
ON SPECTRAL SIMPLICITY OF THE HODGE LAPLACIAN

AND CURL OPERATOR ALONG PATHS OF METRICS

WILLI KEPPLINGER

Abstract. We prove that the curl operator on closed oriented 3-manifolds,
i.e., the square root of the Hodge Laplacian on its coexact spectrum,
generically has 1-dimensional eigenspaces, even along 1-parameter fami-
lies of Ck Riemannian metrics, where k ≥ 2. We show further that the
Hodge Laplacian in dimension 3 has two possible sources for nonsimple
eigenspaces along generic 1-parameter families of Riemannian metrics: ei-
ther eigenvalues coming from positive and from negative eigenvalues of
the curl operator cross, or an exact and a coexact eigenvalue cross. We
provide examples for both of these phenomena. In order to prove our re-
sults, we generalize a method of Teytel [Tey99], allowing us to compute the
meagre codimension of the set of Riemannian metrics for which the curl
operator and the Hodge Laplacian have certain eigenvalue multiplicities.
A consequence of our results is that while the simplicity of the spectrum
of the Hodge Laplacian in dimension 3 is a meagre codimension 1 property
with respect to the Ck topology as proven by Enciso and Peralta-Salas in
[EP12], it is not a meagre codimension 2 property.

1. Introduction and Statement of Results

While the Hodge Laplacian on differential forms has not received as much
attention as the Laplace-Beltrami operator (the Hodge Laplacian on func-
tions), there has been a substantial amount of interest in this operator in re-
cent years. The importance of its (coexact) spectrum in dimension 3 has been
recognized in the study of the geometry of closed 3-manifolds (e.g., [LS18]),
low dimensional topology (e.g., [LL21]), and that of its eigenforms (or rather
those of its square root, the curl operator) in the study of contact topology
(e.g., [EG00],[EKM12]) and fluid dynamics (e.g., [Car+21]). Properties of its
spectrum have been studied in various contexts (e.g., [AT12],[Tak03]) and are
the subject of open problems [CPR01, Problem 8.24].

Generic properties of the eigenfunctions and eigenvalues of the Laplace-
Beltrami operator were established in Uhlenbeck’s landmark paper [Uhl76].
In particular, she showed that, given a closed n-dimensional manifold, the
eigenvalues of the Laplace-Beltrami operator are generically simple, and that
generic 1-parameter families of Riemannian metrics connecting two Riemann-
ian metrics for which the spectrum is simple have simple spectrum throughout.
The natural question of whether similar statements could hold for the Hodge
Laplacian was soon answered in the negative by Millman [Mil80] who proved
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that for closed even dimensional manifolds, multiplicities of nonzero eigenval-
ues of the Hodge Laplacian in the middle degree are always even. This means
that a theorem in the generality of Uhlenbeck’s cannot hold in this context.

At least in dimension 3, however, Enciso and Peralta-Salas proved that the
spectrum of the Hodge Laplacian is generically simple [EP12]. They did this
in several steps, the first of which is to notice that the spectrum of the Hodge
Laplacian in dimension 3 is the same as that of its restriction to 1-forms
since the Hodge Laplacian ∆g = δd + dδ commutes with both the exterior
derivative d and the Hodge-star ∗g. By the Hodge decomposition theorem
[Hod89] the eigen-1-forms to nonzero eigenvalues of the Hodge Laplacian split
into exact and coexact ones, and so one naturally calls the spectrum of the
Hodge Laplacian on the exact and coexact forms the exact and coexact spec-
trum, respectively. The exact spectrum coincides with the spectrum of the
Laplace-Beltrami operator, and so by Uhlenbeck’s result we already know
that it is generically simple. Analyzing the coexact spectrum however proves
much harder. Enciso and Peralta-Salas do this by studying the curl operator
∗gd, which is the square root of the Hodge Laplacian on coexact forms. They
follow the general strategy of Uhlenbeck (which is to apply a Sard-type theo-
rem to the function Φ(g, u, λ) = (∗gd−λ)u) except that significant analytical
difficulties arise. Those include the PDE ∗gdu = λu being vector valued and
the curl operator not being elliptic (it has infinite dimensional kernel). Af-
ter showing the generic simplicity of the spectrum of the curl operator, they
still needed to break up the symmetric eigenvalues, that is the ones for which
λi = −λj for some i, j, before showing that the coexact spectrum of the Hodge
Laplacian is generically simple. Finally, they examine a variation of the exact
and coexact eigenvalues to conclude that even the full Hodge Laplacian has
simple spectrum for a residual set in the Banach manifold of Ck Riemannian
metrics with its natural topology.

In this article we want to complement and extend these results. Just like
in the work mentioned above we say that a set is meagre if it is the countable
union of nowhere dense sets, and we say a set is residual if its complement is
meagre. A property is said to be generic if it holds for a residual set. Note
that all spaces appearing in this text are Baire spaces, and so residual sets
are dense.

Theorem 1.1. Let 2 ≤ ℓ < ∞ and let g0 and g1 be two Cℓ Riemannian
metrics. Then, for any k ≥ 1, there exists a residual set in the space of paths
W k := {w ∈ Ck([0, 1],Gℓ) : w(0) = g0, w(1) = g1} connecting these metrics
such that the curl operator ∗g(t)d has simple spectrum for all 0 < t < 1.

That is, the spectrum of the curl operator in dimension 3 is simple along
generic 1-parameter families of Riemannian metrics. Moreover we prove that
such a result is false for the Hodge Laplacian itself (unlike for the curl and
the Laplace-Beltrami operator) in two different ways. On the one hand, we
construct an example of two Riemannian metrics on S3 so that any path con-
necting them must have a crossing of eigenvalues, one coming from a positive



SPECTRAL SIMPLICITY OF THE HODGE LAPLACIAN 3

and one coming from a negative eigenvalue of the associated curl operators,
meaning that the Hodge Laplacian restricted to coexact 1-forms does not have
simple spectrum along 1-parameter families of Riemannian metrics. On the
other hand we also construct an example of two Riemannian metrics on S3
(different from the previous example) so that any path connecting them has
a crossing of an exact and a coexact eigenvalue. Calling those 1-forms in the
image of the spectral projector associated to the positive (negative) part of
the spectrum of curl positive (negative), we get the following

Theorem 1.2. The Hodge Laplacian does not have simple spectrum along
generic 1-parameter families of Riemannian metrics. However, it does if one
restricts to the closed 1-forms, positive coexact 1-forms, or negative coexact
1-forms.

