĥ∗H0(Ŝ,ΩŜ)⊗ p∗EH

0(E,ΩE)
)G0

= ĥ∗H0(S, Ω̃S)⊗ p∗
E
H0(E,ΩE),

where E = E/G0 is also an elliptic curve, h : S → E is the natural

morphism, and Ω̃S = i∗(ΩU), where i : U ⊂ S is the smooth locus of

S. In particular, we see that q(S) = h0(S, Ω̃S) ≫ 0.
If the image of the Albanese morphism of S is a curve D. Then D is

a smooth projective curve of genus equal to q(S) ≫ 0. Let D = D/G
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and πD : D → D be the quotient morphism. We have

V

��

fD

��

X

��

πX
// X

h
��

hD

��

S

��

πS
// S

��

D
πD

// D

(6.2)

where hD and fD are the naturally composited morphisms. By the
ramification formula, we write KD = π∗

D(KD +
∑

i(1 − 1
ni
)pi), where

pi are the branched loci of D and ni is the ramification index over pi.
Note that degD(KD +

∑
i(1 − 1

ni
)pi) =

1
|G|

(2g(D)− 2) ≫ 0. Let ∆ :=∑
i(1− 1

ni
)pi. Recall that the ramification divisor R(hD) :=

∑
p(h

∗
Dp−

(h∗
Dp)red), where p goes through each point of D (see [20, Notation

2.7]). Since the horizontal morphisms in (6.2) are G-quotients, we see
that h∗

D∆ ≤ R(hD). Hence f ∗
D∆ ≤ R(fD). By [20, Corollary 4.5],

KV/D − f ∗
D∆ is pseudo-effective. Thus, (1 + ǫ)KV ≥Q f ∗

D(KD + ∆).
Let Y be a general fiber of fD. Since V (or X) has many non-fD-
vertical (non-h-vertical) global holomorphic 2-forms, Y is an irregular
3-fold of general type. We now apply Theorem 4.1 to conclude that
either H0(V, 5KV ) → H0(Y, 5KY ) or H0(V, 5KV ) → H0(F, 5KF ) is
surjective.

If the Albanese image of S is a surface but KS is not big, we have a
similar picture as before. Indeed, in this case κ(S) = 1 and let S → D
be the Iitaka fibration of S. Then G also acts naturally on D and
g(D) = q(S)− 1 ≫ 0. Then we prove the statement exactly similar to
the last paragraph.

We then assume that the Albanese image of S is a surface and KS is
big. In this case, any smooth model of S is also of general type. Thus,
modulo birational modifications, we may assume that X and S are
smooth and S is a minimal surface. We write KS = π∗

S(KS +
∑

Di
(1−

1
ni
)Di), where Di are branched divisors and ni is the corresponding

ramification index. Let ∆S :=
∑

Di
(1− 1

ni
)Di. In particular, KS +∆S

is big and nef. Moreover, vol(S) = (K2
S
) ≥ 2q(S)−4 ≫ 0 by Debarre’s

inequality and thus ((KS+∆S)
2) = 1

|G|
vol(S) ≫ 0. On the other hand,

let C be an irreducible curve passing through a very general point of
S,

((KS +∆S) · C) =
1

|G|
(KS · π∗

SC) ≥ 1

3
.
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We then deduce the surjectivity of the restriction map H0(V, 5KV ) →
H0(F, 5KF ) by applying Corollary 4.4. It suffices to verify the assump-
tion (1) thereof. We go back to the commutative diagram (6.1). Let V
be a resolution of S ×S V . We then have

V

��

f

��

πV
// V

��

f

��

X

��

πX
// X

��

S
πS

// S

By the weak positivity of f ∗ω
⊗N
V /S

, for any effective big Q-divisor H on

S and any sufficiently large and divisible integer N ,

H0(V ,N(KV /S + f
∗
π∗
SH)) → H0(F,NKF )

is surjective. Note that the restriction map is G-equivariant and the
space H0(F,NKF ) is G-invariant. Thus

H0(V ,N(KV /S + f
∗
π∗
SH))G

= H0(V,N(KV − f ∗(KS +∆S) + f ∗H)) → H0(F,NKF )

is also surjective.
So far, we have finished the discussion when the j-invariant of h is

constant.
Finally, if the j-invariant of h is non-constant, by [6, Corollary 5.4],

there exists a fibration fS : S → C onto a smooth projective curve
C and another smooth projective surface S ′, and an elliptic fibration
fS′ : S ′ → C such that S×CS

′ is smooth and X is birational to S×CS
′.

