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Abstract

Let G = (V,E) be a simple graph with vertex set V and edge set E. The
Sombor index of the graph G is a degree-based topological index, defined as

SO(G) =
∑
uv∈E

√
d(u)2 + d(v)2,

in which d(x) is the degree of the vertex x ∈ V for x = u, v.
In this paper, we characterize the extremal trees with a given degree sequence that
maximizes the Sombor index.
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1 Introduction

In [1], Gutman defined a new vertex degree-based topological index, named the Sombor
index, and defined for a graph G as follows

SO(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2,

where d(u) and d(v) denote the degree of vertices u and v in G, respectively.

Other versions of the Sombor index are induced and studied in [1–5]. Guman [1]
showed that the Sombor index is minimized by the path and maximized by the star
among general trees of the same size. In [6] the extremal values of the Sombor index
of trees and unicyclic graphs with a given maximum degree are obtained. Deng et
al. [7] obtained a sharp upper bound for the Sombor index and the reduced Sombor
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index among all molecular trees with fixed numbers of vertices, and characterized those
molecular trees achieving the extremal value. In [8] characterized the extremal graphs
with respect to the Sombor index among all the trees of the same order with a given
diameter. Réti et al. [9] characterized graphs with the maximum Sombor index in the
classes of all connected unicyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic graphs
of a given order. In this paper, we focus on the following natural extremal problem of
Sombor index.

Problem 1. Find extremal trees of Sombor indices with a given degree sequence and
characterize all extremal trees which attain the extremal values.

Let T = (V,E) be a simple and undirected tree with vertex set V (G) = {v1, . . . , vn}
and the edge set E(G) = {e1, . . . , em}. The set NT (u) = {v ∈ V |uv ∈ E} is called
the neighborhood of vertex u ∈ V in tree T . The number of edges incident to vertex
u in G is denoted d(u) = du. A leaf is a vertex with degree 1 in tree T . The mini-
mum degree and the maximum degree of T are denoted by δ and ∆, respectively. The
distance between vertices u and v is the minimum number of edges between u and
v and is denoted by d(u, v). The degree sequence of the tree is the sequence of the
degrees of non-leaf vertices arranged in non-increasing order. Therefore, we consider
(d1, d2, . . . , dk) as a degree sequence of the tree T where d1 ≥ d2 ≥ · · · ≥ dk ≥ 2. A tree
is called a maximum optimal tree if it maximizes the Sombor index among all trees
with a given degree sequence.

In this paper, we investigate the extremal trees which attain the maximum Sombor
index among all trees with given degree sequences.

2 Preliminaries

In this section, We prove Some lemmas that are used in the next main results.

Lemma 2.1 For function g(x, y) =
√
x2 + y2, if x ≤ y then g(x, 1) ≤ g(y, 1).

Proof. If x ≤ y, then x2+1 ≤ y2+1 and consequently,
√
x2 + 1 ≤

√
y2 + 1. Therefore,

g(x, 1) ≤ g(y, 1). �

Lemma 2.2 Let f(x) =
√
x2 + a2 −

√
y2 + b2 with a, b, x ≥ 1. Then f(x) is an in-

creasing function for every a ≤ b and a decreasing function for every a > b.

Proof. We have that
f ′(x) =

x√
x2 + a2

− x√
x2 + b2

.
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We consider function f̂(y) = x√
x2+y2

where y ≥ 1. The derivative of function f̂(y) is

f̂ ′(y) = −xy
(x2+y2)

√
x2+y2

< 0. Therefore, f̂(y) is a decreasing function for every y ≥ 1.

Hence, if a ≤ b, x√
x2+a2

= f̂(a) ≥ f̂(b) = x√
x2+b2

. Consequently, f ′(x) > 0 and the

function f(x) is an increasing function for a ≤ b. similarity, if a > b, then f(x) is a
decreasing function for every x ≥ 1. �

Lemma 2.3 Let g(x, y) =
√
x2 + y2 with y ≥ 2. Then f(x, y) is an increasing function

for every x ≥ 1.

