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Abstract

District heating is an important component in the EU strategy to reach the set emission
goals, since it allows an efficient supply of heat while using the advantages of sector coupling
between different energy carriers such as power, heat, gas and biomass. Most district heat-
ing systems use several different types of units to produce heat for hundreds or thousands of
households. The technologies reach from natural gas-fired and electric boilers to biomass-fired
units as well as waste heat from industrial processes and solar thermal units. Furthermore,
combined heat and power units (CHP) units are often included to use the synergy effects of
excess heat from electricity production. We propose a generic mathematical formulation for the
operational production optimization in district heating systems. The generality of the model
allows it to be used for most district heating systems although they might use different com-
binations of technologies in different system layouts. The mathematical formulation is based
on stochastic programming to account for the uncertainty of production from non-dispatchable
units such as waste heat and solar heat. Furthermore, the model is easily adaptable to different
application cases in district heating such as operational planning, bidding to electricity markets
and long-term evaluation. We present results from three real cases in Denmark with different
requirements.

Keywords: District heating, Production optimization, Network flow formulation, Stochastic
programming, Integrated Energy Systems

1 Introduction

Under the European Green Deal, the European Commission aims at net carbon neutrality by 2050
[European Commission, 2019], which requires the transformation of the European energy system
through integration of a large amount of renewable energy [Hainsch et al., 2022]. District heating
(DH) can play a substantial role in supporting this transition. Not only is heating and cooling
responsible for half of the EU’s final energy consumption [European Commission, 2015], the flexibility
potential of DH systems can also ease the integration of renewable electricity sources substantially
[Thomaßen et al., 2021]. The Danish government specifically aims at 70 % emission reduction by
2030 (compared to 1990) alongside carbon neutrality by the middle of the century [Folketinget,
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2020]. This transition requires smart energy systems and modelling approaches, that do not merely
focus on a single sector, but take different energy carriers into account [Lund et al., 2017]. This
modelling paradigm is particularly important for the practical ability of DH optimization models,
as systems often feature a variety of energy sources, such as biomass, solar and industrial waste heat
[State of Green, 2018], and the optimal operation of some systems must even take behind-the-meter
electricity dispatch into account [Blanco et al., 2018].

Following this notion, this article proposes a novel generic optimisation model for DH systems.
Our model features a network flow formulation based on stochastic programming that can take wide
variety of energy carriers, productions units, markets and demand sinks into account. Furthermore,
the model can be used in different application cases such as operational planning, bidding and long-
term system analysis by merely changing input data and the non-anticipativity constraints of the
stochastic model. The applicability of the model to all three cases is shown based on real data from
the three DH systems in Denmark.

The remainder of this paper is structured as follows. Related work and our contributions are
presented in Section 2. Sections 3 and 4 present the network and mathematical formulation of
our proposed optimization model, respectively. The DH systems we use as cases are introduced in
Section 5 and numerical results are presented in Section 6. Finally, Section 7 summarizes our work
and gives an outlook on future research.

2 Related work

We propose a network-flow based model for the optimal scheduling of different energy generation
and conversion units in DH systems. Our formulation is based on stochastic programming and
allows to model an arbitrary range of energy carriers. Hence, related work focuses on mathematical
models that (1) can optimise operational scheduling in DH networks (2) under uncertainty and (3)
can represent arbitrary energy carriers. To the best of our knowledge, existing research meeting all
of these criteria is limited. In the following, we provide a brief review of other studies focusing on
energy system models (Section 2.1), DH models (Section 2.2) and energy hubs (Section 2.3).

2.1 Energy System Modelling Frameworks

Energy system optimisation models (ESOMs) are most commonly formulated as large-scale linear
programs with the aim of providing the optimal dispatch of one or more energy carriers [Dominkovic
et al., 2018] and/or investments [Dominković et al., 2020] in related technologies. The scope and scale
of applications typically reach from the district [Weckesser et al., 2021], urban [Dominković et al.,
2020] to country [Daly et al., 2014] or even continental level [Pavičević et al., 2020], spanning one
or more years. An overview on different modelling frameworks can be found on the OpenMod Wiki
[OpenMod, 2022]. A focus on local multi-energy systems is provided in [Cuisinier et al., 2021]. The
model proposed in this paper is a stochastic program, taking uncertainty modelled as scenarios into
account, and is formulated in a generic way such that it is able to model arbitrary energy commodities
and technologies. Notably, most energy system modelling frameworks are either deterministic models
(e.g. Balmorel [Wiese et al., 2018]) or model certain energy technologies specifically Helistö et al.
[2019] thus not reaching the general applicability this work does. The Balmorel extension OptiFlow
by Ravn [2017] does, as the model proposed here, use a graph-based network flow formulation, but
is, at the time of writing, focused on the waste sector. [Hilpert et al., 2018] present the oemof
modelling framework that uses a network flow formulation to model an energy system, similar
to the setting used in this paper, but without consideration of uncertainty and market interaction.
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[Quelhas et al., 2007] provide a general network flow formulation for US power network incorporating
also gas and coal inflow. The resulting model is a deterministic LP for long-term evaluation that
abstracts from operational constraints such as on/off status, market interaction and renewable energy
sources (RES). Also other frameworks, such as Calliope by Pfenninger and Pickering [2018] meet
comparable requirements in theory, but are mostly applied to long-term planning problems (e.g.
Pickering and Choudhary [2019]) rather than having an operational focus. That focus makes them
less suitable for real-world operational problems, where features as uncertainty modelling, rolling
horizon optimisation and market interaction are important.

2.2 District Heating Optimisation Models

District-heating specific models are often able to capture detailed characteristics of the system and
take uncertainty into account: In Zhou et al. [2020], a distributionally robust linear formulation
of a co-generation dispatch problem for heat and power dispatch is proposed. The authors of
Xue et al. [2021] solve a robust unit commitment problem for a co-generating heat and power
system. In Hohmann et al. [2019], operation strategies for a DH system are optimised in a stochastic
program. However, such models, coming along with rich detail with respect to district-heating
specific characteristics, typically model energy carriers and units, usually heat and possibly power,
explicitly, thus lacking general applicability to systems with a wider range of energy carriers.

Co-generation of power and heat raises the question of an integrated optimisation of both dispatch
and power market bidding, both on day-ahead Blanco et al. [2019] and regulating power markets
[Blanco et al., 2018] and taking different bidding products into account [Schledorn et al., 2021].
Optimisation under uncertainty becomes especially useful in such co-generation problems, where
typical sources of uncertainty can include heat load [Dimoulkas and Amelin, 2015], prices [Schledorn
et al., 2021] or RES generation [Blanco et al., 2018]. These authors model the studied DH systems
for bidding but abstain from a generic model formulation. An example of a network flow formulation
in DH is the work in Bordin et al. [2016], where the planning of an Italian DH system is optimised,
while DH characteristics are modelled explicitly but no uncertainty is considered. The reader is
referred to Sarbu et al. [2019] for an review of DH system optimisation models.

Operational optimisation in DH is often combined with design or capacity expansion models.
Examples are Wirtz et al. [2020], Gabrielli et al. [2018] and Weinand et al. [2019] relying on ex-
plicit modelling of the systems. Further publications including investment decisions in multi-energy
systems are presented in [Cuisinier et al., 2021].

2.3 Energy hubs

The energy hub concept was defined by Geidl et al. [2007] as ”An energy hub is considered a unit
where multiple energy carriers can be converted, conditioned, and stored”, i.e, an energy hub can
contain several energy units, storage facilities and transformers. Several energy hubs are intercon-
nected using transmission systems. For each energy hub, a so-called coupling matrix can be derived,
which is used to determine the operational strategy[Geidl et al., 2007, Beigvand et al., 2017]. This
matrix contains the transformation factors from one energy carrier to another energy carrier based
on the setup of all units inside the energy hub. Based on the energy hub concept, several planning
tasks can be executed, e.g., design of an energy hub Wang et al. [2018], systems impact analysis
of energy hubs, operational planning Geidl and Andersson [2005], Najafi et al. [2016] and optimal
power flow. Within the context of this publication, the productions units of the DH operator can be
considered as one energy hub. We are interested in a generic formulation for the stochastic opera-
tional scheduling inside the energy hub. We also use a transformation matrix similar to the coupling
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matrix, but on a unit-level to define the transformations of each unit. Beigvand et al. [2017] look
at the economic dispatch of energy hub and give many examples for possible energy hubs and a
mathematical formulation using the coupling matrix. Their formulation abstracts from specific time
periods, commitment decisions and uncertainties, since it is concerned with optimizing the energy
input and dispatch factors to reach the required output. Geidl and Andersson [2005] propose a
general formulation for the determining the optimal dispatch of the units inside an energy hub for
one hour using a non-linear formulation. Najafi et al. [2016] present a specific stochastic model for
an energy hub containing CHP units, generators and wind turbines considering electricity prices and
wind power production as uncertain. Wang et al. [2018] determine the configuration of an energy
hub using a model that uses a general notation based on input and output ports and branches be-
tween components. The decisions are the possible combinations as binary variables and the optimal
operation strategy. An extended overview of models for energy hubs is given in Mohammadi et al.
[2017]. Like in the above mentioned publications, most energy hubs publication focus on planning
and analysis and do not consider real-time operational planning Krause et al. [2011].

