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A transference result for Lebesgue spaces with A∞ weights and its

applications

Ramazan Akgün

Abstract In this work we obtain a transference theorem for
Lebesgue spaces withA∞ weights, namely, starting from some uniform-
norm inequalities it is possible to obtain similar inequalities in Lebesgue
spaces with A∞ weights. This transference technic allows us to ob-
tain some weighted norm inequalities easily. Also transference result
gives possibility to use fractional difference operators in weighted
Lebesgue spaces easier than the classical known one. We can obtain
some norm-like inequalities easily as a consequence. Some important
approximation inequalities of approximation by integral functions of
finite degree can be obtained with a different proof.
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1 Introduction and main results

1.1 Preliminary Definitions

We can give some preliminary definitions to state main results. A function
ω : Rd→ [0,∞] will be called weight if ω is a measurable and positive function
almost everywhere (a.e.) on Rd. Define 〈ω〉A :=

∫

A
ω(t)dt for A ⊂ Rd. For a

weight ω on Rd, we denote by Lp,ω, 0 < p ≤ ∞ the class of Lebesgue measurable
functions f : Rd → R such that

‖f‖p,ω ≡

(∫

Rd

|f (x)|p ω (x) dx

)1/p

< ∞, (0 < p < ∞),

‖f‖∞,ω ≡ ‖f‖∞ ≡ esssupx∈Rd |f (x)| , (p = ∞) .

We set Lp ≡ Lp,1 and ‖f‖p ≡ ‖f‖p,1 and
∮

A ω(t)dt ≡
(

|A|
−1
)

∫

A ω(t)dt where

|A| denotes the Lebesgue measure of a set A ⊂ Rd.
For 1 < p < ∞ and (1/p) + (1/p′) = 1 we set ω′ := ω1−p′

for a weight ω. A
weight ω satisfies the Muckenhoupt’s condition Ap, 1 ≤ p < ∞, if

[ω]1 ≡ sup
Q∈J

(|Q|−1 〈ω〉Q esssupx∈Q(ω (x)−1)) < ∞, (p = 1) , (1)

[ω]p ≡ sup
Q∈J

|Q|
−p

〈ω〉Q 〈ω′〉
p−1
Q < ∞, (1 < p < ∞) (2)
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with some finite constants independent of Q, where J is the class of cubes in Rd

with sides parallel to coordinate axes .
Define A∞ := ∪1≤p<∞Ap. It is well known that a characterization of weights

ω in the class A∞ is

[ω]∞ ≡ supQ

∫

Q

M [ω (y)χQ (y)] dy < ∞

where Q is any cube in Rd and M is the Hardy-Littlewood maximal function.
Let S0 be the set of integrable simple functions defined on Rd.

Definition 1 Let u, x ∈ Rd, ω ∈ A∞ and f ∈ S0. (i) Define weighted Steklov
mean

Su,ωf (x) ≡ (〈ω〉[−1/2,1/2]d)
−1

∫

[−1/2,1/2]d
f (x+ u+ t)ω (t) dt.

(ii) Define

Ru,ωf (x) ≡

1
∑

k=0

1
2k

(Su,ω)kf(x)

‖Su,ω‖k
B(Lp,ω,Lp,ω)

, (Su,ω)
0 f ≡ f,

where ‖T ‖B(U,V ) is the operator norm of a bounded operator T : U → V .

Definition 2 For given ω ∈ A∞, p ∈ [1,∞) we define the class Z (p, ω) ≡{g ∈
Lp′,ω:‖g‖p′,ω = 1} where as usual p′ ≡ p/(p− 1) for p ∈ (1,∞) and 1′ ≡ ∞.

Definition 3 Let ω ∈ A∞, p ∈ (0,∞), f ∈ Lp,ω. (a) For p ∈ [1,∞) we define

Ff ≡ Ff (u,G, p, ω) ≡

∫

Rd

Ru,ωf (x) |G(x)| ω (x) dx, u ∈ R
d, (3)

with G ∈ Z (p, ω) .

(b) Let p ∈ (0, 1). Since, there is a0 ≡ e2
11+d[ω]

∞ > 1 (see [17, p.786]) such
that, we obtain ω ∈ Aa with a ≡ a0 + 0, 01. Then, one can get a q ∈ (0, p) such
that ω ∈ Ap/q (Take for example any q less than p/a0). Now, set r ≡ p/q and
define

Ff ≡ Ff (u,G, r, ω) ≡

∫

Rd

(Ru,ωf (x))q |G(x)|ω (x) dx, u ∈ R
d (4)

with G ∈ Z (r, ω) .

Let C(Rd) be the class of bounded, uniformly continuous functions defined
on Rd and ‖f‖C(Rd) := sup

{

|f (t)| : t ∈ Rd
}

for f ∈ C(Rd).

Remark 4 Note that, by Theorem 14, Ff ∈ C(Rd) for ω ∈ A∞, p ∈ (0,∞),
and f ∈ Lp,ω.
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1.2 Main results

To obtain a weighted norm inequality of the following type

‖f‖p,ω ≤ c ‖g‖p,ω (5)

for 0 < p < ∞, ω ∈ A∞, f ∈ Lp,ω, we define an intermediate function as in
Definition 3

Ff : Rd→C
(

R
d
)

, u 7→ Ff (u)

having properties

‖f‖p,ω ≤ c ‖Ff (·)‖C(Rd) and ‖Fg (·)‖C(Rd) ≤ c ‖g‖p,ω

for some positive constants. Now, if the following uniform norm estimate

‖Ff (·)‖C(Rd) ≤ c ‖Fg (·)‖C(Rd)

holds, then, we obtain desired weighted norm inequality (5).
All constants c > 0 will be some positive number such that, they depend on

the main parameters in question, and change in each occurrences.
Main theorem of this work is the following transference result.