Proof. We have f ′(x, y) = x√
x2+y2

. Since x ≥ 1, f ′(x, y) > 0 and function f(x, y) is

an increasing function for every x ≥ 1. �

3 Extremal trees with the maximum Sombor index

In this section, we characterize the extremal trees with maximum Sombor index among
the trees with given degree sequence. We propose a technique to construct these trees.
to do this, we first state some properties of a maximum optimal tree.

Theorem 3.1 Let T be a maximum optimal tree with a path v0v1v2 · · · vkvk+1 in T ,
where v0 and vk+1 are leaves. For i ≤ t+1

2 and i+ 1 ≤ j ≤ k − i+ 1

(i) if i is odd, then d(vi) ≥ d(vk−i+1) ≥ d(vj),

(ii) if i is even, then d(vi) ≤ d(vk−i+1) ≤ d(vj).

Proof. Let T be a maximum optimal tree with the degree sequence D. We prove
the result by induction on i. For i = 1, we show that d(v1) ≥ d(vk) ≥ d(vj) where
2 ≤ j ≤ k. We suppose for contradiction that d(v1) < d(vj) for some 2 ≤ j ≤ k. We
consider a new tree T ′ obtained from T by changing edges v0v1 and vjvj+1 to edges
v0vj and v1vj+1 such that no other edges are changed. Note that T and T ′ have the
same degree sequence. Therefore, using Lemmas 2.1-2.3, and since d(vj+1) > 1, we
have

SO(T ′)− SO(T ) =
√
d(v0)2 + d(vj)2 +

√
d(v1)2 + d(vj+1)2

−
(√

d(v0)2 + d(v1)2 −
√
d(vj)2 + d(vj+1)2

)
=
(√

d(vj)2 + 1−
√
d(v1)2 + 1

)
+
(√

d(v1)2 + d(vj+1)2 −
√
d(vj)2 + d(vj+1)2

)
= f(1)− f(d(vj+1)) > 0,
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which is a contradiction with the maximum optimality T . Thus, d(v1) ≥ d(vj) for
every 2 ≤ j ≤ k. similarity, we can get d(v1) ≥ d(vk) and d(vk) ≥ d(vj). Therefore, we
have d(v1) ≥ d(vk) ≥ d(vj) where 2 ≤ j ≤ k. So, we suppose that the result holds for
smaller values of i.
If i ≥ 2 is even, then i−1 is odd and by the induction hypothesis, d(vi−1) ≥ d(vk−i+1) ≥
d(vj) for i + 1 ≤ j ≤ k − i + 1. We suppose for contradiction that d(vi) > d(vj) for
some i + 1 ≤ j ≤ k − i + 1. We consider a new tree T ′′ obtained from T by changing
edges vi−1vi and vjvj+1 to edges vi−1vj and vivj+1 with the degree sequence D. Also,
in tree T ′′, other edges are the same edges in tree T .
By the induction hypothesis, d(vi−1) ≥ d(vj+1). Therefore, by applying Lemma 2.2,
we have

SO(T ′′)− SO(T ) =
√
d(vi−1)2 + d(vj)2 +

√
d(vi)2 + d(vj+1)2

−
(√

d(vi−1)2 + d(vi)2 −
√
d(vj)2 + d(vj+1)2

)
=
(√

d(vj)2 + d(vj)2 −
√
d(vi−1)2 + d(vi)2

)
+
(√

d(vj+1)2 + d(vi)2 −
√
d(vj+1)2 + d(vj)2

)
= f(d(vi−1)− f(d(vj+1)) > 0.

This contradiction with the maximum optimality of T . Therefore, d(vi) ≤ d(vj) for
i + 1 ≤ j ≤ k − i + 1. Similarity, we have d(vi) ≤ d(vk−i+1) and d(vk−i+1) ≤ d(vj).
Consequently, for i even, d(vi) ≤ d(vk−i+1) ≤ d(vj) where i + 1 ≤ j ≤ k − i + 1.
For odd i > 2, with similarity technique, we can get d(vi) ≥ d(vk−i+1) ≥ d(vj) for
i+ 1 ≤ j ≤ k − i+ 1. �

Suppose that Li denotes the set of vertices adjacent to the closet leaf at a distance
i. Thus, L0 and L1 denote the set of leaves and the set of vertices that are adjacent to
the leaves. Let dm = min{d(u) : u ∈ L1} and Lm

1 be the set of leaves whose adjacent
vertices have degree dm in T . We suppose that Lm

1 denote the set of leaves v such that
v /∈ Lm

1 .
We construct a new tree T ′i from tree T and tree Ti rooted at vi by identifying the root
vi with a vertex v ∈ Lm

1 .

