Extremal trees for Maximum Sombor index with given degree sequence

F. Movahedi a*

November 14, 2022

^a Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran.

Abstract

Let G = (V, E) be a simple graph with vertex set V and edge set E. The Sombor index of the graph G is a degree-based topological index, defined as

$$SO(G) = \sum_{uv \in E} \sqrt{d(u)^2 + d(v)^2},$$

in which d(x) is the degree of the vertex $x \in V$ for x = u, v. In this paper, we characterize the extremal trees with a given degree sequence that maximizes the Sombor index.

Keywords: Sombor index, tree, degree sequence. AMS Subj. Class.: 05C35, 05C90.

1 Introduction

In [1], Gutman defined a new vertex degree-based topological index, named the Sombor index, and defined for a graph G as follows

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d(u)^2 + d(v)^2},$$

where d(u) and d(v) denote the degree of vertices u and v in G, respectively.

Other versions of the Sombor index are induced and studied in [1-5]. Guman [1] showed that the Sombor index is minimized by the path and maximized by the star among general trees of the same size. In [6] the extremal values of the Sombor index of trees and unicyclic graphs with a given maximum degree are obtained. Deng et al. [7] obtained a sharp upper bound for the Sombor index and the reduced Sombor

^{*}Corresponding author E-mail: f.movahedi@gu.ac.ir

index among all molecular trees with fixed numbers of vertices, and characterized those molecular trees achieving the extremal value. In [8] characterized the extremal graphs with respect to the Sombor index among all the trees of the same order with a given diameter. Réti et al. [9] characterized graphs with the maximum Sombor index in the classes of all connected unicyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic graphs of a given order. In this paper, we focus on the following natural extremal problem of Sombor index.

Problem 1. Find extremal trees of Sombor indices with a given degree sequence and characterize all extremal trees which attain the extremal values.

Let T = (V, E) be a simple and undirected tree with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and the edge set $E(G) = \{e_1, \ldots, e_m\}$. The set $N_T(u) = \{v \in V | uv \in E\}$ is called the neighborhood of vertex $u \in V$ in tree T. The number of edges incident to vertex u in G is denoted $d(u) = d_u$. A leaf is a vertex with degree 1 in tree T. The minimum degree and the maximum degree of T are denoted by δ and Δ , respectively. The distance between vertices u and v is the minimum number of edges between u and v and is denoted by d(u, v). The degree sequence of the tree is the sequence of the degrees of non-leaf vertices arranged in non-increasing order. Therefore, we consider (d_1, d_2, \ldots, d_k) as a degree sequence of the tree T where $d_1 \ge d_2 \ge \cdots \ge d_k \ge 2$. A tree is called a maximum optimal tree if it maximizes the Sombor index among all trees with a given degree sequence.

In this paper, we investigate the extremal trees which attain the maximum Sombor index among all trees with given degree sequences.

2 Preliminaries

In this section, We prove Some lemmas that are used in the next main results.

Lemma 2.1 For function $g(x,y) = \sqrt{x^2 + y^2}$, if $x \le y$ then $g(x,1) \le g(y,1)$.

Proof. If $x \le y$, then $x^2 + 1 \le y^2 + 1$ and consequently, $\sqrt{x^2 + 1} \le \sqrt{y^2 + 1}$. Therefore, $g(x, 1) \le g(y, 1)$.

Lemma 2.2 Let $f(x) = \sqrt{x^2 + a^2} - \sqrt{y^2 + b^2}$ with $a, b, x \ge 1$. Then f(x) is an increasing function for every $a \le b$ and a decreasing function for every a > b.

Proof. We have that

$$f'(x) = \frac{x}{\sqrt{x^2 + a^2}} - \frac{x}{\sqrt{x^2 + b^2}}.$$

We consider function $\hat{f}(y) = \frac{x}{\sqrt{x^2+y^2}}$ where $y \ge 1$. The derivative of function $\hat{f}(y)$ is $\hat{f}'(y) = \frac{-xy}{(x^2+y^2)\sqrt{x^2+y^2}} < 0$. Therefore, $\hat{f}(y)$ is a decreasing function for every $y \ge 1$. Hence, if $a \le b$, $\frac{x}{\sqrt{x^2+a^2}} = \hat{f}(a) \ge \hat{f}(b) = \frac{x}{\sqrt{x^2+b^2}}$. Consequently, f'(x) > 0 and the function f(x) is an increasing function for $a \le b$. similarity, if a > b, then f(x) is a decreasing function for every $x \ge 1$.

