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Constructing a family of conformally flat scalar field

models

Pantelis S. Apostolopoulos1

Abstract. Using purely geometrical methods we present a mechanism to solve the scalar

field equations of motion (non-minimally coupled with gravity) in a spherically symmetric

background. We found that the full set of spacetimes, which are of Petrov type O (conformally

flat) and admit a gradient Conformal Vector Field, can be determined completely. It is shown

that the full group of scalar field equations reduced to a single equation that depends only on

the distance w = r2 − t2 leaving the metric function (equivalently the functional form of the

scalar field or the potential) freely chosen. Depending on the structure of the metric or the

potential V (as a function of φ) a solution can be found either analytically or via numerical

integration. We provide physically sound examples and prove that (Anti)-de Sitter fits this

scheme. We also reconstruct a recently found solution [1] representing an expanding scalar

bubble with metric that has a singularity and corresponds to what is termed as Anti-de Sitter

crunch.
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Conformal symmetries have been the subject of various studies during the last three

decades (see e.g. [2], [3]). In the majority of the cases, the main reason to investigate the

existence of conformal symmetries in General Relativity was the reduction of the complexity of

the resulting system of partial differential equations (pdes) in order to locate, more easily,

an exact solution of the Einstein Field Equations (EFEs). However, as the generality of

the underlying geometry is increased the symmetry pdes and the equation of motion become

progressively highly non-linear and often lead to models without a clear physical meaning.

On the other hand, there are sufficiently enough cases where physically sound models admit a

conformal symmetry (proper or not) that represents an inherent constituent of their kinematical

and dynamical structure. The most well known example of this situation is the isotropic,

homogeneous and conformally flat Friedmann-Lemâıtre cosmological model which admits a 9-

dimensional Lie algebra of proper Conformal Vector Fields (CVFs) [4]. In addition it has been

shown that proper CVFs are of particular interest to construct viable astrophysical models [5],

[6], [7] and at the same time it has been established the significant role of self-similar spacetimes,

admitting a proper Homothetic Vector Field (HVF), since they represent the past and future

(equilibrium) states for a vast number of evolving vacuum and γ−law perfect fluid models [8],

[9].

Throughout this paper, the following conventions have been used: the spacetime signature

is assumed (−,+,+,+), lower Latin letters denote spacetime indices a, b, ... = 0, 1, 2, 3 and we

use geometrized units such that 8πG = c = 1.

The existence of a CVF X implies that under the infinitesimal transformation generated

by X, the spacetime metric gab satisfies:

LXgab = 2ψgab (1)

where L is the Lie derivative along X and ψ(X) denotes the conformal factor representing the

scale deformation of the spacetime geometry.

The above general condition (proper CVF) specializes to a Killing Vector Field (KVF)

(ψ(X) = 0), to a Homothetic Vector Field (HVF) (ψ(X) =const.6= 0) and to a Special

Conformal Killing Vector (SCKV) when ψ;ab = 0 (where ”;” stands for the covariant derivative

w.r.t metric gab).

The simplest case of a spacetime geometry admitting a maximum of 15 CVFs, is the

Minkowski spacetime with metric, in Cartesian coordinates, of the form:

ds2FLAT = −dτ 2 + dx2 + dy2 + dz2. (2)

The complete Lie Algebra of CVFs for the metric (2) has been determined and consists of a

subalgebra of 10 KVFs, 1 proper HVF and 4 SCKVs [10].

For the purposes of the present work, it is convenient to transform the metric (2) and the

CVFs in a form such that the geometry is foliated by spherically symmetric 2d hypersurfaces

i.e. with constant and positive (+1) curvature. We exploit the coordinate transformation

(τ, x, y, z) →֒ (t, r, ϕ, ϑ):

τ (t, r, ϕ, ϑ) = t, x (t, r, ϕ, ϑ) = r sinϕ sinϑ (3)
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y (t, r, ϕ, ϑ) = r cosϕ sinϑ, z (t, r, ϕ, ϑ) = r cosϑ (4)

and the Minkowski metric is written

ds2FLAT = −dt2 + dr2 + r2
(

dϑ2 + sin2 ϑdϕ2
)

(5)

whereas the CVFs take the form‡:

