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Abstract

We introduce the notions of generalized and weighted generalized ψ-estimators as

unique points of sign change of some appropriate functions, and we give necessary as well as

sufficient conditions for their existence. We also derive a set of sufficient conditions under

which the so-called ψ-expectation function has a unique point of sign change. We present

several examples from statistical estimation theory, where our results are well-applicable.

For example, we consider the cases of empirical quantiles, empirical expectiles, some ψ-

estimators that are important in robust statistics, and some examples from maximum

likelihood theory as well. Further, we introduce Bajraktarević-type (in particular, quasi-

arithmetic-type) ψ-estimators. Our results specialized to ψ-estimators with a function ψ

being continuous in its second variable provide new results for (usual) ψ-estimators (also

called Z-estimators).
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1 Introduction

In statistics, M-estimators play a fundamental role, and a special subclass, the class of ψ-

estimators (also called Z-estimators), is also in the heart of investigations. The M-estimators

(where the letter M refers to ”maximum likelihood-type”) were introduced by Huber [8, 9]. Let

(X,X ) be a measurable space, Θ be a Borel subset of R, and % : X × Θ → R be a function

such that for each t ∈ Θ, the function X 3 x 7→ %(x, t) is measurable with respect to the

sigma-algebra X . Let (ξn)n>1 be a sequence of i.i.d. random variables with values in X such

that the distribution of ξ1 depends on an unknown parameter ϑ ∈ Θ. For each n > 1, Huber

[8, 9] introduced a natural estimator of ϑ based on the observations ξ1, . . . , ξn as a solution

ϑ̂n := ϑ̂n(ξ1, . . . , ξn) of the following minimization problem:

inf
t∈Θ

1

n

n∑
i=1

%(ξi, t),(1.1)

provided that such a solution exits. One calls ϑ̂n an M-estimator of the unknown parameter

ϑ ∈ Θ based on the i.i.d. observations ξ1, . . . , ξn. For historical fidelity, we note that Huber [8]

considered the special case when X := R, Θ := R, and the function % depends only on x−t, i.e.,

%(x, t) := f(x − t), x ∈ R, t ∈ Θ, with some given nonconstant function f : R → R. Turning

back to the general case, under suitable regularity assumptions, the minimization problem (1.1)

can be solved by setting the derivative of the objective function (with respect to the unknown

parameter) equal to zero:

1

n

n∑
i=1

∂2%(ξi, t) = 0, t ∈ Θ.

In the statistical literature, ∂2% is often denoted by ψ, and hence in this case the M-estimator is

often called ψ-estimator, while other authors call it a Z-estimator (the letter Z refers to ”zero”).

For a detailed exposition of M-estimators and ψ-estimators (Z-estimators), see, e.g., Kosorok

[12, Sections 2.2.5 and 13] or van der Vaart [20, Section 5].

Throughout this paper, let N = Z++, Z+, Q, R, R+ and R++ denote the sets of positive

integers, non-negative integers, rational numbers, real numbers, non-negative real numbers and
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positive real numbers, respectively. An interval Θ ⊆ R will be called nondegenerate if it contains

at least two distinct points. For a subset S ⊆ R, the convex hull of S (which is the smallest

interval containing S) is denoted by conv(S). For each n ∈ N, let us also introduce the set

Λn := Rn
+ \ {(0, . . . , 0)}. All the random variables are defined on an appropriate probability

space (Ω,A,P).

To the best of our knowledge, the topic of existence and uniqueness of ψ-estimators is

less addressed in the statistical literature. In the present paper, we are going to investigate

two basic problems of this field as presented below. Roughly speaking, Problem 1 is about

the existence and uniqueness of the newly introduced notions: generalized ψ-estimators and

weighted generalized ψ-estimators. Problem 2 is devoted to the existence and uniqueness of a

point of sign change for so-called ψ-expectation functions.

Problem 1. Let X be a nonempty set, Θ be a nondegenerate open interval of R. Let Ψ(X,Θ)

denote the class of real-valued functions ψ : X ×Θ→ R such that, for each x ∈ X, there exist

t+, t− ∈ Θ such that t+ < t− and ψ(x, t+) > 0 > ψ(x, t−). Roughly speaking, a function

ψ ∈ Ψ(X,Θ) satisfies the following property: for each x ∈ X, the function t 3 Θ 7→ ψ(x, t)

changes sign on the interval Θ at least once. Given a function ψ ∈ Ψ(X,Θ), n ∈ N and

xxx = (x1, . . . , xn) ∈ Xn, let us consider the equation

ψxxx(t) :=
n∑
i=1

ψ(xi, t) = 0, t ∈ Θ.(1.2)

More generally, for n ∈ N, xxx = (x1, . . . , xn) ∈ Xn and λλλ = (λ1, . . . , λn) ∈ Λn, we also consider

the weighted equation

ψxxx,λλλ(t) :=
n∑
i=1

λiψ(xi, t) = 0, t ∈ Θ.(1.3)

The basic question we are going to investigate now is to find necessary as well as sufficient

conditions for the unique solvability of the equations (1.2) and (1.3), respectively. In a broader

context, we are going to find necessary as well as sufficient conditions for the existence of a

point of sign change (see Definition 2.1) for the functions ψxxx and ψxxx,λλλ introduced by (1.2)

and (1.3), respectively. It will turn out that the points of sign change in question are unique

provided that they exist, and one can call them as a generalized ψ-estimator and weighted

generalized ψ-estimator, respectively, for some unknown parameter in Θ based on the realization

(x1, . . . , xn) ∈ Xn and weights (λ1, . . . , λn) ∈ Λn.

Problem 2. Let (X,X ) be a measurable space, Θ be a nondegenerate open interval of R, and

ψ : X ×Θ→ R be a measurable function in its first variable, i.e., for each t ∈ Θ, the mapping

X 3 x 7→ ψ(x, t) is measurable with respect to the sigma-algebra X . Further, let ξ : Ω→ X be

a random variable defined on a probability space (Ω,A,P) such that E(|ψ(ξ, t)|) <∞ for each

t ∈ Θ. We investigate the question of existence and uniqueness of a point of sign change (see

Definition 2.1) for the function

Θ 3 t 7→ E(ψ(ξ, t)).(1.4)
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In the literature, we could not find a name for the function (1.4), however, we may call it as

a ψ-expectation function. Under appropriate conditions, the ψ-estimator (Z-estimator) based

on i.i.d. observations ξ1, . . . , ξn is supposed to ’well-estimate’ the zero of the function (1.4),

provided that it exists uniquely, for more details, see, e.g., Kosorok [12, Sections 2.2.5 and 13].

In what follows, we discuss the connections between the Problems 1 and 2 introduced above.

Under appropriate conditions, the generalized ψ-estimator based on i.i.d. observations ξ1, . . . , ξn
is supposed to ’well-estimate’ the point of sign change of the function (1.4), provided that it

exists. In this paper, we do not investigate this question, it could be a topic of future research.

Further, note that if ξ is a simple random variable such that P(ξ = xi) = pi, i = 1, . . . , n, where

n ∈ N, (x1, . . . , xn) ∈ Xn and p1, . . . , pn > 0, p1+· · ·+pn = 1, then E(ψ(ξ, t)) =
∑n

i=1 piψ(xi, t),

t ∈ Θ, and hence, in this special case, Problem 2 is a special case of Problem 1.

To mention some papers related to Problem 1, we can refer, for example, to Huber [8,

Lemma 1], Tibshirani [19] and Ali and Tibshirani [1]. Tibshirani [19] considered the lasso

problem, which is also known as the `1-penalized linear regression. The lasso estimator is a

popular tool in the theory of sparse linear regression, mathematically, it is a solution of a not

necessarily strictly convex minimization problem, where a penalty term being the `1-norm of

the coefficient vector comes into play. Tibshirani [19] studied the question of uniqueness of the

lasso estimator. Recently, Ali and Tibshirani [1] have studied the uniqueness of a generalized

lasso estimator, where the penalty term in the corresponding minimization problem is the `1-

norm of a (penalty) matrix times the coefficient vector. To mention further papers related

to Problem 2, we can refer to Huber [8, Lemma 2], Clarke [4] (for details, see Remark 3.6),

Mathieu [14] (for details, see Examples 3.5 and 4.4), and to the very recent paper of Dimitriadis

et al. [6, Propositions S1, S2 and S3], in which the authors, in particular, considered solvability

of the equation E(ψ(ζ, η, t)) = 0, t ∈ Θ, where ψ : R × R × Θ → R is a measurable function,

Θ is a (non-empty) open parameter set of R, and (ζ, η) is a response-regression pair in some

regression model.

Section 2 is about the existence and uniqueness of (weighted) generalized ψ-estimators

(Problem 1). First, we introduce the required terminology: the notions of point of sign change

and level of increase for a real-valued function defined on a non-degenerate open interval (see

Definitions 2.1 and 2.6), and the notions of properties (Tn) and (Tλλλn ) for a function in Ψ(X,Θ)

(see Definition 2.3, but we also present below). We say that a function ψ ∈ Ψ(X,Θ) possesses

the property (Tλλλn ) for some n ∈ N and λλλ = (λ1, . . . , λn) ∈ Λn if there exists a mapping ϑλλλn,ψ :

Xn → Θ such that, for each xxx = (x1, . . . , xn) ∈ Xn and t ∈ Θ,

ψxxx,λλλ(t) =
n∑
i=1

λiψ(xi, t)

{
> 0 if t < ϑλλλn,ψ(xxx),

< 0 if t > ϑλλλn,ψ(xxx).

In case of λi = 1, i = 1, . . . , n (or equivalently, in case of equal positive weights), the prop-

erty (Tλλλn ) is called property (Tn). As the first main result of our paper, in Theorem 2.10,

necessary as well as sufficient conditions are given for the properties (Tn) and (Tλλλn ). After

Theorem 2.10, we present some properties of the property (Tλλλn ). For example, Proposition 2.13
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is about a connection between the property (Tn) and the strictly 1
n
-increasingness of some ap-

propriately defined functions, and in Proposition 2.14 we establish a ’grouping’ property of the

property (Tλλλn ). Examples 2.16, 2.17 and 2.20 highlight the role of the conditions in Theorem

2.10 and in Proposition 2.14. We also introduce a class of Bajraktarević-type (in particular,

quasi-arithmetic-type) ψ-estimators (motivated by the representation of Bajraktarević means

as special deviation means) for which our results are well-applicable, see Example 2.19.

Section 3 is devoted to study the existence and uniqueness of the point of sign change of the

ψ-expectation function given in (1.4) (Problem 2). As the second main result of our paper, in

Theorem 3.1, we give a set of sufficient conditions in order that the ψ-expectation function in

question have a unique point of sign change. We apply our results for ψ-expectation functions,

when ψ is a Bajraktarević-type function (see Example 3.4 and Proposition 3.4), and when ψ

has the form used by Mathieu [14] (see Example 3.5 and Proposition 3.5). In Remark 3.6,

restricted to a one-dimensional parameter set, we recall Theorem 3.2 in Clarke [4] on the local

uniqueness of a root of the function (1.4). We will see that the assumptions of Theorem 3.2 in

Clarke [4] are much more involved and quite different compared to those of our Theorem 3.1.

In Section 4 we present several examples from statistical estimation theory that demonstrate

the applicability of our results in Sections 2 and 3. These examples may be divided into three

main groups. The first group of examples includes several well-known descriptive statistics that

can be considered as special ψ-estimators. Namely, the empirical median (Example 4.1), the

empirical quantiles (Example 4.2) and the empirical expectiles (Example 4.3). In particular,

in Proposition 4.2 we show that, given n > 2, the function ψ corresponding to the empirical

α-quantile has the property (Tn) if and only if α /∈ { 1
n
, . . . , n−1

n
}. The second group of examples

contains the class of ψ-estimators recently used by Mathieu [14] (Example 4.4), and some ψ-

estimators that are important in robust statistics. In particular, in Proposition 4.4, we derive

necessary and sufficient conditions under which the function ψ used in Mathieu [14] has the

property (Tλ
n ) for each n ∈ N and λ ∈ Λn. We emphasize that in all the above examples, we

investigate the existence and uniqueness of (weighted) generalized ψ-estimators, compared to

the existing results that addressed ψ-estimators (Z-estimators). The third group of examples

demonstrates the applicability of Theorem 2.10 together with Proposition 2.12 for proving

existence and uniqueness of solutions of likelihood equations. In Example 4.5, we consider

the maximum likelihood estimator (MLE) of one of the parameters of a normally distributed

random variable supposing that its other parameter is known. In Example 4.7, we consider a

mixture density function of the standard normally density function and the density function

of a normally distributed random variable with mean m ∈ R and variance σ2 > 0 with equal

weights 1
2
, and we study the solutions of the likelihood equation for m provided that σ is known.

Sections 5, 6 and 7 are devoted to the proofs of the results in Sections 2, 3 and 4, respectively.

Finally, we summarize the novelties of the paper. We extensively discuss that, up to our

knowledge, only few results are available for the existence and uniqueness of ψ-estimators

and of the roots of ψ-expectation functions, and our paper can be considered as a theoretical

contribution to this field. Another important feature of our paper is that we present a broad
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variety of examples from statistical estimation theory, where our results can be well-applied.

2 Notions and results on the existence and uniqueness

of weighted generalized ψ-estimators

To investigate Problem 1 presented in the Introduction, we introduce the required terminology.

First, we introduce the notion of a point of sign change for real-valued functions defined on an

open interval.

2.1 Definition. Let Θ be a nondegenerate open interval of R. For a function f : Θ → R,

consider the following three level sets

Θf>0 := {t ∈ Θ : f(t) > 0}, Θf=0 := {t ∈ Θ : f(t) = 0}, Θf<0 := {t ∈ Θ : f(t) < 0}.

We say that ϑ ∈ Θ is a point of sign change (of decreasing type) for f if

f(t) > 0 for t < ϑ, and f(t) < 0 for t > ϑ.

2.2 Remark. Note that, if ϑ ∈ Θ is a point of sign change for f , then Θf>0 and Θf<0 are

nonempty sets and sup Θf>0 = inf Θf<0 = ϑ. Furthermore, there can exist at most one element

ϑ ∈ Θ which is a point of sign change for f . If f is continuous at a point ϑ of sign change, then

f(ϑ) = 0, moreover Θf=0 = {ϑ}. Conversely, as an easy consequence of the Bolzano theorem,

if f : Θ → R is continuous, the sets Θf>0 and Θf<0 are nonempty and f has a unique zero

ϑ ∈ Θ, i.e., Θf=0 = {ϑ} holds, then ϑ is a point of sign change either for f or for (−f). The

continuity of f , however, is not necessary for the existence of a point of sign change for f . For

example, if f is strictly decreasing and the sets Θf>0 and Θf<0 are nonempty, then it is easy

to see that there exists a point of sign change for f . 2

2.3 Definition. We say that a function ψ ∈ Ψ(X,Θ)

(i) is continuous in its second variable if, for each x ∈ X, the mapping Θ 3 t 7→ ψ(x, t) is

continuous.