2.4 Contribution

Based on the presented literature above, we summarize our contributions as follows:

1. We propose a novel formulation for the optimisation of DH systems. The model relies on
a network representation of the DH system, which makes the optimization model itself very
generic and it can be easily applied to a wide range of DH systems with different units and
requirements. The model uses stochastic programming to account for uncertainty in prices
and heat flows.

2. The proposed model can be used in different application cases. Traditional operational op-
timization dispatching the heat production units can achieved by using the model with non-
anticipativity on the commitment status and production on some of the units. Determination
of bids to day-ahead markets can be achieved by including non-anticipativity constraints that
create curves based on the electricity prices scenarios (based on the work in Pandžić et al.
[2013], Blanco et al. [2018]). Finally, a deterministic version of the model can be used for pure
evaluation purposes on historic data.

3. The optimisation model also allows defining sliding time windows and using the model in a
rolling or receding horizon approach.

4. The performance of the model in terms of costs, energy mixes and runtimes is extensively
evaluated in several case studies using real data from three Danish DH networks including
out-of-sample testing.

3 Network representation

In this section, we present how a DH system can be represented as a network graph with arcs and
vertices and introduce all components, parameters and sets. The general idea is to transform all
components of a DH system such as production units, storage units, demand sites etc. to vertices
in a network and use the arcs to model possible flows of energy between units. An overview of the
nomenclature is given in Table 1. The model formulation in Section 4 uses this structure as basis
for the mathematical formulation.
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Table 1: Nomenclature - DH network components

Symbol Description

U Production units
E Energy sources
D Demand sites
P Pipeline connection
S Storage units
F Energy type
T Periods
Ω Scenarios
V Vertices V = U ∪ E ∪ D ∪ P ∪ S
UWC Set of unit vertices needing commitment decisions, UWC ⊆ U
U* Set of units with here-and-now decisions U* ⊆ U
UEXC
u Set of unit vertices excluded from production, if unit v is producing, UEXC

u ⊆ U
UDEP
u Set of unit vertices also producing, if unit v is producing, UDEP

u ⊆ U
A Set of arcs, A ⊂ (V × V × F × T × T × Ω)
AOUT

v,f,t,ω Set of outgoing arcs with energy type f ∈ F from vertex v ∈ V in period t ∈ T and scenario ω ∈ ω
AIN

v,f,t,ω Set of incoming arcs with energy type f ∈ F from vertex v ∈ V in period t ∈ T and scenario ω ∈ ω
M =MB ∪MS Set of buying (B) and selling (S) markets

φc,f,f ′ Conversion factor of vertex v ∈ V from energy type f ∈ F to energy type f ′ ∈ F
Iv,f,t,ω/Iv,f,t,ω Lower/upper bound on input of energy type f ∈ F to vertex v ∈ V in period t ∈ T and scenario

ω ∈ Ω
Lv,v′,f Upper bound on flow of energy type f ∈ F from vertex v ∈ V to vertex v′ ∈ V
Ov,f,t,ω/Ov,f,t,ω Lower, upper bound on output of energy type f ∈ F to vertex v ∈ V in period t ∈ T and scenario

ω ∈ Ω
CI

v,f,t,ω/C
O
v,f,t,ω Cost for inflow/outflow of one unit of energy type f ∈ F at vertex v ∈ V in period t ∈ T and

scenario ω ∈ Ω
CS

u Start-up cost for unit u ∈ UWC

TUT
u /TDT

u Minimum up time/down time for unit u ∈ UWC

Bu Initial online status of unit u ∈ UWC

TB
u Minimum remaining periods of initial online status of unit u ∈ UWC

RU
u,f , RD

u,f Ramping limits on energy type f for unit vertices u ∈ U
ca Cost per unit on arc a ∈ A, weighted with scenario probability
φv,f,f ′ Conversion factor from energy type f to type f ′ at vertex v
la/ua Lower/upper bound on flow on arc a ∈ A
pm,t,ω Price at market m ∈M in period t ∈ T and scenario ω ∈ Ω

3.1 General sets and parameters

Energy types are defined by the set F and are any kind of input fuel or output product that is used
or produced in the DH network. Typical examples are electricity and heat as output products as
well as electricity, wood chips, natural gas, waste heat and solar heat as input energy types.

The planning horizon is denoted by the set of periods T . The subset of periods T ∗ = {1, ..., |T ∗|} ⊆
T are the periods for which non-anticipativity must hold for the later defined units. Uncertain input
data is given by the set of scenarios Ω. Each scenario ω has a probability πω with

∑
ω∈Ω πω = 1.

3.2 Network structure

In our model formulation, the DH system is represented by the set of vertices V and the set of arcs
A that connect the vertices. Thus, we can formulate the main part of the optimization model as
a flow problem on this network structure. An arc a is defined by the indices a = (v, v′, f, t, t′, ω)
where v is the start vertex, v′ is the end vertex, f is the type of energy flowing on this arc, t is the
start time period, t′ is the end time period and ω the scenario.

To incorporate costs and restrictions on the flow in the network, vertices and arcs have several
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e1

e2

u

v

ϕv,f,f ′

s

d1

d2

[Iv,f,t,ω ,

Iv,f,t,ω ]

[Ov,f ′,t,ω ,

Ov,f ′,t,ω ]

ca [la, ua]

Figure 1: Example for arc and vertex parameters where vertex v receives input of energy type f
from unit u or energy source e2 and transforms it to energy type f ′ that is stored in storage unit s
or used in demand site d1. Unit u uses input from energy source e1 and demand site d2 gets input
from storage s.

parameters. Each arc a has cost per unit of flow denoted by ca, which is weighted with probability
πω with ω being the scenario of this arc. The flow on each arc a is limited by the lower and upper
bound la and ua, respectively.

Each vertex v has lower and upper bounds on the total incoming flow, [Iv,f,t,ω, Iv,f,t,ω], as well as

the total outgoing flow, [Ov,f,t,ω, Ov,f,t,ω], per energy type f , period t and scenario ω. Each vertex
has the capability of transforming an energy type f to another energy type f ′ at a given conversion
rate denoted by the transformation factor φv,f,f ′ . The parameters are illustrated in Figure 1.

The set of incoming and outgoing arcs for vertex v ∈ V for energy type f ∈ F in period t ∈ T
and scenario ω ∈ Ω are denoted by the arc subsets AIN

v,f,t,ω and AOUT
v,f,t,ω, respectively.

3.3 District heating network components

In the following, we describe the components of the DH system and how they can be expressed using
the above network structure.

3.3.1 Energy sources E

Energy sources are given in the set E ⊂ V and are the only possibility to insert energy of different
types into the network without producing it by units. Energy sources are used for input fuels such
as natural gas, biomass or electricity. Additionally, they can represent heat that is not produced but
injected through waste heat sites or solar thermal units. The output of the energy source vertex v is
limited by [Ov,f,t,ω, Ov,f,t,ω] for the energy type f associated with this source and [0, 0] for all other
energy types. The limits can vary over time and per scenario to model time-varying and/or uncertain
inflow from e.g., waste heat or solar units. Furthermore, the energy can be priced with CO

v,f,t,ω,
potentially depending on time and scenario. Thus, each arc a leaving the source v contains the cost
CO

v,f,t,ω in the parameter ca. There is no inflow to energy sources, i.e, [Iv,f,t,ω, Iv,f,t,ω] = [0, 0]. An
energy source can also be used to model penalty costs for missing heat by providing heat at a high
cost.

6



3.3.2 Demand sites D

Demand sites are defined by the set D ⊂ V. Typical demand sites are the heat load demands in
the DH network but also the electricity markets. Demand sites v ∈ D have a limitation on inflow
[Iv,f,t,ω, Iv,f,t,ω] for the energy type of the demand site. The inflow for all other energy types is

[0, 0]. Demand sites have no outflow, i.e., [Ov,f,t,ω, Ov,f,t,ω] = [0, 0]. There are two common cases:

Iv,f,t,ω = Iv,f,t,ω, if the demand needs to be fulfilled exactly, and Iv,f,t,ω < Iv,f,t,ω = ∞, if the
demand needs to be covered but may be exceeded by its supply. The lower limit can be set to 0 to
model electricity markets. Each unit of inflow can be associated with cost if CI

v,f,t,ω > 0 or income

if CI
v,f,t,ω < 0. The parameter CI

v,f,t,ω is included in the cost parameter ca on all incoming arcs a
to demand site v. A demand site can also be used to model excess heat by providing an additional
heat demand site without any demand (but maybe some penalty costs).