Theorem 5 Let F be a family of couples (f, g) of nonnegative functions, d ∈ N,
p ∈ (0,∞), ω ∈ A∞ and f ∈ Lp,ω. Suppose that the following uniform-norm
estimate holds

‖Ff (·, G, p, ω)‖C(Rd) ≤ c ‖Fg ((·, G
∗, p, ω))‖C(Rd) (6)

for any G,G∗ ∈ Z (p/q, ω) where q := 1 for p ∈ [1,∞) and q ∈ (0, p) for
p ∈ (0, 1). Then, weighted norm inequality

‖f‖p,ω ≤ c ‖g‖p,ω , (f, g) ∈ F ,

holds with a positive constant c := c (q, ω, p, d).

As a corollary of Theorem 5 we can easily obtain norm inequalities with
a suitable fractional difference operator (E − Vδ)

r
with δ > 0 in weighted

Lebesgue spaces Lp,ω ≡ Lp(ω (x) dx) where E is the identity operator and Vδ is
a suitable translation operator in Lp,ω with ω ∈ A∞.

Theorem 5 gives several important norm-like inequalities. For example, one
can consider reverse sharp Marchaud inequality: If p ∈ (1,∞), ω ∈ A∞, f ∈
Lp,ω, then, there are m ∈ N and a > 1 such that

‖(E − Vδ)
r
f‖

s
p,ω ≥ c

m
∑

j=0

2−j2rs
∥

∥

∥(E − V2jδ)
r+1

f
∥

∥

∥

s

p,ω
, (7)

holds for s := max {2, a} with a positive constant c := c (s, ω, p, d) depending
only on s, ω, p, d.
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To obtain inequalities of type (7) with the classical extrapolation theorem
seem to be not possible. Note also that, classical direct proof of (7)-type in-
equality ([13, Theorem 2.1]) is also hard to overcome for weighted spaces.

To give proof of inequality (7) we need to obtain a version of main Theorem
5.

Definition 6 Let B be a Banach space with norm ‖·‖B . For an m ∈ N and
s ∈ (0,∞), we define

‖f‖lms (B) ≡
∥

∥

∥(fj)
m
j=0

∥

∥

∥

lms (B)
≡
(

∑m

j=0
‖fj‖

s
B

)1/s

.

Theorem 7 Let F be a family of couples (f, g) of nonnegative functions, d ∈ N,
p ∈ (1,∞) and ω ∈ A∞. Suppose that there exists an a ∈ (1,∞) such that, for
any G,G∗ ∈ Z (p/q, ω) ,

‖Ff (·, G, p, ω)‖La
≤ c

∥

∥Fgj (·, G
∗, p, ω)

∥

∥

lms (La)
, (f, gj) ∈ F , (8)

holds for some s > 2, and positive c := c (m, a, s, d) provided the left hand side
(8) is finite, where q := 1 for p ∈ [1,∞) and q ∈ (0, p) for p ∈ (0, 1). Then

‖f‖p,ω ≤ c ‖gj‖lms (Lp,ω)
, (f, gj) ∈ F , (9)

holds with a positive c := c (m, a, s, p, ω, d) when the left-hand side (9) is finite.

Note that, other versions of main Theorem 5 is also possible for other versions
of weighted norm inequalities.

On the other hand, by using Theorem 5, many of the basic inequalities of ap-
proximation by entire functions of finite degree can be obtained by extrapolation
argument as an alternative proof. See proof of Theorem 26.

To prove main properties of intermediate functions Ff we need some prelim-
inary observations related to (weighted) Steklov averages.

Definition 8 Define Steklov mean, for u, x ∈ Rd, 1 ≤ p < ∞, ω ∈ Ap and
f ∈ Lp,ω, as

Suf (x) ≡

∫

[−1/2,1/2]d
f (x+ u+ t) dt.

Theorem 9 We suppose that 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp,ω. In this case,
for any u ∈ Rd, there holds

‖Suf‖p,ω ≤ 32d+1/p [ω]1/pp ‖f‖p,ω .

Remark 10 (a) By theorem 18.3 of [38], the class S0 of integrable simple func-
tions defined on Rd, is a dense subset of Lp,ω with 0 < p < ∞, and ω ∈ A∞.

(b) By Theorems 18.3, 19.37 and Observation 7.5 of [38], we can observe
that the class Cc ≡ Cc

(

Rd
)

of continuous functions of compact support, is a
dense subset of Lp,ω with 0 < p < ∞, and ω ∈ A∞. Note that, Theorem 18.3
of [38] is proved for 1 ≤ p < ∞ but the same proof holds also for 0 < p < 1.
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Now, using Theorem 9 we can prove the following result.

Theorem 11 We suppose that 0 < p < ∞ and ω ∈ A∞. In this case, for any
u ∈ Rd, and f ∈ S0, there holds

‖Su,ωf‖p,ω ≤ c ‖f‖p,ω (10)

with a positive constant c = c(d, p, ω).