(ii) possesses the property (Tn) (briefly, ψ is a Tn-function) for some n ∈ N if there exists a

mapping ϑn,ψ : Xn → Θ such that, for each xxx = (x1, . . . , xn) ∈ Xn and t ∈ Θ,

ψxxx(t) =
n∑
i=1

ψ(xi, t)

{
> 0 if t < ϑn,ψ(xxx),

< 0 if t > ϑn,ψ(xxx),
(2.1)

that is, for each xxx ∈ Xn, the value ϑn,ψ(xxx) is a point of sign change for the function

ψxxx. If there is no confusion, instead of ϑn,ψ we simply write ϑn. We may call ϑn,ψ(xxx)

as a generalized ψ-estimator for some unknown parameter in Θ based on the realization

x = (x1, . . . , xn) ∈ Xn.
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(iii) possesses the property (Tλλλn ) for some n ∈ N and λλλ = (λ1, . . . , λn) ∈ Λn (briefly, ψ is a Tλλλn -

function) if there exists a mapping ϑλλλn,ψ : Xn → Θ such that, for each xxx = (x1, . . . , xn) ∈
Xn and t ∈ Θ,

ψxxx,λλλ(t) =
n∑
i=1

λiψ(xi, t)

{
> 0 if t < ϑλλλn,ψ(xxx),

< 0 if t > ϑλλλn,ψ(xxx),
(2.2)

that is, for each xxx ∈ Xn, the value ϑλλλn,ψ(xxx) is a point of sign change for the function

ψxxx,λλλ. If there is no confusion, instead of ϑλλλn,ψ we simply write ϑλλλn. We may call ϑλλλn,ψ(xxx)

as a weighted generalized ψ-estimator for some unknown parameter in Θ based on the

realization x = (x1, . . . , xn) ∈ Xn and weights (λ1, . . . , λn) ∈ Λn.

In the next remark, we present some basic facts about the properties (Tn) and (Tλλλn ) given

in Definition 2.3, which can be easily checked.

2.4 Remark. (i) If ψ is a Tn-function for some n ∈ N, then for each x1, . . . , xn ∈ X, the

equation (1.2) can have at most one solution.

(ii) If ψ is continuous in its second variable and is a Tn-function for some n ∈ N, then

t = ϑn(x1, . . . , xn) is the unique solution to (1.2), and is called the ψ-estimator (Z-estimator)

based on the observations x1, . . . , xn ∈ X. In particular, if ψ is continuous in its second variable

and is a T1-function, then, for each x ∈ X, the equation ψ(x, t) = 0, t ∈ Θ, has a unique solution

ϑ1(x).

(iii) If λ1 = · · · = λn > 0 with some n ∈ N, then ϑ
(λ1,...,λn)
n,ψ = ϑn. 2

In the next remark, we point out an invariance property of the properties (Tn) and (Tλλλn )

given in Definition 2.3.

2.5 Remark. We introduce a notion of equivalence in Ψ(X,Θ) as follows. We say that the

maps ψ, ϕ ∈ Ψ(X,Θ) are equivalent (denoted as ψ ∼ ϕ) if there exists a positive function

h : Θ→ R such that ψ(x, t) = h(t)ϕ(x, t) is valid for all (x, t) ∈ X×Θ. It is easy to see that ∼
is an equivalence relation on Ψ(X,Θ), furthermore, the properties (Tn) and (Tλλλn ) are invariant

with respect to this equivalence, that is, if ψ ∼ ϕ and ϕ possesses the property (Tn) (or the

property (Tλλλn )), then ψ also enjoys this property and ϑn,ϕ = ϑn,φ (resp. ϑλλλn,ϕ = ϑλλλn,φ). 2

2.6 Definition. Let Θ be a nondegenerate open interval of R and f : Θ → R be a function.

We say that y ∈ R is a level of increase for f if the relations u ∈ Θ and y 6 f(u) imply that

y < f(v) for all v ∈ Θ with u < v.

Observe that if y ∈ R is a level of increase for f , then the inverse image f−1({y}) is either

empty or a singleton. In general, the converse of the previous statement is not true. To give a

counterexample, let us consider the function f : Θ→ R given by f(ϑ) := 1 if ϑ ∈ Θ is rational,

and f(ϑ) := 0 if ϑ ∈ Θ is irrational. Then f−1({1
2
}) = ∅, but 1

2
is not a level of increase for f .
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In the following lemma, we establish a connection between the notions of point of sign

change and level of increase.

2.7 Lemma. Let Θ be a nondegenerate open interval of R, f : Θ → R be a function, and

y ∈ R. Then y is a level of increase for f if and only if one of the following assertions holds:

(i) y < f on Θ.

(ii) y > f on Θ.

(iii) There exists a point of sign change for the function y − f .

2.8 Lemma. Let Θ be a nondegenerate open interval and f : Θ → R be a function. If the

levels of increase for f form a dense subset in the convex hull of f(Θ), then f is increasing.

The function f is strictly increasing if and only if every element of f(Θ) is a level of increase

for f . Furthermore, if g : H → R is a strictly increasing function, where H is a set containing

f(Θ), and y ∈ H is level of increase for f , then g(y) is a level of increase for g ◦ f .

We recall also a definition due to Páles [16]: given a nondegenerate open interval Θ of R and

ε > 0, a function f : Θ→ R satisfying the inequality f(u) 6 f(v) + ε for all u < v, u, v ∈ Θ is

called ε-increasing. If the inequality is strict for all u < v, u, v ∈ Θ, then f is said to be strictly

ε-increasing. We note that Páles [16, Theorem 3] offers the following simple characterization:

a function f : Θ→ R is ε-increasing if and only if there exists an increasing function g : Θ→ R
such that ‖f − g‖∞ := supu∈Θ |f(u)− g(u)| 6 ε

2
.

The next lemma describes a connection between levels of increase for a function f : Θ→ R
and its ε-increasingness property.

2.9 Lemma. Let Θ be a nondegenerate open interval, let n ∈ N and let y0 < · · · < yn be

real numbers. Assume that y0, . . . , yn−1 are levels of increase for a function f : Θ → R and

f(Θ) ⊆ [y0, yn]. Then f is strictly ε-increasing with ε := max{y1 − y0, . . . , yn − yn−1}.

Now, we state our first main result by presenting necessary as well as sufficient conditions

for the properties (Tn) and (Tλλλn ) .

2.10 Theorem. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ) be a T1-function.

(i) If ψ is a T
(λ1,λ2)
2 -function for some (λ1, λ2) ∈ (0,∞)2, then, for each x, y ∈ X with

ϑ1(x) < ϑ1(y), the numbers λ1
λ2

and λ2
λ1

are levels of increase for the function

(ϑ1(x), ϑ1(y)) 3 t 7→ −ψ(x, t)

ψ(y, t)
.(2.3)

(ii) If ψ is a T
(λ1,...,λn)
n -function for some n ∈ N\{1} and (λ1, . . . , λn) ∈ (0,∞)n, then, for each

x, y ∈ X with ϑ1(x) < ϑ1(y), the numbers λ1+···+λk
λk+1+···+λn and λk+1+···+λn

λ1+···+λk
, k ∈ {1, . . . , n− 1},

are levels of increase for the function (2.3).
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(iii) If ψ is a Tn-function for some n ∈ N \ {1}, then, for each x, y ∈ X with ϑ1(x) < ϑ1(y),

the elements of the set { k
n−k | k ∈ {1, . . . , n − 1}} are levels of increase for the function

(2.3).

(iv) If ψ is a Tn-function for infinitely many n ∈ N, then for each x, y ∈ X with ϑ1(x) < ϑ1(y),

the function (2.3) is increasing. In addition, if for each m ∈ N there exists n ∈ N such

that m divides n and ψ is a Tn-function, then, for each x, y ∈ X with ϑ1(x) < ϑ1(y),

every positive rational number is a level of increase for the function (2.3).

(v) If ψ is a Tλλλ2 -function for each λλλ ∈ Λ2, then for each x, y ∈ X with ϑ1(x) < ϑ1(y), the

function (2.3) is strictly increasing.

(vi) If, for each x ∈ X, the equality ψ(x, ϑ1(x)) = 0 holds and, for each x, y ∈ X with

ϑ1(x) < ϑ1(y), the function (2.3) is strictly increasing, then ψ is a Tλλλn -function for each

n ∈ N and λλλ ∈ Λn.

Note that if ψ ∈ Ψ(X,Θ) is continuous in its second variable, then the assertion (vi) of

Theorem 2.10 provides a sufficient condition for the existence and uniqueness of a (usual)

ψ-estimator.

The following statement establishes two equivalent conditions for ψ having the property

(Tλλλn ) for each n ∈ N and λλλ ∈ Λn.

2.11 Corollary. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ) be a T1-function such that, for each x ∈ X, the equality ψ(x, ϑ1(x)) = 0 holds.

Then the following assertions are equivalent:

(i) For each x, y ∈ X with ϑ1(x) < ϑ1(y), the function (2.3) is strictly increasing.

(ii) For each λλλ ∈ Λ2, the function ψ has property (Tλλλ2 ).

(iii) For each n ∈ N and λλλ ∈ Λn, the function ψ has property (Tλλλn ).

In the next proposition, we provide a sufficient condition (which does not involve the con-

dition ψ(x, ϑ1(x)) = 0 for all x ∈ X) under which ψ has the property (Tλλλn ) for each n ∈ N and

λλλ ∈ Λn.

2.12 Proposition. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ) be a T1-function.

(i) If for each x ∈ X, the function Θ 3 t 7→ ψ(x, t) is (strictly) decreasing, then for each

x, y ∈ X with ϑ1(x) < ϑ1(y), the function (2.3) is (strictly) increasing.

(ii) If for each x ∈ X, the function Θ 3 t 7→ ψ(x, t) is strictly decreasing, then for each n ∈ N
and λλλ ∈ Λn, the function ψ has property (Tλλλn ).

The next proposition establishes a connection between the property (Tn) and the strictly
1
n
-increasingness of some appropriately defined functions.
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2.13 Proposition. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ) be a T1-function. If ψ is a Tn-function for some n ∈ N \ {1}, then, for each

x, y ∈ X with ϑ1(x) < ϑ1(y), the function

(ϑ1(x), ϑ1(y)) 3 t 7→ ψ(x, t)

ψ(x, t)− ψ(y, t)
(2.4)

is strictly 1
n

-increasing.

The following two results describe the hierarchy among the properties (Tn)n∈N and establish

a kind of ’grouping’ property of the property (Tλλλn ).

2.14 Proposition. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ). If ψ is a Tn-function for some n ∈ N, then ψ is a Tm-function for any m ∈
{1, . . . , n} that divides n.

2.15 Proposition. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and

ψ ∈ Ψ(X,Θ) be a Tλλλn -function, where n ∈ N and λλλ = (λ1, . . . , λn) ∈ Λn. Let m ∈ {1, . . . , n}
and H1, . . . , Hm be nonempty pairwise disjoint subsets of {1, . . . , n} such that H1 ∪ · · · ∪Hm =

{1, . . . , n}. For each α ∈ {1, . . . ,m}, define µα :=
∑

i∈Hα λi. Then µµµ := (µ1, . . . , µm) ∈ Λm

and ψ is a Tµµµm-function.

Note that Proposition 2.15 implies Proposition 2.14. Indeed, let ψ ∈ Ψ(X,Θ) be a Tn-

function with some n ∈ N. If m is a divisor of n, then n = km with some k ∈ N, and hence

Hj := {(j − 1)k + 1, . . . , jk}, j = 1, . . . ,m, are nonempty pairwise disjoint subsets such that

H1 ∪ · · · ∪ Hm = {1, . . . , n}. With the choice λ := (λ1, . . . , λn) := (1, . . . , 1) ∈ Λn, we have

ψ is a Tλλλn -function and µα = k, α ∈ {1, . . . ,m}. Hence Proposition 2.15 yields that ψ is a

Tµµµm-function. Since µα, α ∈ {1, . . . ,m}, are all the same positive constant k, we have ψ is a Tm-

function as well. Further, we note that Proposition 2.15 may be useful to see, for example, that

the property (T
(λ1,λ2,λ3)
3 ) of ψ implies the property (T

(λ1+λ2,λ3)
2 ) of ψ, where (λ1, λ2, λ3) ∈ Λ3.

The next example demonstrates that the property (T2) can already fail to hold.

2.16 Example. Let m ∈ N, X := {x1, . . . , xm}, Θ := R and let w1, . . . , wm > 0. Define

ψ : X ×Θ→ R by

ψ(xi, t) :=

{
wi if t < i,

−wi if t > i,
i ∈ {1, . . . ,m}.

Then ψ is a T1-function and ϑ1(xi) = i holds for all i ∈ {1, . . . ,m}. One can easily see that the

property (T2) holds if and only if we have wi 6= wj for all distinct i, j ∈ {1, . . . ,m}, Indeed, if

1 6 i < j 6 m, then

ψ(xi, t) + ψ(xj, t) =


wi + wj > 0 if t < i,

−wi + wj if i 6 t < j,

−wi − wj < 0 if j 6 t.
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This function has a point of sign change if and only if wi 6= wj, as desired. We also get that if

ψ is a T2-function, then

ϑ2(xi, xj) = ϑ2(xj, xi) =

{
i if wi > wj,

j if wi < wj.

Furthermore, ϑ2(xi, xi) = ϑ1(xi) = i for all i ∈ {1, . . . ,m}. 2

In what follows, we give an example to point out that in part (vi) of Theorem 2.10 the

assumption that ψ(x, ϑ1(x)) = 0, x ∈ X, cannot be omitted.

2.17 Example. Let X := {x1, x2} (with x1 6= x2) and Θ := R. Let

ψ(x1, t) :=


2 if t < 1,

−t if 1 6 t 6 2,

−2 if t > 2,

and

ψ(x2, t) :=


1 if t < 2,

2 if t = 2,

−1 if t > 2.

