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DERIVATIONS AND HOMOMORPHISMS IN

COMMUTATOR-SIMPLE ALGEBRAS

J. ALAMINOS, M. BREŠAR, J. EXTREMERA, M. L. C. GODOY,
AND A.R. VILLENA

Abstract. We call an algebra A commutator-simple if [A,A] does not
contain nonzero ideals of A. After providing several examples, we show
that in these algebras derivations are determined by a condition that is
applicable to the study of local derivations. This enables us to prove
that every continuous local derivation D : L1(G) → L1(G), where G is
a unimodular locally compact group, is a derivation. We also give some
remarks on homomorphism-like maps in commutator-simple algebras.

1. Introduction

This paper is a continuation of [4] in which derivations and Jordan auto-
morphisms of semisimple finite-dimensional algebras A were determined by
certain conditions involving [A,A], the linear span of all commutators in A.
As a byproduct, new results on local derivations and local Jordan automor-
phisms were obtained. We recall that a linear map D from an algebra A to
itself is called a local derivation if for every x ∈ A there exists a derivation
Dx : A → A such that D(x) = Dx(x). Other “local maps” such as local
automorphisms are defined similarly. The obvious problem whether a local
derivation is necessarily a derivation (or a local automorphism is necessarily
an automorphism, etc.) has been an active research area since the early
1990s when it was proposed independently by Kadison [13] and Larson and
Sourour [14].

We will consider similar conditions in arbitrary, not necessarily finite-
dimensional algebras, as well as in Banach algebras. Our main motivation
behind the latter has been an open question whether every continuous local
derivation D of L1(G), the group algebra of a locally compact group G, is a
derivation.

The following definition introduces a class of algebras to which our meth-
ods are applicable.

Definition 1.1. An algebra A is said to be commutator-simple if [A,A] does
not contain nonzero ideals of A.
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Section 2 is devoted to examples of commutator-simple algebras and Ba-
nach algebras.

In Section 3 we first show that if A is a commutator-simple semiprime
algebra A (over a field of characteristic not 2), then a linear map D : A → A
satisfying

D(x)x,D(x)x2 ∈ [A,A]

for every x ∈ A is a derivation. Using this, we then prove that continuous
local derivations on L1(G) are derivations, provided that G is a unimodular
locally compact group. While this does not completely solve the aforemen-
tioned question since we still need some condition on G, it does generalizes
and unifies several known results (see the final part of Section 3 for details).
Besides, the approach we take is entirely different from those used earlier.

The final Section 4 discusses the condition that a linear map T : A → A,
where A is a commutator-simple algebra, satisfies

T (x)3 − x3 ∈ [A,A]

for every x ∈ A. Under suitable assumptions, T is shown to be a Jordan
homomorphism. Some applications to local automorphisms are also given.

2. Commutator-simple algebras

By an algebra we mean an associative algebra which does not necessarily
possess a unity. When it does, we call it a unital algebra. We use F to
denote a field, and we assume that our algebras are over F . When speaking
of Banach algebras, we assume that F = C.

The purpose of this section is to provide examples and constructions of
commutator-simple algebras. Our first proposition is trivial, but we record
it since one can construct new commutator-simple algebras from old ones
(see Propositions 2.4 and 2.8).

Proposition 2.1. Every commutative algebra is commutator-simple.

If there exists a linear functional τ on A2, the linear span of all elements
of the form xy with x, y ∈ A, such that for all x, y ∈ A,

(2.1) τ(xy) = τ(yx),

and for all x ∈ A,

(2.2) τ(xA) = {0} =⇒ x = 0,

then A is obviously a commutator-simple algebra. The simplest example is
the trace on the matrix algebra Mn(F ). Slightly more generally, we have the
following.

Proposition 2.2. The algebra of all finite rank linear operators on a (finite
or infinite dimensional) vector space X is commutator-simple.

Proof. This algebra has a trace τ . If x is a finite rank linear operator on X,
then

τ
(
x(ξ ⊗ f)

)
= f(x(ξ))

for each ξ ∈ X and each linear functional f on X. This clearly implies that τ
satisfies (2.2). �
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Proposition 2.3. For any (not necessarily finite) group G, the group algebra
F [G] is commutator-simple.