This almost immediately implies

Corollary 1.3. The set of Riemannian metrics for which the Hodge Lapla-
cian in dimension 3 does not have simple nonzero spectrum is one of meagre
codimension 1 but not of meagre codimension 2.

which roughly means that simplicity of the spectrum of the Hodge Laplacian
is a property that holds for the complement of a codimension 1, but not a
codimension 2, set in the space of Riemannian metrics. The notion of meagre
codimension is meant to capture the fact that some subset is not exactly a
manifold of that codimension but that it it behaves like one under projections
to subspaces of the parameter manifold so as to also include countable unions
of manifolds of a given codimension. This will be made precise in subsection
2.1.

Our approach is different from the method employed in both the Uhlen-
beck and the Enciso and Peralta-Salas paper. Instead we adapt an idea that
has been pioneered by de Verdière [Ver88] and made more user friendly by
Teytel [Tey99]. The main insight is that, given a family of self-adjoint opera-
tors which differentiably depend on a parameter living in a separable Banach
manifold, one can try to find local defining functions for the submanifold of
parameter values which have double (or higher multiplicity) eigenvalues pro-
vided certain transversality conditions are satisfied. In this fortunate case,
we can describe this non-simple subset as a set of meagre codimension 2.
Teytel’s genericity criterion has found a number of applications, for example
for proving generic eigenvalue properties of the Laplace-Neumann operator
[GM19].

An issue with this approach is that Teytel proved this theorem for a family
of operators that are self-adjoint with respect to the same inner product,
whereas many classes of geometric operators we care about, such as the Hodge
Laplacian, are self-adjoint with respect to the inner product induced by the
Riemannian metric for which the operators are defined. It turns out that this
difficulty is overcome rather easily as soon as the correct generalizations are
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chosen. Specifically, we obtain the following variation of Teytel’s Theorem
[Tey99, Theorem A]

Theorem 1.4. Let A(q) be a family of operators whose resolvents RA(q)
depend Fréchet-differentiably on a parameter q that belongs to a separable
Banach manifold X , each densely defined on the same real Banach space H.
Furthermore every A(q) is self-adjoint with respect to a differentiable family
of inner products ⟨−,−⟩q defined on H, each inducing norms equivalent to
that of H. Assume that the spectrum of each operator A(q) is discrete, of
finite multiplicity, and with no finite accumulation points. Assume also that
the family A(q) satisfies SAH2. Then the set of all q such that A(q) has a
repeated eigenvalue has meagre codimension 2 in X .

Here the condition SAH2 derives from the “strong Arnold hypothesis” in-
troduced by de Verdière in [Ver88] and is essentially the transversality con-
dition needed in order to conclude that we find the local defining functions
mentioned above. This will be made precise in section 2.2, definition 2.8.
This approach is chosen since it would be unclear how to use the Uhlenbeck
and Enciso and Peralta-Salas method in order to prove Theorem 1.1. Apart
from that, however, it gives us stronger statements than we would get by
using the former ideas. In particular, the de Verdière-Teytel method allows
one to actually determine the (meagre) codimension of the set of Riemann-
ian metric for which some family of geometric operators has eigenvalues of a
given multiplicity, and not just prove that it is meagre. Further, Uhlenbeck’s
method is only powerful enough to prove that generic 1-parameter families
gt of Riemannian metrics connecting metrics g0 and g1 with simple spectrum
have simple spectrum for all t, but no such restrictions on g0 and g1 exist if
one uses Theorem 1.4.

We wish to remark that while the curl operator is defined on k forms on
manifolds of dimension 2k + 1, it is not true that the results presented here
readily generalize to higher odd dimensions. Indeed it was proven by Gier and
Hislop [GH16] that the curl operator in dimension 5 has generically simple
spectrum, but because of the skew symmetry of this operator in dimension
4k + 1, this implies that its square, the Hodge Laplacian restricted to the
coexact 2-forms in dimension 5, generically has 2-dimensional eigenspaces.
The authors of [GH16] conjecture that the coexact spectrum of the Hodge
Laplacian on k forms in dimension 2k + 1 is generically 2 dimensional when
k is even and generically 1 dimensional when k is odd.

Even if one aims to prove the generic simplicity of the spectrum of the curl
operator in higher dimensions using the techniques presented here one will
have to verify the SAH2-condition in a different way as we really do use the
fact that the curl operator in dimension 3 is defined on 1-forms.

This papers is organized as follows: we will first recall the notion of meagre
codimension as introduced by Teytel in [Tey99] in subsection 2.1, then review
the setup for the de Verdière-Teytel method and introduce the necessary mod-
ifications in 2.2. Following this we apply Theorem 1.4 to the curl operator,
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proving that simplicity of the coexact spectrum holds in the complement of
a meagre codimension 2 subset. We then use the fact that this approach im-
mediately lends itself to the application of the study of k-parameter families
of operators in order to prove Theorem 1.1.
Finally we construct counterexamples to simplicity of the Hodge Laplacian
along generic 1-parameter families of Riemannian metrics mentioned above
and thereby prove Theorem 1.2 in subsection 3.2.
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I want to thank my advisors Vera Vértesi and Michael Eichmair for their
constant support and helpful mentoring as well as the Vienna School of Math-
ematics for providing a stable and pleasant research environment. I am also
grateful to Daniel Peralta-Salas, Junya Takahashi, and John Etnyre for fruit-
ful discussion and the provision of essential references. Special thanks go to
my good friend Josef Greilhuber for a particularly careful reading of an earlier
version of the present paper and many helpful remarks. Finally the author
would like to thank the anonymous referees for helpful comments and sugges-
tions.
This research was supported by the Austrian Science Fund FWF via the
START-project Y-963 and FWF project P 34318.

