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Abstract: This paper addresses a distributed convex optimization problem with a class of
coupled constraints, which arise in a multi-agent system composed of multiple communities
modeled by cliques. First, we propose a fully distributed gradient-based algorithm with a
novel operator inspired by the convex projection, called the clique-based projection. Next, we
scrutinize the convergence properties for both diminishing and fixed step sizes. For diminishing
ones, we show the convergence to an optimal solution under the assumptions of the smoothness of
an objective function and the compactness of the constraint set. Additionally, when the objective
function is strongly monotone, the strict convergence to the unique solution is proved without
the assumption of compactness. For fixed step sizes, we prove the non-ergodic convergence
rate of O(1/k) concerning the objective residual under the assumption of the smoothness of
the objective function. Furthermore, we apply Nesterov’s acceleration method to the proposed
algorithm and establish the convergence rate of O(1/k2). Numerical experiments illustrate the
effectiveness of the proposed method.
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1. INTRODUCTION

Due to the rapid improvement of information technology,
devices with built-in computers are becoming more preva-
lent in various application domains (e.g., sensor networks,
traffic networks, and power systems). As a result, systems
are getting larger and larger by connecting these devices.
In such large-scale systems, many challenges arise. For
example, the central management of these systems leads
to heavy computational burdens, and low-spec devices
are incorporated into the network. To deal with these
challenges, researchers in the control and machine learning
communities have vigorously investigated distributed op-
timization, which aims to solve optimization problems by
local communication without central management. Vari-
ous papers have addressed the issue of the fast convergence
and efficient computation of algorithms to reduce compu-
tational costs, communication frequency, and so on.

In recent years, distributed optimization problems with
constraint-coupling have been studied in several papers
(e.g., Falsone et al. (2020); Notarnicola and Notarstefano
(2020); Chang (2016); Su et al. (2022); Wu et al. (2022)).
As opposed to conventional methods like the dual de-
composition in Terelius et al. (2011) and the ADMM in
Boyd et al. (2011), the methods proposed in those papers
do not require central management. Such a constraint-
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coupled problem is a practical and general framework,
which contains the widely studied problem in which the
agents have to seek a common solution under agent-wise
constraints, e.g., Nedic et al. (2010); Zhu and Martinez
(2012); Yang et al. (2019), etc. However, the existing meth-
ods for constraint-coupling setups have slow convergence
rates or do not explicitly show their convergence rate.
Falsone et al. (2020) proposed an ADMM-based algorithm
with the dynamic average consensus strategy but did not
explicitly show the convergence rate. Similarly, Notar-
nicola and Notarstefano (2020) proposed a distributed
algorithm based on a relaxed primal problem and the
duality theory without offering the convergence rate. In
Chang (2016); Wu et al. (2022), the convergence rate of
O(1/k) was established in an ergodic sense. Just recently,
in Su et al. (2022), the non-ergodic convergence rate of
O(1/k) has been achieved for constraint-coupled optimiza-
tion problems. To the authors’ knowledge, the convergence
rate of existing methods for constraint-coupling setups has
been at most O(1/k) so far. Given implementation to low-
spec devices, it is meaningful to construct a faster and
more efficient method.

This paper addresses a distributed convex optimization
problem over a multi-agent network with a class of cou-
pling in constraints called clique-wise coupled constraints.
This class corresponds to a system consisting of multi-
ple communities (with some overlap) modeled by cliques,
i.e., complete subgraphs (see Bollobas (1998)), and each
community has some constraints. This formulation con-
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tains many conventional distributed optimization prob-
lems, e.g., the consensus and agent-wise constraints stud-
ied in Nedic et al. (2010), etc. First, we develop a clique-
based projection operator, which is a novel extension of
the convex projection. Second, by using this developed
operator, we propose a distributed optimization algorithm,
the clique-based projected gradient descent (CPGD), which
is a generalization of the well-known projected gradient
descent (PGD, see Calamai and Moré (1987)). Next, we
prove its convergence to an optimal solution for dimin-
ishing and fixed step sizes. Moreover, using the Nesterov
acceleration scheme (Nesterov (1983); Beck and Teboulle
(2009)), we show that the proposed CPGD achieves the
outstanding convergence rate of O(1/k2). Finally, we
demonstrate the effectiveness of the proposed method
through numerical experiments.

The major contributions of our proposed method, CPGD
are threefold as follows. (i) The proposed CPGD does
not require central management and is implementable
only with peer-to-peer communication between agents. (ii)
In the CPGD, by repeatedly operating the clique-based
projection, we can generate a sequence arbitrarily close
to a constraint set, which is challenging for the existing
methods such as Falsone et al. (2020); Notarnicola and
Notarstefano (2020), etc. Although there is a trade-off
between the number of its operation and communica-
tion costs, the number can be tuned depending on the
situation. (iii) The CPGD is fast and efficient for some
practical constraints. The CPGD with the Nesterov accel-
eration achieves the non-ergodic convergence rateO(1/k2),
which is faster than the existing distributed algorithms for
constraint-coupled setups. Moreover, the computational
cost in each iteration is very small for some typical con-
straints (e.g., linear and norm constraints).

The rest of this paper is organized as follows. Section 2
provides preliminaries. Section 3 presents the problem set-
ting and show several examples that this paper considers.
In Section 4, we extend the convex projection and propose
a new distributed algorithm, the clique-based projected
gradient descent (CPGD). In Section 5, we show the con-
vergence properties of the CPGD. Section 6 presents the
accelerated CPGD, which accomplishes the convergence
rate ofO(1/k2). In Section 7, numerical examples illustrate
the effectiveness of our CPGD. Finally, Section 8 concludes
this paper.

2. PRELIMINARIES

2.1 Notation

Let R and N be the set of real numbers and that of positive
integers, respectively. Let | · | be the number of elements
in a countable finite set. The closure of a set is denoted by
cl(·). For a mapping T : Rm → Rm, define the fixed points
set of T as Fix(T ) = {x ∈ Rm : T (x) = x}. Let Id ∈ Rd×d
denote the d×d identity matrix. Let 1d = [1, . . . , 1]> ∈ Rd
denote the vector of d ones. With a positive definite and
symmetric matrix Q ∈ Rm×m, we define the norm ‖ · ‖Q
as ‖v‖Q =

√
v>Qv for a vector v ∈ Rm. When Q = Id, we

simply write ‖ · ‖Id as ‖ · ‖.

