
ar
X

iv
:2

21
1.

10
22

4v
3 

 [
m

at
h.

O
A

] 
 1

5 
M

ay
 2

02
3

BARYCENTRIC DECOMPOSITIONS IN THE SPACE OF

WEAK EXPECTATIONS

ANGSHUMAN BHATTACHARYA AND CHAITANYA J. KULKARNI

Abstract. The space of weak expectations for a given representation
of a (unital) C*-algebra is a compact convex subset of the unit ball of
completely bounded maps in the BW topology, when it is non-empty.
An application of the classical Choquet theory gives a barycentric de-
composition of a weak expectation in that set. However, to complete
the barycentric picture, one needs to know the extreme points of the
compact convex set in question. In this article, we explicitly identify
the set of extreme points of the space of weak expectations for a given
representation, using operator theoretic techniques.

1. Introduction

Let A be a unital C*-algebra and π : A → B(H) be an arbitrary but
fixed non-degenerate representation of A on a Hilbert space H. A unital
completely positive map θ : B(H) → π(A)′′ is called a weak expectation of
π if

θ(π(a)) = π(a)

for all a ∈ A. We fix the following notation for this article:

WE(π) := {θ : B(H) → π(A)′′ | θ is a weak expectation of π}

CB(B(H), π(A)′′) := {θ : B(H) → π(A)′′ | θ is completely bounded}

The set CB(B(H), π(A)′′) is a locally convex topological vector space with
respect to the BW-topology. Let CP1(B(H), π(A)

′′) be the set of all com-
pletely positive maps from B(H) to π(A)′′ with norm less than or equal
to 1. This set is a compact, convex subset of the topological vector space
CB(B(H), π(A)′′). The set WE(π), when non-empty, is a closed convex sub-
set of CP1(B(H), π(A)

′′) in the BW-topology and hence compact.
While it is not necessary in general, that WE(π) 6= ∅, there are several well

known cases in which it is indeed so. Some immediate examples would be:
WE(π) 6= ∅ for any irreducible representation π and the GNS representation
π = πτ of an amenable trace τ on a C*-algebra, see [3, Chapter 6]. Another
example would be the inclusion representation of any separable C*-algebra
A →֒ B(H), which is relatively weakly injective in B(H). See [4, Lemma 3.4]
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2 A. BHATTACHARYA AND C. J. KULKARNI

for the abundant existence of such C*-algebras. Henceforth, in this article
we will always assume WE(π) 6= ∅ for the fixed representation π.

Recall that, the classical Choquet-Bishop-de Leeuw theorem of integral
representation of a point in a compact convex affine space by a measure on
the space states that [7, 2]:

Theorem 1.1 (Choquet-Bishop-de Leeuw). Let X be a compact convex
subset of a locally convex topological vector space E. Let x0 ∈ X. Then
there exist a Baire measure µx0

pseudo supported on the extreme points
ext(X) of X such that for any continuous linear functional f : E → C one
has:

f(x0) =

∫
f dµx0 .

In the above theorem, we need E to be a locally convex topological
vector space to just ensure the existence of sufficiently many linear func-
tionals in E∗ that separate points in X. Now, given the representation
π : A → B(H) of a unital C*-algebra A and the set WE(π), we see that
the classical Choquet-Bishop-de Leeuve theorem is applicable for the locally
convex topological vector space E = CB(B(H), π(A)′′) (equipped with the
BW-topology) and X = WE(π) as the compact convex set in question. We
consider the following separating family of continuous linear functionals on
E = CB(B(H), π(A)′′), which separates the points in X = WE(π). The
family is given by:

{fS
(h,k) : E → C | fS

(h,k)(φ) := 〈φ(S)h, k〉 ;S ∈ B(H), h, k ∈ H,φ ∈ E}.

This gives a barycentric decomposition of any weak expectation in WE(π).
However, to complete this decomposition picture, one needs to identify the
extreme points of the set WE(π) explicitly. This is precisely what this
article accomplishes: using operator theoretic techniques, we identify which
weak expectations (of π) constitute the set of extreme points in WE(π).

Using some technical results from Section 3, we explicitly identify the ex-
treme points of WE(π) in Theorem 3.4. While the basic idea of the proof is
inspired by Arveson’s [1] operator theoretic proof of describing the extreme
points of completely positive maps into B(H), there are several subtle differ-
ences in our constructions, owing to the constraints levied by the properties
of a weak expectation. Further, we obtain an equivalent formulation of
extreme points in terms of operators on certain Hilbert modules (Theorem
3.4(4)), using Paschke’s Hilbert module dilation of completely positive maps,
[5].

2. Preliminaries

In this section we briefly recall the results useful for us in this article.
First and foremost, we recall the Stinespring dilation theorem.