Remark 12 It is clear from its definition that Ru,ω |f | ≥ |f | .

Now, using Theorem 11 we can prove the following result.

Theorem 13 We suppose that 0 < p < ∞ and ω ∈ A∞. In this case, for any
u ∈ Rd, and f ∈ S0, there holds

‖Ru,ωf‖p,ω ≤ 41/min{1,p} ‖f‖p,ω . (11)

Theorem 14 Let 0 < p < ∞, ω ∈ A∞, and f ∈ Lp,ω. In this case, the function
Ff defined in (3) or (4) is bounded, uniformly continuous function on Rd.

2 Applications on operators

We can give several corollaries that can be obtained easily by using Theorem 5.
We define the following operators.

Definition 15 For δ > 0, x, u ∈ Rd and locally integrable functions f : Rd →
R, we define operators

Sδ,uf (x) ≡

∫

[−δ/2,δ/2]d
f (x+ u+ s) ds, (12)

Vδf (x) ≡ Sδ,0f (x) ≡

∫

[−δ/2,δ/2]d
f (x+ s) ds, (13)

Zδf (x) ≡

∫

[δ/2,δ]d
f (x+ t) dt, (14)

Bδf (x) ≡

∫

[0,δ]d
f (x+ v) dv. (15)

Theorem 16 We suppose that 1 < p < ∞, ω ∈ A∞, u, v ∈ Rd, and δ ∈ (0,∞).
Let an operator Γ represents operator f → Sδ,vf . In this case, for f ∈ Lp,ω,
there hold properties

Su,ω (Γf) = Γ (Su,ωf) , Ru,ω (Γf) = Γ (Ru,ωf) , (16)

FΓf=Γ (Ff ) , ‖Γf‖p,ω ≤ c ‖f‖p,ω , (17)

with a positive constant c = c(d, p, ω).
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As a corollary of Theorem 16 and Theorem 30 we have the following result.

Corollary 17 We suppose that 0 < p < ∞, ω ∈ A∞ and v ∈ Rd, δ ∈ (0,∞).
Let an operator Γ represents operator f → Sδ,vf . In this case, for any f ∈ Lp,ω

(f ∈ Lp,ω ∩ S0 when 0 < p < 1), there holds

‖Γf‖p,ω ≤ c ‖f‖p,ω ,

with a positive constant c = c(d, p, ω).

Proof of the following two results for several operators are the same with
Theorem 16 and Corollary 17.

Theorem 18 We suppose that 1 < p < ∞, ω ∈ A∞, u, v ∈ Rd, and δ ∈ (0,∞).
If we replace the operator Γ in Theorem 16, by one of the following operators
f → Svf , f → Sv,ωf , f → Rv,ωf , f → Vvf , f → Zvf , or f → Bvf then,
conclusion of Theorem 16 is remain valid.

Corollary 19 We suppose that 0 < p < ∞, ω ∈ A∞, u, v ∈ Rd, and δ ∈ (0,∞).
If we replace the operator Γ in Corollary 17, by one of the following operators
f → Svf , f → Sv,ωf , f → Rv,ωf , f → Vvf , f → Zvf , or f → Bvf , then,
conclusion of Corollary 17 is remain valid.

Fractional Difference Operator can be defined as follows.

Definition 20 Let δ, k ∈ (0,∞) and define difference (E − Vδ)
k
of fractional

order k at x ∈ Rd with step δ, by

(E − Vδ)
k
f (x) ≡

∑∞

s=0
(−1)sCk

s (Vδ)
s
f (x) (18)

where Ck
0 ≡ 1, and Ck

s ≡ Πs
n=1

k−n+1
n are binomial coefficients.

Theorem 21 We suppose that 0 < p < ∞ and ω ∈ A∞. In this case, for any
δ ∈ (0,∞), and f ∈ S0, there holds

∥

∥

∥(E − Vδ)
k
f
∥

∥

∥

p,ω
≤ c ‖f‖p,ω , (19)

with a positive constant c := c(s, ω, p, d) depending only on s, ω, p.

Theorem 5 gives several important norm-like inequalities. For example, one
can consider weighted reverse sharp Marchaud inequality:

Theorem 22 If r ∈ N, ω ∈ A∞, p ∈ (1,∞), δ ∈ (0,∞), and f ∈ Lp,ω, then,
there are m ∈ N and a > 1 such that

‖(E-Vδ)
r
f‖

s
p,ω ≥ c

m
∑

j=0

2−j2rs
∥

∥

∥(E-V2jδ)
r+1

f
∥

∥

∥

s

p,ω
, (20)

holds for s := max {2, a} with a constant c > 0 depending only on s, ω, p, d.
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3 Applications on approximation by exponen-

tial type functions

Definition 23 Let X := Lp
(

Rd
)

or Lp,ω or C
(

Rd
)

.
(i) We define Gσ (X) as the class of entire function of exponential type σ > 0

that belongs to X, namely, ”g ∈ Gσ (X) iff suppĝ (y) ⊂ {y : |y| ≤ σ} and g ∈ X”
where ĝ is the Fourier transform of g.

We set Gσ (p) := Gσ

(

Lp
(

Rd
))

, Gσ (p,ω) := Gσ (Lp,ω), and Gσ (C) := Gσ

(

C
(

Rd
))

.
(ii) The best approximation in Lp,ω by functions of exponential type is given

by
Aσ(f)X := infg{‖f − g‖X : g ∈ Gσ (X)}. (21)

Let Aσ(f)p:=Aσ(f)Lp(Rd), Aσ(f)p,ω:=Aσ(f)Lp,ω , and Aσ(f)C:=Aσ(f)C(Rd).