3.3.3 Storage units S

Storage units are given in the set S ⊂ V and can store energy from one period to the next. A
storage v ∈ S is defined for a specific energy type. The conversion factor for this energy type is
φv,f,f = (1 − loss) to model losses between periods, i.e, the efficiency of the storage unit. For all
other energy types, it is set to zero. The capacity of the storage unit is limiting the maximum
outflow on arcs connecting the storage with itself in the next period, i.e., ua = capacity(t, ω) with
a = (v, v, f, t, t + 1, ω),∀t ∈ T , ω ∈ Ω. The capacity can be time- and scenario-dependent. The
maximum flow through the storage per period is limiting the total in- and outflow with the lower
limits zero, i.e., [Iv,f,t,ω = 0, Iv,f,t,ω = max-flow] and [Ov,f,t,ω = 0, Ov,f,t,ω = max-flow]. The
limitations for all other energy types are zero.

3.3.4 Interconnections I

Interconnections are defined by the set I ⊂ V and can be used to model flow restrictions from
parts of the network to other parts of the network, e.g., when two districts are connected. An
interconnection is given for a defined energy type and for this energy type there are limitations on
the in- and outflow given by [Iv,f,t,ω, Iv,f,t,ω] and [Ov,f,t,ω, Ov,f,t,ω], respectively, which can be time-
and scenario-dependent. The limitations for all other energy types are zero. Losses can be modelled
similar to storages with φv,f,f = (1− loss) for the given energy type.

3.3.5 Production units U

Production units are defined by the set U ⊂ V. Each production v ∈ U can transform input energy
types f1 ∈ F to output energy types f2 ∈ F . The capacity of the production is unit is defined by the
limitations on the input [Iv,f1,t,ω, Iv,f1,t,ω] and output flows [Ov,f2,t,ω, Ov,f2,t,ω] of each energy type.
Non-valid energy types are excluded by setting input and/or output restrictions to zero, respectively.
The conversion factor φv,f1,f2 is defined as the relationship between input and output energy type.
The increase and decrease in production from one period to the next is limited by the up and down
ramping limits RU

v,f and RD
v,f , respectively. Those can be defined per energy type f . A subset of

the units U∗ ⊆ U might relate to here-and-now decisions, i.e., those units need to have the same
production in all scenarios Ω for the given non-anticipativity period T ∗.

Some production units require the modelling of their online status (on/off) to impose further
restrictions, e.g. in case there exists a minimum production amount or dependencies with other
units. The decisions regarding the status of the unit are called commitment decisions and the set
of units with commitment decisions is denoted by UWC ⊆ U . The start-up costs of a unit with
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commitment are denoted by CS
v . For those units, we can also define minimum up and down times

TUT
v and TDT

v , respectively. Furthermore, interdependence between units can be modelled. The set
UDEP
v contains all units that need to be online, when unit v is online. In contrast, the set UEXC

v

contains all units that are excluded from production, if unit is v producing. This can be used to
model one unit with two different operational modes as two units excluding each other.

3.4 Network creation

Based on the structures defined above, the network can be created by translating all components with
their parameters to vertices and arcs. Additional information encoded in the network, apart from
the attributes mentioned in the previous section, are the limits on particular connections between
components based on energy type, time and scenario information. Those are given by bounds on
the arcs [la, ua]. This means, if two vertices are not connected then the flow bounds are set to zero.
The same holds if a particular energy type flow is not possible.

3.4.1 Vertices V

All physical assets in the network, as presented in Section 3.3, form the set of vertices in the network,
i.e., V is defined as

V = U ∪ E ∪ D ∪ I ∪ S.
Note that several artificial vertices can be used to account for special conditions. For example, there
are artificial energy sources and demand sites for each storage to model initial levels at the beginning
of the planning horizon and target storage levels at the end of the planning horizon.

3.4.2 Arcs A

The following arcs are created within a period t ∈ T , t′ = t and scenario ω ∈ Ω, i.e., flow in the
same period and scenario:

• From energy source e ∈ E to unit u ∈ U , if those two are interconnected and unit u has inflow
of the energy type f from source e. The upper flow limit is the maximum inflow of energy
type f to unit u and the cost are the cost per unit from the energy source.

• From energy source e ∈ E to storage unit s ∈ S, demand site d ∈ D or interconnection i ∈ I, if
those two are interconnected and end component has inflow of the energy type f of source e.
The upper limit is the maximum outflow of energy source e and the cost are the cost per unit
from the energy source. One example is solar heat or waste heat that can be directly used for
heating. Then the outflow is limited by the available heat. Another example is the modelling
of soft constraints, e.g., imbalances on the electricity markets or missing heat production. In
that case, the flow is unlimited and the costs represent penalty costs.

• From unit u ∈ U to storage unit s ∈ S, if unit u produces the energy type f stored in s ∈ S
and the two are connected. The upper limit is the maximum outflow of energy type f to unit
u. The cost are the production cost per unit of outflow.

• From unit u ∈ U to demand site d ∈ D, if unit u produces the energy type consumed at d and
the two are connected. The upper limit is the maximum outflow of energy type f to unit u.
he cost are the production cost per unit of outflow minus potential income (or cost) for selling
the energy type (e.g. electricity on the day-ahead market).

• From unit u1 ∈ U to unit u2 ∈ U , if u1 produces an energy type f that is input to unit u2 and
the two are connected. The upper limit is the maximum outflow of energy type f to unit u1.
The cost are the production cost per unit of outflow.
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Table 2: Sets, parameters and variables

Variables

xa ∈ R+ Flow on arc a ∈ A
zu,t,ω ∈ {0, 1} Binary variable, 1 if unit u ∈ UWC is producing in period t and scenario ω ∈ Ω, 0 otherwise
zSu,t,ω ∈ {0, 1} Binary variable, 1 if unit u ∈ UWC is started in period t and scenario ω ∈ Ω, 0 otherwise

zEu,t,ω ∈ {0, 1} Binary variable, 1 if unit u ∈ UWC is shut down in period t and scenario ω ∈ Ω, 0 otherwise

• From unit u ∈ U to interconnection i ∈ I, if unit u produces the energy type of interconnection
i and the two are interconnected. Upper limit is the maximum outflow of energy type f to
unit u. The cost are the production cost per unit of outflow.

• From storage unit s ∈ S to demand site d ∈ D, if storage unit s stores the energy type f of
demand site d and the two are connected. The upper limit is the maximum flow per period of
storage s. The cost are the cost (or income) for sending one unit to the demand site.

• From storage unit s ∈ S to interconnection i ∈ I or vice versa, if storage unit s stores the
energy type of interconnection i and the two are connected. The upper limit is the maximum
flow per period of storage s.

• From interconnection i ∈ I to demand site d ∈ D, if the interconnection transports the energy
type of the demand site and the two are connected. The upper limit is the maximum flow per
period of i. The cost are the cost (or income) for sending one unit to the demand site.

• From interconnection i1 ∈ I to interconnection i2 ∈ I, if the interconnections transport the
same energy type and the two are connected. The upper limit is the maximum flow.

Furthermore, the modelling of storage units requires the following arcs from period t ∈ T to
period t+ 1 ∈ T in the same scenario ω ∈ Ω:

• From storage unit s ∈ S to the same storage unit s in the next period. The upper flow limit
is the storage capacity.

Special arcs are created for initial and end storage levels at the storage units s ∈ S. Initially
stored energy can enter the system via an artificial energy source e∗ ∈ E and target storage level
can leave the system through artificial demand site d∗ ∈ D. The following arcs are added:

• In period t = 1 (first period) from energy source e∗ to storage unit s with a lower and upper
limit equal to the initial storage level.

• In period t = |T | from storage unit s to demand site d∗ with the target storage level as lower
bound and storage capacity or target storage level as upper bound.

The example in Figure 1 could be a setup where vertex v is an electric boiler that can draw
electricity (f) from either the market (e2) or a wind farm (u) that is dependent on wind (e1). The
electric boiler produces heat (f ′) for demand sites d1 and d2 and the flow to demand site d2 is going
through a thermal storage (s). φv,f,f ′ is the transformation factor from electricity (f) to heat (f ′)
for the electric boiler (v).

4 Network flow formulation

Based on the above defined network, we can create the optimization model. The main decisions of
the model are represented by the flow xa on the arcs a ∈ A. Further decisions are related to the
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commitment status of units u ∈ UWC , where binary variables zu,t,ω, z
S
u,t,ω and zEu,t,ω model whether

unit u is online, started up or shut down in period t and scenario ω, respectively. See Table 2 for
an overview of all decision variables including the ranges.

The objective function (1) minimizes flow costs through the network plus unit start-up costs.

min
∑
a∈A

caxa +
∑

u∈UWC

∑
t∈T

∑
ω∈Ω

πωC
S
u z

S
u,t,ω (1)

Constraints (2) limits the flow on the arcs depending on the given bounds.

la ≤ xa ≤ ua ∀a ∈ A (2)

The transformation from one energy type f to another energy f ′ at a vertex k is handled in con-
straints (3) using the transformation factor φu,f,f ′ . These constraints hold not for energy sources E
and demand sites D, since they do not have incoming or outgoing flow, respectively.∑

a∈AOUT
v,f′,t,ω

φv,f,f ′xa −
∑

a∈AIN
v,f,t,ω

xa = 0 ∀v ∈ V\(E ∪ D), t ∈ T , ω ∈ Ω, f ∈ F , f ′ ∈ F (3)

The total outflow and inflow at each vertex is limited by lower and upper bounds in constraints (4)
to (5). An exception is made for units with commitment decisions UWC , since those are handled
explicitly in constraints (16) and (17).