Replacing S ×C S ′ with X and let h′ : X → S ′ be the projection. We
have the commutative diagram:

V

g
��

f

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

X

h
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ h′

  
❆❆

❆❆
❆❆

❆❆

S
fS

  
❅❅

❅❅
❅❅

❅❅
S ′

fS′~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

C.

By [6, (5.5)], a non-h-vertical holomorphic global 2 form on X belong
to the space

h∗H0(S,ΩS) ∧ h′∗H0(S ′,ΩS′)⊕ h′∗H0(S ′, KS′). (6.3)
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Note that fS′ is an elliptic fibration with non-constant j-invariant.
Thus, H0(S ′,ΩS′) = f ∗

S′H0(C,ΩC). Hence non-h-vertical 2-forms of X
can only come from the second summand of (6.3) and so h0(S ′, KS′) ≫
0.

We still denote by Y a general fiber of fS ◦ f : V → C. Note that Y
is an irregular 3-fold of general type, since fS′ is an elliptic fibration.

Since h0(S ′, KS′) ≫ 0, S ′ has Kodaira dimension 1 and fS′ is the
Iitaka fibration of S ′. In particular, there exists an ample line bundle
H on C with h0(C,H) ≫ 0 such that KS′ ≥Q f ∗

S′H. Then (1+ǫ)KV ≥Q

(fS′ ◦h′◦g)∗H and we conclude the statement of the theorem as before.
We have proved Theorem 6.1.

7. Proof of Theorem 7.2 and open questions

It is well-known, since the work of Kollár in [33], that the study
of pluricanonical systems of varieties of general type with two linearly
independent global top forms can be reduced to the study of pluri-
canoncial systems of varieties of lower dimensions (see, for instance,
Kollár [33, Corrollary 4.8] and [13, 11]).

7.1. Varieties with global 1-forms.

The pluricanonical systems of varieties with many holomorphic 1-
forms have also been studied by many authors (see, for instance, [12,
28, 8]). We are inclined to ask the following question:

Question 7.1. Let X be an irregular variety of general type of dimen-
sion n ≥ 4. Does |mKX | induce a birational map for each m ≥ rn−1?

When n = 2, the statement is due to Bombieri [3]; when n = 3, the
affirmative answer to Question 7.1 was recently given in Chen-Chen-
Chen-Jiang [8].

We have here a partial answer to this question in any dimension as
follows:

Theorem 7.2. Let X be a smooth projective variety of general type
of dimension n ≥ 4. Assume that either q(X) > n or the Albanese
image of X is a proper subvariety of the Albanese variety. Then |mKX |
induces a birational map for all m ≥ rn−1.

Proof. Let aX : X → AX be the Albanese morphism of X . By as-
sumption, aX(X) $ AX generates AX . By Ueno’s theorem (see for
instance [41, Theorem 3.7]), there exists a fibration qB : AX → B be-
tween abelian varieties such that any smooth model of qB ◦ aX(X) is

of general type. Let X
h−→ Z

t−→ qB ◦ aX(X) be the Stein factorization
of qB ◦ aX . After birational modifications, we may assume that Z is a
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smooth projective variety. We have the following commutative diagram

X
aX

//

h
��

AX

qB
��

Z
t

// B.