For a vector v = [v>1 , . . . , v
>
j , . . . , v

>
N ]> ∈ RNd with vectors

v1, . . . , vN ∈ Rd, [v]j represents the operation to extract

the jth vector vj from v, that is,

[v]j = vj ∈ Rd.

For a vector x = [x>1 , . . . , x
>
n ]> ∈ Rnd with x1, . . . , xn ∈

Rd and a subset C = {j1, . . . , j|C|} ⊂ {1, . . . , n}, let xC be

xC = [x>j1 , . . . , x
>
j|C|

]> ∈ R|C|d,
where {j1, . . . , j|C|} is a strictly monotonically increasing
sequence.

For x = [x>1 , . . . , x
>
n ]> ∈ Rnd and a differentiable function

f : Rnd → R, we write∇f(x) = [∇1f(x)>, . . . ,∇nf(x)>]> ∈
Rnd with ∇ = ∂/∂x and ∇i = ∂/∂xi.

2.2 Graph Theory

In this subsection, we provide graph theoretic concepts.
Consider a graph G = (N , E) with a node set N =
{1, . . . , n} and an edge set E consisting of pairs (i, j) of
nodes i, j ∈ N . If (i, j) ∈ E ⇔ (j, i) ∈ E holds for all
(i, j) ∈ E , the graph G is said to be undirected. In the
following, we consider a time-invariant undirected graph
G. For i ∈ N and G, let Ni ⊂ N be the neighbor set of
node i over G, defined as Ni = {j ∈ N : (i, j) ∈ E} ∪ {i}.
For an undirected graph G, we consider a set C ⊂ N .
For C and E , let E|C denote the subset of E defined as
E|C = {(i, j) ∈ E : i, j ∈ C}. We call G|C = (C, E|C) a
subgraph induced by C. If G|C is complete, C is called a
clique in G. If a clique C is not contained by any other
cliques, C is said to be maximal. Let clq(G) = {1, 2, . . . , q}
be a set of indices of maximal cliques in G. For i ∈ N ,
we define clqi(G) as an index set of the maximal cliques
containing i, that is, clqi(G) = {k ∈ clq(G) : i ∈ Ck}. Note
that, for each i ∈ N , Ni, and Cl, l ∈ clqi(G), the following
relationship holds (Sakurama and Sugie (2021)):

Ni =
⋃

l∈clqi(G)

Cl. (1)

3. PROBLEM STATEMENT

Consider a multi-agent system with n agents. Let N =
{1, . . . , n} be the set of agent indices. The communication
network is expressed by a time-invariant undirected graph
G = (N , E) with an edge set E , representing communica-
tion paths. For the graph G and l ∈ clq(G) = {1, . . . , q},
Cl denotes the lth maximal clique of G.

Our aim is to design a distributed algorithm that can solve
the following distributed optimization problem only using
local data and peer-to-peer communication:

min
x∈Rnd

f(x) =

n∑
i=1

fi(xi) (2a)

s.t. x ∈ D =
⋂

l∈clq(G)

{x ∈ Rnd : xCl ∈ Dl} (2b)

with a convex objective function f in (2a) and a non-
empty closed convex constraint set D in (2b), where x =
[x>1 , . . . , x

>
n ]> ∈ Rnd. Here, each Dl ⊂ R|Cl|d is non-empty

and closed convex.

The set D in (2b) can describe various coupled-constraints
in accordance with G. The following example represents
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Fig. 1. Example of a network and its maximal cliques.

multiple communities forming a communication network
with some constraints.

Example 1. Consider graph G in Fig. 1. This network G
consists of four communities expressed by maximal cliques,
and each of them has some overlapping nodes. Consider
convex constraints imposed on each communities such as
AlxCl = bl and/or ‖xCl‖ ≤ rl for l ∈ clq(G) = {1, 2, 3, 4}
with some Al ∈ Rm×|Cl|d, bl ∈ Rm, and rl > 0. Then, the
intersection of these constraints can be written as (2b).

Note that conventional agent-wise and pair-wise con-
straints are included in the class of D in (2b) as follows.

Example 2. Consider a connected graph G = (N , E) and
non-empty closed convex sets Xij ⊂ R2d, (i, j) ∈ E . Then,
D =

⋂
(i,j)∈E{x ∈ Rnd : [x>i , x

>
j ]> ∈ Xij} can be rewritten

as (2b) because each edge belongs to some maximal clique
of G. Also, the conventional constraints, studied in Nedic
et al. (2010), etc, can be expressed by (2b) for D =⋂

(i,j)∈E{x ∈ Rnd : xi = xj} ∩
⋂n
i=1{x ∈ Rnd : xi ∈ Xi}.

Finally, we impose the following assumption on f .

Assumption 1. The function f is L-smooth, i.e., ∇f sat-
isfies ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖ with L > 0 for any
x, y ∈ Rnd.

4. CLIQUE-BASED PROJECTED GRADIENT
DESCENT

4.1 Algorithm description

We develop the clique-based projection and propose a
novel distributed algorithm to solve the problem (2) using
the projection. Let xi(k) ∈ Rd be the estimate xi(k) ∈ Rd
of an solution at each iteration k, updated by agent i.

The clique-based projection is defined as follows.

Definition 1. For a non-empty closed convex set D ⊂ Rnd
in (2b), a graph G, and its maximal cliques Cl, l ∈ clq(G),
the clique-based projection T : Rnd → Rnd of x ∈ Rnd onto
D is defined as

T (x) = [T1(xN1
)>, . . . , Tn(xNn

)>]> (3)

with

Ti(xNi
) =

1

|clqi(G)|
∑

l∈clqi(G)

[PDl
(xCl)]ml,i

(4)

for each i ∈ N , where PDl
: R|Cl|d → Dl ⊂ R|Cl|d is the

convex projection of xCl onto Dl with respect to the norm
‖ · ‖diag(γCl

), i.e.,

PDl
(xCl) = arg min

z∈Dl

‖z − xCl‖diag(γCl
). (5)

Algorithm 1 Clique-based projected gradient descent
(CPGD) for agent i

Require: xi(0) ∈ Rd, {λk}k≥1 ⊂ R, p ∈ N
1: for k = 0, 1, . . . do

2: x
[1]
i (k)← xi(k)− λk+1∇ifi(xi(k)).