2. Preliminaries

2.1. Meagre Codimension. In this section, we recall the definition of mea-
gre codimension and some of its basic properties from [Tey99]. We also prove
a simple technical lemma that we will need in Section 3.2.

Definition 2.1. [Tey99] Let X be a Banach space and Z ⊂ X be a hyperplane
of codimension n. Then a differentiable map π : X → Z is called a nonlinear
projection if, for every x ∈ X, π′x : X → Z is surjection and has kernel of
dimension n.

Using these nonlinear projections allows Teytel to quantify more exactly
how small a set is.

Definition 2.2. [Tey99] A subset Y ⊂ X is said to be of meagre codimension
n if π(Y ) ⊂ Z is meagre in Z for every hyperplane Z of codimension n − 1
and every nonlinear projection π : X → Z.

There is a natural way of extending this definition from Banach spaces to
Banach manifolds.

Definition 2.3. [Tey99] Given a Banach manifold M , we say that a set
Y ⊂ M has meagre codimension n if for every chart (ϕ,U) of M , ϕ(U ∩ Y )
has meagre codimension n in ϕ(U).

Examples of subsets of meagre codimension n of a Banach space X include
codimension n hyperplanes and smooth codimension n submanifolds of X.
Clearly, countable unions of sets of meagre codimension n are again sets of
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meagre codimension n, and sets of meagre codimension n are also sets of
meagre codimension m for all m ≤ n.

We will need the following Lemmas proven by Teytel:

Lemma 2.4. [Tey99] A subset Y of a separable Banach space is of meagre
codimension 1 iff it is meagre.

The proof carries over almost verbatim to subsets of separable Banach
manifolds.

Lemma 2.5. [Tey99] Let Y be a set of meagre codimension n and let M be
a submanifold of X of codimension k < n. Then Y ∩M is a set of meagre
codimension n− k in M .

Lemma 2.6. [Tey99] Let X be a separable Banach manifold and Y be a
subset of X. Suppose that for every q ∈ Y there exists a neighbourhood Uq of
q such that Y ∩ Uq is of meagre codimension n in Uq. Then Y is of meagre
codimension n in X.

Finally we prove a Lemma we will use for the 1-parameter arguments.

Lemma 2.7. Let X be a Banach manifold, and let Y ⊂ X × Rk be a set of
meagre codimension n with n ≥ k, and let π : X × Rk → X be a nonlinear
projection. Then π(Y ) ⊂ X is a set of meagre codimension n− k.

Proof. Let (Ui, ϕi) be a collection of charts coveringX, and (Ui×Rk, ψi) be the
associated product charts. Then πψi

, the chart representative of the nonlinear

projection, is a nonlinear projection from ψi(Ui × Rk) to ψi(Ui × {0}) =
ϕi(Ui)×{0}. By the above lemmas, πψi

(ψi(Y ∩Ui ×Rk)) ⊂ ϕi(Ui) is a set of
codimension n − k. Since this is true for any choice of charts (Ui, ϕi) we are
done. □

2.2. The Genericity Result. We adapt the de Verdière-Teytel construction.
Let the parameter space X be a separable Banach manifold. Let (H, ⟨−,−⟩q)
be a family of real Hilbert spaces, Fréchet-differentiably parametrized by q ∈
X with the same underlying real Banach space H, i.e. all inner products
induce equivalent norms. Let furthermore Aq be linear operators satisfying:

• Aq is self-adjoint with respect to the inner product ⟨−,−⟩q for all
q ∈ X

• the spectrum σ(Aq) of Aq consists of countably many discrete eigen-
values, all of which have finite multiplicity for all q ∈ X

• The resolvents RAq(µ) = (µ − Aq)
−1, µ ∈ ρ(Aq), of A(q) depend

Fréchet-differentiably on q

Remark. Since self adjoint operators are closed, the resolventsRAq are bounded
operators, so it is clear what Fréchet-differentiability means in this context.
Teytel required the operators Aq to depend Fréchet-differentiably on q with
respect to the graph norm, but we find this formulation to be slightly cleaner.
Note that, unlike Teytel, we do not need to require the domains D(Aq) to
coincide for all q ∈ X since the resolvents are defined on all of H.
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Fix some q0 ∈ X and an eigenvalue λ of Aq0 with multiplicity m. The
general strategy will now be to find defining functions for the submanifold of
parameter values q close to q0 for which the part of the spectrum of Aq near
λ is not simple.

Since the spectrum of Aq0 is discrete there exists an ϵ > 0 such that λ is the
only eigenvalue of Aq0 in (λ−ϵ, λ+ϵ). We now consider an open neighbourhood
U(q0) ⊂ X of q0 such that the spectrum of Aq in (λ − ϵ, λ + ϵ) consists of n
eigenvalues whose multiplicities sum tom. Such an open neighbourhood exists
because σ(Aq) depends continuously on q [RS55, pp. 372-373]. Note that the
previous reference only deals with the case of families of operators that are
self-adjoint with respect to the same inner product, but the same proof goes
through in our case. Continuous dependence on q also follows from the min-
max characterization of eigenvalues of selfadjoint operators [Tes14, Theorem
4.10].

We denote the associated sum of eigenspaces by E(q) and define the spectral
projection P : U(q0)×H → E(q) by

P (q) =
1

2πi

∫
γ
RAq(γ) dγ

Where γ is the simple closed curve λ+ ϵ eit in the complex plane. Note that,
while all the (H, ⟨−,−⟩q) are real Hilbert spaces, we can first complexify,
then apply the operator P (q), and then restrict to the real elements of the
complexification. Furthermore, the projection P (q0) is an isomorphism from
E(q) to E(q0) for q close enough to q0. The fact that P depends differentiably
on the parameter q follows from an application of dominated convergence.