Proof. For any element x =
∑

g∈G λgg ∈ F [G], we define τ(x), the trace
of x, as λe, the coefficient of the identity e ∈ G. Taking another element
y =

∑

g∈G µgg ∈ F [G], we have

τ(xy) =
∑

g∈G

λgµg−1 =
∑

g∈G

µgλg−1 = τ(yx).

Thus, τ satisfies (2.1). Since τ(xg−1) = λg, it also satisfies (2.2). �

Proving that the ordinary group algebra F [G] is commutator-simple is
thus very easy. However, we are more interested in group algebras L1(G)
where G is a locally compact group. We will discuss this at the end of the
section.

The following proposition needs no proof.

Proposition 2.4. If (Ai)i∈I is a family of commutator-simple algebras, then
the direct product Πi∈IAi is also commutator-simple.

We remark that a simple algebra A is obviously commutator-simple if and
only if A 6= [A,A].

Proposition 2.5. Every finite-dimensional semisimple algebra A is commut-
ator-simple.

Proof. In light of Proposition 2.4, we may assume that A is simple. The
property that a unital F -algebra A is commutator-simple does not depend
on the field F , so there is no loss of generality in assuming that A is a
central F -algebra (i.e., the center of A is F ). Let F be the algebraic closure
of F . It is easy to see that A = [A,A] implies that A = F ⊗F A, the scalar
extension of A to F , also satisfies A = [A,A]. However, A is isomorphic
to the matrix algebra Mn(F ) which, by Proposition 2.2, does not have this
property. Therefore, A 6= [A,A], meaning that A is commutator-simple. �

Proposition 2.5 does not hold for infinite-dimensional simple algebras, in
fact not even for division algebras – see, for example, [10]. One may therefore
ask what are examples of infinite-dimensional algebras that are both simple
and commutator-simple.

The classical Weyl algebra A1 is simple, but not commutator-simple (as it
is equal to [A1, A1]). However, many generalized Weyl algebras A(F [z], a, σ)
are commutator-simple. These algebras were introduced by V. V. Bavula
[2] to whom the authors are thankful for providing the relevant information.
We recall the definition. Let a be an element of the polynomial algebra F [z],
where F is a field of characteristic 0, and let σ be an automorphism of F [z].
The generalized Weyl algebra A = A(F [z], a, σ) is the algebra obtained by
adjoining to F [z] the new variables x and y subject to the relations

yx = a, xy = σ(a),

and

xf = σ(f)x, fy = yσ(f)
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for all f ∈ F [z]. This algebra is simple if and only if the difference of two
roots of the polynomial a is not an integer [2]. Further, if σ is defined by
σ(f) = f − λ with 0 6= λ ∈ F and the degree of a is greater than 1, then
A 6= [A,A] by [7]. Therefore, the following holds.

Proposition 2.6. Let a ∈ F [z] be a polynomial of degree at least 2 such that
the difference of two roots of a is not an integer, and let σ be the automor-
phism of F [z] defined by σ(f) = f −λ with 0 6= λ ∈ F . Then the generalized
Weyl algebra A(F [z], a, σ) is commutator-simple (and simple).

Algebras from the next example are not simple.

Proposition 2.7. Let F be with char(F ) = 0 and let A = F 〈X〉 be a free
algebra on at least two indeterminates. Then [A,A] does not contain nonzero
subalgebras. In particular, A is commutator-simple.

Proof. Suppose there exists a nonzero f ∈ F 〈X〉 such that f j ∈ [A,A] for
every j ≥ 1. By [9, Theorem 1.7.2], we can pick a positive integer n such
that f = f(x1, . . . , xm) is not a polynomial identity of Mn(F ). For any
A1, . . . , Am ∈ Mn(F ),

f(A1, . . . , Am)j ∈ [Mn(F ),Mn(F )]

and therefore f(A1, . . . , Am)j has trace 0. It is well known that this im-
plies that the matrix f(A1, . . . , Am) is nilpotent. This means that fn is a
polynomial identity. However, this contradicts Amitsur’s theorem [9, Theo-
rem 1.12.4]. �

Besides the direct product, we can also use the tensor product to obtain
new examples of commutator-simple algebras.