Note that Z is of maximal Albanese dimension. We denote by n1 =
dimZ. We know that |mKZ| induces a birational map of Z for each
m ≥ 3 (see [12, 28]). Let F be a general fiber of h. Then, 0 ≤ dimF =
n − n1 ≤ n − 1. Let a be the canonical stability index of F . Then
1 ≤ a ≤ rn−n1

≤ νn−1.
We first show that |mKX | separates two general points on different

fibers of h for each m ≥ max{5, a}. Because |3KZ| induces a birational
map of Z, it suffices to show that mKX − 3h∗KZ is effective. We write
mKX − 3h∗KZ = KX + (m − 1)KX/Z + (m − 4)h∗KZ . Note that by
Viehweg’s weak positivity, the Iitaka model of (m − 1)KX/Z + (m −
4)h∗KZ dominates Z. Let D = (m − 1)KX/Z + (m − 4)h∗KZ . We
apply once again Viehweg’s weak positivity with the generic restric-
tion theorem (see [39, Theorem 11.2.8]) to conclude that J (||D||)|F =
J (||(m− 1)KF ||). Thus

h∗

(
OX(mKX − 3h∗KZ)⊗ J (||D||)

)

is a torsion-free sheaf on Z of rank equal to h0(F,OF (mKF )⊗J (||(m−
1)KF ||)) = pm(F ) > 0. By Kollár’s vanishing,

H i(Z, h∗

(
OX(mKX − 3h∗KZ)⊗ J (||D||)

)
⊗ t∗P ) = 0

for each i ≥ 1 and P ∈ Pic0(B). Thus,

t∗h∗

(
OX(mKX − 3h∗KZ)⊗J (||D||)

)

is IT0 on B and it has a non-zero global section. Thus mKX − 3h∗KZ

is effective.
We then show that |mKX ||F induces a birational map of F for m ≥

max{n1 + 2, a}. Since a smooth model of t(Z) is of general type, by a
result of Griffiths and Harris (see, for instance, [41, Theorem 3.9]), the
canonical map of a smooth model of t(Z) is generically finite. Thus the
canonical map of Z is also generically finite. Let φ : Z 99K Z1 ⊂ PN

be the canonical map of Z. Let z ∈ Z be a general point such that φ
induces an étale map between an open neighborhood of z with an open
neighborhood of φ(z) ∈ Z ′. Let H1, . . . , Hn1

be n1 general hyperplane
of PN through φ(z). Then, (Z ′,

∑n1

i=1Hi|Z′) is log canonical in an open
neighborhood of φ(z) and φ(z) is a log canonical center of the pair.
Let Di be the corresponding divisor of KZ for 1 ≤ i ≤ n1. Thus
(Z,

∑n1

i=1Di) is log canonical in an open neighborhood of z and z is a
log canonical center of this pair. Thus, by Theorem 4.3,

H0(X,mKX) → H0(F,mKF )



40 M. Chen, Z. Jiang

is surjective for each m ≥ n1 + 2.
We then see that |mKX | induces a birational map of X , for each

m ≥ max{n + 2, rn−1}. It suffices to see that rn−1 ≥ n + 2. It is well
known that r5 ≥ r4 ≥ r3 ≥ 27. When n ≥ 7, by [21, Theorem 1.1],

rn−1 ≥ 22
n−3

2 > n+ 2. �

7.2. Open questions on varieties with many global k-forms.

Theorem 1.3 and Theoroem 1.6 suggest that the pluricanonical sys-
tem of n-folds of general type with many global two forms behave
similarly to (n − 2)-folds of general type. We have the following very
bold conjecture:

Conjecture 7.3. For any n ≥ 5, there exists a constant M(n) such
that, for every smooth projective n-foldX of general type with h2,0(X) ≥
M(n), |mKX | induces a birational map for all m ≥ rn−2.

One can even ask a very general question about varieties with many
global k-forms. Let

rkn := sup{rs(W ) | W is a smooth projective n-fold

of general type with hk,0(W ) > 0}.
Question 7.4. For any n ≥ 4, does there exist a constant M(n)
such that, for every smooth projective n-fold X of general type with
hk,0(X) ≥ M(n), |mKX | induces a birational map for each

m ≥ max{rn−k, r
1
n−k+1, . . . , r

k−1
n−1}?
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