Then ψ is a T1-function with ϑ1(x1) = 1 and ϑ1(x2) = 2, and ψ(xi, ϑ1(xi)) 6= 0 for i ∈ {1, 2}.
We also note that the function

(ϑ1(x1), ϑ1(x2)) = (1, 2) 3 t 7→ ψ(x1, t)

ψ(x2, t)
= −t

is strictly decreasing. However, ψ is not a T2-function, since

ψ(x1, t) + ψ(x2, t) =



2 + 1 = 3 > 0 if t < 1,

−1 + 1 = 0 if t = 1,

−t+ 1 < 0 if 1 < t < 2,

−2 + 2 = 0 if t = 2,

−2− 1 = −3 < 0 if t > 2,

which shows that R 3 t 7→ ψ(x1, t) + ψ(x2, t) does not have a point of sign change. 2

In what follows, as an application of Proposition 2.12, we present an example of a large class

of functions ψ : X × Θ → R, which possesses the property (Tλ
n ) for each n ∈ N and λ ∈ Λn

and for which the point of sign change ϑλ
n,ψ(x) (where x ∈ Xn) has an explicit form. This

class of functions may be called the class of Bajraktarević-type functions, motivated by the

representation of Bajraktarević means as special deviation means. For the description of this

class of functions, we need to recall the notion of generalized left inverse of a strictly monotone

(but not necessarily continuous) function defined on a nondegenerate open interval of R due to

Grünwald and Páles [7, Lemma 1].
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2.18 Lemma. Let Θ be a nondegenerate open interval of R, let f : Θ→ R be a strictly increas-

ing function. Then there exists a uniquely determined monotone function g : conv(f(Θ))→ Θ

such that g is the left inverse of f , i.e.,

(g ◦ f)(x) = x, x ∈ Θ.

Furthermore, g is monotone in the same sense as f , is continuous, and the following relation

holds:

(f ◦ g)(y) = y, y ∈ f(Θ).

The function g : conv(f(Θ)) → Θ described in Lemma 2.18 is called the generalized left

inverse of the strictly increasing function f : Θ → R and is denoted by f (−1). In fact, by the

proof of Lemma 1 in Grünwald and Páles [7], it also turns out that

g(y) = sup{u ∈ Θ : f(u) 6 y}, y ∈ conv(f(Θ)).

It is clear that the restriction of f (−1) to f(Θ) is the inverse of f in the standard sense. Therefore,

f (−1) is the continuous and monotone extension of the inverse of f to the smallest interval

containing the range of f , that is, to the convex hull of f(Θ).

2.19 Example. (Bajraktarević-type functions) Let X be a nonempty set, Θ be a nonde-

generate open interval of R, f : Θ→ R be a strictly increasing function, and p : X → R++ and

ϕ : X → conv(f(Θ)) be functions. In terms of these functions, define ψ : X ×Θ→ R by

ψ(x, t) := p(x)(ϕ(x)− f(t)), x ∈ X, t ∈ Θ.(2.5)

2.19 Proposition. Under the above assumptions, ψ is a Tλ
n -function for each n ∈ N and

λ ∈ Λn, and

ϑλ
n,ψ(x) = f (−1)

(
λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)

)
(2.6)

for each n ∈ N, x = (x1, . . . , xn) ∈ Xn and λ = (λ1, . . . , λn) ∈ Λn. In particular, ϑ1 = f (−1) ◦ϕ
holds.

One may call the value ϑλ
n,ψ(x) given by (2.6) as a Bajraktarević-type ψ-estimator of

some unknown parameter in Θ based on the realization x = (x1, . . . , xn) ∈ Xn and weights

(λ1, . . . , λn) ∈ Λn corresponding to the Bajraktarević-type function given by (2.5). In par-

ticular, if p = 1 is a constant function in (2.5), then we speak about a quasi-arithmetic-type

ψ-estimator.

Note that in case of X := Θ and ϕ := f , Proposition 2.19 reduces to Theorem 3 in Grünwald

and Páles [7] for Bajraktarević means. In addition, if p = 1 is a constant function, then Proposi-

tion 2.19 is about generalized quasi-arithmetic means (here, we use the term ’generalized’, since

for usual quasi-arithmetic means, the function f is not only strictly increasing, but continuous

as well). 2
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In the next example, we point out that, in general, one cannot omit the restriction that m

divides n in Proposition 2.14. For another example, see the case of empirical median discussed

in Example 4.1.

2.20 Example. Let X be an arbitrary set with at least two distinct elements and let X1, X2 ⊆
X be nonempty disjoint subsets such that X1∪X2 = X and let w1, w2 > 0. Define ψ : X×Θ→
R by

ψ(x, t) :=

{
wi t < i,

−wi t > i,
if x ∈ Xi.

Then ψ is a T1-function and, for i ∈ {1, 2} and x ∈ Xi, we have ϑ1(x) = i.

Let n, k ∈ N such that k is not a divisor of n (which implies that k > 2). Then

(2.7)
1

k
6∈
{

1

n
, . . . ,

n− 1

n

}
.

Indeed, on the contrary, if the inclusion were valid, then 1/k would be of the form m/n for

some m ∈ {1, . . . , n− 1}, yielding that n = km, which contradicts the assumption k - n.

Assuming that w1 = k − 1 and w2 = 1, we prove that ψ is a Tn-function, but it is not a

Tk-function.

To show that ψ is a Tn-function, let yyy := (y1, . . . , yn) ∈ Xn. For j ∈ {1, 2}, define the set

Sj := {i ∈ {1, . . . , n} : yi ∈ Xj}. Then {S1, S2} forms a partition of {1, . . . , n}. Let nj denote

the cardinality of Sj, j ∈ {1, 2}. Then n = n1 + n2 and

ψyyy(t) :=
n∑
i=1

ψ(yi, t) =


n1w1 + n2w2 > 0 if t < 1,

−n1w1 + n2w2 if 1 6 t < 2,

−n1w1 − n2w2 < 0 if 2 6 t.

Using condition (2.7) and k > 2, we have

−n1w1 + n2w2 = −n1(k − 1) + (n− n1) = n− n1k 6= 0.

Therefore, the point of sign change for the function ψyyy equals 1 if −n1w1 +n2w2 < 0 and equals

2 if −n1w1 + n2w2 > 0. This proves that ψ possesses the property (Tn).

To verify that ψ is not a Tk-function, let x1 ∈ X1 and x2 ∈ X2 be fixed and let zzz :=

(x1, x2, . . . , x2) ∈ Xk. Then

ψzzz(t) := ψ(x1, t) + (k − 1)ψ(x2, t) =


w1 + (k − 1)w2 > 0 if t < 1,

−w1 + (k − 1)w2 = 0 if 1 6 t < 2,

−w1 − (k − 1)w2 < 0 if 2 6 t.

Therefore, the function ψzzz does not have a point of sign change, and, consequently, ψ is not a

Tk-function, as desired. 2
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3 Existence and uniqueness of the point of sign change

of ψ-expectation functions

In this section, we investigate Problem 2 presented in the Introduction.

As it was mentioned in the Introduction, in case of simple random variables Problem 2 is

a special case of Problem 1. More precisely, if ψ ∈ Ψ(X,Θ) and ξ is a simple random variable

such that P(ξ = xi) = pi, i = 1, . . . , n, where n ∈ N, (x1, . . . , xn) ∈ Xn and p1, . . . , pn > 0,

p1 + · · · + pn = 1, then E(ψ(ξ, t)) =
∑n

i=1 piψ(xi, t), t ∈ Θ. In addition, if ψ is a T
(p1,...,pn)
n -

function, then, by definition, the function (1.4) has a unique point of sign change. Further,

Theorem 2.10 provides some necessary as well as some sufficient conditions under which ψ

possesses the property (T
(p1,...,pn)
n ).

Next, we present our second main result in which we give a set of sufficient conditions in

order that the function given by (1.4) have a unique point of sign change.

3.1 Theorem. Let (X,X ) be a measurable space, Θ be a nondegenerate open interval of R,

ψ : X × Θ → R be a function, and ξ : Ω → X be a random variable defined on a probability

space (Ω,A,P). Let us suppose that

(i) ψ is a T1-function and, for each x ∈ X, the equality ψ(x, ϑ1(x)) = 0 holds,

(ii) for each x, y ∈ X with ϑ1(x) < ϑ1(y), the function (2.3) is strictly increasing,

(iii) ψ is measurable in its first variable,

(iv) E(|ψ(ξ, t)|) <∞ for each t ∈ Θ,

(v) there exist s0, t0 ∈ Θ such that E(ψ(ξ, s0)) > 0 and E(ψ(ξ, t0)) 6 0.

Then the map Θ 3 t→ E(ψ(ξ, t)) admits a unique point of sign change in Θ.

Next, we provide a set of sufficient conditions (which does not involve the condition

ψ(x, ϑ1(x)) = 0 for each x ∈ X) under which the map Θ 3 t → E(ψ(ξ, t)) also has a unique

point of sign change.

3.2 Proposition. Let (X,X ) be a measurable space, Θ be a nondegenerate open interval of R,

ψ : X × Θ → R be a function, and ξ : Ω → X be a random variable defined on a probability

space (Ω,A,P). Let us suppose that

(i) for each x ∈ X, the function Θ 3 t 7→ ψ(x, t) is strictly decreasing,

(ii) ψ is measurable in its first variable,

(iii) E(|ψ(ξ, t)|) <∞ for each t ∈ Θ,
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(iv) there exist s0, t0 ∈ Θ such that E(ψ(ξ, s0)) > 0 and E(ψ(ξ, t0)) 6 0.

Then the function Θ 3 t→ E(ψ(ξ, t)) admits a unique point of sign change in Θ.

Next, we formulate a corollary of Theorem 3.1, which is in fact part (vi) of Theorem 2.10.

3.3 Corollary. Let X be a nonempty set, Θ be a nondegenerate open interval of R, and ψ ∈
Ψ(X,Θ) be a T1-function. Let us suppose that, for each x ∈ X, the equality ψ(x, ϑ1(x)) = 0

holds, and, for each x, y ∈ X with ϑ1(x) < ϑ1(y), the function (2.3) is strictly increasing. Then

ψ is a Tλ
n -function for each n ∈ N and λ ∈ Λn.

In what follows, we present an example to Proposition 3.2, which can be considered as a

theoretical counterpart of Example 2.19 for Bajraktarević-type functions ψ.

3.4 Example. (Bajraktarević-type functions) Let (X,X ) be a measurable space, Θ be a

nondegenerate open inrerval of R, f : Θ→ R be a strictly increasing function, and p : X → R++

and ϕ : X → conv(f(Θ)) be measurable functions. Let ψ : X ×Θ→ R,

ψ(x, t) := p(x)(ϕ(x)− f(t)), x ∈ X, t ∈ Θ.

Further, let (Ω,A,P) be a probability space, ξ : Ω → X be a random variable such that

E(p(ξ)|ϕ(ξ)|) <∞ and E(p(ξ)) <∞.

3.4 Proposition. Under the above assumptions, the function Θ 3 t → E(ψ(ξ, t)) admits a

unique point of sign change in Θ which is given by

f (−1)

(
E(p(ξ)ϕ(ξ))

E(p(ξ))

)
.

The following auxiliary result is instrumental for the proof of Proposition 3.4.

3.4 Lemma. Let (X,X ) be a measurable space and p : X → R++ and ϕ : X → R be measurable

functions. Further, let ξ be a random variable on a probability space (Ω,A,P) such that P(ξ ∈
X) = 1, E(p(ξ)) <∞ and E(p(ξ)|ϕ(ξ)|) <∞. Then

E(p(ξ)ϕ(ξ))

E(p(ξ))
∈ conv(ϕ(X)).

2

In the next example, we consider a particular form of ψ which has been recently investigated

by Mathieu [14]: namely, let ψ : R× R→ R,

ψ(x, t) := sign(x− t)f(|x− t|), x, t ∈ R,(3.1)

where f : R+ → R+. Mathieu [14, Lemma 2] has derived some sufficient conditions on f and

ξ under which the equation E(ψ(ξ, t)) = 0, t ∈ R, has a unique solution, for more details and

our new results in this special case, see the next Example 3.5.
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3.5 Example. Let X := R, Θ := R and ψ : R × R → R be given by (3.1). Given a random

variable ξ, Mathieu [14] has recently considered the problem of finding a unique element t0 ∈ Θ

such that E(ψ(ξ, t0)) = 0 holds, where ψ has the form given in (3.1) such that f admits the

following properties (called Assumption 2 in Mathieu [14]):

(a) f is continuous and differentiable Lebesgue almost everywhere,

(b) f(0) = 0,

(c) f is concave,

(d) there exist β, γ > 0 such that γ1{x6β} 6 f ′(x) 6 1 Lebesgue a.e. x > 0.

For historical fidelity, we note that Mathieu [14] investigated a more general setup, he considered

a random variable ξ having values in a Hilbert space H, and a function ψ : H × H → H,

ψ(x, t) := x−t
‖x−t‖f(‖x − t‖) for x 6= t, x, t ∈ H, where ‖ · ‖ is the norm of the Hilbert space H

(the value of ψ at (x, x), x ∈ H, was not specified in Mathieu [14]).

Mathieu [14, Lemma 2] has shown that (formulating his result only in the case of H = R)

if f admits the properties (a)-(d), E(|ξ|) < ∞ and the inequality E(%(|ξ − E(ξ)|)) < %(β)

holds, where %(x) :=
∫ x

0
f(u) du, x ∈ R+, then there exists a unique element t0 ∈ Θ such that

E(ψ(ξ, t0)) = 0 holds. Mathieu [14] also noted that the assumptions under which existence and

uniqueness of a solution in question was established are not the minimal ones, but he has not

searched for possible minimal assumptions.

Note that one can rewrite ψ given by (3.1) as ψ(x, t) = f̃(x− t), x, t ∈ R, where f̃ : R→ R
denotes the odd extension of f : R+ → R+ to R, which is given by

f̃(z) :=


f(z) if z > 0,

0 if z = 0,

−f(−z) if z < 0.

(3.2)

As a new result, we have the following proposition.

3.5 Proposition. If f : R+ → R+ is continuous and strictly increasing with f(0) = 0 and

limz→∞ f(z) ∈ (0,∞), then, for any random variable ξ, we have that E(|ψ(ξ, t)|) < ∞, t ∈ R,

and the equation

E(ψ(ξ, t)) = E(f̃(ξ − t)) = 0

has a unique solution with respect to t ∈ R.

Finally, we compare the assumptions of Lemma 2 in Mathieu [14] and those of Propo-

sition 3.5. Note that if a function f : R+ → R+ admits the properties (a)–(d), then it is

not necessarily strictly increasing (for example, it may happen that f(x) = f(β) for x > β,

see, e.g., the Huber function (4.9)), so we cannot say that Proposition 3.5 is a generalization
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of Lemma 2 in Mathieu [14]. However, the conditions of Proposition 3.5 might be checked

more easily than those of Lemma 2 in Mathieu [14] in order to prove that the equation

E(ψ(ξ, t)) = 0 have a unique solution with respect to t ∈ R. For example, if f : R+ → R,

f(z) := z/
√

1 + z2/2, z ∈ R+, then f is a continuous and strictly increasing function starting

from 0 and limz→∞ f(z) =
√

2. Indeed, we have f ′(z) = (1 + z2/2)−3/2 > 0 for each z ∈ R+.

This special choice of f plays a role in robust statistics, for more details, see, e.g., Rey [18,

Section 6.4] or Example 4.4. 2

In the next remark, restricted to a one-dimensional parameter set, we recall Theorem 3.2

in Clarke [4] on the local uniqueness of a root of the function (1.4). We will see that the

assumptions of Theorem 3.2 in Clarke [4] are much more involved and quite different compared

to those of our Theorem 3.1.