Theorem 2.1. [6, Theorem 4.1] Let A be a unital C*-algebra and H be a
Hilbert space. Let φ : A → B(H) be a completely positive map. Then there
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exists a Hilbert space K, a bounded linear map V : H → K and a unital
*-homomorphism ρ : A → B(K) such that

φ(a) = V ∗ρ(a)V for all a ∈ A.

Moreover, the set {ρ(a)V h : a ∈ A,h ∈ H} spans a dense subspace of K.

We call the triple (ρ, V,K) from Theorem 2.1 as the minimal Stinespring
representation for φ. For a given completely positive map φ, the minimal
Stinespring representation is unique upto an unitary equivalence (see [6,
Proposition 4.2]).

Let A be a unital C*-algebra and CP(A,B(H)) be the set of all completely
positive maps from A to B(H) where H is a Hilbert space. The partial
order on CP(A,B(H)), defined by φ1 ≤ φ2, if φ2 − φ1 ∈ CP(A,B(H)). For
φ ∈ CP(A,B(H)), then

[0, φ] = {θ ∈ CP (A,B(H)) : θ ≤ φ}.

Let φ(a) = V ∗ρ(a)V be the minimal Stinespring dilation of φ, where V is
a bounded map from H to K and ρ is representation of A on K. For each
operator T ∈ ρ(A)′, define φT := V ∗ρTV to be a map from A to B(H).
Arveson proved the following Radon–Nikodym type theorem for completely
positive maps in [1]:

Theorem 2.2. [1, Theorem 1.4.2] The map T 7→ φT = V ∗ρTV is an affine
order isomorphism of the partially ordered convex set of operators {T ∈
ρ(A)′ : 0 ≤ T ≤ 1K} onto [0, φ].

We shall also use Paschke’s dilation of completely positive maps on Hilbert
modules. We quickly recall a few results about the Paschke’s dilation of
completely positive maps that are required in this article.

Let A and B be C*-algebras and X be a Hilbert B-module. Suppose
σ : A → P(X) be *-representation of A on X where P(X) is the set of
all adjointable operators on X (see [5], for the definition of an adjointable
operator on X). The adjointable operators P(X) form a C*-algebra [5]. For
e ∈ X, the map φ : A → B defined by

φ(a) := 〈σ(a)e, e〉

is a completely positive map. Paschke proved in [5] that every completely
positive map from A into B arises this way. The following theorem is referred
to the Paschke’s dilation

Theorem 2.3. [5, Theorem 5.2] Let A and B be unital C*-algebras and
φ : A → B be a completely positive map. Then there exists a Hilbert B-
module X, a *-representation σ : A → P(X) and e ∈ X such that φ(a) =
〈σ(a)e, e〉 for all a ∈ A. The set {σ(a)(e.b) : a ∈ A, b ∈ B} spans a dense
subspace of X.

For a C*-algebra B and a pre-Hilbert B-module X define

X ′ := {τ : X → B | τ is a bounded B-module map}.
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For each x ∈ X we have a map x̂ : X → B as x̂(y) := 〈y, x〉. If X ′ = X̂ =
{x̂ | x ∈ X}, then X is said to be self-dual. If B is a von-Neumann algebra,
then X ′ is also a Hilbert B-module and the B-valued inner product on X
extends to a B-valued inner product on X ′.

Theorem 2.4. [5, Theorem 3.2] Let B be a von-Neumann algebra and X be
a pre-Hilbert B-module. The B-valued inner product 〈·, ·〉 on X×X extends
to X ′ ×X ′ in such a way as to make X ′ into a self-dual Hilbert B-module.
Also, it satisfies 〈x̂, τ〉 = τ(x) for x ∈ X, τ ∈ X ′.

Since X is a submodule of X ′, the next proposition extends an adjointable
operator on X to an adjointable operator on X ′:

Proposition 2.5. [5, Corollary 3.7] Let B be a von-Neumann algebra and
X be a pre-Hilbert B-module, then each T ∈ P(X) extends to a unique

T̃ ∈ P(X ′). The map T 7→ T̃ is a *-isomorphism of P(X) into P(X ′).

Let A be a unital C*-algebra, B be a von Neumann algebra and φ : A → B
is a completely positive map. By Theorem 2.3 and Proposition 2.5 one

defines a *-representation σ̃ : A → P(X ′) by σ̃(a) := σ̃(a). For T ∈ P(X ′),
define a linear map φT : A → B by φT (a) := 〈T σ̃(a)ê, ê〉 for a ∈ A. Then
the following Radon–Nikodym type result is available in this Hilbert module
setting:

Theorem 2.6. [5, Proposition 5.4] The map T 7→ φT is an affine order
isomorphism of {T ∈ σ̃(A)′ | 0 ≤ T ≤ 1X′} onto

[0, φ] = {θ ∈ CP (A,B) | θ ≤ φ}.