Using this projection we define the map

S(q) = P (q) ◦ P (q0) : E(q0) → E(q)

and the local defining function f : U(q0) ⊂ X → GL(E(q0)) by

f(q) = S(q)−1RA(q)S(q)

Here we do not specify the argument of the resolvent since it does not matter
and denote it by RA(q) = RA(q). We do however want the argument to be real
since we are working in a real Banach space. One can find a real argument
µ so that the resolvent RA(q)(µ) is defined for all q ∈ U(q0) provided U(q0) is
chosen small enough.

Note that the preimage of the submanifold R · Id ⊂ GL(E(q0)) under f is
precisely the set of parameter values for which there is a single eigenvalue in
the interval (λ− ϵ, λ+ ϵ). This eigenvalue is necessarily of multiplicity m.

To see that this set is a submanifold we have to compute the derivative of
f at q0. Using that S(q0) = Id one sees that this is given by

f ′(q0) = [S′(q0), RA(q0)] +R′
A(q0)

Let {vi}1≤i≤m be an orthonormal eigenbasis of (E(q0), ⟨−,−⟩q0) for the oper-
ator Aq0 . Given an element h ∈ Tq0X we can now express the endomorphism
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f ′(q0)[h] in this basis and see that ⟨[S′(q0), RA(q0)][h]vi, vj⟩q0 = 0 by the fact
that RA(q0) is symmetric with respect to ⟨−,−⟩q0 . Thus

f ′ij(h) := ⟨f ′(q0)[h]vi, vj⟩q0 = ⟨R′
A(q0)[h]vi, vj⟩q0

We can now define the condition SAH2

Definition 2.8. [Tey99] Let H be a real Hilbert space, and λ be an eigenvalue
of A(q) of multiplicity n ≥ 2. We say that the family A(q) satisfies the condi-
tion SAH2 if there exist two orthonormal eigenvectors v1 and v2 of eigenvalue
λ such that the linear functionals f ′11 − f ′12 and f ′12 are linearly independent.

Remark. The spectrum of an operator A is simple iff the spectrum of its
resolvent RA is simple. Moreover, whenever the derivative of Aq exists in
some suitable sense, ⟨R′

A(q0)[h]vi, vj⟩q0 and ⟨A′(q0)[h]vi, vj⟩q0 only differ by
a constant factor so in that case RA(q) satisfies the condition SAH2 iff A(q)
does.

Remark. In Teytel’s setting, A′(q0) always maps to L(E(q0)), the space of
symmetric endomorphisms on E(q0). This means that if the multiplicity of
λ is two, the linear functions appearing in condition SAH2 precisely span
all directions which are transverse to R · Id. In our setting there is one more
direction that A′(q) could potentially map to, however for all examples known
to us, A′(q0) also maps to L(E(q0)).

Proof of Theorem 1.4. The proof can be copied almost verbatim from the
one provided by Teytel in [Tey99, Chapter 3], the only difference being that
f maps to GL(E(q0)) as opposed to L(E(q0)). For the sake of completeness
we outline the most important steps leading up to that point. The idea is to
filter the set D ⊂ X of metrics for which the operator A does not have simple
spectrum by the multiplicity of the non-simple eigenvalues, and then show
that locally D has meagre codimension 2, which then allows us to conclude
the argument by appealing to Lemma 2.6.
Given a finite open interval I, we define the set Dn,I ⊂ X as the collection of
parameters q ∈ X such that Aq has an eigenvalue λ of multiplicity n but no
eigenvalue of higher multiplicity contained in I. Then

D =
⋃
N∈N

⋃
n>1

Dn,(−N,N)

and so if we show that for all n > 1 and all finite intervals I, Dn.I has
meagre codimension 2, we are done since the countable union of sets of meagre
codimension 2 is again a set of meagre codimension 2. Fixing q0 ∈ D we
note that any finite interval I only contains finitely many eigenvalues of Aq0 .
Restricting to those eigenvalues λ1, . . . , λs with multiplicity m(λi) ≤ n and
using the fact that eigenvalues move continuously with the parameter we
see that there exists a small neighbourhood Uq0 of q0 so that Dn,I ∩ Uq0 =⋃s
i=1Dn,(ai,bi)∩Uq0 , where the sum of multiplicities of eigenvalues in (ai, bi) is

m(λi) for all Aq with q in Uq0 . It thus suffices to show that Uq0 ∩Dn,(a,b) with
(a, b) containing eigenvalues of total multiplicity n has meagre codimension 2
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in Uq0 .
When n = 2 then Aq satisfying SAH2 gives two linearly independent defining
equations, thus implying that Dn,(a,b)∩Uq0 = f−1(R·Id)∩Uq0 is a submanifold
of codimension 2 for Uq0 small enough, which is a set of meagre codimension
2.
When n > 2 consider the set E′(Rn) ⊂ End(Rn) of all n× n matrices L with
entries L1,1, L1,2, L2,1, and L2,2 equal to zero, which is a space of dimension
n2 − 4. We define the differentiable map f̄ : E′(Rn) × Uq0 → End(Rn) by
f̄(L, q) = L+f(q) which is transverse to R·Id ⊂ End(Rn) plus some additional
direction ⟨r⟩ at (0, q0) by the SAH2 condition and the fact that the image of
f has at most dimension 2. Therefore f̄−1(R · Id ⊕ ⟨r⟩) ⊂ L′(Rn) × Uq0
is a submanifold of codimension n2 − 2 in a neighbourhood of (0, q0). The
intersection of this submanifold with Uq0 contains Dn,(a,b) ∩ Uq0 , and Lemma

2.5 implies that this intersection has meagre codimension (n2−2)−(n2−4) = 2
in Uq0 . This concludes the proof that D ⊂ X is a set of meagre codimension
2. □

Remark. (1) One can easily extend Theorem 1.4 to complex Hilbert spaces.
(2) A reading of Teytel’s proof makes clear that it is not the condition

SAH2 that really matters, but the number k of linearly independent
directions of in Im(A′) which are transverse to R ·Id (and whose span
does not contain Id). This number k directly translates into non-
simplicity of the spectrum being a meagre codimension k property.