Lemma 2.3 Let $g(x, y) = \sqrt{x^2 + y^2}$ with $y \ge 2$. Then f(x, y) is an increasing function for every $x \ge 1$.

Proof. We have $f'(x,y) = \frac{x}{\sqrt{x^2+y^2}}$. Since $x \ge 1$, f'(x,y) > 0 and function f(x,y) is an increasing function for every $x \ge 1$.

3 Extremal trees with the maximum Sombor index

In this section, we characterize the extremal trees with maximum Sombor index among the trees with given degree sequence. We propose a technique to construct these trees. to do this, we first state some properties of a maximum optimal tree.

Theorem 3.1 Let T be a maximum optimal tree with a path $v_0v_1v_2\cdots v_kv_{k+1}$ in T, where v_0 and v_{k+1} are leaves. For $i \leq \frac{t+1}{2}$ and $i+1 \leq j \leq k-i+1$

- (i) if i is odd, then $d(v_i) \ge d(v_{k-i+1}) \ge d(v_j)$,
- (ii) if i is even, then $d(v_i) \leq d(v_{k-i+1}) \leq d(v_j)$.

Proof. Let T be a maximum optimal tree with the degree sequence D. We prove the result by induction on i. For i = 1, we show that $d(v_1) \ge d(v_k) \ge d(v_j)$ where $2 \le j \le k$. We suppose for contradiction that $d(v_1) < d(v_j)$ for some $2 \le j \le k$. We consider a new tree T' obtained from T by changing edges v_0v_1 and v_jv_{j+1} to edges v_0v_j and v_1v_{j+1} such that no other edges are changed. Note that T and T' have the same degree sequence. Therefore, using Lemmas 2.1-2.3, and since $d(v_{j+1}) > 1$, we have

$$SO(T') - SO(T) = \sqrt{d(v_0)^2 + d(v_j)^2} + \sqrt{d(v_1)^2 + d(v_{j+1})^2} - \left(\sqrt{d(v_0)^2 + d(v_1)^2} - \sqrt{d(v_j)^2 + d(v_{j+1})^2}\right) = \left(\sqrt{d(v_j)^2 + 1} - \sqrt{d(v_1)^2 + 1}\right) + \left(\sqrt{d(v_1)^2 + d(v_{j+1})^2} - \sqrt{d(v_j)^2 + d(v_{j+1})^2}\right) = f(1) - f(d(v_{j+1})) > 0,$$

which is a contradiction with the maximum optimality T. Thus, $d(v_1) \ge d(v_j)$ for every $2 \le j \le k$. similarity, we can get $d(v_1) \ge d(v_k)$ and $d(v_k) \ge d(v_j)$. Therefore, we have $d(v_1) \ge d(v_k) \ge d(v_j)$ where $2 \le j \le k$. So, we suppose that the result holds for smaller values of i.

If $i \geq 2$ is even, then i-1 is odd and by the induction hypothesis, $d(v_{i-1}) \geq d(v_{k-i+1}) \geq d(v_j)$ for $i+1 \leq j \leq k-i+1$. We suppose for contradiction that $d(v_i) > d(v_j)$ for some $i+1 \leq j \leq k-i+1$. We consider a new tree T'' obtained from T by changing edges $v_{i-1}v_i$ and v_jv_{j+1} to edges $v_{i-1}v_j$ and v_iv_{j+1} with the degree sequence D. Also, in tree T'', other edges are the same edges in tree T.