Definition 24 Let σ > 0, 1 ≤ p ≤ ∞, f ∈ Lp
(

Rd
)

,

ϑσ (t) :=
1

σd

d
∏

j=1

cos (σtj)− cos (2σtj)

t2j
, t ∈ R

d,

and

J (f, σ) (x) =
1

πd

∫

Rd

ϑσ (x− u) f (u)du, x ∈ R
d,

be the de là Valèe Poussin operator ([25, pp. 304-306; (11)]).

Theorem 25 ([25, pp. 304-306]) It is known that, if f ∈ Lp
(

Rd
)

, 1 ≤ p ≤ ∞,
then,

(i) J (f, σ) ∈ G2σ (p),
(ii) J (gσ, σ) = gσ for any gσ ∈ Gσ (p),
(iii) ‖J (f, σ) ‖Lp(Rd) ≤ c‖f‖Lp(Rd).

Theorem 26 We suppose that 0 < p < ∞ and ω ∈ A∞. In this case, for any
σ ∈ (0,∞), and f ∈ Lp,ω (f ∈ Lp,ω ∩ S0 when 0 < p < 1), there holds

Aσ (f)p,ω ≤ c
∥

∥

(

I − V1/σ

)r
f
∥

∥

p,ω
(22)

with some constant c > 0 depending p, ω, d only.

After the results of S. N. Bernstein [8, 1912], some systematic studies on
approximation by exponential functions of degree≤ σ for d = 1 or d > 1,
continued by A. F. Timan [32], N. I. Akhieser [2], S. M. Nikolski [25], I. I.
Ibragimov [18], H. Triebel [35], P. L. Butzer, H. J. Schmeisser and W. Sickel
[30], R. M. Trigub and E. S. Belinsky [36]. These reference books contain several
inequalities of exponential functions of degree≤ σ in spaces Lp(Rd) with 1 ≤
p ≤ ∞. Some other works also include results of approximation by exponential
functions of degree≤ σ. See for example, [4], [6], [10], [12], [13], [14], [15], [16],
[22], [24], [26], [27], [31], [28], [34], [33], [37]. For periodic ω∈Ap, 1 < p < ∞
and periodic f ∈ Lp,ω, (d = 1) some results on trigonometric approximation are
known. See e.g. [1], [3], [5], [7], [23], [19], [20], [39].
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4 Proofs

Suppose that Q (x, ε) denotes the cube with center x and sidelenght 2ε.

Definition 27 ([11, Def. 4.4.2; pp: 115-116]) (a) A family Ψ of measurable
sets U ⊂ Rd is called locally N -finite (N ∈ N) if

∑

U∈Ψ
χU (x) ≤ N

almost everywhere in Rd where χU is the characteristic function of the set U .
(b) A family Ψ of open bounded sets U ⊂ Rd is locally 1-finite if and only if

the sets U ∈ Ψ are pairwise disjoint.

Definition 28 Suppose that B is a Banach space on Rd with norm ‖·‖B. We
set, for f ∈ B, r ∈ N and δ > 0,

inf
∆rg∈B

{‖f − g‖B + δr ‖∆rg‖B} ≡ K∆r (f, δr, B) ,

where ∆f ≡ fx1x1 + ...+ fxdxd
is Laplace transform and ∆r is rth iterate of ∆.

Lemma 29 ([38, Theorem 16.14]) Let 1 < p < ∞, ω be a weight, f ∈ Lp,ω and
g ∈ Lp′,ω. In this case, Hölder’s inequality

∫

Rd

|f(x)g(x)|ω (x) dx ≤ ‖f‖p,ω ‖g‖p′,ω (23)

holds.

Theorem 30 ([9]) Let F be a family of couples (f, g) of nonnegative functions
and d ∈ N. Suppose that, for some p0 ∈ (0,∞) and for every weight ω ∈ A∞

there holds inequality
∫

Rd

f (x)
p0 ω (x) dx ≤ c

∫

Rd

g (x)
p0 ω (x) dx, (f, g) ∈ F , (24)

provided the left hand side is finite. Then, for all p ∈ (0,∞) and all ω ∈ A∞,
∫

Rd

f (x)p ω (x) dx ≤ c

∫

Rd

g (x)p ω (x) dx, (f, g) ∈ F , (25)

holds when the left-hand side is finite.

Proof of Theorem 9. Let Ψ be 1-finite family of open bounded cubes Qi of
Rd having Lebesgue measure 1 and with sides parallel to coordinate axes, such
that (∪iQi) ∪ A = Rd for some null-set A. Since u ∈ Rd there exists m ∈ Zd

such that m ≤ u < (m+ 2). Let Q+m be translation of the cube Q by vector
m. We set (Qi +m)± := (Qi−1 ∪Qi ∪Qi+1) +m. Then

‖Suf‖
p
p,ω =

∑

Qi∈Ψ

∫

Qi

∣

∣

∣

∣

∣

∣

∣

∮

[−1/2,1/2]d

f(x+ u+ t)dt

∣

∣

∣

∣

∣

∣

∣

p

ω(x)dx
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≤
∑

Qi∈Ψ

∫

Qi







∮

Q(x+u,1/2)