(3) We want to point out that a different approach to adapting Teytel’s
theorem to the case of differentiably varying inner products on the
same Banach space would be to try to locally isometrically trivialize
the bundle (H → X ), consisting of fibers Hq = (H, ⟨−,−⟩q) over the
basepoint q. Supposing H is separable, an idea for doing this would
be to fix a countable orthonormal basis (with respect to any inner
product) and then apply the Gram-Schmidt procedure with respect
to all ⟨−,−⟩q and hope that the resulting local frame for H is smooth.
Then one could consider the family A(q) in this local bundle chart and
try to apply Teytel’s Theorem directly. Actually applying this idea
to a concrete family of operators however is much more difficult than
our approach as one would have to compute the Fréchet derivative of
this transformed family of operators which of course depends on the
chart one chose, so this does not seem to be useful in practice.

3. Main Results

3.1. The curl operator has simple spectrum in the complement of a
subset of meagre codimension 2. We now specialize to the case X = Gk,
the set of Ck Riemannian metrics on a closed oriented 3-manifoldM , endowed
with the Ck topology. This constitutes a separable smooth Banach manifold,
its tangent space TgGk at a point g can be identified with Sk(M), the set of
symmetric (0, 2) tensor fields of differentiability class k on M .
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Consider the curl operator Ag := ∗gd, the square root of ∆g on the coexact
1-forms. Our strategy is to show that Theorem 1.4 applies to the curl opera-
tor.
The curl operator is well known to be symmetric with respect to the inner
product ⟨α, β⟩g =

∫
M g(α, β) dµg and it admits a self-adjoint extension to a

densely defined subspace of H = L2(Ω1(M)). In particular all of its eigen-
values are real and all of its eigenforms are eigenforms of ∆g and so they are
smooth 1-forms.
Moreover its eigenvalues only accumulate at infinity and its eigenspaces ex-
cept for the eigenvalue 0 are finite dimensional. In order to deal with the
infinite dimensional kernel of the curl operator Ag we restrict it to the sub-

space Hg = ker(d)⊥g . All of these Hilbert spaces are equipped with the
induced inner products ⟨−,−⟩g mentioned above and can be identified with
H/ker(d) as Banach spaces.

We thus see that the curl operator is of the type considered in Theorem 1.4
and we are left with analyzing its derivative. This derivative was computed
in [EP12].

Lemma 3.1. [EP12, Lemma 2.1.] Let u be an eigenform of Ag = ∗gd of
eigenvalue λ. Then the variation of Ag in direction h is given by

A′
g [h]u = λh(♯gu,−)− λ

2
trg(h)u

where ♯g is the canonical isomorphism of the tangent and the cotangent bundle
induced by the metric g.

Remark. We can see that the derivative A′
g of Ag maps to the symmetric

operators on E(g). Therefore the best we can hope for is that the subspace
of metrics with non-simple spectrum constitute a set of meagre codimension
two. The same holds true for ∆g restricted to the coexact spectrum as we
will soon see.

Now let λ be an eigenvalue of multiplicity 2 and v1 and v2 an orthonormal
basis for the associated eigenspace E(g) of Ag. Our approach is to make
special choices of h and show that A′

g applied to these h already spans a 2-
dimensional vector space transverse to R · Id ⊂ L(E(g)). It turns out that
the symmetric tensor product of the basis vectors, denoted by vi ⊙ vj , leads
to particularly nice expressions, and so these will be our h.

Using vi⊙ vj(♯gvk) =
1
2(g(vi, vk)vj + g(vj , vk)vi) and trg(vi⊙ vj) = g(vi, vj)

we compute

⟨A′[vi ⊙ vj ]vk, vl⟩ =
λ

2

∫
M

(
g(vi, vk) g(vj , vl) + g(vj , vk) g(vi, vl)− g(vi, vj) g(vk, vl)

)
dµg
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We represent the linear maps A′[v1 ⊙ v1] and A′[v1 ⊙ v2] in this basis and
obtain

A′[v1 ⊙ v1] =
λ

2

( ∫
M∥v1∥4 dµg

∫
M∥v1∥2 g(v1, v2) dµg∫

M∥v1∥2 g(v1, v2) dµg 2
∫
M g(v1, v2)

2 dµg −
∫
M∥v1∥2 ∥v2∥2 dµg

)

A′[v1 ⊙ v2] =
λ

2

(∫
M∥v1∥2 g(v1, v2) dµg

∫
M∥v1∥2 ∥v2∥2 dµg∫

M∥v1∥2∥v2∥2 dµg
∫
M∥v2∥2 g(v1, v2) dµg

)
Lemma 3.2. The matrices Id, A′[v1⊙v1], and A′[v1⊙v2] fail to span L(E(g))
exactly when∫
M

∥v1∥4 dµg =

(
2

∫
M

g(v1, v2)
2 dµg −

∫
M

∥v1∥2∥v2∥2 dµg

)

+

(∫
M
∥v1∥2g(v1, v2) dµg

)2

−
(∫

M
∥v1∥2g(v1, v2) dµg

)(∫
M
∥v2∥2g(v1, v2) dµg

)
∫
M
∥v1∥2∥v2∥2 dµg

Proof. Identifying L(E(g)) with R3 in the obvious way we can form the matrix
built from the images of Id, A′[v1⊙v1], and A′[v1⊙v2] under this identification 1 0 1∫

M∥v1∥2g(v1, v2) dµg
∫
M∥v1∥2∥v2∥2 dµg

∫
M∥v2∥2g(v1, v2) dµg∫

M∥v1∥4 dµg
∫
M∥v1∥2g(v1, v2) dµg 2

∫
M g(v1, v2)

2 dµg −
∫
M∥v1∥2∥v2∥2 dµg


The vanishing of its determinant gives the condition(∫

M
∥v1∥2∥v2∥2 dµg

)(
2

∫
M
g(v1, v2)