3. Extreme points and barycentric decompositions

The main goal of this section is to characterize extreme points of the
compact convex set WE(π) for an arbitrary but fixed representation π of a
unital C*-algebra A. Before embarking on the main result of this section,
we prove two technical lemmas which are key to the arguments presented in
the main result (Theorem 3.4).

Let π : A → B(H) be a non-degenerate representation of a unital C*-
algebra A and φ : B(H) → π(A)′′ ⊆ B(H) be a weak expectation of π.
Let φ = V ∗ρV be the minimal Stinespring dilation of φ, where V is a
bounded map from H to K and ρ is representation of B(H) on K. Here
we briefly recall a few details and notations about the minimal Stinespring
dilation which we will be using throughout the article. The Hilbert space K
is constructed by defining a bilinear function 〈· , ·〉 on the algebraic tensor
product B(H)⊗H as

〈S1 ⊗ h1, S2 ⊗ h2〉 := 〈φ(S∗

2S1)h1, h2〉 .

and extending linearly. Since φ is completely positive, 〈· , ·〉 is positive semi-
definite. Consider the null space

N := {u ∈ B(H)⊗H : 〈u, u〉 = 0}.
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Let K0 = (B(H) ⊗H)/N . Define a bilinear function on the quotient space
K0 by 〈· , ·〉 (again by using the same notation) as

〈u1 +N,u2 +N〉 := 〈u1, u2〉 .

Then K0 is an inner product space with respect to 〈· , ·〉 and the Hilbert
space K is obtained by completing K0. The operator V : H → K is defined
by

V (h) := 1H ⊗ h+N.

Finally the *-homomorphism ρ : B(H) → B(K) is defined on the dense
subspace K0 by

ρ(S)

(
k∑

i=1

Si ⊗ hi +N

)
:=

k∑

i=1

SSi ⊗ hi +N

and then extending the operator ρ(S) to K.
Now we state the first technical lemma. Before this we clarify some no-

tations. For any given h ∈ H, we see that 1H ⊗ h + N ∈ K. Now, let
T ∈ B(K). We write the vector T (1H ⊗ h+N) ∈ K in the form:

T (1H ⊗ h+N) = lim
α

(
nα∑

i=1

Sh
αi

⊗ hαi
+N

)

for some representative net

{
nα∑
i=1

Sh
αi

⊗ hαi
+N

}

α

⊆ K0.

Lemma 3.1. Let A be a unital C*-algebra and π : A → B(H) be a non-
degenerate representation of A. Let φ ∈ WE(π) and V ∗ρV be the minimal
Stinespring dilation of φ on the Hilbert space K. Suppose φT = V ∗TρV ≤ φ
where T ∈ ρ(B(H))′ and 0 ≤ T ≤ 1K . Then there exists 0 < t < 1
and θ ∈ WE(π) such that φT = tθ if and only if the following property is
satisfied: for an arbitrary but fixed h ∈ H and for any representation of the
vector T (1H ⊗ h+N) given by

T (1H ⊗ h+N) = lim
α

(
nα∑

i=1

Sh
αi

⊗ hαi
+N

)

one has

(1) lim
α

nα∑
i=1

φ(Sh
αi
)hαi

= th for some 0 < t < 1;

(2) for any R ∈ π(A)′, the vector of the form T (1H ⊗Rh+N) is repre-

sented by T (1H ⊗Rh+N) = lim
α

nα∑
i=1

Sh
αi

⊗Rhαi
+N.

Proof. Let φ ∈ WE(π) and V ∗ρV be the minimal Stinespring dilation of φ.
Suppose φT = V ∗TρV ≤ φ where T ∈ ρ(B(H))′ such that 0 ≤ T ≤ 1K . If
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there exists 0 < t < 1 and θ ∈ WE(π) such that φT = tθ, then φT (π(a)) =
tπ(a), for all a ∈ A. Therefore for an arbitrary but fixed h ∈ H we have:

φT (π(a))h = V ∗ρ(π(a))TV h = V ∗ lim
α

nα∑

i=1

π(a)Sh
αi

⊗ hαi
+N

= lim
α

nα∑

i=1

φ(π(a)Sh
αi
)hαi

= π(a) lim
α

nα∑

i=1

φ(Sh
αi
)hαi

= π(a)th.

This is true for all a ∈ A and as π is a non-degenerate representation we
get,

lim
α

nα∑

i=1

φ(Sh
αi
)hαi

= th.