Ov,f,t,ω ≤
∑

a∈AOUT
v,f,t,ω

xa ≤ Ov,f,t,ω ∀v ∈ V\UWC , t ∈ T , ω ∈ Ω, f ∈ F (4)

Iv,f,t,ω ≤
∑

a∈AIN
v,f,t,ω

xa ≤ Iv,f,t,ω ∀v ∈ V\UWC , t ∈ T , ω ∈ Ω, f ∈ F (5)

The ramping constraints for production units, i.e., the allowed difference in production between
periods, for the different units are given in constraints (6) to (7) except for units with commitment
decisions UWC (see constraints (18)-(19)).∑

a∈AOUT
u,f,t,ω

xa −
∑

a∈AOUT
u,f,t−1,ω

xa ≤ RU
u,f ∀u ∈ U\UWC , f ∈ F , t ∈ T , ω ∈ Ω (6)

−
∑

a∈AOUT
u,f,t,ω

xa +
∑

a∈AOUT
u,f,t−1,ω

xa ≤ RD
u,f ∀u ∈ U\UWC , f ∈ F , t ∈ T , ω ∈ Ω (7)

Please note that the
∑

a∈AOUT
u,f,t−1,ω

xa in period t = 1 refers to the initial production level given as

input parameter for each unit U .

4.1 Units with commitment decisions

In case of units with commitment decisions, we need to impose additional constraints. The commit-
ment status of the unit zu,t,ω ∈ {0, 1} (1=on, 0=off) impacts the production of the unit. The status
variable zu,t,ω is updated using binary variables for starting zSu,tω ∈ {0, 1} and stopping zEu,tω ∈ {0, 1}
the unit.

Constraints (8) to (15) model commitment related restrictions for units in set UWC . Constraints
(8) and (9) ensure that the status of the unit is set correctly based on starting and stopping the
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unit while excluding simultaneous starts and stops. zu,t−1,ω in period t = 1 refers to the initial
status given as parameter Bu,ω for each unit UWC . Minimum up- and down-times are modelled
in constraints (10) to (12). Constraints (10) sets the status based on the initial status Bu and the
required remaining periods TB

u in this status due to minimum up- or down-time. Constraints (11) to
(12) ensure the minimum up- and down-times for the remaining periods, respectively. Constraints
(13) to (14) exclude the simultaneous production of two units that should not run at the same time.
The opposite case, where simultaneous production is required, is modelled in Constraints (15).

zSu,t,ω − zEu,t,ω = zu,t,ω − zu,t−1,ω ∀u ∈ UWC , t ∈ T , ω ∈ Ω (8)

zSu,t,ω + zEu,t,ω ≤ 1 ∀u ∈ UWC , t ∈ T , ω ∈ Ω (9)

zu,t,ω = Bu ∀u ∈ UWC , t ∈ {0, ..., TB
u }, ω ∈ Ω (10)

t∑
t′=max{1,t−TUT

u }

zSu,t′,ω ≤ zu,t,ω ∀u ∈ UWC , t ∈ {TB
u , . . . , |T |}, ω ∈ Ω (11)

t∑
t′=max{1,t−TDT

u }

zEu,t′,ω ≤ 1− zu,t,ω ∀u ∈ UWC , t ∈ {TB
u , . . . , |T |}, ω ∈ Ω (12)

zu,t,ω + zu′,t,ω ≤ 1 ∀u ∈ UWC , u′ ∈ UEXC
u , t ∈ T , ω ∈ Ω (13)

zSu,t,ω + zEu′,t,ω ≤ 1 ∀u ∈ UWC , u′ ∈ UEXC
u , t ∈ T , ω ∈ Ω (14)

zu,t,ω = zu′,t,ω ∀u ∈ UWC , u′ ∈ UDEP
u , t ∈ T , ω ∈ Ω (15)

The inflow and outflow restrictions (16) and (17) as well as the ramping of the production (18)
and (19) of the units with commitment decisions are modelled dependent on the status of the unit.

zu,t,ωOu,f,t,ω ≤
∑

a∈AOUT
u,f,t,ω

xa ≤ zu,t,ωOu,f,t,ω ∀u ∈ UWC , t ∈ T , ω ∈ Ω, f ∈ F (16)

zu,t,ωIu,f,t,ω ≤
∑

a∈AIN
u,f,t,ω

xa ≤ zu,t,ωIu,f,t,ω ∀u ∈ UWC , t ∈ T , ω ∈ Ω, f ∈ F (17)

∑
a∈AOUT

u,f,t,ω

xa −
∑

a∈AOUT
u,f,t−1,ω

xa ≤ RU
u,fzu,t−1,ω +Ou,f,t,ωz

Start
u,t,ω

∀u ∈ UWC , f ∈ F , t ∈ T , ω ∈ Ω (18)

−
∑

a∈AOUT
u,f,t,ω

xa +
∑

a∈AOUT
u,f,t−1,ω

xa ≤ RD
u,fzu,t,ω +Ou,f,t,ωz

Stop
u,t,ω

∀u ∈ UWC , f ∈ F , t ∈ T , ω ∈ Ω (19)

4.2 Non-anticipativity constraints

Depending on the application case of the model, different non-anticipativity constraints need to be
added. If a deterministic version of the model is used, those constraints can be omitted. Furthermore,
we can distinguish between non-anticipativity on the commitment decisions of the units and non-
anticipativity with respect to bidding curves. The former assumes that the units can operate with
the day-ahead market prices without any bidding, while the latter creates bidding curves that can
be submitted to the day-ahead electricity market.
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4.2.1 Operational planning without bidding

For all units with here-and-now decisions U∗ in the periods considered as first-stage T ∗, we need
to include non-anticipativity constraints to ensure the decision structure of a two-stage stochastic
program. Non-anticipativity means that the production and status of those units needs to be
equal across scenarios. Such non-anticipativity might be necessary, e.g., due to electricity market
participation, where the determining of power production amounts has to be made before the market
is cleared. The constraints for commitment status and production are given in constraints (20) and
(21), respectively. Constraints (20) ensures that the commitment status is the same for all scenarios
for all units in U∗ ∩ UWC . The flow non-anticipativity is modeled such that all arcs need to have
the expected flow (21). The set A∗(a) contains all arcs a′ that need to have same flow as arc a,
i.e., the arcs with same start and end vertex, period and energy type, which only differ in scenario,
including a itself. The non-anticipativity on flow holds only for arcs with units v(a) in U∗ as start
vertex and period t(a) ∈ T ∗ as start period. ω(a′) denotes the scenario of arc a′.

zu,t,ω = zu,t,ω′ ∀u ∈ U∗ ∩ UWC , t ∈ T ∗, ω, ω′ ∈ Ω (20)

xa =
∑

a′∈A∗(a)

πω(a′)xa′ ∀{a ∈ A | v(a) ∈ U∗ ∧ t(a) ∈ T ∗} (21)

In this setting (in contrast to the approach described in Section 4.2.2) the DH system is assumed
to participate in electricity trading via price-independent bids. That means that electricity trades,
if first-stage decisions, are realized no matter the market price.

4.2.2 Operational planning including bidding curves

The extension to bidding curves is based on the work in Blanco et al. [2018] that use the method
of Pandžić et al. [2013] for creating bidding curves based on electricity price scenarios. The method
creates monotonously increasing/decreasing bidding curves determining a bidding amount for each
price scenario. We refer to Blanco et al. [2018] and Pandžić et al. [2013] for further details.

In this extension, we have a set of markets for selling m ∈ MS and buying m ∈ MB energy.
A market m contains a set of three vertices Vm representing a spot (day-ahead) market as well as
imbalances (upward and downward). These vertices are either energy sources, if they offer energy,
or demand sites, if they receive energy. The price on the spot market m ∈MS ∪VS in period t and
scenario ω is denoted by pm,t,ω. The setup of vertices is visualized in Figure 2.

Constraints (22) and (23) determine the bidding amount to the selling market based on the
scenarios and allow a monotonously increasing bidding curve based on the market scenario price
pm,t,ω. For an equal price an equal selling amount is guaranteed (23) ensuring non-anticipativity.
Constraints (24) and (25) create monotonously decreasing bidding curves for the buying market.∑

a∈AIN
v,f,tω

xa −
∑

a∈AOUT
v,f,tω

xa =
∑

a∈AIN
v,f,tω′

xa −
∑

a∈AOUT
v,f,tω′

xa

∀m ∈MS , v ∈ Vm, t ∈ T , (ω, ω′) ∈ Ω× Ω, if pm,t,ω = pm,tω′ (22)∑
a∈AIN

v,f,tω

xa −
∑

a∈AOUT
v,f,tω

xa ≤
∑

a∈AIN
v,f,tω′

xa −
∑

a∈AOUT
v,f,tω′

xa

∀m ∈MS , v ∈ Vm, t ∈ T , (ω, ω′) ∈ Ω× Ω, if pm,t,ω ≤ pm,tω′ (23)∑
a∈AOUT

v,f,tω

xa −
∑

a∈AIN
v,f,tω

xa =
∑

a∈AOUT
v,f,tω′

xa −
∑

a∈AIN
v,f,tω′

xa

12



Consumption market

eBMB

eDA

eBMS

EB . . .