2 dµg −
∫
M
∥v1∥2∥v2∥2 dµg

)
+

(∫
M
∥v1∥2g(v1, v2) dµg

)2

−
(∫

M
∥v1∥2∥v2∥2 dµg

)(∫
M
∥v1∥4 dµg

)
−
(∫

M
∥v1∥2g(v1, v2) dµg

)(∫
M
∥v2∥2g(v1, v2) dµg

)
= 0

Noting that eigenforms of the curl operator are in particular eigenforms of
the Hodge Laplacian, we see that they satisfy a unique continuation property
([Aro57],[Kaz88]), i.e. they vanish identically if they vanish on an open subset.
It immediately follows that

∫
M∥v1∥2∥v2∥2 dµg > 0, and so we are done. □

In order to deal with this degenerate case, we introduce h̃a = v1 ⊙ v1 +
a trg[v1 ⊙ v1] g. We compute once more

A′[h̃a] =
λ

2

(
(1− a)

∫
M∥v1∥4 dµg (1− a)

∫
M∥v1∥2g(v1, v2) dµg

(1− a)
∫
M∥v1∥2g(v1, v2) dµg 2

∫
M g(v1, v2)

2 − (1 + a)
∫
M∥v1∥2∥v2∥2 dµg

)
Lemma 3.3. Id, A′[h̃a], and A

′[v1 ⊙ v2] span L(E(g)) for some choice of a.

Proof. Setting the determinant associated to these three vectors to zero and
solving for

∫
M∥v1∥4 dµg as in the preceding Lemma we get
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∫
M
∥v1∥4 dµg =

(
2

1− a

∫
M
g(v1, v2)

2 dµg −
1 + a

1− a

∫
M
∥v1∥2∥v2∥2 dµg

)
+(∫

M∥v1∥2g(v1, v2) dµg
)2

−
(∫

M∥v1∥2g(v1, v2) dµg
)(∫

M∥v2∥2g(v1, v2) dµg
)

∫
M∥v1∥2∥v2∥2 dµg

= Va

Now suppose that in fact all of these determinants vanish, so the RHS of
the above equation does not depend on the choice of a ∈ R \ {1}. Then in
particular, Va = V0, and so we get

(1− a)

(
2

∫
M
g(v1, v2)

2 dµg −
∫
M
∥v1∥2∥v2∥2 dµg

)
=

(
2

∫
M
g(v1, v2)

2 dµg − (1 + a)

∫
M
∥v1∥2∥v2∥2 dµg

)
which is equivalent to∫

M

(
g(v1, v2)

2 − ∥v1∥2∥v2∥2
)
dµg = 0

meaning that v1 ∥ v2 for every point in M . We will now show that this is
impossible. For this note that the complements of the zero set of v1 and v2 are
open and dense by the unique continuation property. This means that there
exists an open set U ⊂M in the complement of these zero sets and a smooth
function s such that v1 = s v2 on U . For constant s we immediately get a
contradiction since ⟨v1, v2⟩g = 0, so s is some nonconstant function. Plugging
this into the eigenform-equation for the curl operator yields

λv1 = Agv1 = Ag(s v2) = sAgv2 + ∗g(ds ∧ v1) = λ v1 + ∗g(ds ∧ v1)

This means that ds ∥ v1, so v1 = f ds for some smooth function f . Restricting

to a subset Ũ ⊂ U on which ds does not vanish, we see that this leads to the
following contradiction

0 < v1 ∧ dv1 = f ds ∧ d(f ds) = f2 ds ∧ ds = 0

□

Now decompose Hg = H+
g ⊕H−

g , where H+
g and H−

g are the subspaces of
Hg spanned by the eigenforms of Ag corresponding to positive and negative
eigenvalues, respectively. This induces the natural splitting ∆g = ∆+

g ⊕∆−
g .

An immediate consequence of the preceding Propositions and Theorem 1.4 is
the following

Theorem 3.4. The curl operator in dimension 3 has simple spectrum unless
g is in a set of meagre codimension 2. Moreover, the same is true for ∆±

g .
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Remark. One may expect that one could simply extend our proof technique
to the full Hodge Laplacian ∆g on one-forms by virtue of the following ar-
gument: given a 2-dimensional eigenspace E(g) of ∆g = A2

g corresponding

to an eigenvalue λ2 > 0, there exists an orthonormal basis of eigenvectors of
Ag spanning E(g). This is true because Ag is an endomorphism of E(g) and
since H admits an orthonormal basis composed of eigenvectors of Ag. Calling
this pair of eigenvectors of Ag spanning E(g) v1 and v2, we note that the vi
are eigenvectors to potentially different eigenvalues, namely ±λ.
Now, an easy application of the product rule and the symmetry of the operator
Ag with respect to ⟨−,−⟩g yields

⟨(A2
g)

′vl, vk⟩g = ⟨A′
gAg +AgA

′
gvl, vk⟩g = 2λ ⟨A′

gvl, vk⟩q0
Now if λi = −λj , we observe that ∆′

g[v1⊙v2] = 0, and ∆′
g[vi⊙vi] = 2λA′

g[vi⊙
vi]. While this means that we cannot repeat the arguments of the previous
two Lemmas for the Hodge Laplacian on coexact one-forms, we do reproduce
a result of Enciso and Peralta-Salas [EP12]: It is not difficult to check that
A′
g[v1 ⊙ v1] and A′

g[v2 ⊙ v2] are always nonzero and that they are linearly
dependent iff g(v1, v2) = 0 and ∥v1∥ = ∥v2∥ pointwise, in which case A′

g[v1⊙v1]
is transverse to R ·Id. This easily implies that there always exists at least one
h such that ∆′

g[h] is transverse to R ·Id. By Lemma 2.4, we conclude that the
set of Riemannian metrics for which the spectrum of the Hodge Laplacian on
coexact one-forms has non-simple spectrum is meagre.

The proof of Theorem 1.3 will show that this is as far as we can go for the
Hodge Laplacian on coexact 1-forms.