Proposition 2.8. Let A and B be commutator-simple unital algebras. If A
is simple and central, then the algebra A⊗F B is commutator-simple.

Proof. Set T = A⊗F B. Suppose [T, T ] contains a nonzero ideal I. Take a
nonzero

w = u1 ⊗ v1 + · · ·+ um ⊗ vm ∈ I.

Without loss of generality, we may assume that u1, . . . , um are linearly in-
dependent and v1 6= 0. Pick a ∈ A \ [A,A]. By the Artin-Whaples Theorem
(see [3, Corollary 5.24]), there exist si, ti ∈ A such that

∑

i

siu1ti = a and
∑

i

siujti = 0, j = 2, . . . ,m.

This gives

a⊗ v1 =
∑

i

si ⊗ 1 · w · ti ⊗ 1 ∈ I,

which readily implies that a ⊗ J ⊆ I where J is the ideal of B generated
by v1. By assumption, there exists a b ∈ J \ [B,B]. Since a⊗ b ∈ I ⊆ [T, T ],
there exist xk, yk ∈ A and zk, wk ∈ B such that

a⊗ b =
∑

k

[xk ⊗ zk, yk ⊗ wk] =
∑

k

xkyk ⊗ zkwk − ykxk ⊗ wkzk,
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which can be written as

a⊗ b+
∑

k

[yk, xk]⊗ zkwk =
∑

k

ykxk ⊗ [zk, wk].

Considering
∑

k[yk, xk]⊗ zkwk as an element of the vector space [A,A]⊗B,
we can rewrite it as

∑

ℓ cl ⊗ dl for some linearly independent cℓ ∈ [A,A]
and some dℓ ∈ B. Since a /∈ [A,A], a does not lie in the linear span of the
elements cℓ. Therefore,

a⊗ b+
∑

ℓ

cl ⊗ dl =
∑

k

ykxk ⊗ [zk, wk]

implies that b lies in the linear span of the elements [zk, wk] (see [3, Lemma 4.9]).
However, this is a contradiction since b /∈ [B,B]. �

Taking A to be the matrix algebra Mn(F ), we obtain the following.

Corollary 2.9. If B is a commutator-simple unital algebra, then so is
Mn(B).

We now turn our attention to Banach algebras. We start with some of
those in which the argument involving the trace is applicable.

Proposition 2.10. Let X be a normed space. Then the algebra F (X) of all
continuous finite rank linear operators on X is commutator-simple.

Proof. As in Proposition 2.2 this algebra has a trace τ , and for any con-
tinuous linear operator x on X, we have τ

(
x(ξ ⊗ f)

)
= f(x(ξ)) for each

ξ ∈ X and each continuous linear functional f on X. It follows from the
Hahn-Banach theorem that τ satisfies (2.2). �

Proposition 2.11. Let H be a complex Hilbert space. Then each of the
following operator algebras is commutator-simple:

(i) The algebra S1(H) of all trace class operators on H;
(ii) The algebra S2(H) of all Hilbert-Schmidt operators on H.

Proof. Let τ be the natural trace on the trace class operators (see [17, Def-
inition 9.1.34]). By [17, Theorem 9.1.35], F (H) ⊂ S1(H) ⊂ S2(H) and
τ(xy) = τ(yx) for all x, y ∈ S2(H). This shows that τ satisfies (2.1) in both
cases (i) and (ii). Further,

τ
(
x(ξ ⊗ η∗)

)
= τ

(
ξ(x)⊗ η∗

)
= 〈ξ(x)|η〉

for each continuous linear operator x and all ξ, η ∈ H, which gives (2.2). �

Let G be a locally compact group. We write L1(G) for the usual Banach
L1-space with respect to the left Haar measure on G. It becomes a Banach
algebra with respect to the convolution product defined by

(f ∗ g)(t) =

∫

G

f(s)g(s−1t) ds.