By the induction hypothesis, $d(v_{i-1}) \ge d(v_{j+1})$. Therefore, by applying Lemma 2.2, we have

$$SO(T'') - SO(T) = \sqrt{d(v_{i-1})^2 + d(v_j)^2} + \sqrt{d(v_i)^2 + d(v_{j+1})^2} - \left(\sqrt{d(v_{i-1})^2 + d(v_i)^2} - \sqrt{d(v_j)^2 + d(v_{j+1})^2}\right) = \left(\sqrt{d(v_j)^2 + d(v_j)^2} - \sqrt{d(v_{i-1})^2 + d(v_i)^2}\right) + \left(\sqrt{d(v_{j+1})^2 + d(v_i)^2} - \sqrt{d(v_{j+1})^2 + d(v_j)^2}\right) = f(d(v_{i-1}) - f(d(v_{j+1})) > 0.$$

This contradiction with the maximum optimality of T. Therefore, $d(v_i) \leq d(v_j)$ for $i+1 \leq j \leq k-i+1$. Similarity, we have $d(v_i) \leq d(v_{k-i+1})$ and $d(v_{k-i+1}) \leq d(v_j)$. Consequently, for i even, $d(v_i) \leq d(v_{k-i+1}) \leq d(v_j)$ where $i+1 \leq j \leq k-i+1$. For odd i > 2, with similarity technique, we can get $d(v_i) \geq d(v_{k-i+1}) \geq d(v_j)$ for $i+1 \leq j \leq k-i+1$.

Suppose that L_i denotes the set of vertices adjacent to the closet leaf at a distance i. Thus, L_0 and L_1 denote the set of leaves and the set of vertices that are adjacent to the leaves. Let $d^m = \min\{d(u) : u \in L_1\}$ and L_1^m be the set of leaves whose adjacent vertices have degree d^m in T. We suppose that $\overline{L_1^m}$ denote the set of leaves v such that $v \notin L_1^m$.

We construct a new tree T'_i from tree T and tree T_i rooted at v_i by identifying the root v_i with a vertex $v \in L_1^m$.

Theorem 3.2 Let T'_1 and T'_2 are obtained from T by identifying the root v_i of T_i with $u' \in L_1^m$ and $v' \in \overline{L_1^m}$, respectively. Then, $SO(T'_1) \ge SO(T'_2)$.

Proof. We suppose that u and v are adjacent to u' and v', respectively. Using Theorem 3.1, $d(u) \leq d(v)$. Therefore, we have

$$SO(T'_1) - SO(T'_2) = \sqrt{(d(v_i) + 1)^2 + d(u)^2} + \sqrt{d(u)^2 + 1} - \left(\sqrt{(d(v_i) + 1)^2 + d(v)^2} - \sqrt{d(v)^2 + 1}\right) = \left(\sqrt{(d(v_i) + 1)^2 + d(u)^2} - \sqrt{(d(v_i) + 1)^2 + d(v)^2}\right) + \left(\sqrt{d(v)^2 + 1} - \sqrt{d(u)^2 + 1}\right) = f(1) - f(d(v_i) + 1) > 0.$$

Therefore, $SO(T'_1) \ge SO(T'_2)$.

We use a similar technique in [10], for constructing tree T with a fixed degree sequence D such that T is the maximum optimal tree among the trees with degree sequence D. We propose the following algorithms to construct such trees.

Algorithm 1. (Construction of subtrees)

- 1. Given the degree sequence of the non-leaf vertices as $D = (d_1, d_2, \ldots, d_m)$ in descending order.
- 2. If $d_m \ge m-1$, then using Theorem 3.1, the vertices with degrees $d_1, d_2, \ldots, d_{m-1}$ are in L_1 . Tree T produces by rotted at u with d_m children whose their degrees are $d_1, d_2, \ldots, d_{m-1}$ and $d_m m + 1$ leaves adjacent to u.
- 3. If $d_m \leq m-2$, then we produce subtree T_1 by rotted at u_1 with $d_m 1$ children with degrees $d_1, d_2, \ldots, d_{d_{m-1}}$ such that $u_1 \in L_2$ and the children of u_1 are in L_1 . Subtree T_2 is constructed by rooted at u_2 with $d_{m-1} - 1$ children whose degrees are $d_{d_m}, d_{d_m+1}, \ldots, d_{(d_m-1)+(d_{m-1}-1)}$. Then do the same to get subtrees T_3, T_4, \ldots until T_k satisfies the condition of step (2). In this case, we have $d(v_k) = d_{m-k+1}$.