3.2. The 1-Parameter Family Arguments. To prove Theorem 1.1 we pick
a new parameter space. We fix two Riemannian metrics g0 and g1 and define
W k := {w ∈ Ck([0, 1],Gℓ) : w(0) = g0, w(1) = g1}, where 2 ≤ ℓ <∞. We use
X = W k × (0, 1) and define the family of operators A∗

(w,t) = Aw(t). Having

made these definitions we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The plan is to once again use Theorem 1.4. To this end
we note that (A∗)′(w,t)[(u, s)] = A′

w(t)[w
′(t)s + u(t)]. Thus given a parameter

value (w0, t0) for which an eigenspace of A∗ is 2-dimensional, we evaluate the
derivative of A∗ at (w0, t0) and apply it to (u = w0, s = 0). This shows that
Im((A∗)′(w0,t0)

) ⊇ Im(A′
w0(t0)

), and so we may conclude that the non-simple

set N has meagre codimension 2 in W k × (0, 1). Lemma 2.7 tells us that
π : (w, t) 7→ w maps N to a set of meagre codimension 1 in W k, which is a
meagre set by Lemma 2.4. Since the complement of π(N) in W k are precisely
those 1-parameter families which have simple coexact spectrum for all values
of t, we are done. □

We can also prove, however, that an analogous statement for the nonzero
spectrum of the Hodge Laplacian is false. As mentioned in the introduction,
generic simplicity of the Hodge Laplacian in dimension 3 fails in two different
ways: eigenvalues corresponding to positive and negative eigenvalues of the
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curl operator may cross, as may exact and coexact eigenvalues. We will need
the following Lemmas in the proof of these two statements.

Lemma 3.5. Let T : X → Y be a bounded operator between Banach spaces
X and Y , and let furthermore Z ⊂ X, W ⊂ Y be closed subspaces. Suppose
T vanishes on Z. Then

∥T̃∥X/Z→Y/W ≤ ∥T∥X→Y

where T̃ is the projection of T to the quotient X/Z.

Proof. We compute

∥T̃ (u+ Z)∥Y/W = inf
w∈W

∥T̃ (u+ Z) + w∥Y ≤ ∥T̃ (u+ Z)∥Y = ∥T (u)∥Y

≤ ∥T∥X→Y · inf
v∈{u+Z}

∥v∥X = ∥T∥X→Y · ∥u∥X/Z

and the result follows. □

Lemma 3.6. Let (gt)t∈[0,1] be a continuous 1-parameter family of Riemannian
metrics. Then the first positive (or negative) eigenvalue λ1(t) is bounded away
from 0.

Proof. The curl operator Ag : H1(M) → L2(M) is bounded and descends

to a bounded operator between the Banach spaces Ãg : H1(M)/ker(d) →
L2(M)/ker(d). The continuous dependence of the operator norm on g factors
to the quotient by Lemma 3.5. CallingH1(M)/ker(d) = X and L2(M)/ker(d) =
Y we know that for every metric g, the lowest (positive or negative) eigenvalue
is greater than zero and so

∥Agu∥Y ≥ Cg∥u∥X
Fix a Riemannian metric g0. Then there exists a neighbourhood U of g0 such

that ∥Agu∥Y >
Cg0
2 ∥u∥X .

Indeed, choose U so that ∥Ag −Ag0∥X→Y <
Cg0
2 . Then

∥Agu∥Y ≥ ∥Ag0u∥Y − ∥(Ag −Ag0)u∥Y
≥ Cg0∥u∥X − ∥Ag −Ag0∥X→Y · ∥u∥Y

≥ Cg0
2

∥u∥X

Now suppose that the family λ1(t) goes to zero as t→ t0. Then Cg0 > 0, but
Cgt goes to 0 as t goes to t0, which is a contradiction to the above bound. □

It should be noted that the proof of Lemma 3.6 uses the fact that all Ag
have the same kernel. With these preparatory results out of the way we can
prove

Lemma 3.7. There exist Riemannian metrics g0 and g1 on S3 such that the
Hodge Laplacian ∆g(t) on coexact 1-forms does not have simple spectrum along
any differentiable curve g(t) with g(0) = g0 and g(1) = g1.
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Proof. Given a Riemannian metric g so that ∆g has simple spectrum, we
colour eigenvalues red or blue depending on whether they come from a positive
or a negative eigenvalue of Ag, respectively. See Figure 1 for an illustration
of this. We want to argue that the corresponding sequence of red and blue
dots on the positive half line does not change along 1-parameter families with
simple spectrum.

Toward this end we first note that Lemma 3.6 tells us that eigenvalues of
the Hodge Laplacian never go to 0 along 1-parameter families of Riemannian
metrics.
Consequently, if we find two Riemannian metrics g0 and g1 for which the
Hodge Laplacian has simple spectrum but whose spectrum has a different
combinatorial order, we have proven the Lemma.
We construct these metrics by starting with the standard metric on S3 for
which it is known that the curl operator has 3-dimensional eigenspaces asso-
ciated to the eigenvalues µ = 2 and ν = −2, corresponding to the positively
and negatively oriented Hopf fields, respectively ([IK79], [PS21]). We now aim
to perturb this metric in two different ways: one perturbation will increase
the values both µ and ν, the other will decrease them. See Figure 1 for a
sketch of this idea.

Figure 1. Perturbing a non-generic metric g which has a pos-
itive and a negative coexact eigenvalue which coincide in two
different ways.

In order to see how a variation of a metric g in direction h will affect
the eigenvalues, we use a formula worked out by Enciso and Peralta-Salas
([EP12]): given a simple eigenvalue λ and an associated eigenform u of the
curl operator we get

(1) (Dλ)g[h] = λ

∫
M

(
h(u, u)− trg(h)

2
g(u, u)

)
dµg

We will come back to the issue of simplicity of the eigenvalue at the end of the
present proof and for now assume that this formula holds for all eigenvalues.