ω
1
p (t) |f(t)|ω

−1
p (t)dt







p

ω(x)dx

≤
∑

Qi∈Ψ

∫

Qi















∮

Q(x+u,1/2)

ω(t) |f(t)|
p
dt







1
p






∮

Q(x+u,1/2)

ω
−p′

p (t)dt







1
p′









p

ω(x)dx

≤
∑

Qi∈Ψ

∫

Qi

∫

Q(x+u,1/2)

ω(t) |f(t)|
p
dt







∮

Q(x+u,1/2)

ω
−p′

p (t)dt







p

p′

ω(x)dx

≤ 32dp
∑

Qi∈Ψ

∮

(Qi+m)±

ω(x)dx







∮

(Qi+m)±

ω
−1
p−1 (t)dt







p−1
∫

(Qi+m)±

ω(t) |f(t)|
p
dt

≤ 32dp [ω]p

∑

Qi∈Ψ

∫

(Qi+m)±

|f(t)|
p
ω(t)dt

≤ 32dp [ω]p
∑

Qi∈Ψ











∫

Qi−1+m

+

∫

Qi+m

+

∫

Qi+1+m











|f(t)|
p
ω(t)dt

≤ 32dp [ω]p

∫

Rd

|f(t)|
p
ω(t)







∑

Qi∈Ψ

(

χQi−1+m(t) + χQi+m(t) + χQi+1+m(t)

)







dt

≤ 32dp+1 [ω]p ‖f‖
p
p,ω .

For p = 1 we find

‖Suf‖1,ω =
∑

Qi∈Ψ

∫

Qi

∣

∣

∣

∣

∣

∣

∣

∮

[−1/2,1/2]d

f(x+ u+ t)dt

∣

∣

∣

∣

∣

∣

∣

ω(x)dx

≤
∑

Qi∈Ψ

∫

Qi

∫

Q(x+u,1/2)

ω(t) |f(t)|
1

ω(t)
dtω(x)dx

≤ 3d
∑

Qi∈Ψ

1
∣

∣

∣(Qi +m)
±
∣

∣

∣

∫

(Qi+m)±

ω(x)dx

(

esssup
t∈(Qi+m)±

1

ω(t)

)

∫

(Qi+m)±

|f(t)|ω(t)dt

≤ 3d [γ]1

∑

Qi∈Ψ











∫

Qi−1+m

+

∫

Qi+m

+

∫

Qi+1+m











|f(t)|ω(t)dt
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= 3d [γ]1

∫

Rd

|f(t)|ω(t)







∑

Qi∈Q

χQi−1+m (t) +
∑

Qi∈Q

χQi+m (t) +
∑

Qi∈Q

χQi+1+m (t)







dt

≤ 3d+1 [γ]1

∫

Rd

|f(t)|ω(t)dt = 3d+1 [γ]1 ‖f‖1,ω ,

as required.
Proof of Theorem 11. Let ω ∈ A∞. (a) First, we consider the case

p ∈ (1,∞). Suppose that f ∈ Lp,ω. Then, there is a0 ≡ e2
11+d[ω]

∞ > 1 (see [17,
p.786]) such that, for p̃ > a0, we have ω ∈ Ap̃. Setting a ≡ a0 + 0, 01 we obtain
ω ∈ Aa.

(1◦) If a ≤ p′, then, ω ∈ Ap′ and, hence, ω1−p ∈ Ap. By Theorem 9, for
any u ∈ Rd, there holds Su : Lp′,ω →֒ Lp′,ω and Su : Lp,ω1−p →֒ Lp,ω1−p . Now,
following step by step the proof of Theorem 1.1 of [21, p.369] of Jawerth, we
find that Su,ω : Lp,ω →֒ Lp,ω for any u ∈ Rd.

(2◦) If a > p′, then, ω ∈ Aa and, hence, ω1−a′

∈ Aa′ . By Theorem 9, for any
u ∈ Rd, there holds Su : La,ω →֒ La,ω and Su : La′,ω1−a′ →֒ La′,ω1−a′ . Again,
following step by step the proof of Theorem 1.1 of [21, p.369] of Jawerth, we
find that Su,ω : La′,ω →֒ La′,ω for any u ∈ Rd. Since Su,ω : L∞,ω →֒ L∞,ω

and Su,ω : La′,ω →֒ La′,ω, using Marcinkiewicz interpolation theorem, for any
p ∈ (a′,∞) we get Su,ω : Lp,ω →֒ Lp,ω for any u ∈ Rd. Namely, for a > p′, we
have Su,ω : Lp,ω →֒ Lp,ω for any u ∈ Rd, as desired.

(b) We consider the case ω ∈ A∞, p ∈ (0,∞) and f ∈ Lp,ω. This case follows
from (a) and extrapolation result Theorem 30.
Proof of Theorem 13. Let 0 < p < ∞, ω ∈ A∞ and p∗ ≡ min {1, p} . Then,

‖Ru,ωf‖
p∗

p,ω =

∥

∥

∥

∥

∥

1
∑

k=0

1
2kck (Su,ω)

k
f

∥

∥

∥

∥

∥

p∗

p,ω

≤ 2

1
∑

k=0

1
2kp∗ckp∗

∥

∥

∥(Su,ω)
k
f
∥

∥

∥

p∗

p,ω
≤ 4 ‖f‖

p∗

p,ω .