3: for s = 1, 2, . . . p do

4: Gather x
[s]
j (k) from each j ∈ Ni \ {i}.

5: x
[s+1]
i (k)← Ti(x

[s]
Ni

(k)) with Ti in (4).
6: end for
7: xi(k + 1)← x

[p+1]
i (k).

8: end for

Here, γ = [1/|clq1(G)|, . . . , 1/|clqn(G)|]> ⊗ 1d ∈ Rnd, and
ml,i ∈ {1, . . . , |Cl|} denotes an order of i in Cl for i ∈ N
and a clique Cl, l ∈ clqi(G), i.e., Cl = {. . . , i

ml,i

, . . .}.

Using the clique-based projection, we present a novel
distributed algorithm for the problem (2), the clique-based
projected gradient descent (CPGD), in Algorithm 1. Here,

x
[s]
Ni

(k) is the aggregated vector of x
[s]
j (k) according to j ∈

Ni. The step size {λk} is a sequence of positive numbers
and p is a positive integer. To guarantee the convergence
of the CPGD, we must impose some conditions on {λk}.
Section 5 shows convergence properties of Algorithm 1.

Note that from (1), each agent i can implement the
CPGD in Algorithm 1 only with local communication with
neighbors Ni.
By aggregating Algorithm 1 for all i ∈ N , we obtain

x[1](k) = x(k)− λk+1∇f(x(k)) (6a)

x(k + 1) = T p(x[1](k)), (6b)

where T p =

p︷ ︸︸ ︷
T ◦ T ◦ · · · ◦ T .

4.2 Discussion on the clique-based projection

Here, we view the clique-based projection in Definition
1 from the perspective of the convex projection and the
proximal operator.

First, we prove the following proposition, which indicates
that the clique-based projection T can be obtained by
taking the gradient of a function V .

Proposition 1. Let V : Rnd → R be

V (x) =
1

2

∑
l∈clq(G)

‖xCl − PDl
(xCl)‖2diag(γCl

) (7)

with PDl
in (5) and γ = [1/|clq1(G)|, . . . , 1/|clqn(G)|]> ⊗

1d ∈ Rnd. Then, the following holds for any x ∈ Rnd:
T (x) = x−∇V (x). (8)

Proof. Since each Dl is closed and convex, 1/2 ‖xCl −
PDl

(xCl)‖2diag(γCl
) is differentiable and thus V (x) in (7)

is also differentiable. Then, for all i ∈ N , we have
∇iV (x) =

∑
l∈clqi(G)

1
|clqi(G)| (xi − [PDl

(xCl)]ml.i
) = xi −∑

l∈clqi(G)
1

|clqi(G)| [PDl
(xCl)]ml.i

= xi−Ti(x) from (1) and

(4). Hence, we obtain (8). �



Through Proposition 1, we can interpret the proposed
method in (3) as a variant of the proximal gradient method
(Beck and Teboulle (2009)). From (8), the clique-based
projection T satisfies

T (x) = arg min
y∈Rnd

1

2
‖x− y‖2 + V (x) +∇V (x)>(y − x).

Hence, the clique-based projection T can be regarded as
the proximal operator proxψ(x) = arg miny∈Rnd 1/2‖x −
y‖2 +ψ(y) for ψ(y) = V (x) +∇V (x)>(y−x), which is the
first order approximation of V (y) at x.

Moreover, if G is complete, the CPGD in Algorithm 1
equals to the well-known projected gradient descent (PGD)
(see Calamai and Moré (1987)):

x(k + 1) = PD(x(k)− λk+1∇f(x(k))) (9)

with PD(x) = arg minz∈D ‖x − z‖ because clq(G) = {1}
and C1 = N hold for complete G. Note that the PGD in
(9) is centralized due to the operation PD(·).

5. CONVERGENCE ANALYSIS

For the CPGD in Algorithm 1, we present convergence
theorems for both diminishing and fixed step sizes.

Before proceeding to analyze convergence properties, we
provide the following lemma, which shows key features of
the clique-based projection T in Definition 1.

Lemma 1. For the clique-based projection T in Definition
1 and the closed convex set D in (2b), the following
statements hold:

a) The mapping T is nonexpansive, i.e., ‖T (x)−T (y)‖ ≤
‖x− y‖ holds for any x, y ∈ Rnd.

b) The fixed points set of T satisfies Fix(T ) = D.
c) For any x ∈ Rnd\D and any z ∈ D, ‖T (x)−z‖ < ‖x−

z‖ holds.
d) For any x ∈ Rnd, T∞(x) = limp→∞ T p(x) ∈ D holds.

Proof. See Appendix A. �

By Lemma 1a-b, the clique-based projection T preserves
important features of the convex projection for D, that
is, the nonexpansiveness and fixed point set. Moreover,
from Lemma 1c-d, by repeatedly operating T , x gradually
converges to D.

With this in mind, we show the first main result as follows.