Production market

CHP

dBMS

dBMB

dDA

Figure 2: Set of vertices needed to represent markets with exemplary connections to electric boiler
(EB) and CHP unit (CHP). Each market consists of three vertices: day-ahead market (DA), negative
imbalance (buying needed) (BMB) and positive imbalance (selling needed) (BMS) (blue = energy
sources, gray = demand sites, white = units).

∀m ∈MB , v ∈ Vm, t ∈ T , (ω, ω′) ∈ Ω× Ω, if pm,t,ω = pm,tω′ (24)∑
a∈AOUT

v,f,tω

xa −
∑

a∈AIN
v,f,tω

xa ≤
∑

a∈AOUT
v,f,tω′

xa −
∑

a∈AIN
v,f,tω′

xa

∀m ∈MB , v ∈ Vm, t ∈ T , (ω, ω′) ∈ Ω× Ω, if pm,t,ω ≥ pm,tω′ (25)

4.3 Rolling horizon approach

The model presented above can also be used in a rolling horizon setting where we shift the planning
horizon by |T ∗| in each iteration. To model the rolling horizon correctly, some input parameters
need to be updated based on the realization of the uncertainty. The initial status of the units with
commitment decisions UWC and the initial production and storage levels need to be set according
to the outcome in period t = |T ∗| in the previous run.

5 Test cases

We present results for the optimization of three different DH systems in Denmark. These are located
in the cities of Brønderslev, Hillerød and Middelfart.

5.1 Static data

The DH systems differ in terms of types and numbers of units as well as the layout of the demand
sites. An overview of the basic network representation is given in Figure 3.

The Middelfart DH system in Figure 3a only contains a few units and consists of two sub-systems
connected through an interconnection pipe(i1). One sub-system contains a wood chip boiler (uWC),
wood pellet boiler (uWP ), a CHP unit (uCHP1) and a gas boiler (uGB1), while the other sub-system
contains only a gas boiler (uGB2) and a CHP unit (uCHP2). The entire system contains three storage

13



eWC

eWP

eNG

uWC

uWP

uCHP1

uGB1

uCHP2

uGB2

s1

s2

s3

i1

dH1

dEL

dH2

(a) Middelfart

eSOL

eWC

eEL

eNG

dFix

uWCHP1, uWCHP2

uEB

uCHP1, . . . , uCHP7

uGB

uORC

uEXC

s1

i1

i2

i3

dH1

dH2

dH3

dEL

(b) Brønderslev

uCHPeNG

uGB1

uGB2

uGB3

uGB4

uGB5

uGB6

uGB7

eSOL

eWC

eWH

uORC1

uORC2

uWC

s1

i1

i2
i4

i3

i5

i6

i7

i8

i9

i10

dH1

dH2

dH3

dH4

dH5

dH6

dH7

dEL

dFix

(c) Hillerød

Figure 3: Basic network representation of the three DH systems with energy sources (e), units
(u), storage units (s), demand sites (d) and interconnections (i). For the Brønderslev system,
the seven CHP units and two wood chip boiler-heat pump units are aggregated for illustra-
tive purposes. WC=wood chips, WP=wood pellets, CHP=combined head and power, GB=gas
boiler, EL=electricity, H=heat, SOL=solar heat, ORC=organic rankine cycle, EXC=heat exchanger,
NG=natural gas.
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Table 3: Unit parameters (+ = Cost and prices have been multiplied with a factor to anonymize
data, ∗ = First-stage decisions, i.e., u ∈ U∗)

Unit Input restr. Output restr. Cost Min. up/down
[MW/period] [MW/period] [EUR/

MWhh]
times [periods],
Start up cost [EUR]

B
rø

n
d

er
sl

ev

u∗CHP1- NG: [7.822,7.822] H: [3.848, 3.848], 96.98
u∗CHP7 EL: [3.277, 3.277]
uGB NG: 33.8 H: 34.8 58.52
uSOL SOL: External H: External 0.00
uORC PH: [10, 20] H: [8,16], EL: [2,4] -32.16 Up/Down: 3/3
u∗EB EL: 20 H: 19.8 56.88
u∗WCHP1 WC: [4.32, 10.8] H: [1.2, 3], 88.51

EL: [0.12, 0.3] PH: [3.2, 8]
u∗WCHP2 WC: 10.8 EL: 0.3 H: 3 PH: 8 88.51 dep. on WCHP1
uEXC PH: 20 H: 20 0.00

H
il
le

rø
d
+

uWC WC: 7.9 H: 8 33.74 Start up cost: 30
u∗CHP NG: [58, 146] H: [26, 65], 100 Start up cost: 500

EL: [13, 59.1]
uGB1 NG: 28.4 H: 27 58.19
uGB2 NG: 4.6 H: 4.5 58.22
uGB3 NG: 2 H: 1.9 58.22
uGB4 NG: 16.842 H: 16 58.22
uGB5 NG: 23.368 H: 22.2 58.22
uGB6 NG: 35.79 H: 34 56.69
uGB7 NG: 20.4 H: 20 56.58
uSOL SOL: External H: External 0.00
u∗ORC1 WC: [6.86, 30.83] H: [5, 25.6], EL: [0, 4] 43.57 Up/Down: 24/24
u∗ORC2 WC: [6.86, 30.83] H: [4.675, 23.936], 44.32 Up/Down: 24/24,

EL: [0, 3.740] excludes ORC1
uWH WH: External H: External 0.00

M
id

d
el

fa
rt

uWC WC: [0.775, 4.095] H: [0.814; 4.3] 24.19 Up/Down: 24/24
uWP WP: [0.555, 2.760] H: [0.52, 2.5] 30.24 Up/Down: 12/12
u∗CHP1 NG: [7.565, 7.565] H: [3.625, 3.625], 109.61 Start up cost: 72.67

EL: [2.875, 2.875]
u∗CHP2 NG: [7.675, 7.675] H: [4.22, 4.22], 64.13 Start up cost: 73.72

EL: [3.3, 3.3]
uGB1 NG: 5.59 H: 5.815 63.08
uGB2 NG: 6.33 H: 6.52 46.67

units (s1 − s3) and two demand sites (dH1, dH2). The CHP units sell electricity to the day-ahead
market (del).

The Brønderslev DH system in Figure 3b has a larger number and variety of units. Apart
from 7 small-scale CHP units (uCHP1, . . . , uCHP7), an electric boiler (uEB) and a gas boiler (uGB)
producing heat used directly in the DH network, the system has two units combining wood chip
boilers with heat pumps (uWCHP1, uWCHP2) and a solar thermal plant (uSOL) to produce process
heat (PH). The process heat is then utilized by an organic rankine cycle (ORC) CHP unit (uORC)
for combined heat and power production or it can be converted to heat through an heat exchanger
(uEXC). The heat is delivered to a central storage (s1) and from there, via interconnections i1− i3,
to three demand sites (dH1 − dH3) where dH3 is reached via dH2. The CHP (to the day-ahead
market (dEL)) and ORC units (at fixed price) sell electricity, while the electric boiler and heat
pumps consume electricity from the day-ahead market.

The Hillerød DH system in Figure 3c is characterized by eight separate demand sites (dH1−dH8)
that are reached via interconnections (i1 − i8), nearly all of them connected to decentralized gas
boilers (uGB1 − uGB7) that can cover local heat production. Demand site dH1 is also connected to
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Table 4: Lower and upper bounds as well as prices of energy sources (e) and demand sites (d).
TS=time series, Scen.=Scenario set (∗ = the price is indirectly taken into account since it is included
in the heat production cost of the unit)

LB [MW/period] UB [MW/period] Price [EUR/MWh]

eWC 0 Unlimited 0∗

eWP 0 Unlimited 0∗

eNG 0 Unlimited 0∗

eEL 0 Unlimited Day-ahead price TS/Scen
eSOL Solar production TS/Scen Solar production TS/Scen 0
eWH Waste heat prod. TS/Scen Waste heat prod. TS/Scen 0

dH· Heat demand TS/Scen Heat demand TS/Scen 0
dEL 0 Unlimited Day-ahead price TS/Scen
dFix 0 Unlimited 0∗

Table 5: Interconnection limits for each DH system

Brønderslev Hillerød Middelfart

i 1 2 3 1 2 3 4 5 6 7 8 1

LB [MW/period] 0 0 0 0 0 0 0 0 0 0 0 0
UB [MW/period] 20 32 12 20 5 2 16.5 22.2 16 2 2 5

a solar thermal plant for heat production (uSOL). At the central production, waste heat injection
(uWH), a wood chip boiler (uWC), one CHP unit (uCHP ) and one wood chip-fired ORC unit are
able to produce heat. The ORC unit can be operated in two different operational modes represented
by units uORC1 and uORC2, production by either excluding production by the other. The electricity
production from the CHP unit is sold on the day-ahead market (dEL) while the electricity production
from the ORC unit is sold at a fixed price (dFix).