3.6 Remark. Let X := R, Θ be a non-degenerate open interval of R, and ψ : R×Θ→ R be a

measurable function in its first variable. Given t0 ∈ Θ and a distribution function G : R→ [0, 1],

let

I(ψ,G) :=

{
t ∈ Θ :

∫
R
ψ(x, t) dG(x) = 0

}
,

and let T (ψ,G) ∈ Θ be a solution of the minimization problem

min
t∈I(ψ,G)

|t− t0|,

provided that I(ψ,G) is nonempty.

In statistical estimation theory, a family of distribution functions {Ft : R → [0, 1] : t ∈ Θ}
is given, and one chooses G := Ft0 in the minimization problem above. We also note that the

minimization problem above is a special case of a more general one given in (1.3) in Clarke [4],

where a so-called selection function % : E ×Θ→ R comes into play, where E denotes the set of

distribution functions on R. Namely, the minimization problem in (1.3) in Clarke [4] with the

selection function %(G, t) := |t − t0|, G ∈ E , t ∈ Θ, gives the minimization problem above. In

Clarke [5] one can find several interesting examples for other selection functionals, for example,

%1(G, t) :=
∫
R(G(x) − Ft(x))2 dK(x), G ∈ E , t ∈ Θ, where K : R → R+ is a suitable weight

function, or %2(G, t) := |Med(G) − t|, G ∈ E , t ∈ Θ, where Med(G) denotes the median of G

(provided that it exists uniquely). Note that %2 selects the root of
∫
R ψ(x, t) dG(x) = 0, t ∈ Θ,

which is the closest to the median of G.

Given t0 ∈ Θ and a distribution function G : R→ [0, 1], suppose the following assumptions:

(A0) t0 ∈ I(ψ,G). In this case, we have T (ψ,G) = t0.

(A1) ψ has a continuous partial derivative with respect to its second variable on R×D, where

D ⊆ Θ is a non-degenerate compact interval containing t0 in its interior.

(A2) there exist a function g : R→ R+ and ε > 0 such that

• |ψ(x, t)| 6 g(x) for each x ∈ R and t ∈ D,
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• |∂2ψ(x, t)| 6 g(x) for each x ∈ R and t ∈ D,

•
∫
R g(x) dF (x) < ∞ for each F ∈ K(G, ε), where F ∈ K(G, ε) denotes the open

neighbourhood of G with radius ε with respect to the Kolmogorov’s distance dK of

distribution functions given by dK(F, F̃ ) := supx∈R |F (x) − F̃ (x)| for distribution

functions F and F̃ .

(A3)
∫
R ∂2ψ(x, t0) dG(x) 6= 0.

(A4) for each δ > 0 there exists ε > 0 such that for each F ∈ K(G, ε), we have that

sup
t∈D

∣∣∣ ∫
R
ψ(x, t) dF (x)−

∫
R
ψ(x, t) dG(x)

∣∣∣ < δ

and

sup
t∈D

∣∣∣ ∫
R
∂2ψ(x, t) dF (x)−

∫
R
∂2ψ(x, t) dG(x)

∣∣∣ < δ.

In particular, Condition (A4) implies that, for each t ∈ D, the functionals E 3 F 7→∫
R ψ(x, t) dF (x) and E 3 F 7→

∫
R ∂2ψ(x, t) dF (x) are continuous at G with respect to the

Kolmogorov’s distance dK .

Given t0 ∈ Θ and a distribution function G : R→ [0, 1], under the assumptions (A0)−(A4),

Clarke [4, Theorem 3.2] proved that for any κ > 0 there exists an ε > 0 such that T (ψ, F )

exists for each F ∈ K(G, ε) and T (ψ, F ) ∈ (t0 − κ, t0 + κ). Further, for this ε there exists a

κ∗ > 0 such that

I(ψ, F ) ∩ (t0 − κ∗, t0 + κ∗) = T (ψ, F ),

that is, the equation
∫
R ψ(x, t)F (dx) = 0, t ∈ Θ, has a unique solution in the interval (t0 −

κ∗, t0 +κ∗). In particular, by choosing F := G, one can see that the equation
∫
R ψ(x, t) dG(x) =

0, t ∈ Θ, has a unique solution locally, provided that it has a solution.

We note that, if the Kolmogorov’s distance in the assumptions (A2) and (A4) is replaced by

the Lévy’s distance for distribution functions, then an analogous statement holds (see Clarke

[4, page 1197]). 2

4 Examples from statistical estimation theory

In this section, we present several examples from statistical estimation theory, where our results

in Sections 2 and 3 can be well-applied. For example, we consider the cases of the empirical

median, the empirical quantiles, the empirical expectiles, ψ-estimators recently used by Mathieu

[14], some ψ-estimators that are important in robust statistics, and we also study some examples

from maximum likelihood theory.
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4.1 Example. (Empirical median) Let X := R, Θ := R and ψ : R × R → R, ψ(x, t) :=

sign(x − t), x, t ∈ R. For each x ∈ R, the function R 3 t 7→ ψ(x, t) is decreasing, but not

strictly decreasing. Then for each n ∈ N and x1, . . . , xn ∈ R, the equation (1.2) takes the form

n∑
i=1

sign(xi − t) = 0, t ∈ R.(4.1)

In this special case, the function ψ is not continuous in its second variable, and the corresponding

equation (4.1) has an important role in statistics. Namely, one can check that Medn : Rn → R,

Medn(x1, . . . , xn) :=
1

2

(
x∗dn

2
e + x∗bn

2
+1c

)
=

{
x∗k+1 if n = 2k + 1,
1
2
(x∗k + x∗k+1) if n = 2k,

k ∈ Z+,(4.2)

is a solution of the equation (4.1), where x∗1 6 x∗2 6 · · · 6 x∗n denotes the ordered sample of

x1, . . . , xn ∈ R, and dze and bzc denote the upper and lower integer parts of a real number

z ∈ R, respectively. Of course, if n = 2k, then there are other solutions of the equation (4.1).

For example, if x1 < x2 < · · · < x2k, then we have{
t ∈ R :

2k∑
i=1

sign(xi − t) = 0

}
= [xk, xk+1],(4.3)

where [xk, xk+1] is not a singleton. Note that Medn(x1, . . . , xn) is nothing else but the well-

known empirical median of x1, . . . , xn.

Further, we have that ψ is a Tn-function for each n = 2k + 1, k ∈ Z+, with ϑn(x) = x∗k+1,

x = (x1, . . . , xn) ∈ Rn. Note also that ψ is not a Tn-function for any n = 2k, k ∈ N. Indeed,

if x1 < x2 < · · · < x2k, then (4.3) implies that the function ψ(x1,...,x2k) does not have a point of

sign change. Furthermore, for each x, y ∈ R with ϑ1(x) = x < y = ϑ1(y), the function (2.4)

takes the form

(x, y) 3 t 7→ ψ(x, t)

ψ(x, t)− ψ(y, t)
=

sign(x− t)
sign(x− t)− sign(y − t)

=
−1

−1− 1
=

1

2
.

This function is a rational constant, in particular strictly 1
`
-increasing for each ` ∈ N. It

underlines the fact that the strictly 1
n
-increasing property of the function (2.4) in Proposition

2.13 is only a necessary, but not a sufficient condition for ψ being a Tn-function. Indeed, in

the present example, the function (2.4) is strictly 1
`
-increasing for each ` ∈ N, but it is not a

Tn-function for n = 2k, k ∈ N. Moreover, for each x, y ∈ R with ϑ1(x) = x < y = ϑ1(y), the

function (2.3) takes the form

(x, y) 3 t 7→ −ψ(x, t)

ψ(y, t)
= −sign(x− t)

sign(y − t)
= 1.

This function is a rational constant, in particular, increasing, but not strictly increasing. It is

in accordance with part (iv) of Theorem 2.10 and part (i) of Proposition 2.12 as well, since ψ is

a Tn-function for infinitely many n ∈ N, namely, for each n = 2k+1, k ∈ N; and for each x ∈ R,
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the function R 3 t 7→ ψ(x, t) is decreasing. Note also that it does not hold that for each m ∈ N
there exists an n ∈ N such that m divides n and ψ is a Tn-function (indeed, in case of an even

m ∈ N one cannot choose such an n). Moreover, one cannot apply part (vi) of Theorem 2.10.

This underlines that the increasing property of the function (2.3) is only a necessary, but not a

sufficient condition in order that ψ be a Tn-function for each n ∈ N. Finally, we mention that

the present example also shows that in Proposition 2.14 the restriction that m ∈ {1, . . . , n}
divides n cannot be removed in general. 2

4.2 Example. (Empirical quantiles) Given α ∈ (0, 1), n ∈ N and x1, . . . , xn ∈ R, an em-

pirical α-quantile based on x1, . . . , xn is defined as any solution of the minimization problem:

min
t∈R

n∑
i=1

ϕα(xi − t) = min
t∈R

n∑
i=1

(
α1{xi>t} + (α− 1)1{xi<t}

)
(xi − t)

= min
t∈R

n∑
i=1

1

2

(
|xi − t|+ (2α− 1)(xi − t)

)
,

(4.4)

where ϕα : R→ R is the so-called α-quantile check function given by

ϕα(x) := |α− 1{x<0}||x| =
(
α1{x>0} + (α− 1)1{x<0}

)
x =

1

2

(
|x|+ (2α− 1)x

)
, x ∈ R,

see, e.g., Koenker and Bassett [11, Section 3]. Some authors call a solution of (4.4) as a

geometric α-quantile, see, e.g., Passeggeri and Reid [17, Section 2].

It is known that q ∈ R is an empirical α-quantile based on x1, . . . , xn if and only if the

following two inequalities hold

1

n

∑
i:xi<q

1 6 α and α 6
1

n

∑
i:xi6q

1,(4.5)

see, e.g., Lange [13, Problems 12.12/13.].

It is also known that, given α ∈ (0, 1), n ∈ N and x1, . . . , xn ∈ R, an empirical α-quantile

given as a solution of the minimization problem (4.4) is uniquely defined if and only if α 6∈
{ 1
n
, 2
n
, . . . , n−1

n
}, and in case of uniqueness, we have that it is given by

q(α)
n (x1, . . . , xn) :=

1

2
(x∗dnαe + x∗bnα+1c),(4.6)

see Passeggeri and Reid [17, Lemma 4.1]. We also mention an interesting result of Passeggeri

and Reid [17, Lemma 4.2], which states that, given α ∈ (0, 1) and n ∈ N, the function q
(α)
n :

Rn → R given by (4.6) is Lipschitz continuous:

|q(α)
n (x1, . . . , xn)− q(α)

n (y1, . . . , yn)| 6 max
j∈{1,...,n}

|xj − yj|

for each x1, . . . , xn, y1, . . . , yn ∈ R.
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Note that if α = 1
2
, then the empirical median Medn(x1, . . . , xn) of x1, . . . , xn given in (4.2)

is a solution of the minimization problem

min
t∈R

n∑
i=1

|xi − t|.

Indeed, if α = 1
2
, then ϕ1/2(x) = 1

2
|x|, x ∈ R, and hence the minimization problem (4.4) with

α = 1
2

is equivalent to mint∈R
∑n

i=1 |xi − t|, and, as we have recalled, q ∈ R is a solution of this

minimization problem if and only if the inequalities (4.5) hold for q with α = 1
2
. Further, one

can easily check that the empirical median Medn(x1, . . . , xn) based on x1, . . . , xn satisfies the

inequalities (4.5) with α = 1
2
.

Motivated by the minimization problem (4.4), we investigate the function ψ : R× R→ R,

ψ(x, t) :=


α if x > t,

0 if x = t,

α− 1 if x < t.

(4.7)

For each x ∈ R, the function R 3 t 7→ ψ(x, t) is decreasing, but not strictly decreasing. By

choosing X := Θ := R, we have that ψ is a T1-function with ϑ1(x) := x, x ∈ R. Analogously

to the result of Passeggeri and Reid [17, Lemma 4.1], we are going to show the following result.

4.2 Proposition. Given α ∈ (0, 1), for each n > 2, the function ψ defined by (4.7) has the

property (Tn) if and only if α 6∈
{

1
n
, . . . , n−1

n

}
.

2

4.3 Example. (Empirical expectiles) Let α ∈ (0, 1), n ∈ N and x1, . . . , xn ∈ R. The

empirical α-expectile based on x1, . . . , xn is defined as any solution of the minimization problem:

min
t∈R

n∑
i=1

ϕ̃α(xi − t) = min
t∈R

n∑
i=1

(
α1{xi>t} + (1− α)1{xi<t}

)
(xi − t)2,

where ϕ̃α : R→ R is given by

ϕ̃α(x) := |α− 1{x<0}|x2 =
(
α1{x>0} + (1− α)1{x<0}

)
x2, x ∈ R,

see, e.g., Newey and Powell [15]. Expectiles are also called smoothed versions of quantiles or

least asymptotically weighted squares estimators.

Motivated by this minimization problem, we may investigate the applicability of Theorem

2.10 for the function ψ : R× R→ R,

ψ(x, t) :=


α(x− t) if x > t,

0 if x = t,

(1− α)(x− t) if x < t.
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For each x ∈ R, the function R 3 t 7→ ψ(x, t) is strictly decreasing. By choosing X := R
and Θ := R, we have ψ is a T1-function with ϑ1(x) := x, x ∈ R, and for each x, y ∈ R with

ϑ1(x) = x < y = ϑ1(y), the function (2.3) takes the form

(x, y) 3 t 7→ −ψ(x, t)

ψ(y, t)
= −(1− α)(x− t)

α(y − t)
= −1− α

α

(
1− y − x

y − t

)
,

which is a strictly increasing function. It is in accordance with part (i) of Proposition 2.12.

Since ψ(x, ϑ1(x)) = 0, x ∈ R, by part (vi) of Theorem 2.10, we have ψ is a Tλ
n -function for

each n ∈ N and λ ∈ Λn. In particular, using that ψ is continuous in its second variable, we

also have, for each n ∈ N and x1, . . . , xn ∈ R, that the equation
∑n

i=1 ψ(xi, t) = 0, t ∈ R, has a

unique solution, see part (ii) of Remark 2.4. 2

Next, we apply Theorem 2.10 for a function ψ that has been recently used for constructing

M-estimators by Mathieu [14] (see also Example 3.5).