Theorem 1. Assume that a convex objective function f in
(2a) satisfies Assumption 1, and that D ⊂ Rnd in (2b)
is a non-empty closed convex set. Consider the sequence
{x(k)} generated by CPGD in Algorithm 1 (or (6)).

a) Let a sequence {λk} of positive integers satisfy
limk→∞ λk = 0,

∑∞
k=1 λk =∞, and

∑∞
k=1 λ

2
k <∞. 1

Assume that D in (2b) is bounded. Then, for any ini-
tial point x(0) = x0 ∈ Rnd and any p ∈ N, {x(k)} con-
verges to an optimal solution x∗ ∈ arg minx∈D f(x).

b) Let a sequence {λk} of positive integers satisfy
limk→∞ λk = 0,

∑∞
k=1 λk = ∞, and

∑∞
k=1 |λk −

λk+1| <∞. 2 Additionally assume that the gradient
∇f : Rnd → Rnd of f is strongly monotone, i.e., there

1 For example, λk = 1/k satisfies the conditions.
2 For example, λk = 1/k and λk = 1/

√
k satisfy the conditions.

exists some µ > 0 such that (∇f(x) − ∇f(y))>(x −
y) ≥ µ‖x − y‖2 is satisfied for any x, y ∈ Rnd. Then
{x(k)} converges to the unique optimal solution x∗ =
arg minz∈D f(z) for any initial point x(0) = x0 ∈ Rnd
and any p ∈ N.

c) Let λk = t ∈ (0, 1/L] for any k ∈ N. Let J : Rnd → R
be

J(x) = f(x) + V (x)/t (10)

with V in (7). Then, for any initial point x(0) = x0 ∈
Rnd and p = 1,

J(x(k))− J(x∗) ≤
‖x0 − x∗‖2

2tk
(11)

holds with x∗ ∈ arg minx∈D f(x).

Proof. a) From Lemma 1a-b, the CPGD in (6) can be
regarded as the hybrid steepest descent in Yamada (2001);
Yamada et al. (2002) for any p ∈ N. Hence, Theorem
1a follows from Theorem 2.18, Remark 2.17 in Yamada
et al. (2002), and Lemma 1c. b) The statement follows
from Theorem 2.15 in Yamada et al. (2002) and Lemma
1a-b. c) See Appendix B.1 and B.2. �

Theorem 1a-b imply that the CPGD with a diminishing
step size provides an optimal solution regardless of the
number p of operations of T in each iteration. Thus,
with a sufficiently large p, the CPGD can generate points
arbitrarily close to D by Lemma 1c-d and thus can
work just like the conventional PGD in (9), which is
centralized. Note that the assumption of the boundedness
of D in Theorem 1a is not restrictive in practice, and the
additional assumption of the strong monotonicity of ∇f
in Theorem 1b is satisfied for strongly convex f .

Theorem 1c guarantees the non-ergodic convergence rate
of O(1/k) for smooth f when λk is fixed and p = 1.
Practically, the CPGD is expected to perform well even if
p > 1, which is shown in the numerical results in Section
7.

6. NESTEROV’S ACCELERATED CPGD

In this section, to enhance the convergence rate, we modify
the proposed CPGD with Nesterov’s acceleration scheme
(Nesterov (1983); Beck and Teboulle (2009)). The modified
method is called the accelerated clique-based projected
gradient descent (ACPGD), given as follows:

x(k + 1) = T p(x̂(k)− λk+1∇f(x̂(k))) (12a)

x̂(k + 1) = x(k + 1) +
σk − 1

σk+1
(x(k + 1)− x(k)), (12b)

where x̂(0) = x(0) and σk+1 = (1 +
√

1 + 4σ2
k)/2, σ0 = 1.

Agent i ∈ N can run the ACPGD in a distributed fashion
by updating xi(k+1) as x̂i(k+1) = xi(k+1)+ σk−1

σk+1
(xi(k+

1)− xi(k)) with xi(k) in addition to Algorithm 1.

The ACPGD achieves the convergence rate of O(1/k2) as
follows.

Theorem 2. Assume that a convex function f in (2a)
satisfies Assumption 1, and that D ⊂ Rnd in (2b) is a non-
empty closed convex set. Let p = 1 and λk = t ∈ (0, 1/L]
for all k ∈ N. Consider the sequence {x(k)} generated by
the ACPGD in (12). Then, for any initial state x(0) =
x̂(0) = x0 ∈ Rnd, the following inequality holds:



J(x(k))− J(x∗) ≤
2‖x0 − x∗‖2

tk2
, (13)

where x∗ ∈ arg minx∈D f(x) and J(x) is given as (10).

Proof. See Appendix B.1 and B.3. �

Although the case of p = 1 is only proved in Theorem 2
like Theorem 1c, the ACPGD for p > 1 can also perform
well as shown in numerical results.

7. NUMERICAL EXPERIMENT

We demonstrate the effectiveness of the proposed method
through numerical experiments.

Consider a multi-agent system with n = 20 agents. The
communication network G is given as Fig. 1. Then we
have clq(G) = {1, 2, 3, 4} and C1 = {1, 2, . . . , 6}, C2 =
{5, 6, . . . , 9}, C3 = {8, 9, . . . , 12}, C4 = {9, 10, 13, 14, . . . , 20}.
We consider the following allocation problem:

min
x∈R20

1

2

20∑
i=1

(xi − ai)2 (14a)

s.t.
∑
j∈Cl

xj = Nl, ∀l ∈ clq(G) = {1, . . . , 4}, (14b)

where a1, . . . , a20 ∈ R are randomly generated by the
uniform distribution for the interval [0, 10] and Nl, l ∈
clq(G) are given as [N1, . . . , N4] = [7, 3, 5, 10]. Letting

Dl = {y = [y1, . . . , y|Cl|]
> ∈ R|Cl| :

∑|Cl|
j=1 yj = Nl} for

l ∈ clq(G), we can apply Algorithm 1 to the problem (14).

We conduct simulations of the CPGD in Algorithm 1
with λk = 1/k and λk = 0.001 for p = 1, 10, 50.
Additionally, we conduct simulations of the ACPGD in
(12) with λk = 0.001 for p = 1, 10, 50. For comparison, we
run the conventional PGD in (9), which is centralized.

Figs. 2a-2c plot the evolution of the relative optimality
gap |f(x(k)) − f∗|/f∗ between the value of the objective
function f(x(k)) and its optimal value f∗ under p =
1, 10, 50, respectively. Besides, Fig. 2d shows the result
of the conventional PGD. From Figs. 2a-2c, the CPGD
with both types of step sizes and the ACPGD succeed
in the swift convergence of x(k) to a point close to the
optimal solution. For a larger p, a more accurate solution is
obtained. In addition, in the early stage of the simulation,
the ACPGD achieves the best performance for all p,
especially the lower p. After about 1000 iterations, the
diminishing step size λk = 1/k gives the closest solution
to the optimal one. Furthermore, from Fig. 2c and Fig.
2d, the CPGD and the ACPGD run as fast as the PGD
when p = 50. These results illustrate the effectiveness of
the proposed method.