For all systems, the parameters of the units are given in Table 3, the parameters for energy
sources and demand sites are stated in Table 4 and the data for interconnections and storage units
are given in Table 5 and 6, respectively. We use real-world data provided by the respective DH
system operator, except all costs and prices for the Hillerød system that were multiplied with a
constant factor to anonymize the costs but keep the relation between units and markets.

The day-ahead market dEl in all three systems is represented by day-ahead market and two
vertices for imbalances (see description in Section 4.2.2). The penalty costs for imbalances are 600
EUR/MWh (higher than all electricity prices in the dataset). Additionally, each system contains an
energy source for missing heat (with a penalty cost of 10 EUR/kWh) and a demand site for excess
heat (with no penalty).

Table 6: Storage unit parameters for each DH system

s Capacity [MWh] Initial level [MWh] Target level [MWh] Loss [%/period]

Brønderslev 1 361.54 0.1 0.1 0.01

Hillerød 1 556.22 0.1 0.1 0.01

Middelfart
1 38.048 0.1 0.1 0.01
2 47.56 0.1 0.1 0.01
3 41.136 0.1 0.1 0.01
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Table 7: Test cases

Name System Start date Dataset length Planning horizon
in one model run

det./
sto.

B-01-168

Brønderslev

18-01-2021 2 weeks 1 week sto.
B-04-168 26-04-2021 2 weeks 1 week sto.
B-07-168 05-07-2021 2 weeks 1 week sto.
B-10-6936 15-10-2020 to 31-07-2021, 289 days 289 days det.

H-04-168

Hillerød

05-04-2021 2 weeks 1 week sto.
H-07-168 05-07-2021 2 weeks 1 week sto.
H-10-168 04-10-2021 2 weeks 1 week sto.
H-02-5808 15-02-2021 to 14-10-2021, 242 days 242 days det.

M-05-168

Middelfart

13-05-2019 2 weeks 1 week sto.
M-08-168 05-08-2019 2 weeks 1 week sto.
M-12-168 21-12-2019 2 weeks 1 week sto.
M-03-8784 03-03-2019 to 16-12-2019, 289 days 289 days det.

5.2 Time series data and scenarios

For each system, we analyze cases from different seasons and varying planning horizon lengths.
Evaluating system behaviour during different periods of the year is important to capture seasonal
variations. An overview of test cases is provided in Table 7. We divide into stochastic optimization
for operational planning and deterministic optimization for longer planning horizons. The purpose of
the former is the operational optimization considering the interaction with the day-ahead electricity
market including the operational uncertainty. In the latter case, we use deterministic data input
to evaluate the operational performance of the system in a particular setting. All datasets have
an hourly resolution. Note that the historical data in the three systems is based on different years
(2019-2021), i.e., results and costs are not directly comparable due to different weather conditions
and market prices.

For each DH system, we used real historical data to evaluate the performance of the models. For
the scenario generation, we follow a very basic procedure based on historical data. For each test case,
we use the data from the three previous weeks (before the date stated in Table 7) weighted with 0.5,
0.33 and 0.17 giving more weight to the recent observations. We distinguish between uncertainty
regarding heat flows (solar production, waste heat injection and heat demand) and electricity prices.
We combine the price scenarios with the heat flow scenario resulting in a total of 9 scenarios. This
distinction is necessary for the creating of the bidding curves (see Pandžić et al. [2013]), i.e. the
model creates bidding curves with three steps. This very basic scenario generation can easily replaced
by state-of-the-art probabilistic forecasting methods by just exchanging the input data. Additional
data used for the evaluation is stated in the respective results section.

6 Results

All results are computed on hardware of the DTU Computing Center(DCC)1 with Intel Xeon Pro-
cessors 2650v4 2.20GHz using 8 cores and 16 GB RAM. The models are implemented using Python
3.7.10 and PuLP 2.5.1, and solved with Gurobi 9.5.0.

1https://www.hpc.dtu.dk/
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Table 8: Performance of expected value approach and stochastic program without consideration of
bidding: Objective value (Obj.), net electricity sold on day-ahead market (sales-purchase) (El.sales),
Income from electricity market (Income), Heat production (Heat) and cost per MWh. All values
are expected values. The VSS is the difference between objective values and VSS[%] gives the
improvement when using the stochastic program.

Expected value approach Stochastic program

Case Obj. El.sales Income Heat Cost/ Obj. El.sales Income Heat Cost/ VSS VSS
[EUR] [MWhe] [EUR] [MWhh] MWhh [EUR] [MWhe] [EUR] [MWhh] MWhh [EUR] [%]

B-01-168 118831.0 1347.6 81222.5 5118.3 23.2 111703.8 987.2 62646.6 4957.3 22.5 7127.2 6.0
B-04-168 37993.1 6.7 5185.9 3663.1 10.4 36717.8 5.6 4900.1 3659.0 10.0 1275.3 3.4
B-06-168 19861.1 -67.4 -3281.9 2268.6 8.8 15144.8 -71.6 -3539.3 2330.7 6.5 4716.3 23.7
H-04-168 282758.6 3458.8 274766.1 8490.2 33.3 279712.8 3380.5 270196.6 8490.8 32.9 3045.8 1.1
H-07-168 3158.1 2155.1 242157.0 2701.5 1.2 1989.4 2181.1 246348.6 2749.8 0.7 1168.7 37.0
H-10-168 -513749.4 9361.4 1544349.4 10518.3 -48.8 -513749.4 9361.4 1544349.4 10518.3 -48.8 0.0 0.0
M-05-168 16270.6 0.0 0.0 668.5 24.3 16270.6 0.0 0.0 668.5 24.3 0.0 0.0
M-08-168 6971.4 36.3 2071.7 291.1 23.9 6971.3 36.3 2071.7 291.1 23.9 0.1 0.0
M-12-168 33097.0 184.8 8981.9 1247.6 26.5 33055.5 214.5 10105.9 1247.6 26.5 41.5 0.1

Table 9: Performance of expected value approach and stochastic program including bidding: Ob-
jective value (Obj.), net electricity sold on day-ahead market (sales-purchase) (El.sales), Income from
electricity market (Income), Heat production (Heat) and cost per MWh. All values are expected
values. The VSS is the difference between objective values and VSS[%] gives the improvement when
using the stochastic program.

Expected value approach Stochastic program

Case Obj. El.sales Income Heat Cost/ Obj. El.sales Income Heat Cost/ VSS VSS
[EUR] [MWhe] [EUR] [MWhh] MWhh [EUR] [MWhe] [EUR] [MWhh] MWhh [EUR] [%]

B-01-168 144497.6 824.7 25553.4 4956.9 29.2 106370.7 834.4 65405.3 4957.2 21.5 38126.9 26.4%
B-04-168 66262.4 -33.7 -28814.4 3543.9 18.7 32010.1 -3.8 11645.2 3544.0 9.0 34252.3 51.7%
B-06-168 33424.1 -67.9 -22584.0 2197.0 15.2 14327.4 -71.6 -3494.7 2197.8 6.5 19096.7 57.1%
H-04-168 288430.3 2133.6 182284.9 8490.5 34.0 267060.0 3768.1 307183.5 8490.9 31.5 21370.3 7.4%
H-07-168 29094.9 1258.2 149114.0 2665.8 10.9 -561.4 2347.5 267112.2 2910.3 -0.2 29656.4 101.9%
H-10-168 -339867.2 5037.7 914679.2 6245.8 -54.4 -520133.3 9111.8 1523616.5 10243.8 -50.8 180266.0 53.0%
M-05-168 16270.5 0.0 0.0 668.5 24.3 16270.6 0.0 0.0 668.5 24.3 -0.1 0.0%
M-08-168 6899.4 18.2 1142.4 291.1 23.7 6862.0 28.0 1722.4 291.1 23.6 37.4 0.5%
M-12-168 33603.0 85.1 4593.1 1247.7 26.9 32799.8 180.2 9008.5 1247.6 26.3 803.2 2.4%

6.1 Value of stochastic solution and out-of-sample performance

In the first experiment, we evaluate the operational optimization with and without bidding curves
comparing the stochastic programming approach with a simpler deterministic model using the ex-
pected value of the uncertain data.