4.4 Example. Let X := R, Θ := R and ψ : R× R→ R,

ψ(x, t) := sign(x− t)f(|x− t|), x, t ∈ R,(4.8)

where f : R+ → R is an arbitrary function with f(0) = 0. Note that if f is continuous as well,

then ψ is continuous in its second variable. Next, we discuss the applicability of Theorem 2.10

for the function ψ given in (4.8). Namely, we prove the following statement.

4.4 Proposition. Let f : R+ → R be a function with f(0) = 0 and let ψ be given by (4.8).

Then we have that

(a) ψ is a T1-function if and only if f(z) > 0 for all z > 0, and, in this case, ϑ1(x) = x and

ψ(x, ϑ1(x)) = 0 hold for all x ∈ R.

(b) if ψ is a T1-function and Tn-function for infinitely many n ∈ N, then f is increasing.

(c) ψ is a Tλ
2 -function for each λ ∈ Λ2 if and only if f is strictly increasing.

(d) ψ is a Tλ
n -function for each n ∈ N and λ ∈ Λn if and only if f is strictly increasing.

As a consequence of Proposition 4.4, if f : R+ → R is a strictly increasing and continuous

function such that f(0) = 0, then ψ given in (4.8) is continuous in its second variable, and

hence for each n ∈ N and x1, . . . , xn ∈ R, the equation
∑n

i=1 ψ(xi, t) = 0, t ∈ R (i.e., the

equation (1.2)) has a unique solution.

To complete this example, we recall some special choices for the function f appearing in

(4.8) such that the corresponding ψ-estimator has an important role in (robust) statistics:

(i) the Huber function fH : R+ → R,

fH(z) := z1{z6β} + β1{z>β}, z ∈ R+,(4.9)
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where β > 0 (see Huber [8]), which is a continuous and increasing (but not strictly

increasing) function starting from 0. Then the function ψ : R × R → R given in (4.8)

takes the form

ψ(x, t) =

{
x− t if |x− t| 6 β,

β sign(x− t) if |x− t| > β,
x, t ∈ R.

In general, ψ is not a T2-function. Indeed, for example, if β := 1, x1 := 0 and x2 := 3,

then

psi(x1,x2)(t) =
2∑
i=1

ψ(xi, t) =



1 + 1 = 2 > 0 if t 6 −1,

−t+ 1 > 0 if −1 < t 6 1,

−1 + 1 = 0 if 1 < t 6 2,

−1 + 3− t = 2− t < 0 if 2 < t < 4,

−1− 1 = −2 < 0 if t > 4.

Consequently, the function ψ(x1,x2) does not have a point of sign change, and, thus ψ is

not a T2-function, and, by Proposition 2.14, it yields that ψ is not a T2k-function for any

k ∈ N. On the other hand, for each k ∈ N, ψ is a T2k+1-function. Indeed, let k ∈ N and

x1, . . . , x2k+1 ∈ R be arbitrary. Then the function R 3 t 7→
∑2k+1

i=1 ψ(xi, t) is decreasing

(because each of its terms is decreasing), and, on the contrary, let us assume that it does

not have a point of sign change. Then it is constant on a proper subinterval I of R. In

this case, each term in question must be also constant on this subinterval, and, by taking

into account the form of ψ, it must be equal to β or to −β on I. However, a (2k+1)-term

sum whose terms are equal to β or to −β cannot be equal to zero, which leads us to a

contradiction. All in all, ψ is a Tn-function if n ∈ N is odd, and ψ is not a Tn-function if

n ∈ N is even.

(ii) the Catoni function fC : R+ → R,

fC(z) := ln

(
1 +

z

b
+

1

2

(z
b

)2
)
, z ∈ R+,

where b > 0 (see Catoni [2]), which is continuous and strictly increasing starting from 0.

(iii) a polynomial function fP : R+ → R,

fP (z) :=
z

1 +
(
z
β

)1− 1
p

, z ∈ R+,

where p ∈ N and β > 0, which is continuous and strictly increasing starting from 0.

(iv) another Catoni-type function f̃C : R+ → R,

f̃C(z) := ln

(
1 + z +

zα

α

)
, z ∈ R+,

where α ∈ (1, 2) (see Chen et al. [3]), which is continuous and strictly increasing starting

from 0.
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(v) f : R+ → R, f(z) := z/
√

1 + z2/2, z ∈ R+, which is a continuous and strictly increasing

function starting from 0. Indeed, we have f ′(z) = (1 + z2/2)−3/2 > 0 for each z ∈ R+.

Then the function ψ : R× R→ R given in (4.8) takes the form

ψ(x, t) =
x− t√

1 + (x−t)2
2

, x, t ∈ R.

In robust statistics, one calls ψ as the L1-L2 function, see, e.g., Rey [18, Section 6.4].

(vi) f : R+ → R, f(z) := z/(1 + z), z ∈ R+, which is a continuous and strictly increasing

function starting from 0. Then the function ψ : R×R→ R given in (4.8) takes the form

ψ(x, t) =
x− t

1 + |x− t|
, x, t ∈ R,

which is called a ”fair”-type function in robust statistics, see, e.g., Rey [18, Section 6.4].

In the above recalled special cases (ii)–(vi), by part (d) of Proposition 4.4, the corresponding

function ψ given in (4.8) is a Tλ
n -function for all n ∈ N and λ ∈ Λn. In particular, since in the

cases (ii)-(vi), ψ is continuous in its second variable, for each n ∈ N and x1, . . . , xn ∈ R, the

equation (1.2) with the given function ψ has a unique solution, see part (ii) of Remark 2.4. 2

In the remaining part of this section, we investigate the applicability of Theorem 2.10 for

finding solutions of likelihood equations in the theory of MLEs. Let Θ be a nondegenerate

open interval of R, and f : R × Θ → R be a function such that for each t ∈ Θ, the function

R 3 x 7→ f(x, t) is a density function. Let us introduce the set

Xf := {x ∈ R : f(x, t) > 0, ∀ t ∈ Θ},

and suppose that Xf is nonempty. Note that, in general, it can happen that Xf = ∅. For

example, if Θ = (0,∞) and f : R× (0,∞)→ R,

f(x, t) :=

{
1
t

if x ∈ (0, t),

0 if x 6∈ (0, t),
t ∈ (0,∞),

i.e, for each t ∈ (0,∞), the function R 3 x 7→ f(x, t) is the density function of a uniformly

distributed random variable on (0, t), then Xf = ∅. Turning back to the case when Xf 6= ∅, and

supposing that ∂2f exists, the equation (1.2) with X := Xf and the function ψ : Xf × Θ→ R
defined by

ψ(x, t) := ∂2(ln(f(x, t))) =
∂2f(x, t)

f(x, t)
, (x, t) ∈ Xf ×Θ,(4.10)

is nothing else but the likelihood equation based on the observations x1, . . . , xn in the theory

of MLEs.

In the next examples, we demonstrate the applicability of Theorem 2.10 together with

Proposition 2.12 for proving existence and uniqueness of a solution of the likelihood equation

(1.2) corresponding to the function ψ given in (4.10).
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4.5 Example. Let ξ be a normally distributed random variable with mean m ∈ R and with

variance σ2, where σ > 0. Let n ∈ N and x1, . . . , xn ∈ R be a realization of a sample of size

n for ξ. Here by a sample of size n, we mean independent and identically distributed random

variables ξ1, . . . , ξn with common distribution as that of ξ. It is known that, supposing

that σ is known, there exists a unique MLE of m based on x1, . . . , xn ∈ R, and it takes the

form m̂n := x1+···+xn
n

. We will establish the existence and uniqueness of a solution of the

corresponding likelihood equation using Theorem 2.10 together with Proposition 2.12. In this

case, we have Θ = R and f : R× R→ R,

f(x,m) :=
1√
2πσ

e−
(x−m)2

2σ2 , x,m ∈ R,

and consequently Xf = R. Then ψ : R× R→ R,

ψ(x,m) =
1
σ2 (x−m)f(x,m)

f(x,m)
=

1

σ2
(x−m), x,m ∈ R.

Hence ψ is a T1-function with ϑ1(x) := x, x ∈ R, ψ(x, ϑ1(x)) = 0, x ∈ R, and ψ is continuous

in its second variable. Further, using Proposition 2.12 and Theorem 2.10 (with X := Xf = R),

we can conclude that for each n ∈ N and x1, . . . , xn ∈ R, the (likelihood) equation (1.2) with

the given function ψ has a unique solution, which is equal to ϑn(x1, . . . , xn) = x1+···+xn
n

= m̂n,

as desired.

It is also known that, supposing that m is known, there exists a unique MLE of σ2 based on

x1, . . . , xn ∈ R, and it takes the form σ̂2
n := 1

n

∑n
i=1(xi −m)2. We will establish the existence

and uniqueness of a solution of the correspondig likelihood equation using Theorem 2.10. In

this case, we have Θ = (0,∞), and f : R× (0,∞)→ R,

f(x, σ2) :=
1√

2πσ2
e−

(x−m)2

2σ2 , x ∈ R, σ2 > 0,

and consequently Xf = R. Then ψ : R× (0,∞)→ R,

ψ(x, σ2) =
1

f(x, σ2)

(
1√
2π

(
−1

2

)
(σ2)−

3
2 e−

(x−m)2

2σ2 +
1√

2πσ2
e−

(x−m)2

2σ2
(x−m)2

2
(σ2)−2

)
=

1

2(σ2)2

(
(x−m)2 − σ2

)
, x ∈ R, σ2 > 0.

Hence ψ is a T1-function with ϑ1(x) := (x − m)2, x ∈ R, ψ(x, ϑ1(x)) = 0, x ∈ R, and ψ

is continuous in its second variable. Further, for each x, y ∈ R with ϑ1(x) < ϑ1(y), i.e.,

(x−m)2 < (y −m)2, we get that the function

(
(x−m)2, (y −m)2

)
3 σ2 7→ −ψ(x, σ2)

ψ(y, σ2)
= −(x−m)2 − σ2

(y −m)2 − σ2
= −1 +

(y −m)2 − (x−m)2

(y −m)2 − σ2

is strictly increasing. Consequently, by part (vi) of Theorem 2.10 (with X := Xf = R), we

conclude that for each n ∈ N and x1, . . . , xn ∈ R, the (likelihood) equation (1.2) with the given
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ψ has a unique solution, which is equal to ϑn(x1, . . . , xn) = 1
n

∑n
i=1(xi −m)2 = σ̂2

n, as desired.

Finally, we present an alternative argument. Note that the equation (1.2) with the given

function ψ has a solution if and only if the equation (1.2) with the function ψ̃ : R×(0,∞)→ R,

ψ̃(x, σ2) := 2(σ2)2ψ(x, σ2) = (x−m)2 − σ2, x ∈ R, σ2 > 0,

has a solution, and the two sets of solutions coincide. Further, ψ̃ is a T1-function and the

corresponding ϑ1(x) is equal to (x−m)2 for each x ∈ R. The function ψ̃ is strictly decreasing

in its second variable, and hence part (i) of Proposition 2.12 can be applied to ψ̃. This, together

with part (vi) of Theorem 2.10, yield that ψ̃ is a Tn-function for each n ∈ N, and hence, trivially,

ψ is a Tn-function for each n ∈ N as well, as expected. 2

4.6 Example. Let α > 0 and let ξ be an absolutely continuous random variable with a density

function

fξ(x) :=

{
2αx(1− x2)α−1 if x ∈ (0, 1),

0 otherwise.

Then one can check that given n ∈ N and a realization x1, . . . , xn ∈ (0, 1) of a sample of size n

for ξ, there exists a unique MLE of α and it takes the form

α̂n := − n∑n
i=1 ln(1− x2

i )
.

We will establish the existence and uniqueness of a solution of the corresponding likelihood

equation using Theorem 2.10 together with Proposition 2.12. In this case, we have Θ = (0,∞)

and f : R× (0,∞)→ R,

f(x, α) :=

{
2αx(1− x2)α−1 if x ∈ (0, 1), α > 0,

0 otherwise,

and consequently Xf = (0, 1). Then ψ : (0, 1)× (0,∞)→ R,

ψ(x, α) =
2x
(

(1− x2)α−1 + α(1− x2)α−1 ln(1− x2)
)

2αx(1− x2)α−1
=

1

α
+ ln(1− x2), x ∈ (0, 1), α > 0.

Hence ψ is a T1-function with ϑ1(x) := − 1
ln(1−x2)

, x ∈ (0, 1), ψ(x, ϑ1(x)) = 0, x ∈ (0, 1),

and ψ is continuous in its second variable. Further, using Theorem 2.10 and Proposition

2.12 (with X := Xf = (0, 1)), we can conclude that for each n ∈ N and x1, . . . , xn ∈ (0, 1),

the (likelihood) equation (1.2) with the given ψ has a unique solution, which is equal to

ϑn(x1, . . . , xn) = − n∑n
i=1 ln(1−x2i )

= α̂n, as desired. 2

4.7 Example. Let ξ be an absolutely continuous random variable with a density function

fξ(x) :=
1

2
· 1√

2π
e−

x2

2 +
1

2
· 1√

2πσ
e−

(x−m)2

2σ2 , x ∈ R,
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where m ∈ R and σ > 0. Note that fξ is a mixture density function of the standard normally

density function and the density function of a normally distributed random variable with mean

m and variance σ2 with equal 1
2

weights. Let n ∈ N and x1, . . . , xn ∈ R be a realization of a

sample of size n for ξ. In what follows, we assume that σ is known, and, using Theorem 2.10,

we show that, in general, the corresponding likelihood equation for m may have more solutions.

In this case, we have Θ = R and f : R× R→ R,

f(x,m) :=
1

2
· 1√

2π
e−

x2

2 +
1

2
· 1√

2πσ
e−

(x−m)2

2σ2 , x,m ∈ R,

and consequently Xf = R. Then ψ : R× R→ R,

ψ(x,m) =

1
2σ3
√

2π
(x−m)e−

(x−m)2

2σ2

f(x,m)
, x,m ∈ R.