8. CONCLUSION

This paper addressed a distributed convex optimization
problem with clique-wise couplings in constraints. First,
we developed the clique-based projection operator and
proposed a new distributed algorithm with the opera-
tor, the clique-based projected gradient descent (CPGD).
Next, we proved its convergence properties for diminishing
and fixed step sizes. Moreover, we presented the acceler-
ated version of the CPGD, which achieved the convergence

rate of O(1/k2). Finally, numerical experiments illustrated
the effectiveness of the proposed method. Our future direc-
tions are to consider more general coupled constraints and
to apply the CPGD to some applications, such as traffic
networks.

Appendix A. PROOF OF LEMMA 1

A.1 Preliminaries

As a preliminary, we provide several useful inequalities and
some propositions.

First, for a convex function h : Rm → R, any positive
integer k ∈ N, any x1, . . . , xk ∈ Rm, and any αj ≥ 0 (j =

1, . . . , k) satisfying
∑k
j=1 αj = 1, the following inequality

holds, which is called Jensen’s inequality :

h(
∑k
j=1 αjxj) ≤

∑k
j=1 αjh(xj). (A.1)

Note that h(
∑k
j=1 αjxj) =

∑k
j=1 αjh(xj) holds if and only

if x1 = · · · = xk holds or h is affine (see Peressini et al.
(1988)).

Second, we give some properties of the convex projection
without proof. For details, see textbooks of function analy-
sis, e.g., Kreyszig (1991). For any x, y ∈ Rm, a norm ‖·‖Q,
a non-empty closed convex set M⊂ Rm, and any z ∈M,
the convex projection PM : Rm → M with respect to
‖ · ‖Q, i.e., PM(x) = arg minz∈M ‖x − z‖Q, satisfies the
following inequalities:

‖PM(x)− PM(y)‖Q ≤ ‖x− y‖Q (A.2)

‖PM(x)− z‖Q ≤ ‖x− z‖Q, (A.3)

implying the nonexpansiveness and quasi-nonexpansiveness
of PM(·), respectively. Moreover, for any x, y ∈ Rm, the
following inequalities hold:

‖PM(x)− PM(y)‖2Q ≤ (x− y)>Q(PM(x)− PM(y)) (A.4)

(x− PM(x))>Q(z − PM(x)) ≤ 0 (∀z ∈M). (A.5)

Next, we present important properties of the function V (x)
in (7) for D in (2b) as follows. Note that the function V
in (7) is convex because of the convexity of each Dl.
Proposition 2. For V (x) in (7) and a non-empty closed
convex set D in (2b), V (x) = 0⇔ x ∈ D holds.

Proof. If V (x) = 0 for x ∈ Rnd, we obtain xCl =
PDl

(xCl) ∈ Dl for all l ∈ clq(G), which yields x ∈ D
because of (2b). Conversely, if x ∈ D, then we have
xCl ∈ Dl for all l ∈ clq(G). Thus, V (x) = 0 holds. �
Proposition 3. The function V (x) in (7) is a 1-smooth
function, i.e., its gradient ∇V (x) is 1-Lipschitzian.

Proof. From Definition 1, the inequality (A.4), and
Proposition 1, we obtain the following for any x, y ∈ Rnd:
‖∇V (x)−∇V (y)‖2 = ‖(x− y)− (T (x)− T (y))‖2

=‖x− y‖2 + ‖T (x)− T (y)‖2 − 2(x− y)>(T (x)− T (y))

=‖x− y‖2 + ‖T (x)− T (y)‖2

− 2
∑
l∈clq(G)(xCl − yCl)>diag(γCl)(PDl

(xCl)− PDl
(yCl))

≤‖x− y‖2 + ‖T (x)− T (y)‖2

− 2
∑
l∈clq(G) ‖PDl

(xCl)− PDl
(yCl)‖2diag(γCl

)

≤‖x− y‖2 − ‖T (x)− T (y)‖2 ≤ ‖x− y‖2.



(a) p = 1 (b) p = 10 (c) p = 50 (d) PGD(centralized)

Fig. 2. Plots of relative residuals of f versus the number k of iterations under the CPGD with λk = 1/k (red line) and
λk = 0.001 (blue line), and the ACPGD with λk = 0.001 (black line) for (a) p = 1, (b) p = 10, and (c) p = 50. For
comparison purposes, the plot (d) shows the results of the PGD in (9) with λk = 1/k, 0.001 and the accelerated
PGD with λk = 0.001.

The last line follows from (A.6) in the proof of Lemma 1a.
It completes the proof. �

A.2 Proof

Here, we show the proof of Lemma 1.

a) From (A.1) and (A.2), the following inequality holds:

‖x− y‖2 =
∑
l∈clq(G) ‖xCl − yCl‖2diag(γCl

)

≥
∑
l∈clq(G) ‖PDl

(xCl)− PDl
(yCl)‖2diag(γCl

)

=
∑n
i=1

∑
l∈clqi(G)

1
|clqi(G)|‖ [PDl

(xCl)]ml,i

− [PDl
(yCl)]ml,i

‖2

≥
∑n
i=1 ‖

∑
l∈clqi(G)

1
|clqi(G)| ([PDl

(xCl)]ml,i

− [PDl
(yCl)]ml,i

)‖2

=
∑n
i=1 ‖Ti(xNi)− Ti(yNi)‖2 = ‖T (x)− T (y)‖2. (A.6)

Thus, we obtain ‖T (x)− T (y)‖ ≤ ‖x− y‖. �
b) D ⊂ Fix(T ) holds because xCl = PDl

(xCl) holds for
any x ∈ D and all l ∈ clq(G). In the following, we prove
the converse inclusion Fix(T ) ⊂ D. Let y ∈ D. We show
ŷ ∈ Fix(T ) \ {y} ⇒ ŷ ∈ D. From ŷ ∈ Fix(T ), we obtain
ŷi = Ti(ŷNi) for all i ∈ N . In addition, from (A.1) and
(A.3), we have