Tables 8 and 9 present the objective values and several solution metrics for each test case using
each of the two approaches with and without bidding, respectively. Furthermore, we calculate the
value of stochastic solution (VSS) that is defined as the difference between the expectation of the
expected value solution (Exp.) and the expected value of the stochastic program (Sto.). The VSS
is a standard metric for evaluation of stochastic programming [Birge and Louveaux, 2011, pp.165].
It evaluates the performance based on the scenarios considered in the model, i.e., 9 scenarios in
our case. The planning horizon of the model is 168h (first week of the respective dataset) and the
first-stage decisions relate to either the commitment status of the units (No bidding) or the bidding
curves (Bidding). When bidding is considered, the evaluation first determines if the bid to the
market would have been successful in a certain scenario by comparing the bidding price with the
scenario price. Only if the bid is successful, production is allowed.

In the absence of power market bidding (Table 8), using the stochastic program is particularly
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beneficial in the Brønderslev and Hillerød DH systems. In Middelfart, the performance of the
stochastic and expected value models are similar. The stochastic program achieves lower total costs
by utilizing cheaper units as can be seen by the lower cost per MWh produced heat. Although the
expected value approach achieves higher income from the electricity market in some cases, the cost
per MWh heat are always higher or equal. Including scenarios in the stochastic program enables
the model to schedule the first-stage units such that total costs across all scenarios are decreased
in comparison to the expected value program. The expected value approach optimizes only for the
expected scenario and therefore, the commitment of units can be disadvantageous for other scenarios.
In Middelfart, the interaction with the electricity market is low, since the cheapest units (wood chip
boiler and wood pellet boiler) do not depend on the market. The uncertainty can be handled
successfully using the flexibility of the system itself (heat storage and flexible, market-independent
boilers), so the costs are the same for both approaches.

If we drop the assumption that the units can obtain the day-ahead market prices without bid-
ding, the benefits of the stochastic program increase further. Table 9 shows the results when the
bidding behaviour is modelled using bidding curves. Then, even for Middelfart, some benefits can
be achieved. The modelling of bidding curves relies on the scenarios for electricity prices, i.e., for
each price scenario a single price and quantity are determined. In the expected value setting, only
one scenario is present, hence only one bid is given. The distinction of several production levels
enables us to achieve more won bids and, consequently, higher profits from the electricity market
which reduces the overall costs. In case H-10-168, the electricity prices are so favorable that the
stochastic program produces more heat than needed to create additional income from the market.

When comparing Table 8 and Table 9, we see that constructing bidding curves leads to the
stochastic program achieving lower in-sample costs in all cases. The bidding curves allow us to
distinguish different production levels, while the operational model without bidding curves has to
determine one level of operation for all units with commitment decisions and periods.

In both tables, seasonal variations can be observed. The cost per MWh are lower in summer
where the heat demand is lower and thus cheaper units are enough to cover the demand. Depending
on the cost structure in the respective DH system, this leads to a different model behaviour across
seasons: In Middelfart and Brønderslev, market-independent units tend to yield the lowest cost and
thus, trading volumes and per-MWh cost of heat are higher during winter, when market-dependent
units need to be active to cover the higher heat demand. In Hillerød, on the other hand, the market-
dependent CHP unit tends to be a low-cost heat generator throughout the entire year. In October
2021, electricity prices rise and therefore, the heat cost per MWh can be lower due to extended
electricity sales at higher prices.

Since the VSS only uses scenarios that were already considered in the model, we additionally
perform an out-of-sample evaluation. Here, the first-stage decisions are evaluated using new samples
that were not used in the initial optimization to account for robust performance in unseen cases.
For that purpose, we generate two sample sets:

1. In the first set, we sample the uncertain parameters from a triangular distribution for each
hour of the week. The parameters of the triangular distribution are specific for each hour to
account for different patters during the day and week. We estimate the parameters using the
values from the same hour during the week in the three historic weeks used in the scenarios.
We deduct/add additional 5% from the lowest/to the highest value to allow also for slightly
lower/higher values in the sampling. The set contains 30 weekly samples per case.

2. In the second set, we use block bootstrapping with historic data from the two weeks prior and
the two weeks after the three weeks used in the scenarios, i.e., four weeks in total. Afterwards,
we split the data into blocks of four hours to capture some temporal dependency. To create
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Figure 4: Out-of-sample performance for set 1. Values are the difference between exp. value
approach and stochastic programming in %. Plots contain the values of the 30 sampled realizations
of uncertainty.
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Figure 5: Out-of-sample performance for set 2. Values are the difference between exp. value approach
and stochastic programming in %. The plots contain the values of the 30 sampled realizations of
uncertainty.
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new cases, we sample six blocks of four hours per day. Each block is chosen randomly from
the available blocks, but the selection is limited to the same time of the day and distinguishes
between weekday and weekend. The set contains 30 weekly samples per case, 15 cases sampled
from the first two weeks and 15 cases from the latter two weeks.

The comparison of the expected value model and stochastic model for sets 1 and 2 is presented in
Figures 4 and 5, respectively. The shown data points are the savings of the stochastic program com-
pared to the expected value model (in %), i.e., positive values mean that the stochastic programming
solution outperformed the expected value solution.

The results confirm the observations from the VSS results, i.e, in particular Brønderslev benefits
from using a stochastic program and the benefits increase when considering bidding curves. When
no bidding is considered, the expected value approach outperforms the stochastic program in some
cases, but on average the stochastic program leads to better results. When bidding is considered, the
stochastic program clearly outperforms the expected value approach. Based on the out-of-sample
evaluation, we can conclude that the stochastic program outperforms an expected value approach. In
DH systems with less interaction on the market and no uncertain production (such as Middelfart), a
deterministic model and a simple point forecast might be sufficient, while in other cases the stochastic
program should be utilized. Note that the scenario generation used in this paper is very simple.
Using scenarios created from proper probabilistic forecasting techniques will increase the benefit of
using the stochastic program in many cases.

6.2 Evaluation on real data with rolling horizon

Next, we evaluate the operational planning in a rolling horizon setting for the same 9 scenarios as
previously. Afterwards, the first-stage solutions are evaluated on the realization of the uncertain
data. The rolling horizon approach applies a sliding window with length of 168h and we move the
window by 24h after each iteration, i.e., the non-anticipativity period for the first-stage decisions is
24h. We consider 168h in the model to account for storage behaviour (as shown in Blanco et al.
[2019]). In the evaluation, the storage levels and unit statuses at the end of each day are determined
using the observed data and applied as input for the next optimization. Thus, we mimic daily
planning in practice. In total, we optimize for 2 weeks, i.e., 14 iterations, and the planning horizon
reduces from 168h in a receding manner when approaching the end of the two weeks.

Table 10 shows the total cost when applying the optimization results to the real observations over
the 14 days. If we do not consider bidding curves, the stochastic programming solution can reduce
the cost slightly in most cases. Only in one case (B-04-168), the expected value approach performs
slightly better than the stochastic program for this specific realization of uncertain parameters.
This can be explained by the runtime limitations, as shown in the next section. When considering
bidding, the stochastic program reduces cost in all cases and can save up to 42.1% of the cost in
14 days. The stochastic model performs particularly well for Brønderslev and Hillerød as already
concluded in the previous section.

Figures 6, 7 and 8 show the heat production and electricity trading for 14 days for one case
in Brønderslev, Hillerød and Middelfart, respectively. The results are based on the model using
bidding curves. In Brønderslev (Fig. 6), the heat pumps (WCHP) with the ORC unit provide the
base load for heat production. The remaining heat demand is covered either by the gas boiler (GB)
or the CHP (CHP1-7) units. The CHP units fill the storage unit in hours where electricity is sold
and storage outflow covers the heat demand in the succeeding hours. On the third day, the electric
boiler (EB) wins a bid, since the electricity price is very low (see Fig 6b). The CHP units win bids
and produce in hours with high electricity prices. The electricity needed for the heat pumps is either
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Table 10: Rolling horizon performance on real data. Difference between exp. value approach and
stochastic programming evaluated over the a period of 14 days with a planning horizon 168h and
rolling window of 24h.

Case No bidding Bidding

Exp. Sto. ∆ [%] Exp. Sto. ∆ [%]

B-01-168 257749.88 256180.52 1569.36 0.6% 321250.27 288560.77 32689.50 10.2%
B-04-168 41257.64 41446.22 -188.58 -0.5% 80486.26 55179.63 25306.63 31.4%
B-06-168 21740.36 15866.63 5873.72 27.0% 35248.22 20422.54 14825.68 42.1%
H-04-168 605527.16 603757.54 1769.63 0.3% 531522.78 512361.63 19161.15 3.6%
H-07-168 -103030.15 -107056.46 4026.31 3.9% -99279.96 -127250.59 27970.63 28.2%
H-10-168 -1187638.56 -1187638.56 0.00 0.0% -1199759.10 -1379174.08 179414.98 15.0%
M-05-168 26082.61 26069.20 13.41 0.1% 26082.61 26069.20 13.41 0.1%
M-08-168 15532.20 15512.30 19.90 0.1% 14687.92 14688.02 -0.10 0.0%
M-12-168 73741.12 72524.16 1216.96 1.7% 72837.97 72581.06 256.91 0.4%
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Figure 6: Optimized production for case B-01-168 with daily rolling horizon and 168h planning
horizon.

won as bids on the day-ahead market (Cons. DA) or imbalances are created (Cons. BM) (see Fig
6b) since the combination of heat pumps with the ORC is very cost-efficient.