The challenge now is to construct an h such that both (Dµ)g[h] and (Dν)g[h]
are greater than 0. For this purpose let α = (1, 0, 0) and β = (0, cos(x), sin(x))
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with respect to the standard left invariant orthonormal frame on S3, where
x is the flowtime of α. Now it is easy to check that α is an eigenform of
eigenvalue 2 and β one of eigenvalue −2. We define h = α ⊙ α − β ⊙ β and
compute that

(Dµ)g[h] = 2

∫
M

(
h(α, α)− trg(h)

2
g(α, α)

)
dµg =

∫
M

(
∥α∥4g + ∥α∥2g∥β∥2g

)
dµg

= 2 vol(S3) > 0

(Dν)g[h] = −2

∫
M

(
h(β, β)− trg(h)

2
g(β, β)

)
dµg =

∫
M

(
∥α∥4g + ∥α∥2g∥β∥2g

)
dµg

= 2 vol(S3) > 0

using that h(α, α) = ∥α∥4 − g(α, β)2 = ∥α∥4, h(β, β) = g(α, β)2 − ∥β∥4 =
−∥β∥4, tr(h) = ∥α∥2 − ∥β∥2 and ∥α∥ = 1 = ∥β∥ pointwise. This means that
if we first do a variation in direction h and then in direction −h we will force
a crossing of µ2 and ν2, assuming that formula (1) holds.
We deal with the nonsimplicity of the eigenvalues by adding to h a direction
that is transverse to the submanifolds for which the eigenvalues ±2 have mul-
tiplicity greater than 1. Following this new variation with a short curve will
immediately break up the eigenvalue multiplicities, so the formula 1 holds af-
ter time t = 0. Since (Dµ)g[h] > 0 and (Dν)g[h] > 0 are open conditions and
since eigenvalues move continuously under a change of Riemannian metric,
the above considerations apply and we are done. □

Similarly, we will now prove that there are situations in which a crossing
of exact and coexact eigenvalues of the Hodge Laplacian cannot be avoided.

Lemma 3.8. There exist Riemannian metrics g0 and g1 on S3 such that the
Hodge Laplacian ∆g(t) has a crossing of an exact and a coexact eigenvalue
along any differentiable curve g(t) with g(0) = g0 and g(1) = g1.

Proof. The idea is the same as in the proof of Lemma 3.7: We colour exact
eigenvalues blue, coexact eigenvalues red, and hope to find two Riemannian
metrics that have different sequences. In order to carry out this argument we
need to find a Riemannian metric g for which an exact and a coexact eigen-
value coincide, a variation that shifts these eigenvalues in different directions,
and then again deal with the possibility of multiple eigenvalues.

First for the Riemmannian metric g. Tanno [Tan83] constructs a 1-parameter
family of Riemannian metrics on S3 for which the coexact spectrum and the
exact spectrum of ∆ cross repeatedly. We now choose any of these metrics
and denote it by g. Note that Tanno did not compute the evolution of all
the eigenvalues, but we still know that there exists a lowest eigenvalues for
which an element of the exact and of the coexact spectrum agree and we call
it λ2m(g). We are interested in the lowest such eigenvalue because this way
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the change in order of the exact and coexact eigenvalue induced by the varia-
tion cannot be compensated by higher and lower double eigenvalues that also
break up at the same time.

Supposing that both the exact and the coexact part of the spectrum of ∆g

are simple, one can derive formulae for the variation of the eigenvalues of ∆g

for a given variation h. Given an exact eigenvalue ρ and a coexact eigenvalue
λ2 (it is the square of an eigenvalue of the curl operator) and corresponding
eigenforms df and u, these formulae read ([EP12])

(2) (Dρ)g[h] = −
∫
M

(
∆0
gtrg(h)

4
f2 + h(∇f,∇f)

)
dµg

(3) (Dλ2)g[h] = 2λ2
∫
M

(
h(u, u)− trg(h)

2
g(u, u)

)
dµg

Enciso and Peralta-Salas [EP12] find an h which breaks the eigenvalue
multiplicity λ2 = ρ. Doing this variation once in direction h and once in
direction −h for the for the lowest eigenvalue λ2m(g) for which the exact and
coexact spectrum agree will thus break up the exact and coexact spectrum in
two different ways, once with the exact, and once with the coexact eigenvalue
being larger. Since this was the lowest such eigenvalue, the corresponding
order of exact and coexact eigenvalues must be different for the resulting
Riemannian metrics.

The last remaining difficulty is dealing with the case when g does not have
simple exact and coexact spectrum. In principle the argument is analogous
to the one in Lemma 3.7, with the added difficulty that we do not know that
the subset of Riemannian metrics for which exact eigenvalues are simple is
locally a submanifold, we only know that it is a meagre set. So we pick h as
above and define h̃ = h+ ϵh′ + ηh′′ where h′ is transverse to the submanifold
along which multiple coexact eigenvalues appear. Now for any small ϵ we can
choose h′′ so that for arbitrarily small η, h perturbs g in a direction that will
lead to a simple exact and coexact spectrum since transversality is an open
condition. The fact that equations (2) and (3) are linear in h means that as
we choose ϵ and η arbitrarily small we can also achieve that the sign of the
variations will be the same as for the variation with respect to h. We now
conclude in the same way as in the proof of Lemma 3.7.

□

We now get Theorem 1.2 and Corollary 1.3 as easy consequences of every-
thing that has been discussed in section 3.

Proof of Theorem 1.2. Lemmas 3.7 and 3.8 imply that the spectrum of the
Hodge Laplacian is not simple along generic 1-parameter families of Riemann-
ian metrics. The result by Uhlenbeck on the simplicity of the Laplace-Beltrami
operator along 1-parameter families of Riemannian metrics, Lemma 3.3 and
the proof of Theorem 1.1 allow us to conclude simplicity of the positive and
negative coexact spectrum along generic 1-parameter families. □
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An immediate consequence of Lemmas 3.7 and 3.8 is the proof of Corollary
1.3.

Proof of Corollary 1.3. By Lemma 2.4, a set has meagre codimension 1 iff it
is meagre. The fact that the non-simple set of Riemannian metrics for which
the Hodge Laplacian in dimension 3 does not have simple nonzero spectrum
has meagre codimension 1 was proven in [EP12].
Now by Proposition 3.8, the non-simple set cannot have meagre codimension
2 since otherwise we would get generic simplicity for 1-parameter families. □
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