This proves the first equation.
Now we prove the second equation. Consider an operator R in π(A)′ and

any S in B(H), then we have

V ∗ρ(S)TV Rh = RV ∗ρ(S)TV h

= RV ∗ρ(S)T (1H ⊗ h+N)

= RV ∗ lim
α

nα∑

i=1

SSh
αi

⊗ hαi
+N

= R lim
α

V ∗

nα∑

i=1

SSh
αi

⊗ hαi
+N

= R lim
α

nα∑

i=1

φ(SSh
αi
)hαi

= lim
α

nα∑

i=1

φ(SSh
αi
)Rhαi

= lim
α

V ∗

nα∑

i=1

SSh
αi

⊗Rhαi
+N.

Therefore, for h′ ∈ H, we have:

〈
V ∗ρ(S)TV Rh, h′

〉
=

〈
V ∗ρ(S)T (1H ⊗Rh+N), h′

〉

=
〈
T (1H ⊗Rh+N), S∗ ⊗ h′ +N

〉
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and

〈
RV ∗ρ(S)TV h, h′

〉
=

〈
lim
α

V ∗

nα∑

i=1

SSh
αi

⊗Rhαi
+N, h′

〉

= lim
α

〈
nα∑

i=1

SSh
αi

⊗Rhαi
+N, 1H ⊗ h′ +N

〉

= lim
α

〈
ρ(S)

nα∑

i=1

Sh
αi

⊗Rhαi
+N, 1H ⊗ h′ +N

〉

=

〈
lim
α

nα∑

i=1

Sh
αi

⊗Rhαi
+N, S∗ ⊗ h′ +N

〉
.

This is true for all S ∈ B(H) and h′ ∈ H hence,

T (1H ⊗Rh+N) = lim
α

nα∑

i=1

Sh
αi

⊗Rhαi
+N.

Now to prove the converse, let T ∈ ρ(B(H))′ with 0 ≤ T ≤ 1K . Suppose

h ∈ H be an arbitrary but fixed vector and

{
nα∑
i=1

Sh
αi

⊗ hαi
+N

}

α

be any

representing net corresponding to T (1H ⊗ h+N). If one has

(1) lim
α

nα∑
i=1

φ(Sh
αi
)hαi

= th for some 0 < t < 1;

(2) for any R ∈ π(A)′, the vector of the form T (1H ⊗Rh+N) is repre-

sented by T (1H ⊗Rh+N) = lim
α

nα∑
i=1

Sh
αi

⊗Rhαi
+N.

Then we show that there exists θ ∈ WE(π) such that φT = tθ.
To this end, using equation (1) above we get, for a ∈ A and h ∈ H

φT (π(a))h = V ∗ρ(π(a))TV h = V ∗ lim
α

nα∑

i=1

π(a)Sh
αi

⊗ hαi
+N

= lim
α

nα∑

i=1

φ(π(a)Sh
αi
)hαi

= π(a) lim
α

nα∑

i=1

φ(Sh
αi
)hαi

= π(a)th.

Since, this is true for all h ∈ H, φT (π(a)) = tπ(a).
Now we show that the range of φT is contained in π(A)′′. Let R and S

be any operators in π(A)′ and B(H) respectively. Let h be an arbitrary but
fixed vector in H. Then using equation (2) above and the fact that the range
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of φ is contained in π(A)′′ we get,

φT (S)Rh = V ∗ρ(S)TV Rh = V ∗ρ(S)T (1H ⊗Rh+N)

= V ∗ρ(S) lim
α

nα∑

i=1

Sh
αi

⊗Rhαi
+N

= V ∗ lim
α

nα∑

i=1

SSh
αi

⊗Rhαi
+N

= lim
α

nα∑

i=1

φ(SSh
αi
)Rhαi

= R lim
α

nα∑

i=1

φ(SSh
αi
)hαi

and

RφT (S)h = RV ∗ρ(S)TV h = RV ∗ρ(S)T (1H ⊗ h+N)

= RV ∗ρ(S) lim
α

nα∑

i=1

Sh
αi

⊗ hαi
+N

= RV ∗ lim
α

nα∑

i=1

SSh
αi

⊗ hαi
+N

= R lim
α

nα∑

i=1

φ(SSh
αi
)hαi

.

Since h ∈ H were arbitrarily chosen, we get

φT (S)R = RφT (S).

This is true for all S ∈ B(H) and R ∈ π(A)′. Therefore, the range of φT is
contained in π(A)′′.

Then defining θ := 1
t
φT concludes the proof. �

Now we prove a similar result in the setting of Paschke’s dilation of com-
pletely positive maps. Let π : A → B(H) be a non-degenerate represen-
tation of a unital C*-algebra A and φ be a weak expectation of π. Taking
A = B(H) and B = π(A)′′ in Theorem 2.3 we get the triple (X,σ, e) such
that

φ(S) = 〈σ(S)e, e〉

for all S ∈ B(H). Here we provide some details and set some notations
from the proof of Theorem 2.3 which are useful in the remaining part of this
article. We briefly review the construction of the Hilbert π(A)′′-module X,
the *-representation σ : B(H) → P(X) and the element e ∈ X.