Hence ψ is a T1-function with ϑ1(x) := x, x ∈ R, ψ(x, ϑ1(x)) = 0, x ∈ R, and ψ is contin-

uous in its second variable. Consequently, for each n ∈ N and x = (x1, . . . , xn) ∈ Xn, the

likelihood equation (1.2) has at least one solution in R. Further, for each x ∈ R, we have

limm→±∞ ψ(x,m) = 0. In what follows, we check that it is not true that for each x, y ∈ R with

ϑ1(x) < ϑ1(y), i.e., x < y, the function (2.3) is increasing. For each x, y ∈ R with x < y, the

function (2.3) takes the form

(x, y) 3 m 7→ −ψ(x,m)

ψ(y,m)
=
m− x
y −m

· f(y,m)

f(x,m)
· e

(y−m)2

2σ2

e
(x−m)2

2σ2

=
(m− x)

(
σe−

y2

2
+

(y−m)2

2σ2 + 1
)

(y −m)
(
σe−

x2

2
+

(x−m)2

2σ2 + 1
) ,

and, for each m ∈ (x, y), one can check that

d

dm

(
−ψ(x,m)

ψ(y,m)

)
=

1

(y −m)2
(
σe−

x2

2
+

(x−m)2

2σ2 + 1
)2

×

[
(y − x)

(
σe−

x2

2
+

(x−m)2

2σ2 + 1
)(
σe−

y2

2
+

(y−m)2

2σ2 + 1
)

− 1

σ
(m− x)(y −m)2e−

y2

2
+

(y−m)2

2σ2

(
σe−

x2

2
+

(x−m)2

2σ2 + 1
)

− 1

σ
(m− x)2(y −m)e−

x2

2
+

(x−m)2

2σ2

(
σe−

y2

2
+

(y−m)2

2σ2 + 1
)]
.

(4.11)

If for each x, y ∈ R with x < y, the function (2.3) were increasing, then we would have that

d

dm

(
−ψ(x,m)

ψ(y,m)

)
> 0, m ∈ (x, y), x < y, x, y ∈ R,
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which, by (4.11), is equivalent to

σ(y − x) >
(m− x)(y −m)2

σ + e
y2

2
− (y−m)2

2σ2

+
(m− x)2(y −m)

σ + e
x2

2
− (x−m)2

2σ2

, m ∈ (x, y), x < y, x, y ∈ R.

However, this inequality does not hold in general, since its left hand side tends to 0 as σ ↓ 0,

but its right hand side tends to ∞ as σ ↓ 0. To give an example, for example, on Figure 1,

we plotted the function (x, y) 3 m 7→ −ψ(x,m)
ψ(y,m)

with x = 1, y = 5 and σ = 1, which is not

increasing. All in all, it is not true that for each x, y ∈ R with x < y, the function (2.3) is

1 2 3 4 5

0.
00

0.
10

0.
20

0.
30

Figure 1: The function (1, 5) 3 m 7→ −ψ(x,m)
ψ(y,m)

with σ = 1.

increasing. Hence, by part (iv) of Theorem 2.10 (with X := Xf = R), we get that there exists

n0 ∈ N such that ψ is not a Tn-function for any n > n0, n ∈ N. In particular, it yields that

there exists n0 ∈ N such that for each n > n0, there exist real numbers x1, . . . , xn ∈ R such

that the solution of the corresponding likelihood equation (1.2) (based on x = (x1, . . . , xn)) is

not unique. By part (v) of Theorem 2.10, we also get that there exists a λ ∈ Λ2 such that ψ is

not a Tλ
2 -function. 2

5 Proofs for Section 2

Proof of Lemma 2.7. Assume that y is a level of increase for f and (i) and (ii) are not valid.

Define

A := {v ∈ Θ | y > f(v)} and B := {u ∈ Θ | y 6 f(u)}.

Then A∪B = Θ and A,B are nonempty, since (i) and (ii) do not hold. If v ∈ A and u ∈ B, then

the inequality u < v cannot be true, since y is a level of increase for f , thus v 6 u must be valid.

Consequently, supA 6 inf B, and, using that A ∪ B = Θ, we have that supA = inf B =: ϑ. If
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t < ϑ, then t 6∈ B, which implies that y > f(t). Similarly, if ϑ < t, then t 6∈ A, which yields

y < f(t). Hence, we have proved that ϑ is a point of sign change for the function y − f , i.e.,

(iii) must hold.

Conversely, if (i) or (ii) hold, then almost obviously, using the definition of a level of increase,

we have that y is a level of increase for f . Finally, assume that (iii) is valid, i.e., there exists

ϑ ∈ Θ which is a point of sign change for the function y − f , and, on the contrary, suppose

that y is not a level of increase for f . Then there exist u, v ∈ Θ such that u < v, y 6 f(u) and

y > f(v). Therefore, y− f(u) 6 0 and y− f(v) > 0, which imply that v 6 ϑ 6 u contradicting

u < v. 2

Proof of Lemma 2.8. Assume that the levels of increase for f form a dense subset in the

convex hull of f(Θ), but f is not increasing. Then there exist u, v ∈ Θ with u < v such that

f(u) > f(v). The convex hull of f(Θ) contains the open interval (f(v), f(u)). Hence, by the

assumption, one can find an element y ∈ (f(v), f(u)) which is a level of increase for f . Then

we have that u, v ∈ Θ with u < v and y 6 f(u), which imply y < f(v), and this contradicts

y ∈ (f(v), f(u)). The second statement of the lemma readily follows from the definitions of

strictly increasing property and level of increase. For the last statement of the lemma, assume

that u ∈ Θ satisfies g(y) 6 (g ◦ f)(u) = g(f(u)). Since g is strictly increasing and y, f(u) ∈ H,

we have that y 6 f(u). Using that y is a level of increase for f , for all v ∈ Θ with u < v, we

get that y < f(v). Hence the strictly increasing property of g together with y, f(v) ∈ H yield

that g(y) < g(f(v)) for all v ∈ Θ with u < v, as desired. 2

Proof of Lemma 2.9. To verify the ε-increasingness property of f , let u, v ∈ Θ be arbitrary

such that u < v. The intervals J1 := [y0, y1], . . . , Jn := [yn−1, yn] cover the image f(Θ).

Therefore, for some i ∈ {1, . . . , n}, we have that f(u) ∈ Ji, which implies yi−1 6 f(u) 6 yi.

Since yi−1 is a level of increase for f , we have that yi−1 < f(v). On the other hand, due to the

definition of ε, it follows that yi 6 yi−1 + ε. Thus, we get

f(u) 6 yi 6 yi−1 + ε < f(v) + ε,

which was to be proved. 2

Proof of Theorem 2.10. (i): Let x, y ∈ X be such that ϑ1(x) < ϑ1(y). Since ψ is a

T1-function, for all t ∈ (ϑ1(x), ϑ1(y)), we have ψ(x, t) < 0 and ψ(y, t) > 0.

To the contrary, assume that λ2
λ1

is not a level of increase for the function (2.3). Then there

exist u, v ∈ R such that ϑ1(x) < u < v < ϑ1(y) and

−ψ(x, v)

ψ(y, v)
6
λ2

λ1

6 −ψ(x, u)

ψ(y, u)
.

Rearranging these inequalities, we get that

λ1ψ(x, u) + λ2ψ(y, u) 6 0 6 λ1ψ(x, v) + λ2ψ(y, v).

In view of the property (T
(λ1,λ2)
2 ) of ψ, this implies that

v 6 ϑ
(λ1,λ2)
2,ψ (x, y) 6 u,
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which contradicts the inequality u < v.

To the contrary, assume that λ1
λ2

is not a level of increase for the function (2.3). Similarly

as before, we have that there exist u, v ∈ R such that ϑ1(x) < u < v < ϑ1(y) and

λ1ψ(y, u) + λ2ψ(x, u) 6 0 6 λ1ψ(y, v) + λ2ψ(x, v).

In view of the property (T
(λ1,λ2)
2 ) of ψ, this implies that v 6 ϑ

(λ1,λ2)
2,ψ (y, x) 6 u, which again

contradicts the inequality u < v.

(ii): Let ψ be a T
(λ1,...,λn)
n -function for some n ∈ N \ {1} and (λ1, . . . , λn) ∈ (0,∞)n. Then

for each k ∈ {1, . . . , n− 1}, we have ψ is a T
(
∑k
i=1 λi,

∑n
i=k+1 λi)

2 -function, since for each x, y ∈ X
and k ∈ {1, . . . , n− 1}, it holds that(

k∑
i=1

λi

)
ψ(x, t) +

(
n∑

i=k+1

λi

)
ψ(y, t) =

n∑
i=1

λiψ(xi, t), t ∈ Θ,

where xi := x, i ∈ {1, . . . , k} and xi := y, i ∈ {k + 1, . . . , n}. Consequently, the assertion

readily follows from part (i) of the present theorem.

(iii): If ψ is a Tn-function for some n ∈ N \ {1}, then it is a T
(λ1,...,λn)
n -function with

λ1 = · · · = λn := 1, thus the assertion follows from part (ii) of the present theorem.

(iv): Let (ni)i∈N ⊆ N be a strictly increasing sequence such that ψ is a Tni-function for all

i ∈ N. Let x, y ∈ X such that ϑ1(x) < ϑ1(y). Then, by assertion (iii) of this theorem we have

that the numbers{
k

ni − k

∣∣∣∣ k ∈ {1, . . . , ni − 1}, i ∈ N
}

=

{
1

ni − 1
,

2

ni − 2
, . . . ,

ni − 2

2
, ni − 1

∣∣∣∣ i ∈ N
}

are levels of increase for the function (2.3). We are going to apply Lemma 2.8. The convex

hull of the range of the function (2.3) is contained in (0,∞), so if we check that the set

{ k
ni−k | k ∈ {1, . . . , ni − 1}, i ∈ N} is dense in (0,∞), then Lemma 2.8 will imply that the

function (2.3) is increasing. Since the function g : (0,∞) → (0, 1), g(u) := u
u+1

, u > 0, is

bijective, it is enough to check that the set{
g

(
k

ni − k

) ∣∣∣∣ k ∈ {1, . . . , ni − 1}, i ∈ N
}

=

{
k

ni

∣∣∣∣ k ∈ {1, . . . , ni − 1}, i ∈ N
}

is dense in g((0,∞)) = (0, 1). This readily follows, since if (a, b) ⊆ (0, 1) is an open interval,

then there exists i0 ∈ N such that 1
ni0

< b − a (due to ni → ∞ as i → ∞), and hence there

exists k ∈ {1, . . . , ni0 − 1} such that k
ni0
∈ (a, b).

Now we turn to prove the second statement of the assertion (iv). Let `,m ∈ N. We show

that `
m

is a level of increase for the function (2.3). By assumption, there exists i0 ∈ N such

that m+ ` divides ni0 and ψ is a Tni0 -function. By part (iii) of this theorem, we have that the

elements of the set {
k

ni0 − k

∣∣∣∣ k ∈ {1, . . . , ni0 − 1}
}
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are levels of increase for the function (2.3). By choosing k :=
`ni0
m+`
∈ {1, . . . , ni0 − 1}, we have

k

ni0 − k
=

`ni0
(m+ `)ni0 − `ni0

=
`

m
,

yielding that `
m

is a level of increase for the function (2.3), as desired.

(v): Assume that ψ is a Tλ
2 -function for each λ ∈ Λ2. Let x, y ∈ X be such that ϑ1(x) <

ϑ1(y). By assertion (i), it follows that λ1/λ2 is a level of increase for the function (2.3) for each

λ1, λ2 > 0. Since λ1 and λ2 are arbitrary positive numbers, we get that each positive number

is a level of increase for the positive function (2.3). In view of the second statement of Lemma

2.8, this implies that the function (2.3) is strictly increasing.

(vi): This assertion is an immediate consequence of Theorem 3.1 as stated in Corollary 3.3,

therefore its proof is omitted here. 2

Proof of Corollary 2.11. If (i) holds, then part (vi) of Theorem 2.10 implies that (iii) is

valid as well. If (iii) holds, then (ii) is readily satisfied. Finally, if (ii) holds, then part (v) of

Theorem 2.10 implies the validity of (i). 2

Proof of Proposition 2.12. (i): First, let us suppose that for each x ∈ X, the function

Θ 3 t 7→ ψ(x, t) is decreasing. Let ϑ1(x) < s < t < ϑ1(y). Then, since ψ is a T1-function, we

have

0 > ψ(x, s) > ψ(x, t) and ψ(y, s) > ψ(y, t) > 0.

Consequently, we get

0 < −ψ(x, s)ψ(y, t) 6 −ψ(x, t)ψ(y, s),

which is equivalent to

−ψ(x, s)

ψ(y, s)
6 −ψ(x, t)

ψ(y, t)
,

yielding that the function (2.3) is increasing. The case when the function Θ 3 t 7→ ψ(x, t) is

strictly decreasing for each x ∈ X can be handled similarly.

(ii): Let us suppose that for each x ∈ X, the function Θ 3 t 7→ ψ(x, t) is strictly decreasing.

Let n ∈ N, λ = (λ1, . . . , λn) ∈ Λn and (x1, . . . , xn) ∈ Xn. Since λi > 0, i ∈ {1, . . . , n} and

λ1 + · · ·+λn > 0, we get that the function Θ 3 t 7→
∑n

i=1 λiψ(xi, t) is strictly decreasing. Using

that ψ is a T1-function, we have that

n∑
i=1

λiψ(xi, t)

{
> 0 if t < min(ϑ1(x1), . . . , ϑ1(xn)),

< 0 if t > max(ϑ1(x1), . . . , ϑ1(xn)).

Consequently, we have

t∗ := sup
{
t ∈ Θ :

n∑
i=1

λiψ(xi, t) > 0
}
6 max(ϑ1(x1), . . . , ϑ1(xn)),

t∗ := inf
{
t ∈ Θ :

n∑
i=1

λiψ(xi, t) < 0
}
> min(ϑ1(x1), . . . , ϑ1(xn)),
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yielding that t∗ 6 t∗. Using the definition of infimum, supremum and that the map Θ 3
t 7→

∑n
i=1 λiψ(xi, t) is strictly decreasing, we get t∗ = t∗. Indeed, if t∗ < t∗ were true, then,

by the definition of infimum and supremum,
∑n

i=1 λiψ(xi, t) = 0, t ∈ (t∗, t∗), would hold,

contradicting the strictly decreasing property of the function Θ 3 t 7→
∑λ

i=1 λiψ(xi, t). All in

all, we get ϑλλλn,ψ(x1, . . . , xn) = t∗ = t∗, and then ψ possesses the property (Tλλλn ). 2

Proof of Proposition 2.13. Let x, y ∈ X be such that ϑ1(x) < ϑ1(y). Since ψ is a T1-

function, for all t ∈ (ϑ1(x), ϑ1(y)), we have ψ(x, t) < 0 and ψ(y, t) > 0, and hence the function

(2.4) takes values in (0, 1). By part (iii) of Theorem 2.10, we have that the elements of the set

{ k
n−k | k ∈ {1, . . . , n− 1}} are levels of increase for the function (2.3). Note that

ψ(x, t)

ψ(x, t)− ψ(y, t)
= g

(
−ψ(x, t)

ψ(y, t)

)
, t ∈ (ϑ1(x), ϑ1(y)),

where g : (0,∞) → R, g(u) := u
u+1

, u > 0. Since g is strictly increasing and (0,∞) contains

the range of the function (2.3), by Lemma 2.8, we get that the elements of the set{
g

(
k

n− k

) ∣∣∣∣ k ∈ {1, . . . , n− 1}
}

=

{
k

n

∣∣∣∣ k ∈ {1, . . . , n− 1}
}

are levels of increase for the function (2.4). Since the function (2.3) is positive, we readily

have that 0 is also a level of increase for the function (2.3). Consequently, using that the

function (2.4) takes values in (0, 1), the conditions of Lemma 2.9 are satisfied with the choices

yk := k
n
, k ∈ {0, 1, . . . , n}, and then we get that the function (2.4) is strictly ε-increasing with

ε := max
{
k
n
− k−1

n
: k ∈ {1, . . . , n}

}
= 1

n
, as desired. 2

Proof of Proposition 2.14. Now let us suppose that m ∈ {1, . . . , n} and m is a divisor

of n. Then there exists k ∈ N such that n = km. Consequently, for each (y1, . . . , ym) ∈ Xm,

with the notation

(x1, . . . , xn) := (y1, . . . , y1︸ ︷︷ ︸
k

, y2, . . . , y2︸ ︷︷ ︸
k

, . . . , ym, . . . , ym︸ ︷︷ ︸
k

) ∈ Xn,

using that ψ is a Tn-function, we have that

k

m∑
i=1

ψ(yi, t) =
n∑
i=1

ψ(xi, t)

{
> 0 if t < ϑn(x1, . . . , xn),

< 0 if t > ϑn(x1, . . . , xn).