‖y − ŷ‖2 ≥
∑
l∈clq(G) ‖yCl − PDCl

(ŷC)‖2diag(γCl
)

=
∑n
i=1

∑
l∈clqi(G)

1
|clqi(G)|‖yi − [PDl

(ŷCl)]ml,i
‖2

≥
∑n
i=1 ‖yi −

∑
l∈clqi(G)

1
|clqi(G)| [PDl

(ŷCl)]ml,i
‖2

=
∑n
i=1 ‖yi − Ti(ŷNi

)‖2 = ‖y − ŷ‖2.
Thus, from the equality condition of (A.1), we ob-
tain yi − [PDk

(ŷCk)]mk,i
= yi − [PDl

(ŷCl)]ml,i
for all

Ck, Cl (k, l ∈ clqi(G)) for all i ∈ N . Then, we have
[PDk

(ŷCk)]mk,i
= [PDl

(ŷCl)]ml,i
for all Ck, Cl (k, l ∈

clqi(G)). Therefore, because ŷ ∈ Fix(T ), we have
2V (ŷ) =

∑n
i=1

∑
l∈clqi(G)

1
|clqi(G)|‖ŷi − [PDl

(ŷCl)]ml,i
‖2 =∑n

i=1 ‖ŷi − Ti(ŷNi
)‖2 = 0. Then, ŷ ∈ D holds from

Proposition 2. Hence, we obtain Fix(T ) ⊂ D. �

c) For a non-empty closed convex set D in (2b) and

x ∈ Rnd \ D, there exists l̂ ∈ clq(G) such that ‖xCl̂ −
PDl̂

(xCl̂)‖diag(γCl̂
) > 0. Hence, for l̂ ∈ clq(G), x ∈

Rnd \ D, and z ∈ D, we have ‖xCl̂ − zCl̂‖
2
diag(γC

l̂
) >

‖PDl̂
(xCl̂) − zCl̂‖

2
diag(γC

l̂
) because ‖xCl̂ − zCl̂‖

2
diag(γC

l̂
) =

‖xCl̂ − PDl̂
(xCl̂)‖

2
diag(γC

l̂
) + ‖PDl̂

(xCl̂) − zCl̂‖
2
diag(γC

l̂
) −

2(xCl̂−PDl̂
(xCl̂))

>diag(γCl̂)(zCl̂−PDl̂
(xCl̂)) > ‖PDl̂

(xCl̂)−
zCl̂‖

2
diag(γC

l̂
) holds, where the last line follows from (A.5).

Thus, by (A.1) and (A.2), for any x ∈ Rnd \D and z ∈ D,
we obtain

‖x− z‖2 =
∑
l∈clq(G) ‖xCl − zCl‖2diag(γCl

)

>
∑
l∈clq(G) ‖PDl

(xCl)− zCl‖2diag(γCl
)

≥
∑n
i=1 ‖

∑
l∈clqi(G)

1
|clqi(G)| [PDl

(xCl)]ml,i
− zi‖2

=
∑n
i=1 ‖Ti(xNi

)− zi‖2 = ‖T (x)− z‖2.
Therefore, ‖T (x)− z‖ < ‖x− z‖ holds for any x ∈ Rnd \D
and any z ∈ D. �

d) For x ∈ Rnd, we define {ak} as ak+1 = T (ak) with a0 =
x. Then, we obtain limk→∞ ak+1 = limk→∞ T (ak). Thus,
from the continuity of T shown in Lemma 1a, we have
T∞(x) = limk→∞ ak+1 = T (limk→∞ ak) = T (T∞(x)).
Hence, Lemma 1b yields T∞(x) ∈ Fix(T ) = D. �

Appendix B. PROOF OF THEOREM 1C AND 2

Here, we show the proofs of Theorem 1c and 2. These
proofs are based on the convergence theorems for ISTA
and FISTA (Theorem 3.1 and 4.4 in Beck and Teboulle
(2009)), respectively.

B.1 Supporting lemmas

Before proceeding to prove the theorems, we show some
inequalities corresponding to those obtained from Lemma
2.3 in Beck and Teboulle (2009), which is a key to prove the
convergence theorems. Note that a differentiable function
h : Rm → R is convex if and only if

h(y) ≥ h(x) +∇h(x)>(y − x) (B.1)

holds for any x, y ∈ Rnd. Besides, if h is β-smooth and
convex, then

h(y) ≤ h(x) +∇h(x)>(y − x) +
β

2
‖y − x‖2 (B.2)

h(y) ≥ h(x) +∇h(x)>(y − x) +
1

2β
‖∇h(x)−∇h(y)‖

(B.3)

holds for any x, y ∈ Rnd. For details, see textbooks on
nonlinear programming, e.g., Bertsekas (1999).

In preparation for showing lemmas, let t ∈ (0, 1/L] and

Vt(x) = V (x)/t



with V (x) in (7). Additionally, for s ∈ Rnd, we define
Fy : Rnd → R with some y ∈ Rnd as

Fy(s) = f(s) + Vt(y) +∇Vt(y)>(s− y). (B.4)

For Fy(s) in (B.4), the following inequalities hold.

Proposition 4. Assume that the convex function f satisfies
Assumption 1. Let y = x− t∇f(x) for x ∈ Rnd. Then,

Fy(T (y)) ≤ Fy(z) +
1

t
(x− T (y))>(x− z)− 1

2t
‖x− T (y)‖2

(B.5)
holds for any z ∈ Rnd.