The Hilbert π(A)′′-module X is constructed by using the algebraic tensor
productB(H)⊗π(A)′′, which is a right Hilbert π(A)′′-module with respect to
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the operation (S⊗T1)T2 = (S⊗T1T2), for all S ∈ B(H) and T1, T2 ∈ π(A)′′.
Define a conjugate bilinear function

[· , ·] :
(
B(H)⊗ π(A)′′

)
×
(
B(H)⊗ π(A)′′

)
→ π(A)′′

as
[S1 ⊗ T1, S2 ⊗ T2] := T ∗

2 φ(S
∗

2S1)T1

We get [· , ·] on
(
B(H)⊗ π(A)′′

)
×
(
B(H)⊗ π(A)′′

)
by extending the above

definition linearly. Since φ is completely positive, [· , ·] is positive semidefi-
nite. Consider the null-submodule

M := {x ∈ B(H)⊗ π(A)′′ | [x, x] = 0}.

Let X0 =
(
B(H)⊗ π(A)′′

)
/M . Define a π(A)′′-valued inner product on the

quotient space X0 by [· , ·] (again by using the same notation)

[x1 +M,x2 +M ] := [x1, x2].

The quotient space X0 is a pre-Hilbert π(A)′′-module with a π(A)′′-valued
inner product [· , ·]. Then the Hilbert π(A)′′-module X is the completion
of X0 and the element e ∈ X is given by e = 1H ⊗ 1H + M . Finally the
*-representation σ : B(H) → P(X) is defined on the dense submodule X0

by

σ(S)

(
k∑

i=1

Si ⊗ Ti +M

)
:=

k∑

i=1

SSi ⊗ Ti +M

and then extending σ(S) uniquely to an operator in P(X).
Now we state the second technical lemma. This lemma is in the Hilbert

module setting and is similar to Lemma 3.1. Before this we clarify some
notations. For φ ∈ WE(π), let X,σ, e be as defined above. Correspondingly,
we define X ′, σ̃, ê as described in Section 2. For an arbitrary but fixed
T ∈ P(X ′) we denote T (ê) as τT . We use these notations to state the
following lemma.

Lemma 3.2. Let T ∈ σ̃(B(H))′ with 0 ≤ T ≤ 1X′ . Suppose φT : B(H) →
π(A)′′ is given by φT (·) := 〈T σ̃(·)ê, ê〉. Then there exists 0 < t < 1 and
θ ∈ WE(π) such that φT = tθ if and only if for all a ∈ A, τT (π(a) ⊗ 1H +
M) = tπ(a) for some 0 < t < 1.

Proof. We know from Theorem 2.6 that φT is a completely positive map
from B(H) into π(A)′′ with φT ≤ φ. For any a ∈ A, we have

φT (π(a)) = 〈T σ̃(π(a))ê, ê〉

= 〈T σ̃(π(a))ê, ê〉

= 〈T ̂σ(π(a))e, ê〉

= 〈 ̂σ(π(a))e, τT 〉

= τT (π(a)⊗ 1H +M)

The last step follows from the Theorem 2.4.
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Suppose there exists 0 < t < 1 and θ ∈ WE(π) such that φT = tθ, then

φT (π(a)) = τT (π(a)⊗ 1H +M) = tπ(a).

Conversely, if for all a ∈ A, τT (π(a)⊗1H+M) = tπ(a) for some 0 < t < 1,
then we get the result by defining θ := 1

t
φT . �

Now we define a few sets which are useful in our analysis.
Let π : A → B(H) be a non-degenerate representation of a unital C*-

algebra A. For φ ∈ WE(π), let φ = V ∗ρV be the minimal Stinespring
dilation of φ on the Hilbert space K and (X,X ′, σ, σ̃, e, ê) be the corre-
sponding triple and extensions from the Paschke dilation of φ on the Hilbert
module X. Then we define the following sets:

• Sφ := {T ∈ ρ(B(H))′ | 0 ≤ T ≤ 1K ; T as in Lemma 3.1}
• CS

φ := {α1T1 + α2T2 | α1, α2 ∈ [−1, 1]; T1, T2 ∈ Sφ}

• Pφ := {T ∈ σ̃(B(H))′ | 0 ≤ T ≤ 1X′ ; T as in Lemma 3.2}
• CP

φ := {α1T1 + α2T2 | α1, α2 ∈ [−1, 1]; T1, T2 ∈ Pφ}

Finally, we recall a definition due to Arveson from [1]:

Definition 3.3. Let H be a Hilbert space and H0 be a closed subspace of
H. Let P denote the projection of H onto H0, then, we say that H0 is a
faithful subspace of H for a set of operators A ⊆ B(H) containing 0, if, for
every a ∈ A, PaP = 0 implies a = 0.