If G is a discrete group, then the Haar measure is the counting measure, and
the corresponding group algebra is usually written as ℓ1(G). This algebra
coincides with the purely algebraic group algebra C[G] in the case where G is
a finite group. The group G is called unimodular if the left Haar measure is
also a right Haar measure. This is a very important and wide class of groups,
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which includes Abelian groups, compact groups, discrete groups, and many
others (we refer the reader to [17, Chapter12] for examples and a thorough
discussion of this class of groups). We confine our attention to unimodular
locally compact groups. In this case we have

∫

G

f(t−1) dt =

∫

G

f(t) dt

for each f ∈ L1(G), and the group algebra L1(G) turns into a Banach ⋆-
algebra by defining

f⋆(t) = f(t−1)

for all f ∈ L1(G) and t ∈ G.

Proposition 2.12. Let G be a unimodular locally compact group. Then each
of the following subalgebras of the group algebra L1(G) is commutator-simple:

(i) The algebra C00(G) of continuous functions on G of compact support.
(ii) The algebra L1(G) ∩ L2(G).

Proof. Let e be the identity of the group G.
(i) It is easy to check that C00(G) is a ⋆-subalgebra of L1(G). We define

a linear functional τ : C00(G) → C by

τ(f) = f(e).

Using the unimodularity of G, for each f, g ∈ C00(G), we have

τ(f ∗ g) = (f ∗ g)(e) =

∫

G

f(t)g(t−1e) dt =

∫

G

f(t)g(t−1) dt

=

∫

G

f(t−1)g(t) dt =

∫

G

g(t)f(t−1e) dt = (g ∗ f)(e) = τ(g ∗ f),

which shows that τ is a trace on C00(G). Further, suppose that f ∈ C00(G)
is such that τ(f ∗ g) = 0 for each g ∈ C00(G). We have

0 = τ(f ∗ f⋆) = (f ∗ f⋆)(e) =

∫

G

f(t)f⋆(t−1e) dt =

∫

G

|f(t)|2 dt,

whence f = 0.
(ii) Write A = L1(G)∩L2(G). Since G is unimodular, [8, Proposition 2.40]

shows that A is a subalgebra of L1(G), and it is easily seen that it is ⋆-
invariant. Further, if f, g ∈ A, then [8, Proposition 2.41] shows that f ∗ g
is defined everywhere on G and it is a continuous function vanishing at
infinity. This implies that we can define a linear functional τ : A2 → C by
τ(f) = f(e) for each f ∈ A2. We can check that both (2.1) and (2.2) hold
for τ as in (i). �

Proposition 2.13. Let G be a locally compact group. Then the group algebra
L1(G) is commutator-simple in each of the following cases:

(i) The group G has small invariant neighborhoods, i.e., every neighbor-
hood of the identity contains a compact neighborhood of the identity
which is invariant under all inner automorphisms;

(ii) The group G is maximally almost periodic, i.e., the are enough
continuous finite-dimensional unitary representations to separate the
points of G.
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Proof. (i) Let (eλ)λ∈Λ be a bounded approximate identity for L1(G) consist-
ing of central elements of L1(G) and such that eλ ∈ L1(G) ∩L2(G) for each
λ ∈ Λ (see [16, Page 530]).

Suppose that I is an ideal of L1(G) with I ⊆ [L1(G), L1(G)]. Then, for
each λ ∈ Λ,

L1(G) ∗ eλ ⊆ L1(G) ∩ L2(G)

and so

I ∗ eλ ∗ eλ ⊆ [L1(G) ∗ eλ, L
1(G) ∗ eλ] ⊆ [L1(G) ∩ L2(G), L1(G) ∩ L2(G)].

Further, I ∗ eλ ∗ eλ is an ideal of L1(G) ∩ L2(G). From Proposition 2.12 we
see that I ∗ eλ ∗ eλ = {0}. Finally, since (eλ)λ∈Λ is a bounded approximate
identity for L1(G), for each f ∈ I we have

f = lim
λ∈Λ

f ∗ eλ ∗ eλ
︸ ︷︷ ︸

=0

= 0.