Hence ψ is a Tm-function with ϑm(y1, . . . , ym) := ϑn(x1, . . . , xn). 2

Proof of Proposition 2.15. For each yyy := (y1, . . . , ym) ∈ Xm and t ∈ Θ, we have

ψyyy,µµµ(t) :=
m∑
α=1

µαψ(yα, t) =
m∑
α=1

(∑
i∈Hα

λi

)
ψ(yα, t) =

n∑
j=1

λjψ(xj, t) = ψxxx,λλλ(t),(5.1)

where xxx := (x1, . . . , xn) ∈ Xn is such that xj := yα if j ∈ Hα. By the assumption, the value

ϑλλλn(x1, . . . , xn) is a point of sign change for the function ψxxx,λλλ. Therefore, by (5.1), we can see

that the function ψyyy,µµµ has the same point of sign change, and hence we have

ϑµµµm(y1, . . . , ym) = ϑλλλn(x1, . . . , xn),
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yielding that ψ is a Tµ
m-function. 2

Proof of Proposition 2.19. First, we check that ψ is a T1-function with ϑ1 = f (−1) ◦ ϕ.

Let x ∈ X be fixed. If t < (f (−1) ◦ ϕ)(x), t ∈ Θ, then ψ(x, t) > 0, since otherwise ψ(x, t) 6 0

would yield that ϕ(x) 6 f(t), and hence, by Lemma 2.18, we would have that (f (−1) ◦ ϕ)(x) 6
(f (−1) ◦ f)(t) = t, leading us to a contradiction. Similarly, if t > (f (−1) ◦ ϕ)(x), t ∈ Θ, then

ψ(x, t) < 0, since otherwise ψ(x, t) > 0 would yield that ϕ(x) > f(t), and hence, by Lemma

2.18, we would have that (f (−1) ◦ ϕ)(x) > (f (−1) ◦ f)(t) = t, leading us to a contradiction. All

in all, for each x ∈ X, we have that

ψ(x, t)

{
> 0 if t < (f (−1) ◦ ϕ)(x), t ∈ Θ,

< 0 if t > (f (−1) ◦ ϕ)(x), t ∈ Θ,

as desired.

Consequently, using also that for each x ∈ X, the function Θ 3 t 7→ ψ(x, t) = p(x)(ϕ(x)−
f(t)) is strictly decreasing, part (ii) of Proposition 2.12 implies that the function ψ has the

property (Tλλλn ) for each n ∈ N and λλλ ∈ Λn.

It remains to check that (2.6) holds. First, note that the right hand side of (2.6) is well-

defined, since

λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)

=
λ1p(x1)

λ1p(x1) + · · ·+ λnp(xn)
ϕ(x1) + · · ·+ λnp(xn)

λ1p(x1) + · · ·+ λnp(xn)
ϕ(xn)

∈ conv(ϕ(X)) ⊆ conv(f(Θ)),

and f (−1) is defined on conv(f(Θ)) (see Lemma 2.18). Let n ∈ N, (x1, . . . , xn) ∈ Xn and λ ∈ Λn

be fixed. If

t < f (−1)

(
λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)

)
, t ∈ Θ,

then
∑n

i=1 λiψ(xi, t) > 0, since otherwise
∑n

i=1 λiψ(xi, t) 6 0 would yield that

λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)
6 f(t).

Hence, by Lemma 2.18, we would have that

f (−1)

(
λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)

)
6 (f (−1) ◦ f)(t) = t,

leading us to a contradiction. Similarly, we can easily see that the inequality

t > f (−1)

(
λ1p(x1)ϕ(x1) + · · ·+ λnp(xn)ϕ(xn)

λ1p(x1) + · · ·+ λnp(xn)

)
, t ∈ Θ,

implies
∑n

i=1 λiψ(xi, t) < 0. These two properties together with the fact that ψ has the property

(Tλ
n ) yield the equality (2.6). 2
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6 Proofs for Section 3

Proof of Theorem 3.1. Define the sets U, V ⊆ Θ by

U :=
{
s ∈ Θ : E(ψ(ξ, s)) > 0

}
and V :=

{
t ∈ Θ : E(ψ(ξ, t)) 6 0

}
.

Then, in view of assumption (v), we have that s0 ∈ U and t0 ∈ V . In what follows, we show

that s 6 t holds for all s ∈ U and t ∈ V . To the contrary, assume that t < s, and, for any

Borel subset H ⊆ Θ, let us define

ΩH := {ω ∈ Ω : ϑ1(ξ(ω)) ∈ H}.

Then ΩH ∈ A due to the measurability of ϑ1 : X → Θ and ξ : Ω→ X. Indeed, for each r ∈ Θ

we have that

ϑ−1
1 ((−∞, r)) =

{
x ∈ X : ϑ1(x) < r

}
=
{
x ∈ X : ψ(x, r) < 0

}
∈ X ,

where we used assumptions (i), (iii) and that the sigma-algebra generated by the family

{(−∞, r) ∩Θ, r ∈ Θ} coincides with the Borel sigma-algebra on Θ.

Consider the following partition of Θ, which is induced by t and s:

I := Θ ∩ (−∞, t), J := [t, s], K := Θ ∩ (s,∞).

Then, using assumption (i), we have

ΩI = {ω ∈ Ω : ϑ1(ξ(ω)) < t} = {ω ∈ Ω : ψ(ξ(ω), t) < 0},

ΩK = {ω ∈ Ω : ϑ1(ξ(ω)) > s} = {ω ∈ Ω : ψ(ξ(ω), s) > 0}.

We show that P(ΩI) > 0 and P(ΩK) > 0. Indeed, on the contrary, if P(ΩI) = 0, then

P(ψ(ξ, t) > 0) = 1, which implies that E(ψ(ξ, t)) > 0. By the inclusion t ∈ V , we also have that

E(ψ(ξ, t)) 6 0 and hence E(ψ(ξ, t)) = 0. Therefore, P(ψ(ξ, t) = 0) = 1, i.e., P(ϑ1(ξ) = t) = 1.

It follows from the inequality t < s that P(ϑ1(ξ) < s) = 1, and hence P(ψ(ξ, s) < 0) = 1. This

implies that E(ψ(ξ, s)) < 0, which contradicts that s belongs to U . The equality P(ΩK) = 0

leads to a contradiction similarly.

The inequalities P(ΩI) > 0 and P(ΩK) > 0 imply that ΩI 6= ∅ and ΩK 6= ∅. Then, for all

ω′ ∈ ΩI and ω′′ ∈ ΩK , we have that

ϑ1(ξ(ω′)) < t < s < ϑ1(ξ(ω′′)).

Therefore, using assumption (ii) with x := ξ(ω′) and y := ξ(ω′′), the function (2.3) is strictly

increasing, hence we get

ψ(ξ(ω′), s)

ψ(ξ(ω′′), s)
<
ψ(ξ(ω′), t)

ψ(ξ(ω′′), t)
.(6.1)
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Using that ψ(ξ(ω′′), s) > 0 and ψ(ξ(ω′′), t) > 0, we can obtain that

ψ(ξ(ω′), s)ψ(ξ(ω′′), t) < ψ(ξ(ω′), t)ψ(ξ(ω′′), s), (ω′, ω′′) ∈ ΩI × ΩK .(6.2)

Integrating on ΩI and then on ΩK with respect to P, it follows that∫
ΩI

ψ(ξ(ω′), s) dP(ω′)·
∫

ΩK

ψ(ξ(ω′′), t) dP(ω′′) <

∫
ΩI

ψ(ξ(ω′), t) dP(ω′)·
∫

ΩK

ψ(ξ(ω′′), s) dP(ω′′),

that is,

E(ψ(ξ, s)1ΩI ) · E(ψ(ξ, t)1ΩK ) < E(ψ(ξ, t)1ΩI ) · E(ψ(ξ, s)1ΩK ).(6.3)

The inequality in (6.3) is indeed strict because the left hand side of (6.2) is strictly smaller

than its right hand side over the set ΩI × ΩK which has positive measure with respect to the

product probability P⊗P.

Furthermore, using also that t < s, for each ω′ ∈ ΩJ and ω′′ ∈ ΩK , we have that ψ(ξ(ω′), s) 6
0, ψ(ξ(ω′′), t) > 0, ψ(ξ(ω′), t) > 0, and ψ(ξ(ω′′), s) > 0. Therefore,

ψ(ξ(ω′), s)ψ(ξ(ω′′), t) 6 0 6 ψ(ξ(ω′), t)ψ(ξ(ω′′), s), (ω′, ω′′) ∈ ΩJ × ΩK .

Integrating on ΩJ and then on ΩK with respect to P, it follows that

E(ψ(ξ, s)1ΩJ ) · E(ψ(ξ, t)1ΩK ) 6 E(ψ(ξ, t)1ΩJ ) · E(ψ(ξ, s)1ΩK ).(6.4)

Adding up the inequalities (6.3) and (6.4), and using that ΩI and ΩJ are disjoint, we get

A(s)B(t) := E(ψ(ξ, s)1ΩI∪ΩJ ) · E(ψ(ξ, t)1ΩK ) < E(ψ(ξ, t)1ΩI∪ΩJ ) · E(ψ(ξ, s)1ΩK ) =: A(t)B(s).

Further, we have A(t) + B(t) = E(ψ(ξ, t)) 6 0 and A(s) + B(s) = E(ψ(ξ, s)) > 0, since t ∈ V ,

s ∈ U , and ΩI ∪ ΩJ and ΩK are disjoint.

To summarize, t, s ∈ Θ are such that t < s and the following inequalities hold

A(s)B(t) < B(s)A(t), A(t) +B(t) 6 0, A(s) +B(s) > 0.(6.5)

Here B(t) > 0 because it equals the integral of a positive function over the set ΩK which has

positive measure with respect to the probability P. On the other hand, A(s) < 0, because

A(s) = E(ψ(ξ, s)1ΩI∪ΩJ ) = E(ψ(ξ, s)1ΩI ) + E(ψ(ξ, s)1ΩJ )

and the first term is negative being equal to the integral of a negative function over the set ΩI

(which has positive measure with respect to P) and the second term is nonpositive being equal

to the integral of a nonpositive function over the set ΩJ .

Consequently, by the last two inequalities of (6.5), we get

0 < B(t) 6 −A(t) and 0 < −A(s) 6 B(s),
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yielding that

0 < −A(s)B(t) 6 −A(t)B(s),

i.e., A(s)B(t) > B(s)A(t). This contradicts to the first inequality in (6.5).

Consequently, we have that s0 6 u0 := supU 6 inf V =: v0 6 t0. It remains to show

that u0 = v0. If, to the contrary, we assume that u0 < v0, then for each r ∈ (u0, v0), we get

r /∈ U and r /∈ V , yielding that E(ψ(ξ, r)) < 0 and E(ψ(ξ, r)) > 0, respectively, which is a

contradiction.

All in all, u0 = v0 is a unique point of sign change for the function Θ 3 t 7→ E(ψ(ξ, t)), as

desired. 2

Proof of Proposition 3.2. By the assumption (i), for each ω ∈ Ω, we have that the

function Θ 3 t 7→ ψ(ξ(ω), t) is strictly decreasing. By the monotonicity of the expectation, it

implies that the function Θ 3 t 7→ E(ψ(ξ, t)) is decreasing, and in fact, it is strictly decreasing.

Indeed, if t1 < t2, t1, t2 ∈ Θ, are such that E(ψ(ξ, t1)) = E(ψ(ξ, t2)), then E(ψ(ξ, t1)−ψ(ξ, t2)) =

0, where P(ψ(ξ, t1)−ψ(ξ, t2) > 0) = 1. Consequently, P(ψ(ξ, t1)−ψ(ξ, t2) = 0) = 1, leading us

to a contradiction, since ψ(ξ(ω), t1) > ψ(ξ(ω), t2), ω ∈ Ω.

Define the sets U, V ⊆ Θ by

U :=
{
s ∈ Θ : E(ψ(ξ, s)) > 0

}
and V :=

{
t ∈ Θ : E(ψ(ξ, t)) 6 0

}
.

By the assumption (iv), we have that s0 ∈ U and t0 ∈ V . Since the function Θ 3 t 7→ E(ψ(ξ, t))

is strictly decreasing, we can easily that s 6 t for all s ∈ U , t ∈ V . Indeed, if for some s ∈ U and

t ∈ V , the inequality s > t were true, then we would have that 0 6 E(ψ(ξ, s)) < E(ψ(ξ, t)) 6 0,

leading us to a contradiction. Hence we have s0 6 u0 := supU 6 inf V =: v0 6 t0. It remains

to show that u0 = v0. If, to the contrary, we assume that u0 < v0, then for each r ∈ (u0, v0),

we get r /∈ U and r /∈ V , yielding that E(ψ(ξ, r)) < 0 and E(ψ(ξ, r)) > 0, respectively, which

is a contradiction. Consequently, u0 = v0 is a unique point of sign change for the function

Θ 3 t→ E(ψ(ξ, t)), as desired. 2

Proof of Corollary 3.3. To verify the statement, we have to show that, for each n ∈ N,

x1, . . . , xn ∈ X and λ = (λ1, . . . , λn) ∈ Λn, the function Θ 3 t 7→
∑n

i=1 λiψ(xi, t) has a unique

point of sign change in Θ. Without loss of generality, we may assume that x1, . . . , xn are

pairwise distinct elements of X and λ1, . . . , λn > 0 with λ1 + · · ·+ λn = 1.