Now we are ready to present the main result of this section.

Theorem 3.4. Let π : A → B(H) be a non-degenerate representation of
a unital C*-algebra A and WE(π) 6= ∅. Let φ = V ∗ρV ∈ WE(π) denote
the minimal Stinespring dilation of φ on the Hilbert space K and φ(·) =
〈σ(·)e, e〉 denote the Paschke dilation of φ. Then the following statements
are equivalent:

(1) The map φ is an extreme point of WE(π).
(2) If φ0 ∈ [0, φ] ∩ tWE(π), then φ0 = tφ where, 0 < t < 1 ([0, φ] is

considered as a subset of CP (B(H), π(A)′′)).
(3) The subspace [ρ(π(A))V H] is a faithful subspace of K for CS

φ .

(4) If any T ∈ CP
φ satisfies 〈T σ̃(π(a))ê, ê〉 = 0 ∀ a ∈ A, then T = 0.

Proof. We proceed by showing that (1) ⇔ (2), (3), (4).

(1) ⇔ (2): Suppose φ is an extreme point of WE(π) and φ0 ∈ [0, φ] ∩
tWE(π). Then φ0 = tφ1 ≤ φ for some φ1 ∈ WE(π). Using Theorem 2.2,
we get φ0 = tφ1 = V ∗TρV for T ∈ ρ(B(H))′ with 0 ≤ T ≤ 1K . From
Lemma 3.1 we have for an arbitrary but fixed h ∈ H and any representing

net

{
nα∑
i=1

Sh
αi

⊗ hαi
+N

}

α

corresponding to T (1H ⊗ h+N) one has
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(1) lim
α

nα∑
i=1

φ(Sh
αi
)hαi

= th;

(2) for any R ∈ π(A)′, the vector of the form T (1H ⊗Rh+N) is repre-

sented by T (1H ⊗Rh+N) = lim
α

nα∑
i=1

Sh
αi

⊗Rhαi
+N .

Define φ2 := V ∗ (1K−T )
1−t

ρV , then

φ2(π(a))h = V ∗ρ(π(a))
(1K − T )

1− t
V h

=
V ∗

1− t
ρ(π(a))

(
1H ⊗ h+N − lim

α

nα∑

i=1

Sh
αi

⊗ hαi
+N

)

=
V ∗

1− t

(
π(a)⊗ h+N − lim

α

nα∑

i=1

π(a)Sh
αi

⊗ hαi
+N

)

=
1

1− t

(
φ(π(a))h − lim

α

nα∑

i=1

φ
(
π(a)Sh

αi

)
hαi

)

=
1

1− t
(π(a)h− tπ(a)h) = π(a)h.

Since, this is true for any h ∈ H, we have φ2(π(a)) = π(a) for all a ∈ A.
Now we show that the range of φ2 is contained in π(A)′′. If R ∈ π(A)′,

then for all S ∈ B(H)

φ2(S)Rh = V ∗ρ(S)
(1K − T )

1− t
V Rh

=
V ∗

1− t

(
S ⊗Rh+N − lim

α

nα∑

i=1

SSh
αi

⊗Rhαi
+N

)

=
1

1− t

(
φ(S)Rh− lim

α

nα∑

i=1

φ(SSh
αi
)Rhαi

)

=
R

1− t

(
φ(S)h − lim

α

nα∑

i=1

φ(SSh
αi
)hαi

)

and

Rφ2(S)h = RV ∗ρ(S)
(1K − T )

1− t
V h

=
R

1− t
V ∗

(
S ⊗ h+N − lim

α

nα∑

i=1

SSh
αi

⊗ hαi
+N

)

=
R

1− t

(
φ(S)h− lim

α

nα∑

i=1

φ(SSh
αi
)hαi

)
.

Therefore, the range of φ2 is contained in π(A)′′. This implies φ2 is a weak
expectation of π.
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For φ1, φ2 ∈ WE(π), we get φ = tφ1 + (1 − t)φ2. Since φ is an extreme
point, φ = φ1 = φ2. Hence, φ0 = tφ1 = tφ

Conversely, if φ0 ∈ [0, φ] ∩ tWE(π), then φ0 = tφ where, 0 < t < 1.
Suppose φ = λφ1 + (1 − λ)φ2, for φ1, φ2 ∈ WE(π) and 0 < λ < 1. Then
λφ1 ∈ [0, φ] ∩ λWE(π), hence λφ1 = λφ and similarly (1− λ)φ2 = (1− λ)φ.
This implies φ1 = φ = φ2.