(ii) Suppose that I is an ideal of L1(G) such that I ⊆ [L1(G), L1(G)], and
take f ∈ I.

Let π be a continuous, unitary representation of G on a finite-dimensional
Hilbert space H. Then π gives rise to a representation of L1(G) on the
algebra B(H) of all continuous linear operators on H, still denoted by π,
defined by

π(g) =

∫

G

f(t)π(t) dt

for all g ∈ L1(G). Since H is finite-dimensional we can define a linear
functional τπ : L

1(G) → C by

τπ(g) = trace(π(g))

for all g ∈ L1(G). It is immediate to check that τπ is a trace. Consequently,
τπ(I) = {0} and hence

0 = τπ(f ∗ f⋆) = trace(π(f)π(f)∗),

which implies that π(f) = 0.
We thus get π(f) = 0 for each finite-dimensional, continuous, unitary

representation π of G, and since G is an MAP-group, it may be concluded
that f = 0. �

For a comprehensive treatment of the classes of groups, [SIN] and [MAP],
appearing in Proposition 2.13, we refer the reader to [17, Chapter 12]. It
should be pointed out that all of these groups are unimodular. Further,
each discrete group G has small invariant neighborhoods and therefore the
algebra ℓ1(G) is commutator-simple.

3. Derivations

Let A be an algebra. A linear map D : A → A is called a Jordan derivation
if it satisfies

D(x2) = D(x)x+ xD(x)
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for all x ∈ A. If A is a semiprime algebra, i.e., A has no nonzero nilpotent
ideals, and the characteristic of the underlying field is not 2, every Jordan
derivation is automatically a derivation [6], meaning that it satisfies

D(xy) = D(x)y + xD(y)

for all x, y ∈ A.
We remark that there are many algebras in which every derivation D is

of the form

D(x) = [x,m]

where m is a fixed element from A, or, sometimes, from a larger algebra M
that contains A as an ideal. These are the derivations that are of particular
interest to us. Observe that they satisfy

(3.1) D(x)xn = [x,m]xn = [x,mxn] ∈ [A,A]

for all x ∈ A and all positive integers n. We will actually need this only for
n = 1 and n = 2.

We now state our basic result on derivations in commutator-simple alge-
bras. Its proof is short and uses an idea from [4].

Theorem 3.1. Let A be a commutator-simple semiprime algebra over a field
F with char(F ) 6= 2. If a linear map D : A → A satisfies

D(x)x,D(x)x2 ∈ [A,A]

for every x ∈ A, then D is a derivation.

Proof. For any x, y ∈ A, we write x ≡ y if x − y ∈ [A,A]. Our assumption
can thus be read as D(x)x ≡ 0 and D(x)x2 ≡ 0 for every x ∈ A. Writing
x+ y for x in the first relation we obtain

(3.2) D(x)y ≡ −D(y)x

for all x, y ∈ A, and writing x± y for x in the second relation, we obtain

(3.3) D(x)(xy + yx) +D(y)x2 ≡ 0

for all x, y ∈ A (here we used the assumption that char(F ) 6= 2). In light of
(3.2), (3.3) can be written as

(3.4) D(x)(xy + yx)−D(x2)y ≡ 0.

Since

D(x)yx− xD(x)y = [D(x)y, x] ≡ 0,

(3.4) further gives

(3.5)
(
D(x)x+ xD(x)−D(x2)

)
y ≡ 0.

Suppose D is not a derivation. By the aforementioned result, D is neither
a Jordan derivation, so

a = D(x)x+ xD(x)−D(x2) 6= 0

for some x ∈ A. By (3.5), ay ≡ 0 for all y ∈ A. Since zay = [z, ay] + a(yz)
it follows that zay ≡ 0 for all y, z ∈ A. This means that [A,A] contains
the ideal AaA, which is nonzero since A is semiprime. This contradicts our
assumption that A is commutator-simple. �
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Theorem 3.1 is of course applicable to most algebras mentioned in Sec-
tion 2, but we will not list them here and rather focus on local derivations
of group algebras L1(G). For this purpose, we need the following technical
corollary to Theorem 3.1.