Theorem 3.2 Let T ′1 and T ′2 are obtained from T by identifying the root vi of Ti with
u′ ∈ Lm

1 and v′ ∈ Lm
1 , respectively. Then, SO(T ′1) ≥ SO(T ′2).

Proof. We suppose that u and v are adjacent to u′ and v′, respectively. Using Theorem
3.1, d(u) ≤ d(v). Therefore, we have
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SO(T ′1)− SO(T ′2) =
√

(d(vi) + 1)2 + d(u)2 +
√
d(u)2 + 1

−
(√

(d(vi) + 1)2 + d(v)2 −
√
d(v)2 + 1

)
=
(√

(d(vi) + 1)2 + d(u)2 −
√

(d(vi) + 1)2 + d(v)2
)

+
(√

d(v)2 + 1−
√
d(u)2 + 1

)
= f(1)− f(d(vi) + 1) > 0.

Therefore, SO(T ′1) ≥ SO(T ′2). �

We use a similar technique in [10], for constructing tree T with a fixed degree
sequence D such that T is the maximum optimal tree among the trees with degree
sequence D. We propose the following algorithms to construct such trees.

Algorithm 1. (Construction of subtrees)

1. Given the degree sequence of the non-leaf vertices as D =
(
d1, d2, . . . , dm

)
in

descending order.

2. If dm ≥ m−1, then using Theorem 3.1, the vertices with degrees d1, d2, . . . , dm−1
are in L1. Tree T produces by rotted at u with dm children whose their degrees
are d1, d2, . . . , dm−1 and dm −m+ 1 leaves adjacent to u.

3. If dm ≤ m− 2, then we produce subtree T1 by rotted at u1 with dm − 1 children
with degrees d1, d2, . . . , ddm−1 such that u1 ∈ L2 and the children of u1 are in L1.
Subtree T2 is constructed by rooted at u2 with dm−1 − 1 children whose degrees
are ddm , ddm+1, . . . , d(dm−1)+(dm−1−1). Then do the same to get subtrees T3, T4, . . .
until Tk satisfies the condition of step (2). In this case, we have d(vk) = dm−k+1.

Algorithm 2. (Merge of subtrees)

1. Set T = Ti and i = k. We produce a new tree T ′i−1 from T and Ti−1 rooted at
vi−1 by identifying the root vi−1 with a vertex v ∈ Lm

1 . Using Theorem 3.2, tree
T ′i−1 is a maximum optimal tree among trees with the same degree sequence.

2. Consider i = k − 1, k − 2, . . . , 1 and T = Ti. Tree T ′i−1 from T and Ti−1 by the
same method of step (1). We construct trees T ′k−2, T

′
k−3, . . . , T

′
1.

3. T = T ′1 is the maximum optimal tree with given degree sequenceD =
(
d1, d2, . . . , dm

)
.

Example 3.3 In this example, we propose a maximum optimal tree with given degree
sequence D =

(
5, 5, 5, 4, 3, 3, 2, 2

)
. Using step (3) of Algorithm 1, we have subset T1
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Figure 1: Construction of subtrees using Algorithm 1

Figure 2: Merge of subtrees using Algorithm 2

Figure 3: A maximum optimal tree T with degree sequence
(
5, 5, 5, 4, 3, 3, 2, 2

)
.
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with 1 child whose has degree 5. For new degree sequence D1 =
(
5, 5, 4, 3, 3, 2

)
, we

construct tree T2 and have new degree sequence D =
(
5, 4, 3, 3

)
(Figure 1). It is easily

seen that D2 satisfies the condition of step (2).
Using Algorithm 2, we attach subtrees T2 to T3 for constructing T ′2 (Figure 2) and T2
to T ′2 for constructing the maximum optimal tree T ′1 = T (Figure 3).
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