(1) ⇔ (3): Assume that [ρ(π(A))V H] is a faithful subspace for CS
φ . Let

φ = λφ1 + (1 − λ)φ2 for φ1, φ2 ∈ WE(π) and 0 < λ < 1. Since λφ1 ≤ φ,
using Theorem 2.2 we get, λφ1 = V ∗TρV for some T ∈ ρ(B(H))′ such that
0 ≤ T ≤ 1K . Moreover the operator T satisfies equations (1) and (2) from
Lemma 3.1 for t = λ. Let P be the projection of the Hilbert space K onto
[ρ(π(A))V H]. Let a1, a2 ∈ A and h1, h2,∈ H,

〈PTρ(π(a1))V h1, ρ(π(a2))V h2〉 = 〈Tρ(π(a1))V h1, ρ(π(a2))V h2〉

= 〈V ∗Tρ(π(a2)
∗π(a1))V h1, h2〉

= 〈λπ(a2)
∗π(a1)h1, h2〉

= λ 〈V ∗ρ(π(a2)
∗π(a1))V h1, h2〉

= 〈λρ(π(a1))V h1, ρ(π(a2))V h2〉

Therefore, PT = λ1[ρ(π(A))V H]. This implies that P (T − λ1K)[ρ(π(A))V H] is

0. Since, [ρ(π(A))V H] is a faithful subspace of K, for CS
φ and T −λ1K ∈ CS

φ

we get, T = λ1K . Hence, λφ1 = V ∗TρV = λφ, and φ1 = φ = φ2.
Conversely, let us assume that φ is an extreme point of WE(π). De-

fine a positive linear map µ : ρ(B(H))′ → B([ρ(π(A))V H]) by, µ(T ) :=
PT[ρ(π(A))V H]. When T ∈ CS

φ , T is self-adjoint. So we may choose posi-

tive scalars s, t such that 1
41K ≤ sT + t1K ≤ 3

41K . Then, as µ is posi-

tive, 1
4µ(1K) ≤ µ(sT + t1K) ≤ 3

4µ(1K). Now let µ(T ) = 0. So we get:
1
41[ρ(π(A))V H] ≤ t1[ρ(π(A))V H] ≤

3
41[ρ(π(A))V H]. This implies that 0 < t < 1.

Next, define:

φ1 := V ∗(sT + t1K)ρV and φ2 := V∗(1K − (sT + t1K))ρV.

Then from Theorem 2.2 we get that φ1 and φ2 are completely positive maps
which are less than φ and φ1 + φ2 = φ. Also, for all a ∈ A:

φ1(π(a)) = V ∗(sT + t1K)ρ(π(a))V

= V ∗sTρ(π(a))V + V ∗t1Kρ(π(a))V

= V ∗V V ∗sTρ(π(a))V + V ∗t1Kρ(π(a))V

= 0 + tπ(a) = tπ(a).

The last equality follows from the fact that V is an isometry (since φ is
unital) and [V H] ⊆ [ρ(π(A))V H]. Similarly, we have φ2(π(a)) = (1− t)π(a)
for all a ∈ A.

Now we have: φ1 = V ∗(sT + t1K)ρV and T ∈ CS
φ . Let T = α1T1 + α2T2,

where αi ∈ [−1, 1] and Ti ∈ Sφ for i = 1, 2. Therefore we get,

φ1 = V ∗sTρV + V ∗t1KρV = V ∗sα1T1ρV + V ∗sα2T2ρV + V ∗t1KρV
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Since both T1, T2 satisfy the second equation in Lemma 3.1 we get that the
range of φ1 is in π(A)′′. Similarly the range of φ2 is in π(A)′′. Therefore, we
have: 1

t
φ1,

1
1−t

φ2 ∈ WE(π).

Now, recall that φ = φ1 + φ2. Writing φ = t(1
t
φ1) + (1 − t)( 1

1−t
φ2) and

using the hypothesis that φ is an extreme point, we get:

φ =
1

t
φ1 =

1

1− t
φ2.

. This gives us

φ1 = V ∗(sT + t1K)ρV = V ∗t1KρV = tφ ≤ φ.

By the order preserving affine isomorphism of Theorem 2.2, we must have
sT + t1K = t1K , which in turn implies that T = 0. This shows that, the
map µ is injective on CS

φ and therefore [ρ(π(A))V H] is a faithful subspace

of K for CS
φ .