X1 = ∂t, X2 = sinϑ sinϕ∂r +
cosϑ sinϕ

r
∂ϑ +

cosϕ

sinϑ
∂ϕ,

X3 = sinϑ cosϕ∂r +
cosϑ cosϕ

r
∂ϑ −

sinϕ

sin ϑ
∂ϕ

X4 = cosϑ∂r −
sin ϑ

r
∂ϑ (6)

X5 = − ∂ϕ, X6 = − cosϕ∂ϑ + cotϑ sinϕ∂ϕ

X7 = sinϕ∂ϑ + cotϑ cosϕ∂ϕ

X8 = r sin ϑ sinϕ∂t + t sinϑ sinϕ∂r +
t cosϑ sinϕ

r
∂ϑ +

t cosϕ

r sinϑ
∂ϕ

X9 = r sin ϑ cosϕ∂t + t sin ϑ cosϕ∂r +
t cosϑ cosϕ

r
∂ϑ −

t sinϕ

r sin ϑ
∂ϕ

X10 = r cos ϑ∂t + t cos ϑ∂r −
t sinϑ

r
∂ϑ (7)

X11 = t∂t + r∂r (8)

X12 =
(

r2 + t2
)

∂t + 2tr∂r

X13 = 2rt sinϑ sinϕ∂t +
(

r2 + t2
)

sin ϑ sinϕ∂r +

+
(t2 − r2) cos ϑ sinϕ

r
∂ϑ +

(t2 − r2) cosϕ

r sin ϑ
∂ϕ

X14 = 2rt sinϑ cosϕ∂t +
(

r2 + t2
)

sin ϑ cosϕ∂r +

+
(t2 − r2) cos ϑ cosϕ

r
∂ϑ +

(r2 − t2) sinϕ

r sinϑ
∂ϕ

X15 = 2rt cosϑ∂t +
(

r2 + t2
)

cos ϑ∂r +
(r2 − t2) sinϑ

r
∂ϑ. (9)

‡ We recall that the vectors X1 − X4 correspond to translations, X5 − X7 to spatial rotations, X8 −X10 to

spacetime rotations (boosts), X11 represents the generator of the homothety and the vectors X12 −X15 are the

SCKVs.
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We select the background geometry to be spherically symmetric and Petrov type O (conformally

flat). Under these restrictions the metric of the spacetime is:

ds2 = C (t, r)2
[

−dt2 + dr2 + r2
(

dϑ2 + sin2 ϑdϕ2
)]

(10)

where C (t, r) is a smooth function of its arguments.

It is seen that the spacetime given in (10) shares common features with the standard

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric like the conformal flatness and the

spherically symmetric foliation therefore can be, in principle, matched (in some appropriate

limits) with the FLRW geometry. Due to the conformal flatness, the spacetime (10) admits a

12-dimensional Lie Algebra of proper CVFs which can be used, in general, to determine the

general solution of the null geodesic equation. In fact the existence of a proper CVF X implies

that there is a constant of motion along null geodesics (nana = 0, na;bn
b = 0) [4]:

(Xan
a);b n

b = Xa;bn
anb +Xan

a
;bn

b = ψgabn
anb = 0. (11)

The next step of the simplification setup is to demand that one of the CVFs is a gradient

vector field Xa = f;a for some smooth function f which is equivalent to demand that its

bivector Fab (X) = 1
2
(Xa;b −Xb;a) = X[a;b] vanishes. This heuristic assumption can be justified

from the fact that FLRW spacetime also admits the gradient CVF X1 from which the null

geodesic equation is solved. From (8) and (10) we obtain:

Fab (X11) = 0 ⇐⇒ tC,r + rC,t = 0. (12)

The general solution of the linear pde (12) implies that the metric function depends on the

quantity r2 − t2 hence C (t, r) = C (r2 − t2). The aforementioned functional structure of C (t, r)

indicates that is also invariant under the group of spacetime rotations (boosts) therefore we

can easily deduce:

LX8
gab = LX9

gab = LX10
gab = 0 (13)

and the spacetime (10) admits (apart from the spatial rotations that manifest the spherical

symmetry of the geometry) 3 extra KVFs thus a 6-dimensional Lie Algebra of isometries.