Corollary 3.2. Let A be a semiprime algebra over a field F with char(F ) 6=
2. Suppose A is an ideal of an algebra M such that every derivation from A
to A is of the form x 7→ [x,m] for some m ∈ M . Then every local derivation
D : A → A is a derivation on each commutator-simple ideal I of M contained
in A.

Proof. Take x ∈ I. Since x ∈ A, by our assumption there exists an mx ∈ M
such that D(x) = [x,mx] ∈ I. Therefore, D maps I into itself, and just as
in (3.1) we see that

D(x)xn = [x,mx]x
n = [x,mxx

n] ∈ [I, I]

for every positive integer n. As an ideal of a semiprime algebra, I itself is
semiprime. Applying Theorem 3.1 to the algebra I it follows that D is a
derivation on I. �

Theorem 3.3. Let G be a unimodular locally compact group. Then every
continuous local derivation D : L1(G) → L1(G) is a derivation.

Proof. We will check that Corollary 3.2 applies with A = L1(G) and M =
M(G), the Banach algebra of complex Radon measures on G. Of course, A
is a closed ideal of M .

A remarkable property of the group algebra L1(G) is that each derivation
from L1(G) to itself is of the form f 7→ f ∗ µ − µ ∗ f for some µ ∈ M(G)
(see [1, 15]). We take I = L1(G) ∩ L2(G), which is an ideal of A and, by
Proposition 2.12, I is a commutator-simple algebra. From Corollary 3.2 we
see that D is a derivation on I. Since I is dense in L1(G) and D is continuous
on L1(G), we conclude that D is a derivation on L1(G). �

In [18, 19], the author shows that every continuous (approximately) local
derivation from L1(G) to any Banach L1(G)-bimodule X is a derivation for
a large class of groups including PG-groups, IN-groups, MAP-groups, and
totally disconnected groups. In order to relate this result to Theorem 3.3,
we mention that the class of unimodular groups strictly contains the classes
[PG], [IN], and [MAP] (we refer the reader to [17, Diagram 1, page 1486] for
this fact), and, on the other hand, unlike [18, 19], we are confined to maps
from L1(G) to itself. To the best of our knowledge, Theorem 3.3 gives a new
information.

4. Jordan homomorphisms

A linear map T from an algebra A to itself is called a Jordan homomor-
phism if

T (x2) = T (x)2

for every x ∈ A. Basic examples are homomorphisms and antihomomor-
phisms and, under suitable conditions, these are also the only examples.
However, we shall not go into this here.



10J. ALAMINOS, M. BREŠAR, J. EXTREMERA, M. L. C. GODOY, AND A.R. VILLENA

The idea of the proof of the following theorem is also taken from [4].
However, there are important differences in details.

Theorem 4.1. Let A be a commutator-simple unital algebra over a field F
with char(F ) 6= 2, 3. If a surjective linear map T : A → A satisfies T (1) = 1
and T (x)3−x3 ∈ [A,A] for every x ∈ A, then T is a Jordan homomorphism.

Proof. As above, we write x ≡ y for x − y ∈ [A,A]. Since char(F ) 6= 2,
replacing x by x± y in T (x)3 ≡ x3 gives

T (x)2T (y) + T (x)T (y)T (x) + T (y)T (x)2 ≡ x2y + xyx+ yx2.

Observing that

T (x)2T (y) ≡ T (x)T (y)T (x) ≡ T (y)T (x)2,

x2y ≡ xyx ≡ yx2,

and using char(F ) 6= 3 it follows that

T (x)2T (y) ≡ x2y

for all x, y ∈ A. Hence,

T (x)2T (y2) ≡ x2y2 ≡ y2x2 ≡ T (y)2T (x2) ≡ T (x2)T (y)2.