Proof of Theorem 14. (a) By Remark 10(b), Cc is a dense subset of Lp,ω.
First we consider the case 0 < p < 1 and prove that FH (u) is bounded and
uniformly continuous on Rd for functions H ∈ Cc, where q, a, r and G is from
Definition 3 with G ∈ Lr′,ω and ‖G‖r′,ω = 1. Boundedness of FH (·) is easy
consequence of the Hölder’s inequality (23) and Theorem 13. Indeed:

|FH (u)| ≤

∫

Rd

|Ru,ωf (x)|
q
|G(x)| ω (x) dx ≤ ‖Ru,ωf‖

q
p,ω ‖G‖r′,ω < ∞.

On the other hand, note that H is uniformly continuous on Rd, see e.g. Lemma
23.42 of [38, pp.557-558] for d = 1. Take ε > 0 and u1, u2, x ∈ Rd. Then, for
this ε, there exists a δ ≡ δ (ε) > 0 such that

|H (u1 + x)−H (u2 + x)| ≤
ε1/q

2q
(

1 + 〈ω〉suppH

)

10



when |u1 − u2| < δ. Then,

|FH (u1) -FH (u2)| ≤

∫

Rd

|Ru1,ωH (x)
q
-Ru2,ωH (x)

q
| |G(x)|ω (x) dx

≤ 2q−1

∫

suppH

|Ru1,ωH (x) -Ru2,ωH (x)|
q
|G(x)|ω (x) dx

≤
2q−1ε

2q
(

1 + 〈ω〉suppH

)

∫

suppH

|G(x)| ω (x) dx ≤
ε 〈ω〉suppH

2
(

1 + 〈ω〉suppH

) ‖G‖r′,ω < ε.

Thus conclusion of Theorem 14 follows on Cc.
For the case f ∈ Lp,ω there exists an H ∈ Cc so that

‖f −H‖p,ω <
ξ1/q

21/q
(

1 + 2q4q/p
)1/q

for any ξ > 0. Therefore

|Ff (u1)− Ff (u2)| ≤ |Ff (u1)− FH (u1)|+

+ |FH (u1)− FH (u2)|+ |FH (u2)− Ff (u2)|

≤ 2q−1

∫

Rd

|Ru1,ωf (x) -Ru1,ωH (x)|
q
|G(x)|ω (x) dx+

ξ

2
+

+2q−1

∫

Rd

|Ru2,ωH (x) -Ru2,ωf (x)|
q
|G(x)| ω (x) dx

≤ 2q−1 ‖Ru1,ω (f −H)‖
q
p,ω + 2q−1 ‖Ru2,ω (f −H)‖

q
p,ω +

ξ

2

≤ 2q4q/p ‖f −H‖qp,ω +
ξ

2
≤ 2q4q/p

ξ

2
(

1 + 2q4q/p
) +

ξ

2
≤

ξ

2
+

ξ

2
= ξ.

As a result we have Ff ∈ C(Rd). In the case 1 ≤ p < ∞, proof of Ff ∈ C(Rd) is
the same with minor modification of above proof.
Proof of Theorem 5. Let 0 < p < ∞, ω ∈ A∞, and 0 ≤ f, g ∈ Lp,ω. If
‖g‖p,ω = ‖f‖p,ω or ‖g‖p,ω = ‖f‖p,ω = 0, then, result (25) is obvious. So we
assume that ‖g‖p,ω , ‖f‖p,ω > 0 and ‖g‖p,ω 6= ‖f‖p,ω. Case (1

◦): Let 1 ≤ p < ∞
and we define, for g ∈ Lp,ω, function

Fg (u,G0, p, ω) =

∫

Rd

Ru,ωg (x) |G0(x)|ω (x) dx, u ∈ R
d

with G0 ∈ Z (p, ω) and use this to obtain

‖Fg‖C(Rd) =

∥

∥

∥

∥

∫

Rd

Ru,ωg (x) |G0(x)|ω (x) dx

∥

∥

∥

∥

C(Rd)

11



≤ sup
u∈Rd

∫

Rd

|Ru,ωg (x)| |G0(x)|ω (x) dx ≤ sup
u∈Rd

‖Ru,ωg‖p,ω ‖G0‖p′,ω ≤ c ‖g‖p,ω .

On the other hand, for any ε > 0 (see e.g. Theorem 18.4 of [38]) we can
choose appropriately an Gε ∈ Z (p, ω) satisfying

∫

Rd

f (x) |Gε (x)|ω (x) dx ≥ ‖f‖p,ω − ε,

and one can find

‖Ff (u,Gε, p, ω)‖C(Rd) ≥ |Ff (0, Gε, p, ω)| ≥

∫

Rd

R0,ωf (x) |Gε(x)|ω (x) dx

≥

∫

Rd

f (x) |Gε(x)|ω (x) dx = ‖f‖p,ω − ε.

By hypothesis, we get, for any ε > 0,

‖f‖p,ω − ε ≤ ‖Ff (·, Gε, p, ω)‖C(Rd) ≤ c ‖Fg (·, G0, p, ω)‖C(Rd) ≤ C ‖g‖p,ω . (26)

Now taking as ε → 0+ we find ‖f‖p,ω ≤ C ‖g‖p,ω . In the general case f, g ∈ Lp,ω

we get ‖f‖p,ω ≤ 2C ‖g‖p,ω .
Case (2◦): Case p ∈ (0, 1) can be obtained using the same procedure given

in the Case (1◦) with small modifications.