Proof. Let Gy(s) = f(s) + ∇Vt(y)>(s − y) and z ∈
Rnd. Then, by using L-smoothness of f in Assumption
1, ∇f(x) = (x − y)/t, and ∇Vt(y) = (y − T (y))/t (see
Proposition 1),

Gy(T (y)) = f(T (y)) +∇Vt(y)>(T (y)− y)

≤f(x)−∇f(x)>(x− T (y)) +
1

2t
‖x− T (y)‖

+∇Vt(y)>(T (y)− y)

≤f(z) +∇f(x)>(x− z)−∇f(x)>(x− T (y))

+
1

2t
‖x− T (y)‖2 +∇Vt(y)>(z − y) +∇Vt(y)>(T (y)− z)

=Gy(z) +
1

t
(x− T (y))(T (y)− z) +

1

2t
‖x− T (y)‖2

=Gy(z) +
1

t
(x− T (y))>(x− z)− 1

2t
‖x− T (y)‖

is obtained from (B.1) and (B.2). Thus, adding Vt(y) to
the both sides, we obtain (B.5). �

Proposition 5. Let x(k+1) = T (y(k)) with some {y(k)} ⊂
Rnd. Then, it holds that

Fy(k)(x(k)) +
t

2
‖∇Vt(y(k))‖2

≤Fy(k−1)(x(k)) +
t

2
‖∇Vt(y(k − 1))‖2. (B.6)

Proof. By 1/t-smoothness of Vt(x) (see Proposition 3)
and Proposition 1,

Fy(k−1)(x(k)) = f(x(k)) + Vt(y(k − 1))

+∇Vt(y(k − 1))>(x(k)− y(k − 1))

=f(x(k)) + Vt(y(k − 1))− t‖∇Vt(y(k − 1))‖2

≥f(x(k)) + Vt(y(k)) +∇Vt(y(k))>(y(k − 1)− y(k))

+
t

2
‖∇Vt(y(k − 1))−∇Vt(y(k))‖2 − t‖∇Vt(y(k − 1))‖2

= f(x(k)) + Vt(y(k)) +∇Vt(y(k))>(x(k)− y(k))︸ ︷︷ ︸
=Fy(k)(x(k))

+∇Vt(y(k))> (y(k − 1)− x(k))︸ ︷︷ ︸
=t∇Vt(y(k−1))

+
t

2
‖∇Vt(y(k − 1))−∇Vt(y(k))‖2 − t‖∇Vt(y(k − 1))‖2

=Fy(k)(x(k)) +
t

2
‖∇Vt(y(k))‖2 − t

2
‖∇Vt(y(k − 1))‖2

is obtained from (B.3). Hence, (B.6) holds. �

With this in mind, we consider the following update rule
with x̂(0) = x(0) and some {θk} ⊂ R:

y(k) = x̂(k)− t∇f(x̂(k))

x(k + 1) = T (y(k))

x̂(k + 1) = x(k + 1) + θk(x(k + 1)− x(k)). (B.7)

In addition, we define Hk : Rnd → R as

Hk = Fy(k−1)(x(k)) +
t

2
‖∇Vt(y(k − 1))‖2. (B.8)

with Fy in (B.4). By x(k) − y(k − 1) = −t∇Vt(y(k − 1)),
Hk can be rewritten as Hk = f(x(k)) + Vt(y(k − 1)) −
1
2t‖y(k − 1) − T (y(k − 1))‖2 = f(x(k)) + Vt(y(k − 1)) −
1
2t‖y(k)− x(k + 1)‖2.

Remarkably, Hk in (B.8) satisfies the following lemma.

Lemma 2. Consider the sequence generated by (B.7).
Then, it holds that

f(x(k)) + Vt(x(k)) ≤ Hk. (B.9)

Proof. In light of 1/t-smoothness of Vt and ∇Vt(y(k −
1)) = −(y(k−1)−x(k))/t, we obtain Vt(x(k)) ≤ Vt(y(k−
1)) + ∇Vt(y(k − 1))>(y(k − 1) − xk) + 1

2t‖y(k) − x(k +

1)‖2 = Vt(y(k− 1))− 1
2t‖y(k)− x(k+ 1)‖2. Hence, adding

f(x(k)) to both sides yields (B.9). �

Furthermore, for Hk in (B.8), we prove the following
inequality, which is essential to the proof of Theorem 1c
and 2.

Lemma 3. For the sequence generated by (B.7) and Hk

defined in (B.8), it holds that

Hk −Hk+1 ≥
1

2t
‖x̂(k)− x(k + 1)‖2

+
1

t
(x(k + 1)− x̂(k))>(x̂(k)− x(k)). (B.10)

Proof. Substituting x = x(k+1), y = y(k), and z = x(k)
into (B.5), we obtain

Hk+1 = f(x(k + 1)) + Vt(y(k))

+∇Vt(y(k))>(x(k + 1)− y(k)) +
t

2
‖∇Vt(y(k))‖2

≤ f(x(k)) + Vt(y(k))

+∇Vt(y(k))>(x(k)− y(k)) +
t

2
‖∇Vt(y(k))‖2

+
1

t
(x̂(k)− x(k + 1))>(x̂(k)− x(k))− 1

2t
‖x̂(k)− x(k + 1)‖2

= Fy(k)(x(k)) +
t

2
‖∇Vt(y(k))‖2

+
1

t
(x̂(k)− x(k + 1))>(x̂(k)− x(k))− 1

2t
‖x̂(k)− x(k + 1)‖2

≤ Fy(k−1)(x(k)) +
t

2
‖∇Vt(y(k − 1))‖2

+
1

t
(x̂(k)− x(k + 1))>(x̂(k)− x(k))− 1

2t
‖x̂(k)− x(k + 1)‖2

= Hk +
1

t
(x̂(k)− x(k + 1))>(x̂(k)− x(k))

− 1

2t
‖x̂(k)− x(k + 1)‖2.

from (B.1), (B.2), and (B.6). Thus, (B.10) holds. �

Moreover, for the relationship between x(k) and an opti-
mal solution x∗, we present the following lemma.