Replacing y by y + 1 in T (x)2T (y2) = T (x)2T (y)2 and using T (1) = 1 we
arrive at

T (x)2T (y) ≡ T (x2)T (y)

for all x, y ∈ A. Since T is surjective, this means that
(
T (x2)− T (x)2

)
A ⊆ [A,A],

which, by zay = [z, ay] + a(yz), implies that

A
(
T (x2)− T (x)2

)
A ⊆ [A,A].

Since A is commutator-simple, it follows that T (x2)− T (x)2 = 0. �

Let A be a unital algebra. By a local inner automorphism of A we, of
course, mean a linear map T : A → A such that, for every x ∈ A, there
exists an inner automorphism Tx of A such that T (x) = Tx(x); that is, T (x)
is always of the form uxxu

−1
x for some invertible ux ∈ A. Observe that such

a map is automatically injective and sends 1 to 1.

Corollary 4.2. If A is a commutator-simple unital algebra over a field F
with char(F ) 6= 2, 3, then every surjective local inner automorphism of A is
a Jordan automorphism.

Proof. Observe that

uxu−1 − x = [u, xu−1] ≡ 0

for every invertible u ∈ A and every x ∈ A. Hence

T (x)3 = (uxxu
−1
x )3 = uxx

3u−1
x ≡ x3

for every x ∈ A, and so Theorem 4.1 applies. �
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Every matrix x is similar to its transpose xt, so x 7→ xt is an example of a
surjective local inner automorphism of the matrix algebra Mn(F ) that is a
Jordan automorphism but not an automorphism. We also remark that since
all automorphisms of this algebra are automatically inner, the notion of a
local inner automorphism here coincide with the notion of a local automor-
phism.

We also need a technical refinement of this corollary that concerns algebras
that are not necessarily unital.

Corollary 4.3. Let A be a commutator-simple algebra over a field F with
char(F ) 6= 2, 3. Assume further that y ∈ Ay for each y ∈ A and that A
is an ideal of a unital algebra M . If T : A → A is a surjective linear map
such that for each y ∈ A there exists an invertible element uy ∈ M satisfying
T (y) = uyyu

−1
y , then T is a Jordan automorphism.

Proof. Write A1 = F1 + A. We claim that A1 is a commutator-simple
algebra. Indeed, let I be an ideal of A1 such that I ⊆ [A1, A1]. Since
[A1, A1] = [A,A] ⊆ A we see that I is an ideal of A contained in [A,A], and
so I = {0}.

Define T1 : A1 → A1 by

T1(α1 + y) = α1 + T (y)

for all α ∈ F and y ∈ A. Observe that T1 is a well-defined linear map.
Moreover, it is surjective and T1(1) = 1. We claim that T1(x)

3 ≡ x3 for each
x ∈ A1. Set x = α1 + y ∈ A1. Take e ∈ A such that y = ey and write
u = uy ∈ M . Then

T1(x)
3 − x3 = (α1 + uyu−1)3 − (α1 + y)3

= 3α2(uyu−1 − y) + 3α(uy2u−1 − y2) + (uy3u−1 − y3)

= 3α2[ue, yu−1] + 3α2[y, e] + 3α[uy, yu−1] + [uy, y2u−1] ∈ [A,A],

as claimed. By Theorem 4.1 it follows that T1 is a Jordan automorphism
and hence T is a Jordan automorphism. �

Let A be an algebra of linear operators on a vector space that contains
all finite rank operator. As a local automorphism of A preserves the rank
of any finite rank operator, it seems likely that its form can be determined
by using well known results on rank preservers. What we will establish in
the next lines could therefore be obtained by other means, or may even be
already known. However, our method of proof is certainly new.

Corollary 4.4. Let A be the algebra of all finite rank linear operators on
a vector space X over a field F with char(F ) 6= 2, 3. Then every surjective
local automorphism of A is a Jordan automorphism.