Algorithm 2. (Merge of subtrees)

- 1. Set $T = T_i$ and i = k. We produce a new tree T'_{i-1} from T and T_{i-1} rooted at v_{i-1} by identifying the root v_{i-1} with a vertex $v \in L_1^m$. Using Theorem 3.2, tree T'_{i-1} is a maximum optimal tree among trees with the same degree sequence.
- 2. Consider i = k 1, k 2, ..., 1 and $T = T_i$. Tree T'_{i-1} from T and T_{i-1} by the same method of step (1). We construct trees $T'_{k-2}, T'_{k-3}, ..., T'_1$.
- 3. $T = T'_1$ is the maximum optimal tree with given degree sequence $D = (d_1, d_2, \dots, d_m)$.

Example 3.3 In this example, we propose a maximum optimal tree with given degree sequence D = (5, 5, 5, 4, 3, 3, 2, 2). Using step (3) of Algorithm 1, we have subset T_1

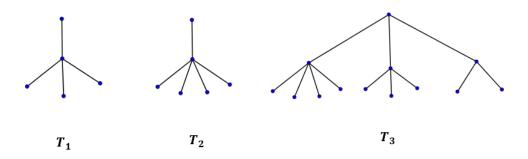
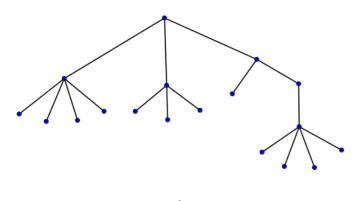


Figure 1: Construction of subtrees using Algorithm 1



 T'_2

Figure 2: Merge of subtrees using Algorithm 2

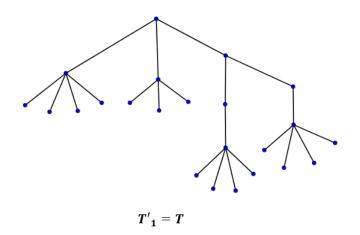


Figure 3: A maximum optimal tree T with degree sequence (5, 5, 5, 4, 3, 3, 2, 2).

with 1 child whose has degree 5. For new degree sequence $D_1 = (5, 5, 4, 3, 3, 2)$, we construct tree T_2 and have new degree sequence D = (5, 4, 3, 3) (Figure 1). It is easily seen that D_2 satisfies the condition of step (2).

Using Algorithm 2, we attach subtrees T_2 to T_3 for constructing T'_2 (Figure 2) and T_2 to T'_2 for constructing the maximum optimal tree $T'_1 = T$ (Figure 3).

Acknowledgements The author would like to thank Professor Ivan Gutman for his useful comments and suggestions.

References

- I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
- [2] V. R. Kulli, I. Gutman, Computation of Sombor indices of certain networks, SSRG Int. J. Appl. Chem., 8 (2021), 1-5.
- [3] N. N. Swamy, T. Manohar, B. Sooryanarayana, I. Gutman, Reverse Sombor index, Bull. Int. Math. Virtual Inst., 12(2)(2022), 267-272.
- M. R. Oboudi, On graphs with integer Sombor index. J. Appl. Math. Comput. (2022), https://doi.org/10.1007/s12190-022-01778-z
- [5] T. Doslic, T. Reti, A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7 (2021), 1-4.
- [6] T. Zhou, Z. Lin, L. Miao, The Sombor index of trees and unicyclic graphs with given maximum degree, arXiv preprint arXiv:2103.07947 (2021).
- [7] Deng, H, Tang, Z, Wu, R. Molecular trees with extremal values of Sombor indices. Int J Quantum Chem. 2021; 121:e26622. https://doi.org/10.1002/qua.26622.
- [8] Li, S., Wang, Z., Zhang, M. On the extremal Sombor index of trees with a given diameter, Applied Mathematics and Computation, 416, 2022, 126731.
- [9] T. Réti, T. Doslić, A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
- [10] Wang, H. Extremal trees with given degree sequence for the Randić index, Discrete Mathematics 308 (2008) 3407-3411.