In standard scalar field theories, non-minimally coupled with gravity, the effective action

S of the system without any matter contributions has the form (without loss of generality, we

have ignored surface terms which are not alter the resulting field equations) [11], [12]:

S =

∫

d4x
√
−g

[

1

2
R− 1

2
φ;aφ

;a − 1

2
ξRφ2 − V (φ)

]

(14)

where R is the curvature scalar, φ represents the (massless) scalar field with potential V (φ)

and ξ is the coupling constant.

Variation of (14) with respect to a general background metric gab gives the scalar field

equations:

(

1− ξφ2
)

Gab = T Scalar
ab ≡ (1− 2ξ)φ;aφ;b +

(

2ξ − 1

2

)

(

φ;dφ
;d
)

gab −

− 2ξφφ;ab + 2ξφφ;d
;dgab − V gab (15)
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where Gab is the Einstein tensor and T Scalar
ab is the effective energy-momentum tensor of the

scalar field contribution.

The conservation of T Scalar
ab implies the corresponding Klein-Gordon equation:

φ;a
;a − ξRφ− dV

dφ
= 0. (16)

Obviously, the complexity of the system of equations (15) and (16) does not permit us to analyze

a scalar field configuration in full generality without making some simplification assumptions.

Nevertheless we will see that the geometric setup we choose, lead to the complete set of solutions

with sound physical interest and, furthemore, will verify the significance (in certain cases) of

the existence of a proper CVF.

Restricting our analysis to the spacetime (10) we note that the isometries of the underlying

geometry are inherited from the dynamics [13], [14] LKVFGab = 0 = LKVFT
Scalar
ab which implies

that φ and V (φ) scale ∼ (r2 − t2). Setting w = r2 − t2 the field equations (15) become:

B0
0 = 0 = V (w) C (w)4 − 2C (w)2 {4r2ξφ (w)φ (w)′′ +

+ φ (w)′
[(

4ξr2 − r2 − t2
)

φ (w)′ + 6ξφ (w)
]

} −
− 4C (w) {2r2C (w)′′ [ξφ (w)2 − 1] +

+ C (w)′
[

2ξ
(

r2 − 3t2
)

φ (w)φ (w)′ + 3
(

ξφ (w)2 − 1
)]

}+
+ 4

(

r2 + 3t2
)

C (w)′2
[

ξφ (w)2 − 1
]

(17)

B0
1 = 0 = C (w)2

[

2ξφ (w)′ φ (w)′′ + (2ξ − 1)φ (w)′2
]

+

+ 2C (w)
[

C (w)′′
(

ξφ (w)2 − 1
)

− 2ξφ (w)φ (w)′ C (w)′
]

+

+ 4C (w)′2
[

1− ξφ (w)2
]

(18)

B2
2 = 0 = V (w) C (w)4 + 2C (w)2 {4t2ξφ (w)φ (w)′′ −

− φ (w)′
[(

t2 + r2 − 4ξt2
)

φ (w)′ + 6ξφ (w)
]

}+
+ 4C (w) {2t2C (w)′′ [ξφ (w)2 − 1]−
− C (w)′

[

2ξ
(

3r2 − t2
)

φ (w)φ (w)′ + 3
(

ξφ (w)2 − 1
)]

}+
+ 4

(

t2 + 3r2
)

C (w)′2
[

1− ξφ (w)2
]

(19)

B3
3 = B4

4 = 0 = V (w) C (w)4 − 2C (w)2 {4
(

r2 − t2
)

ξφ (w)φ (w)′′ +

+ φ (w)′
[(

r2 − t2
)

(4ξ − 1)φ (w)′ + 6ξφ (w)
]

} −
− 4C (w) {2

(

r2 − t2
)

C (w)′′ [ξφ (w)2 − 1] +

+ C (w)′
[

2ξ
(

r2 − t2
)

φ (w)φ (w)′ + 3
(

ξφ (w)2 − 1
)]

}+
+ 4

(

r2 − t2
)

C (w)′2
[

ξφ (w)2 − 1
]

(20)

where a prime ”′” denotes differentiation w.r.t. w = r2 − t2.