Lemma 4. For x∗ ∈ arg minx∈D f(x), it holds that



f(x∗) + Vt(x∗)−Hk+1 ≥
1

2t
‖x̂(k)− x(k + 1)‖2

+
1

t
(x(k + 1)− x̂(k))>(x̂(k)− x∗). (B.11)

Proof. Recalling (B.7), L-smoothness of f , and 1/t-
smoothness of Vt for t ∈ (0, 1/L], we obtain

Hk+1 ≤ f(x̂(k))−∇f(x̂(k))>(x̂(k)− x(k + 1))

+
1

2t
‖x̂k − x(k + 1)‖2 + Vt(y(k))− 1

2t
‖y(k)− T (y(k))‖2

≤ f(x∗) +∇f(x̂(k))>(x̂− z)−∇f(x̂(k))>(x̂− T (y(k)))

+
1

2t
‖x̂(k)− T (y(k))‖2 + Vt(x∗)−

1

2t
‖y(k)− T (y(k))‖2

+
1

t
(y(k)− T (y(k))>(T (y(k))− x∗ + y(k)− T (y(k)))

− 1

2t
‖y(k)− T (y(k))− (x∗ − T (x∗))‖2

= f(x∗) + Vt(x∗) +
1

t
(x̂(k)− x(k + 1))>(x̂(k)− x∗)

− 1

2t
‖x̂(k)− x(k + 1)‖2,

from (B.1), (B.2), and (B.3), where the last line is obtained
because x∗ = T (x∗) holds for x∗ ∈ D. Therefore, (B.11) is
obtained. �

B.2 Proof of Theorem 1c

In this proof, assume that θk = 0 for all k. Then, x̂(k) =
x(k) holds and the algorithm in (B.7) equals to the CPGD
with λk = t ∈ (0, 1/L] for all k ∈ N.

In light of (B.11) and x̂(k) = x(k), we obtain 2t(Hk+1 −
f∗ + Vt(x∗)) ≤ ‖x∗ − x(k)‖2 because 2t(Hk+1 − f∗ +
V (x∗)) ≤ 2(x(k)−x(k+1))>(x(k)−x∗)− 1

2t‖x(k)−x(k+

1)‖2 = ‖x∗−x(k)‖2−‖x∗−xk+1‖2 ≤ ‖x∗−x(k)‖2. Besides,
invoking (B.10), we have

2t(Hk+1 −Hk) ≤ ‖x(k)− x(k + 1)‖2 ≤ 0.

Then, following the same procedure as Theorem 3.1 in
Beck and Teboulle (2009) (with F (xk) ≡ Hk and F (x∗) ≡
f∗ + Vt(x∗)) and using (B.9), we obtain (11). �

B.3 Proof of Theorem 2

Substituting θk = (σk − 1)/σk+1 in (12) into (B.7) yields
the ACPGD in (12).

Now, by (B.10), (B.11), and σ2
k−1 = σk(σk − 1), following

the procedure of the proof for Theorem 4.4 in Beck and
Teboulle (2009) gives

σ2
k−1(Hk − (f∗ + Vt(x∗)))− σ2

k(Hk+1 − (f∗ + Vt(x∗)))

≤ 1

2t
(‖wk+1‖2 − ‖wk‖2),

where wk = σk(x̂(k) − x∗) − (σk − 1)(x(k) − x∗). Thus,
summing both sides over k = 1, 2, . . . yields

σ2
k(Hk+1 − (f(x∗) + Vt(x∗))) ≤

1

2t
‖w0‖2 =

1

2t
‖x0 − x∗‖2.

By σk ≥ (k + 1)/2, which can be shown by mathematical
induction, we obtain

Hk+1 − (f(x∗) + Vt(x∗)) ≤
2‖x0 − x∗‖2

t(k + 1)2
.

Therefore, the inequality (13) follows from (B.9). �
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Calamai, P.H. and Moré, J.J. (1987). Projected gradient
methods for linearly constrained problems. Math. Pro-
gram., 39(1), 93–116.

Chang, T.H. (2016). A proximal dual consensus ADMM
method for multi-agent constrained optimization. IEEE
Trans. Signal Process., 64(14), 3719–3734.

Falsone, A., Notarnicola, I., Notarstefano, G., and
Prandini, M. (2020). Tracking-ADMM for dis-
tributed constraint-coupled optimization. Automatica,
117(108962), 108962.

Kreyszig, E. (1991). Introductory Functional Analysis with
Applications. John Wiley & Sons.

Nedic, A., Ozdaglar, A., and Parrilo, P.A. (2010). Con-
strained consensus and optimization in multi-agent net-
works. IEEE Trans. Automat. Contr., 55(4), 922–938.

Nesterov, Y. (1983). A method of solving a convex
programming problem with convergence rate. Dokl.
Akad. Nauk, 269, 543–547.

Notarnicola, I. and Notarstefano, G. (2020). Constraint-
coupled distributed optimization: A relaxation and du-
ality approach. IEEE Trans. Control Netw. Syst., 7(1),
483–492.

Peressini, A.L., Sullivan, F.E., Jr, U., and Jerry, J. (1988).
The Mathematics of Nonlinear Programming. Springer-
Verlag, Berlin, Heidelberg.

Sakurama, K. and Sugie, T. (2021). Generalized coordina-
tion of multi-robot systems. Foundations and Trends®
in Systems and Control, 9(1), 1–170.

Su, Y., Wang, Q., and Sun, C. (2022). Distributed primal-
dual method for convex optimization with coupled con-
straints. IEEE Trans. Signal Process., 70, 523–535.

Terelius, H., Topcu, U., and Murray, R.M. (2011). De-
centralized multi-agent optimization via dual decompo-
sition. IFAC Proceedings Volumes, 44(1), 11245–11251.

Wu, X., Wang, H., and Lu, J. (2022). Distributed opti-
mization with coupling constraints. IEEE Trans. Au-
tomat. Contr., 1–1.

Yamada, I. (2001). The hybrid steepest descent method for
the variational inequality problem over the intersection
of fixed point sets of nonexpansive mappings. Stud.
Comput. Math, 8, 473–504.

Yamada, I., Ogura, N., and Shirakawa, N. (2002). A
numerically robust hybrid steepest descent method for
the convexly constrained generalized inverse problems.
Contemp. Math., 313, 269–305.

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z.,
Hong, Y., Wang, H., Lin, Z., and Johansson, K.H.
(2019). A survey of distributed optimization. Annu.
Rev. Control, 47, 278–305.

Zhu, M. and Martinez, S. (2012). On distributed convex
optimization under inequality and equality constraints.



IEEE Trans. Automat. Contr., 57(1), 151–164.