Proof. Let M be the algebra of all linear operators on X, and we will check
that all requirements in Corollary 4.3 are satisfied. By Proposition 2.2, A is
commutator-simple. For each x ∈ A, we can choose an idempotent operator
P : X → X mapping onto the range of x, which implies that P ∈ A and
x = Px, so that x ∈ Ax. Further, M is a unital algebra and A is an ideal
of M . For each x ∈ A there exists an automorphism Φx : A → A such that
T (x) = Φx(x), and [12, Section IV.11] shows that there exists an invertible
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linear operator ux : X → X such that Φx(y) = uxyu
−1
x for each y ∈ A.

Proposition 4.3 gives the desired conclusion. �

Corollary 4.5. Let X be a normed space. Then every surjective local auto-
morphism of F (X) is a Jordan automorphism.

Proof. Set A = F (X), and let M be the algebra of all continuous linear
operators on X. Then Proposition 2.10 shows that A is a commutator-simple
algebra. If x ∈ A, then the range Y of x is finite-dimensional and therefore
there exists a continuous linear projection P of X onto Y . Consequently,
P ∈ A and x = Px, which gives x ∈ Ax. Moreover, M is a unital algebra
and A is an ideal of M . Take x ∈ A. Then there exists an automorphism
Φx : F (X) → F (X) such that T (x) = Φx(x). By [5, Theorem 3.1], there
exists a continuous invertible linear operator ux : X → X such that Φx(y) =
uxyu

−1
x for each y ∈ F (X). From Proposition 4.3 we obtain that T is a

Jordan automorphism. �

Corollary 4.6. Let H be a Hilbert space, let 1 ≤ p ≤ ∞, and let Sp(H)
be the algebra of pth Schatten class operators on H. Then every continuous
surjective local automorphism T of Sp(H) is a Jordan automorphism. Fur-
ther, if H is an infinite-dimensional separable Hilbert space, then T is an
automorphism.

Proof. Our method consists in considering the restriction of T to the ideal
F (H) of Sp(H). Take x ∈ F (H). Then there exists an automorphism
Φx : S

p(H) → Sp(H) such that T (x) = Φx(x). By [5, Corollary 3.2],
there exists a continuous invertible linear operator ux : H → H such that
Φx(y) = uxyu

−1
x for each y ∈ Sp(H). Consequently, T (x) = uxxu

−1
x ∈ F (H)

and hence T maps F (H) into F (H) and is a local automorphism of F (H).
Further, if y ∈ F (H), then there exists an x ∈ Sp(H) with T (x) = y. Since
T (x) = uxxu

−1
x , it follows that x = u−1

x yux ∈ F (H). This shows that T
is a surjective local automorphism of F (H). Corollary 4.5 tells us that T
is a Jordan automorphism of F (H). Since F (H) is dense in Sp(H) and T
is continuous on Sp(H), it may be concluded that T is a Jordan automor-
phism of Sp(H). From [11] we see that T is either an automorphism or an
antiautomorphism.

We now suppose that H is an infinite-dimensional separable Hilbert space,
let (ξn) be an orthonormal basis of H, let s ∈ Sp(H) be the weighted shift
operator defined through

s(ξn) = 2−nξn+1

for all n ∈ N, so that

s∗(ξ1) = 0, s∗(ξn) = 2−nξn−1 n ≥ 2,

and let us : H → H be a continuous invertible linear operator such that
T (s) = ussu

−1
s . Assume towards a contradiction that T is an antiautomor-

phism. Take a conjugation c on H and define Φ on Sp(H) by Φ(x) = T (cx∗c)
for each x ∈ Sp(H). Then Φ is an automorphism of Sp(H) and [5, Corol-
lary 3.2] shows that there exists a continuous invertible linear operator
v : H → H such that Φ(x) = vxv−1 for each x ∈ Sp(H). We thus get

ussu
−1
s = T (s) = Φ(cs∗c) = vcs∗cv−1.



DERIVATIONS AND HOMOMORPHISMS IN COMMUTATOR-SIMPLE ALGEBRAS 13

Then the operator u−1
s vc is invertible, so that ξ = u−1

s vcξ1 6= 0 and, on the
other hand,

sξ = u−1
s vcs∗cv−1usξ = u−1

s vcs∗ξ1 = 0.

This is a contradiction as s is injective. �
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