From eq. (18) it follows

2ξφ (w) C (w)2 φ (w)′′ + (2ξ − 1)φ (w)′2 C (w)2+

+2C (w)
[

C (w)′′
(

ξφ (w)2 − 1
)

− 2ξφ (w)φ (w)′ C (w)′
]

+4C (w)′2
(

1− ξφ (w)2
)

= 0.(21)
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Replacing C (w)′′ to the remaining field equations (17), (19), (20) we end up with only one

equation namely:

V (w) = 2{C (w)2 φ (w)′
[

wφ (w)′ + 6ξφ (w)
]

+

+ 6C (w) C (w)′
[

2ξwφ (w)′ φ (w) + ξφ (w)2 − 1
]

+

+ 6wC (w)′2
[

ξφ (w)2 − 1
]

}C (w)−4 . (22)

It is straightforward to prove that the pair of equations (21) and (22) completely determine the

family of solutions of the system (17)-(20). We note that (as expected), with the aid of (22),

the conservation equation (16) is satisfied identically thus (22) represents a first integral of the

Klein-Gordon equation.

Let us consider first, for simplicity, the case of the (Anti)-de Sitter spacetime with metric:

ds2 =
c22

(c1 + w)2
[

−dt2 + dr2 + r2
(

dϑ2 + sin2 ϑdϕ2
)]

(23)

where c1 and c2 > 0 are arbitrary constants and C (w) = c2
c1+w

. We verify that

Ra
b =

12c1
c22

δab =
R

4
δab. (24)

Here, R is the Ricci scalar and the c1 controls the sign character of the spacetime curvature

which is directly related with the cosmological constant of the (Anti)-de Sitter spacetime. Then,

for minimally coupled scalar field ξ = 0, eq. (21) implies that φ (w) =const. and the potential

V (w) = 12c1
c2
2

.

We must note that the system of equations (21) and (22), although depends (in this

particular geometry) only on the distance w = r2 − t2, its solution can not be obtained always

in closed form, so that must be derived case by case (possibly numerically). In addition the

form of the potential in physically relevant models must feature a false vacuum, as well as a true

vacuum or a region in which the potential is unbounded from below. We apply this scheme to

a more complicated setup and reconstruct a recently found solution [1] for an expanding scalar

bubble within a spherically symmetric geometry. The metric has a singularity and corresponds

to what is termed as AdS crunch. We try solutions (up to some integration constants) of the

form:

C (w) =

[

1− c21

(1 + w/c22)
2

]1/2

(25)

where c1 and c2 are again arbitrary constants. We observe that the main characteristic of

the spacetime (25) is the existence of a curvature singularity that occurs when C (w) → 0

as w → ±c22 (c1 ∓ 1). In addition, an apparent horizon ”protects” the spacetime from the

singularity because there are two null geodesic vectors, say na and ma, such that nama = −1

(representing ingoing and outgoing null geodesics) and na
;am

k
;k = 0 (see e.g. [15], [16], [17], [18]).

We refer the reader to [1] for a discussion regarding the structure of the spacetime (25).

Substituting eq. (25) in (21) the general solution for the scalar field (again for ξ = 0)

reads:

φ (w) = c3 tanh
−1 c1

1 + w/c22
(26)
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provided that c3 =
√
6. Finally, we compute the potential from eq. (22):

V (w) = c4
c41 (1 + w/c22)

−4

[

c21 (1 + w/c22)
−2 − 1

]2 or V (φ) = c4 sinh
4 φ

c3
. (27)

As a final application let us consider the case of a conformally coupled (ξ = 1/6) scalar field

with potential proposed recently in [12]:

V (φ) = −λ
4
φ4 +

R

4
(28)

where λ,R > 0 are constants.

After standard but tedious calculations, we find that the unique exact solution of the

system of equations (21), (22) and (28) is:

φ (w) =
D3 (Rw + 48)

D2
3w + 288λ

. (29)

C (w) =
1

1 + R
48
w

(30)

where D3 is a constant of integration. It is straightforward to show that the spacetime (30)

corresponds to the de Sitter model with constant scalar curvature R.

In the present article we presented a mechanism to produce compatible scalar field

spacetimes in standard gravity using geometrical methods. We observed that, depending

on the structure of a given metric function C (w) or a potential V (as a function of φ), a

solution can be found either analytically or via numerical integration. Although the family

of spacetimes (10), (21), (22) still have some sort of simplicity (e.g. being conformally and,

in certain cases, asymptotically flat like the spacetime (25)) however they keep their intrinsic

generality and correspond to geometries with sound physical interest. They also indicate an

eventually close connection between these classes of models and the existence of a gradient

CVF, so far underestimated.
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