‖Fg‖C(Rd) =

∥

∥

∥

∥

∫

Rd

(Ru,ωg (x))
q
∣

∣

∣G̃0(x)
∣

∣

∣ω (x) dx

∥

∥

∥

∥

C(Rd)

≤ sup
u∈Rd

‖Ru,ωg‖
q
p,ω

∥

∥

∥G̃0

∥

∥

∥

r′,ω
≤ c ‖g‖

q
p,ω .

On the other hand, for any ε > 0 and appropriately chosen G̃ε ∈ Z (r, ω)
with

∫

Rd

f (x)
q
∣

∣

∣G̃ε (x)
∣

∣

∣ω (x) dx ≥ ‖f‖
q
p,ω − ε,

one can find

∥

∥

∥
Ff

(

·, G̃ε, p, ω
)∥

∥

∥

C(Rd)
≥ |Ff (0)| ≥

∫

Rd

(R0,ωf (x))q |G (x)|ω (x) dx

≥

∫

Rd

f (x)q |G (x)|ω (x) dx ≥ ‖f‖qp,ω − ε.

Then by hypothesis, for any ε > 0,

‖f‖qp,ω − ε ≤
∥

∥

∥Ff

(

·, G̃ε, p, ω
)∥

∥

∥

C(Rd)
≤ c

∥

∥

∥Fg

(

·, G̃0, p, ω
)∥

∥

∥

C(Rd)
≤ C ‖g‖qp,ω .

If we take ε → 0+, then we obtain desired result ‖f‖p,ω ≤ C ‖g‖p,ω . For the
general case f, g ∈ Lp,ω we get ‖f‖p,ω ≤ 2C ‖g‖p,ω .

12



Proof of Theorem 16. Equalities in (16) is follow from definitions:

Su,ωSδ,vf (·) = (〈ω〉[−1/2,1/2]d)
−1

∫

[−1/2,1/2]d

(Sδ,vf) (·+ u+ t)ω (t) dt

= (〈ω〉[−1/2,1/2]d)
−1

∫

[−1/2,1/2]d

∫

[−δ/2,δ/2]d

f (·+ u+ t+ v + s) dsω (t) dt

=

∫

[−δ/2,δ/2]d

(〈ω〉[−1/2,1/2]d)
−1

∫

[−1/2,1/2]d

f (·+ u+ t+ v + s)ω (t) dtds

=

∫

[−δ/2,δ/2]d
Su,ωf (·+ v + s) ds=Sδ,vSu,ωf (·) . (27)

Second equality in (16) is follow from (27). Equality in (17) follows from (16)
and (3). Now we give the proof of inequality in (17). Since FSδ,v

=Sδ,vFf , we
get by (26) that

‖Sδ,uf‖p,ω ≤
∥

∥FSδ,v

∥

∥

C(Rd)
= ‖Sδ,vFf‖C(Rd) ≤ ‖Ff‖C(Rd) ≤ c ‖f‖p,ω .

Proof of Theorem 21. (1◦) Let p ∈ (1,∞). Since FVδf = Vδ (Ff ), we get
F(Vδ)

sf = (Vδ)
s
(Ff ) for any s ∈ N. For any N ∈ N, we have

F∑N
s=0(−1)sCk

s (Vδ)
sf =

∑N

s=0
(−1)sCk

s (Vδ)
s (Ff ) ,

∥

∥

∥F∑
N
s=0(−1)sCk

s (Vδ)
sf

∥

∥

∥

C(Rd)
=

∥

∥

∥

∥

∑N

s=0
(−1)sCk

s (Vδ)
s
(Ff )

∥

∥

∥

∥

C(Rd)

≤
∑N

s=0

∣

∣Ck
s

∣

∣ ‖Ff‖C(Rd) ≤ ‖Ff‖C(Rd) +
∑∞

s=1

c (k)

s1+k
‖Ff‖C(Rd)

< c ‖Ff‖C(Rd)

by
∣

∣Ck
s

∣

∣ ≤ cks
−1−k ([29, p.14, (1.51)]). Now using Corollary 19 and Theorem 5

we obtain

∥

∥

∥(E − Vδ)
k
f
∥

∥

∥

p,ω
= lim

N→∞

∥

∥

∥

∥

∑N

s=0
(−1)sCk

s (Vδ)
s
f

∥

∥

∥

∥

p,ω

≤ lim
N→∞

∥

∥

∥F∑
N
s=0(−1)sCk

s (Vδ)
sf

∥

∥

∥

C(Rd)
= lim

N→∞

∥

∥

∥

∥

∑N

s=0
(−1)sCk

s (Vδ)
s
(Ff )

∥

∥

∥

∥

C(Rd)

≤ 2k ‖Ff‖C(Rd) ≤ c ‖f‖p,ω .