(1) ⇔ (4): Let φ(·) = 〈σ(·)e, e〉 be as in Theorem 2.3. Recall, from the
discussion before Theorem 2.6 that, we get a representation σ̃ : B(H) →

P(X ′) by σ̃(S) := σ̃(S) for all S ∈ B(H). Also from Theorem 2.6, we have
φ(·) = 〈σ(·)e, e〉 = 〈1X′ σ̃(·)ê, ê〉. Suppose for T ∈ CP

φ , 〈T σ̃(π(a))ê, ê〉 = 0 for

all a ∈ A implies T = 0. Then we show that φ is an extreme point of WE(π).
If φ = λφ1 + (1 − λ)φ2 for φ1, φ2 ∈ WE(π) and 0 < λ < 1, then λφ1 ≤ φ.
Therefore by Theorem 2.6 we get T1 ∈ σ̃(B(H))′ with 0 ≤ T1 ≤ 1X′ such
that λφ1(S) = 〈T1σ̃(S)ê, ê〉 for all S ∈ B(H). Moreover T1 satisfies the
condition in Lemma 3.2 for t = λ. Hence, for a ∈ A we have:

λφ1(π(a)) = 〈T1σ̃(π(a))ê, ê〉 = λπ(a) = λ〈1X′ σ̃(π(a))ê, ê〉.

Since, this is true for all a ∈ A we get 〈(T1 − λ1X′)σ̃(π(a))ê, ê〉 = 0 for all
a ∈ A. Since T1 − λ1X′ ∈ CP

φ , by hypothesis, we get T1 = λ1X′ . Therefore,

λφ1(·) = 〈λσ̃(·)ê, ê〉 = λφ(·). This implies φ1 = φ = φ2.
Conversely, assume that φ is an extreme point of WE(π). Let T ∈ CP

φ be

such that 〈T σ̃(π(a))ê, ê〉 = 0 for all a ∈ A. For a ∈ A define µa : σ̃(B(H))′ →
π(A)′′ by S 7→ 〈Sσ̃(π(a))ê, ê〉. By assumption, we have µa(T ) = 0 for all
a ∈ A. If T ∈ CP

φ , then T = T ∗. Choose positive scalars s, t such that
1
41X′ ≤ sT + t1X′ ≤ 3

41X′ . For an arbitrary but fixed a ∈ A, consider the
positive map µa∗a defined as before. So we get

1

4
µa∗a(1X′) ≤ µa∗a(sT + t1X′) ≤

3

4
µa∗a(1X′).

Since, µa∗a(T ) = 0, we have:

1

4
〈σ̃(π(a))ê, σ̃(π(a))ê〉 ≤ t〈σ̃(π(a))ê, σ̃(π(a))ê〉

≤
3

4
〈σ̃(π(a))ê, σ̃(π(a))ê〉.
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This implies that 0 < t < 1. Define φi : B(H) → π(A)′′ for i = 1, 2 by

φ1(·) := 〈(sT + t1X′)σ̃(·)ê, ê〉 and

φ2(·) := 〈(1X′ − (sT + t1X′))σ̃(·)ê, ê〉.

Then by using Theorem 2.6, we have 0 ≤ φ1, φ2 ≤ φ and φ1 + φ2 = φ.
Further, for all a ∈ A we have

φ1(π(a)) = tπ(a) and φ2(π(a)) = (1− t)π(a)

as well as that, the ranges of both φ1, φ2 are in π(A)′′. Therefore, t−1φ1

and (1− t)−1φ2 belong to WE(π). Write φ = t(1
t
φ1) + (1− t)( 1

1−t
φ2). As φ

is an extreme point, φ = 1
t
φ1 =

1
1−t

φ2. This gives

φ1(·) = 〈(sT + t1X′)σ̃(·)ê, ê〉 = 〈t1X′ σ̃(·)ê, ê〉.

By the affine order isomorphism from Theorem 2.6 we get T = 0. �

Recall from Section 1 that the family of continuous linear functionals on
E = CB(B(H), π(A)′′) given by:

{fS
(h,k) : E → C | fS

(h,k)(φ) := 〈φ(S)h, k〉 ;S ∈ B(H), h, k ∈ H,φ ∈ E}.

separates the points in X = WE(π). Equipped with the precise description
of the extreme points of the compact convex set WE(π) from Theorem
3.4 and using the separating family of functionals described above, we can
now complete the barycentric description of an element in WE(π) by an
application of the classical Choquet-Bishop-de Leeuw Theorem.

Theorem 3.5 (barycentric decomposition of a weak expectation). For every
φ ∈ WE(π), there exists a probability measure µφ which vanishes on every
Baire set of WE(π) disjoint from the set extreme points of WE(π), i.e.
pseudo supported on the set of extreme points of WE(π), and is given by

fS
(h,k)(φ) =

∫

WE(π)
fS
(h,k) dµφ

for every S ∈ B(H) and h, k ∈ H.
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