Define the probability space (Ω,A,P) by

Ω := {x1, . . . , xn}, A := 2Ω, P({xi}) := λi i ∈ {1, . . . , n},

and the random variable ξ : Ω→ Ω by ξ(ω) := ω, ω ∈ Ω.

Then the conditions (i) and (ii) of Theorem 3.1 follow from our assumptions. The measur-

ability condition (iii) of Theorem 3.1 is trivial due to the fact that A = 2Ω. Since

E(|ψ(ξ, t)|) =
n∑
i=1

λi|ψ(xi, t)|, t ∈ Θ,
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the condition (iv) of Theorem 3.1 is obviously valid. Finally, the condition (v) of Theorem 3.1

is satisfied by

s0 := min{ϑ1(x1), . . . , ϑ1(xn)} and t0 := max{ϑ1(x1), . . . , ϑ1(xn)}.

Indeed, for each i ∈ {1, . . . , n}, we have that ψ(xi, s0) > 0 > ψ(xi, t0), since ψ is a T1-function

and ψ(x, ϑ1(x)) = 0, x ∈ X. This implies that

E(ψ(ξ, s0)) =
n∑
i=1

λiψ(xi, s0) > 0 >
n∑
i=1

λiψ(xi, t0) = E(ψ(ξ, t0)).

Therefore, according to the conclusion of Theorem 3.1, the mapping Θ 3 t 7→ E(ψ(ξ, t)) =∑n
i=1 λiψ(xi, t) has a unique point of sign change in Θ, as desired. 2

Proof of Lemma 3.4. Let us define the probability measure Q on the measurable space

(Ω,A) by

Q(A) :=

∫
A

p(ξ)

E(p(ξ))
dP =

E(p(ξ)1A)

E(p(ξ))
, A ∈ A.

By denoting the expectation with respect to Q by EQ, we have

EQ(|ϕ(ξ)|) =
E(p(ξ)|ϕ(ξ)|)

E(p(ξ))
,

and hence, by the assumptions, ϕ(ξ) is integrable with respect to Q, and we also get

EQ(ϕ(ξ)) =
E(p(ξ)ϕ(ξ))

E(p(ξ))
.

Applying Lemma 1 in Janković and Merkle [10] (for integrable one-dimensional random vari-

ables), we have that EQ(ϕ(ξ)) ∈ conv(ϕ(ξ(Ω))) ⊆ conv(ϕ(X)), yielding the statement. 2

Proof of Proposition 3.4. We apply Proposition 3.2. The assumptions (i), (ii) and (iii)

of Proposition 3.2 readily hold.

To verify the assumption (iv) of Proposition 3.2, we first show that, for any y ∈ J :=

conv(f(Θ)), there exist s0, t0 ∈ Θ such that f(s0) 6 y 6 f(t0). By the Carathéodory’s

Theorem on convex hulls, there exist at most two elements y1, y2 ∈ f(Θ) ⊆ J with y1 6 y2

such that y can be represented as a convex combination of y1 and y2. This also yields that

y1 6 y 6 y2, and therefore, there exist s0, t0 ∈ Θ such that f(s0) 6 y 6 f(t0). Now observe

that

f (−1)

(
E(p(ξ)ϕ(ξ))

E(p(ξ))

)
is well-defined, since, by Lemma 3.4, we get that

E(p(ξ)ϕ(ξ))

E(p(ξ))
∈ conv(ϕ(X)) ⊆ conv(f(Θ)),
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and, by Lemma 2.18, f (−1) is defined on conv(f(Θ)). Next, for y := E(p(ξ)ϕ(ξ))/E(p(ξ)), let

us choose s0, t0 ∈ Θ as it was described above. Then

E(ψ(ξ, s0)) = E(p(ξ)ϕ(ξ))− f(s0)E(p(ξ)) = E(p(ξ))(y − f(s0)) > 0,

and

E(ψ(ξ, t0)) = E(p(ξ)ϕ(ξ))− f(t0)E(p(ξ)) = E(p(ξ))(y − f(t0)) 6 0.

Therefore, the assumption (iv) of Proposition 3.2 holds as well, and, according to the conclusion

of Proposition 3.2, we get that the function Θ 3 t → E(ψ(ξ, t)) admits a unique point of sign

change in Θ. It remains to check that this unique point of sign change takes the form given in

the proposition.

If, for some t ∈ Θ, we have t < f (−1)(y), then E(ψ(ξ, t)) > 0, since otherwise E(ψ(ξ, t)) 6 0

would yield that E(p(ξ)ϕ(ξ)) 6 f(t)E(p(ξ)), i.e., y 6 f(t). Then, by Lemma 2.18, we would

get f (−1)(y) 6 f (−1)(f(t)) = t leading us to a contradiction.

If for some t ∈ Θ, we have t > f (−1)(y), then one can similarly argue to obtain that

E(ψ(ξ, t)) < 0.

Consequently, the unique point of sign change in question is f (−1)(y), as desired. 2

Proof of Proposition 3.5. First, we give a direct proof. Denote the limit limz→∞ f(z) by

f∞ ∈ (0,∞). In view of the increasingness of f , it follows that 0 6 f(z) 6 f∞ for all z ∈ R+.

Therefore, |f̃(z)| 6 f∞ for all z ∈ R, which implies that |ψ(x, t)| 6 f∞ for all x, t ∈ R. Hence,

for any random variable ξ and for any t ∈ R, we have that E(|ψ(ξ, t)|) <∞.

Since for each x ∈ R, the function R 3 t 7→ ψ(x, t) is strictly decreasing, we have

the function R 3 t 7→ E(ψ(ξ, t)) is strictly decreasing. Indeed, if s < t, s, t ∈ R, then

we have ψ(ξ(ω), s) > ψ(ξ(ω), t), ω ∈ Ω, yielding that E(ψ(ξ, s)) > E(ψ(ξ, t)). Here the

equality cannot hold, since otherwise E(ψ(ξ, s) − ψ(ξ, t)) = 0 would be valid yielding that

P(ψ(ξ, s)−ψ(ξ, t) = 0) = 1. This leads us to a contradiction, since ψ(ξ(ω), s)−ψ(ξ(ω), t) > 0,

ω ∈ Ω. Using that limt→±∞ ψ(ξ(ω), t) = ∓f∞, ω ∈ Ω, and |ψ(ξ(ω), t)| 6 f∞, ω ∈ Ω, t ∈ R, the

dominated convergence theorem implies that

lim
t→∞

E(ψ(ξ, t)) = E
(

lim
t→∞

ψ(ξ, t)
)

= E(−f∞) = −f∞ < 0,(6.6)

and

lim
t→−∞

E(ψ(ξ, t)) = E
(

lim
t→−∞

ψ(ξ, t)
)

= E(f∞) = f∞ > 0.(6.7)

Since f is continuous and f(0) = 0, we have that ψ is continuous in its second variable. Thus,

by the dominated convergence theorem, it follows that the function R 3 t 7→ E(ψ(ξ, t)) is also

continuous. All in all, the function R 3 t 7→ E(ψ(ξ, t)) is strictly decreasing, continuous, and

changes sign, and hence there exists a unique t0 ∈ R such that E(ψ(ξ, t0)) = 0, as desired.

Finally, we present an alternative proof of Proposition 3.5 using Theorem 3.1. We check

that the assumptions of Theorem 3.1 hold. Since f(0) = 0 and f is strictly increasing, the
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assumption (i) of Theorem 3.1 holds with ϑ1(x) = x, x ∈ R. Using that f is strictly increasing,

by part (d) of Proposition 4.4, we have that ψ is a Tλ
2 -function for all λ ∈ Λ2. Consequently,

part (v) of Theorem 2.10 yields that, for each x, y ∈ R with ϑ1(x) < ϑ1(y), the function

(2.3) is strictly increasing, i.e., the assumption (ii) of Theorem 3.1 holds. The assumption

(iii) of Theorem 3.1 readily holds. The first part of the direct proof of the present proposition

implies that the assumption (iv) of Theorem 3.1 holds. Using (6.6) and (6.7) we have that

the assumption (v) of Theorem 3.1 holds as well. All in all, we can apply Theorem 3.1, and it

yields that the function R 3 t 7→ E(ψ(ξ, t)) = E(sign(ξ − t)f(|ξ − t|)) has a (unique) point of

sign change. Since the function R 3 t 7→ E(ψ(ξ, t)) is strictly decreasing and continuous (see

the direct proof), we have that the equation E(ψ(ξ, t)) = 0 has a unique solution with respect

to t ∈ R, as desired. 2

7 Proofs for Section 4

Proof of Proposition 4.2. Assume that n > 2 and ψ has the property (Tn). Then, according

to part (iii) of Theorem 2.10, for each x, y ∈ R with x < y, the number n−k
k

must be a level of

increase for the function (2.3) if k ∈ {1, . . . , n − 1}. Note that for each x, y ∈ R with x < y,

the function (2.3) takes the form

(x, y) 3 t 7→ −ψ(x, t)

ψ(y, t)
=

1− α
α

> 0.

Therefore, we have that

1− α
α
6= n− k

k
for each k ∈ {1, . . . , n− 1},

which implies that α 6= k
n

for each k ∈ {1, . . . , n− 1}.

Conversely, if α 6∈
{

1
n
, . . . , n−1

n

}
, where n > 2, then we have that

k

n
< α <

k + 1

n

for some k ∈ {0, . . . , n − 1}, and hence k < nα < k + 1. Let x1, . . . , xn ∈ R be arbitrary.

If t ∈ R with t < x∗k+1, then we have that ψ(x∗i , t) > α − 1, i = 1, . . . , k, and ψ(x∗i , t) = α,

i = k + 1, . . . , n, yielding that

n∑
i=1

ψ(xi, t) =
k∑
i=1

ψ(x∗i , t) +
n∑

i=k+1

ψ(x∗i , t) > k(α− 1) + (n− k)α = nα− k > 0.

If t ∈ R with t > x∗k+1, then we have that ψ(x∗i , t) = α − 1, i = 1, . . . , k + 1, and ψ(x∗i , t) 6 α,

i = k + 2, . . . , n, yielding that

n∑
i=1

ψ(xi, t) =
k+1∑
i=1

ψ(x∗i , t) +
n∑

i=k+2

ψ(x∗i , t) 6 (k + 1)(α− 1) + (n− k − 1)α = nα− k − 1 < 0.
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Therefore ϑn(x1, . . . , xn) exists and equals x∗k+1. This proves that ψ is indeed a Tn-function. 2

Proof of Proposition 4.4. Part (a): It follows from the facts that for each x ∈ R, we

have ψ(x, x) = 0; ψ(x, t) > 0 holds for each t < x if and only if f(z) > 0 for each z > 0; and

ψ(x, t) < 0 holds for each t > x if and only if f(z) > 0 for each z > 0.

Part (b): Let us suppose that ψ is a T1-function and Tn-function for infinitely many n ∈ N.

By part (iv) of Theorem 2.10, for each x, y ∈ R with ϑ1(x) < ϑ1(y), the function (2.3) is

increasing. Since ψ is a T1-function, by part (a) of the present proposition, we have f(z) > 0

for each z > 0 and ϑ1(x) = x. Consequently, for each x < y, x, y ∈ R, the function (given by

(2.3))

(x, y) 3 t 7→ −ψ(x, t)

ψ(y, t)
(7.1)

is increasing. Hence the statement of part (b) follows by the following observation (that we

check below): provided that f(z) > 0 for each z > 0, the function (7.1) is (strictly) increasing

for each x < y, x, y ∈ R if and only if f is (strictly) increasing. Since the function ψ given in

(4.8) depends only on x− t, it is enough to check that

the function (0, z) 3 t 7→ ψ(0, t)

ψ(z, t)
= − f(t)

f(z − t)
is (strictly) decreasing for each z > 0(7.2)

holds if and only if f is (strictly) increasing. Indeed, for each x < y, x, y ∈ R, and t ∈ (x, y),

we have

ψ(x, t)

ψ(y, t)
= −f(t− x)

f(y − t)
= − f(t− x)

f(y − x− (t− x))
=

ψ(0, t− x)

ψ(y − x, t− x)
, t− x ∈ (0, y − x).

Thus, the property (7.2) holds if and only if

f(s)

f(z − s)
(<) 6

f(t)

f(z − t)
for each s, t, z ∈ R with 0 < s < t < z,

which is equivalent to

f(s)f(z − t) (<) 6 f(t)f(z − s) for each s, t, z ∈ R with 0 < s < t < z.(7.3)

Using the nonnegativity of f , it yields that (7.2) holds if and only if

f(s) (<) 6 f(t) for each s, t ∈ R with 0 < s < t,(7.4)

i.e., f is (strictly) increasing on R+. Indeed, if (7.2) holds, then (7.3) holds as well, and, by

choosing z = s + t, we get that f(s)2(<) 6 f(t)2, which implies (7.4), since f is nonnegative.

If (7.4) holds, then for each s, t, z ∈ R with 0 < s < t < z, we have 0 6 f(s) (<) 6 f(t) and

0 6 f(z − t) (<) 6 f(z − s), implying (7.3), and hence (7.2) as well.

Parts (c) and (d): Let us suppose that ψ is a Tλ
2 -function for all λ ∈ Λ2. In particular, ψ is a

T1-function, and hence, by part (a) of the present proposition, we have f(z) > 0 for each z > 0
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and ϑ1(x) = x, x ∈ R. Consequently, by part (v) of Theorem 2.10, for each x < y, x, y ∈ R,

the function (7.1) is strictly increasing. By the proof of part (b) of the present proposition,

it implies that f is strictly increasing, as desired. Conversely, let us suppose that f is strictly

increasing. Then for each x ∈ R, the function R 3 t 7→ ψ(x, t) is strictly decreasing. Hence

Proposition 2.12 implies that ψ is a (Tλ
n )-function for each n ∈ N and λ ∈ Λn (in particular, a

Tλ
2 -function for each λ ∈ Λn), as desired. 2
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[16] Zs. Páles. On approximately convex functions. Proc. Amer. Math. Soc., 131(1):243–252,

2003.

[17] R. Passeggeri and N. Reid. On quantiles, continuity and robustness. 2022. Available on

Arxiv: 2206.06998.

[18] William J. J. Rey. Introduction to Robust and Quasirobust Statistical Methods. Universi-

text. Springer-Verlag, Berlin, 1983.

[19] R. J. Tibshirani. The lasso problem and uniqueness. Electron. J. Stat., 7:1456–1490, 2013.

[20] A. W. van der Vaart. Asymptotic Statistics, volume 3 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

42


	1 Introduction
	2 Notions and results on the existence and uniqueness of weighted generalized -estimators
	3 Existence and uniqueness of the point of sign change of -expectation functions
	4 Examples from statistical estimation theory
	5 Proofs for Section 2
	6 Proofs for Section 3
	7 Proofs for Section 4
	References