(2◦) For general case p ∈ (0,∞), we use (1◦) and Theorem 30 to finish proof.
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Proof of Theorem 7. Let 1 < p < ∞, ω ∈ A∞, and (f, gj) ∈ F with f, gj ∈
Lp,ω. If ‖gj‖lms (Lp,ω)

= ‖f‖p,ω = 0, then, result (9) is obvious. So we assume

that ‖gj‖lms (Lp,ω)
, ‖f‖p,ω > 0. Since ω ∈ A∞, there is a0 ≡ e2

11+d[ω]
∞ > 1 ([17,

p.786]) such that, we obtain ω ∈ Aa with a ≡ a0 + 0, 01. Let Ψ be 1-finite
family of open bounded cubes Qi of R

d having Lebesgue measure 1, such that
(∪iQi) ∪ A = Rd for some null-set A. Then,

∥

∥Fgj

∥

∥

a

La
=

∫

Rd

∣

∣Fgj (u)
∣

∣

a
du =

∑

Qi∈Ψ

∫

Qi

∣

∣Fgj (u)
∣

∣

a
du

≤
∑

Qi∈Ψ

∫

Qi

ca ‖gj‖
a
p,ω χQi (u) du = ca ‖gj‖

a
p,ω

∑

Qi∈Ψ

∫

Qi

χQi (u) du = ca ‖gj‖
a
p,ω .

In this case

‖Ff‖La
≤ c

∥

∥Fgj

∥

∥

lms (La)
= c

(

∑m

j=0

∥

∥Fgj

∥

∥

s

La

)1/s

= c
(

∑m

j=0
‖gj‖

s
p,ω

)1/s

= c ‖g‖lms (Lp,ω)
.

On the other hand,

‖Ff‖La
=

(∫

Rd

|Ff (u)|
a
du

)1/a

≥

(

∫

[0,1]d
|Ff (u)|

a
du

)1/a

≥ ‖f‖p,ω .

Combining these inequalities we get

‖f‖p,ω ≤ ‖Ff‖La
≤ c

∥

∥Fgj

∥

∥

lms (La)
≤ c ‖g‖lms (Lp,ω) . (28)

Proof of Theorem 22. Let r ∈ N, ω ∈ A∞, p ∈ (1,∞), δ ∈ (0,∞), and

f ∈ Lp,ω. Then there is a0 ≡ e2
11+d[ω]

∞ > 1 ([17, p.786]) such that, we obtain
ω ∈ Aa with a ≡ a0 + 0, 01. Then there exist m ∈ N such that

∥

∥

∥(E-Tδ)
2r
(Ff )

∥

∥

∥

s

La

≥ c

m
∑

j=0

2−j2rsK∆r

(

Ff ,
(

2jδ
)2r+2

, La

)s

,

for s ≡ max {a, 2}. On the other hand, we know that

‖(E − Vδ)
r
(Ff )‖La

≈ K∆r

(

Ff , δ
2r, La

)

≈
∥

∥

∥(E − Tδ)
2r
(Ff )

∥

∥

∥

La

.

As a consequence,

‖(E-Vδ)
r
(Ff )‖

s

La
≥ c

m
∑

j=0

2−j2rs
∥

∥

∥(E-Vδ)
r+1

(Ff )
∥

∥

∥

s

La

.
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From the last inequality and Theorem 7 we obtain (20).
Proof of Theorem 26. It is enough to proof

A2σ (f)p(·) ≤ c
∥

∥

(

I − V1/(2σ)

)r
f
∥

∥

p(·)
. (29)

Let gσ be an exponential type entire function of degree ≤ σ, belonging to
C(Rd), as the best approximation of Ff ∈ C(Rd). Since FJ(f,σ) = J (Ff , σ)
and J (gσ, σ) = gσ, there holds

A2σ (f)p,ω ≤ ‖f − J (f, σ)‖p,ω ≤ c
∥

∥Ff−J(f,σ)

∥

∥

C(Rd)
= c

∥

∥Ff − FJ(f,σ)

∥

∥

C(Rd)

= c ‖Ff − J (Ff , σ)‖C(Rd) = c ‖Ff − gσ + gσ − J (Ff , σ)‖C(Rd)

= c ‖Ff − gσ + J (gσ, σ)− J (Ff , σ)‖C(Rd) = c ‖Ff − gσ + J (gσ − Ff , σ)‖C(Rd)

≤ c(Aσ (Ff )C(Rd) + cAσ (Ff )C(Rd)) = cAσ (Ff )C(Rd) .

Therefore

A2σ (f)p,ω ≤ cAσ (Ff )C(Rd) ≤ c

∥

∥

∥

∥

(

I − T 1
2σ

)2r

(Ff )

∥

∥

∥

∥

C(Rd)

≤ c
∥

∥

∥

(

I − V 1
2σ

)r

(Ff )
∥

∥

∥

C(Rd)

= c
∥

∥

∥F(I−V1/(2σ))
r
f

∥

∥

∥

C(Rd)
≤ c

∥

∥

(

I − V1/(2σ)

)r
f
∥

∥

p,ω
.
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Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40 (1997), 37-48.

[24] F. G. Nasibov, Approximation in L2 by entire functions.(Russian) Akad.
Nauk Azerbaidzhan. SSR Dokl. 42 (1986), No: 4, 3-6.

[25] S.M. Nikol’ski, Approximation of Functions of Several Variables and Imbed-
ding Theorems, Die Grundlehren der mathematischen Wissenshaften, 205,
Springer-Verlag, New York, 1975.

[26] A.A. Ligun and V.G. Doronin, Exact constants in Jackson-type inequalities
for the L2-approximation on a straight line. Translation in Ukrainian Math.
J. 61 (2009), No: 1, 112-120.

[27] V. G. Ponomarenko, Fourier integrals and the best approximation by entire
functions, Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 3 (1966), 109-123 .

[28] V. Yu. Popov, Best mean square approximations by entire functions of
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