In Hillerød (Fig. 7), the CHP unit also exploits high-price hours to produce heat and fill the
storage. The remaining heat demand is either covered by the wood chip boiler (WCB), waste heat
(eWH), solar heat (eSOL) or the ORC unit (ORC1,2). The gas boilers are used only in exceptional
cases due to their high operational cost.

In Middelfart (Fig. 8), the CHP1 and GB1 units are never used, as they are too expensive. Only
CHP2 wins production bids in some hours with high prices. The main heat production in Middelfart
is achieved using the wood chip boiler (WCB) and wood pellet boiler (WPB). When no CHP bids
are successful, peak demand is covered by the gas boiler (GB).
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Figure 7: Optimized production for case H-10-168 with daily rolling horizon and 168h planning
horizon.

6.3 Runtimes

The runtimes for solving the model in each iteration of the receding horizon algorithm presented in
the previous Section 6.2 are given Figure 9. This means each box plot is based on 14 values. The
time-out per iteration is 600 seconds and is only hit once in case B-04-168. Brønderslev is by far
the most complex network of the three. For the cases in Hillerød and Middelfart, each model is
solved in less than 135 seconds and on average in less than 35 seconds. For the iteration where the
time-out of 600 seconds is reached, the remaining gap is 0.0003 (0.03%) close to the default cutoff
of Gurobi (0.0001). Note that B-04-168 is also the case in Table 10 where the stochastic program
did not outperform the expected value approach.

Based on these results, we deem the runtime as short enough to be used in practice, since the
optimization is carried out only once a day (for day-ahead market optimization). Even if the generic
formulation is used for intra-day optimization, runtimes less than 10 minutes are fast enough.

6.4 Long-term analysis

In the last analysis, we apply the model formulation to evaluate the performance of the DH systems
in the long term. For this, we use the cases M-03-6936, B-10-6936 and H-02-5808 that include
historical data for more than seven months. We solve the entire planning horizon as a deterministic
case with the assumption that the day-ahead market can be used without bidding.

The distribution of the heat production among the units (per month and in total) for each DH
systems is shown in Figure 10. Objective values, runtimes and RES shares are presented in Table
11. The results put the already observed operational patterns presented in Section 6.2 in a yearly
context and confirm the observations.

In Brønderslev (Fig. 10a), the major share of the heat demand is covered by the ORC unit and
WCHPs (which we consider as RES). The CHP units and the electric boiler are mostly used during
winter where the heat demand is higher. The share of RES in heat production is more than 78%,
when considering the WCHPs as RES. In Middelfart (Fig. 10b), the heat demand during summer
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Figure 8: Optimized production for case M-12-168 with daily rolling horizon and 168h planning
horizon.
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Figure 9: Computational runtime for each case and all 14 iterations of the rolling horizon. Timeout
is 600 sec.

can be covered by the wood chip boiler (WCB). In winter, the wood pellet boiler (WPB) is used
more extensively. CHP2 only operates occasionally in case of high electricity prices. Here, the share
of RES in heat production (WCB+WPB) is even higher with 88%.

In Hillerød (Fig. 10c), the operation strategy shifts between summer and winter. In the colder
months, the ORC unit and the wood chip boiler are used for a large share of the heat production in
addition to the efficient CHP unit. This coincides with the increasing electricity prices in the second
half of 2021. During summer, the system mostly relies on waste heat and the CHP unit, which can
operate at favorable power prices (see also the representative week in Section 6.2). Although the
CHP unit supports the electricity grid in hours with high prices by with efficient co-generation of
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Figure 10: Distribution of heat production over the months and in total.

Table 11: Objective values and runtimes for the long-term analysis

Case Objective [EUR] Runtime [s] Share RES [%]

B-10-6936 1795156.73 412.55 78.61%
M-03-6936 710407.53 156.94 88.18%
H-02-5808 522125.61 3761.08 34.03%
H-02-5808 + 0.04[EUR/kWh] for gas 6219317.78 293.53 73.24%

heat and power, it relies on natural gas. Therefore, the share of RES (ORC1,2, eSol, WCB, eWH)
in Hillerød is low with 34%. In case market conditions change, the Hillerød system can easily adapt:
With increasing gas prices and/or higher emission taxes, the result is expected to change in favor
of the ORC unit and WCB. Therefore, we also tested the operation with an increase in natural gas
prices of 0.04 EUR/kWh by replacing the cost factor at the energy source for gas. The result is
shown in Figure 10d. Now, the production of the ORC unit and wood chip boiler (WCB) is more
than doubled. Furthermore, it is less profitable to operate the CHP unit, since the prices on the
electricity market are not high enough except in September and October. Thus, high demands are
covered also by gas boilers. The share of RES increases from 34% to 73%, but also the overall cost
increase drastically due to higher fuel costs and lower power market revenues.

The runtimes for the long-term models ranges from 150 seconds to 3760 seconds (slightly more
than one hour) which is acceptable for such long planning horizons, since these kind of analyses are
only performed occasionally.
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7 Conclusion

In this paper, we propose a novel model formulation for production optimization in DH systems.
The optimization model uses a generic formulation that allows the application in a wide variety
of DH systems and allows the integration of scenarios to account for uncertainty. The final model
is a two-stage stochastic program based on a network flow model that is build using an easily
adaptable generic network structure. The model can be used for different planning problems, such
as operational planning under uncertainty, optimization of bids to the day-ahead electricity market
and long-term evaluations of operations by exchanging data and non-anticipativity constraints.

The general applicability and performance of the approach is evaluated based on real data from
the three Danish DH systems of Brønderslev, Hillerød and Middelfart with different characteristics.
The calculation of the VSS alongside out-of-sample evaluations show the benefit of using stochastic
programming in operational planning problems including uncertain input data, such as RES produc-
tion, electricity prices and heat demand. In particular, the modelling of bidding to the day-ahead
electricity market profits from the stochastic model. Furthermore, we present the results of applying
the model in a rolling horizon setting to realizations of the uncertain data in the three DH systems.
The solutions of the operational planning and an additional long-term evaluation on historic data
with a deterministic setting allow an analysis of operational strategies, costs and energy mixes. In
all cases, model runtimes model are short enough for application in practice. As final remark we
like to add that the diverse data basis for the analysis in this publication uses historical data from
years 2019 to 2021, which does not reflect the current (2022) energy price trends and volatility. The
specific results in terms costs and energy mixes in the DH systems would be affected, however, the
modelling approach remains applicable without restriction. The input data can be replaced with
more recent data, which was not available to us at the time of the experiments.

There are several lines for future research. First, the implementation of the bidding curves in
this paper does not model minimum up and down times on market-dependent units. Therefore, an
extension with proper block bidding techniques such as proposed in Fleten and Kristoffersen [2007]
and applied in Schledorn et al. [2021] is necessary. Second, the modelling of electricity balancing
markets would be a valuable addition. The cases and evaluation in this work focuses on the day-ahead
market and uses the balancing market only as an imbalance mechanism and not as an opportunity
for trading. Furthermore, the model could be used as a basis for extensive experimental evaluations
of different setups in DH systems.

Acknowledgments

This work is funded by Innovation Fund Denmark through the HEAT 4.0 project (no. 8090-00046B).
The authors thank Middelfart Fjernvarme a.m.b.a., Brønderslev Forsyning A/S and Hillerød Forsyn-
ing for providing their data.

Conflict of interest

The authors declare that they have no conflict of interest.

26



References

S. D. Beigvand, H. Abdi, and M. La Scala. A general model for energy hub economic dispatch.
Applied Energy, 190:1090–1111, 2017. ISSN 03062619. doi: 10.1016/j.apenergy.2016.12.126.

J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Science & Business
Media, 2011.

I. Blanco, D. Guericke, A. Andersen, and H. Madsen. Operational planning and bidding for district
heating systems with uncertain renewable energy production. Energies, 11(3310), 2018. ISSN
1996-1073. doi: 10.3390/en11123310.

I. Blanco, A. Andersen, D. Guericke, and H. Madsen. A novel bidding method for combined heat
and power units in district heating systems. Energy Systems, Jan. 2019. ISSN 1868-3967. doi:
10.1007/s12667-019-00352-0.

C. Bordin, A. Gordini, and D. Vigo. An optimization approach for district heating strategic network
design. European Journal of Operational Research, 252(1):296–307, 2016. ISSN 03772217. doi:
10.1016/j.ejor.2015.12.049.

E. Cuisinier, C. Bourasseau, A. Ruby, P. Lemaire, and B. Penz. Techno-economic planning of local
energy systems through optimization models: a survey of current methods. International Journal
of Energy Research, 45(4):4888–4931, 2021.

H. E. Daly, K. Ramea, A. Chiodi, S. Yeh, M. Gargiulo, and B. O. Gallachóir. Incorporating travel
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M. Pavičević, A. Mangipinto, W. Nijs, F. Lombardi, K. Kavvadias, J. P. Jiménez Navarro,
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