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Abstract

We study the problem of estimating a k-sparse signal β0 ∈ R
p from a set of noisy

observations y ∈ R
n under the model y = Xβ + w, where X ∈ R

n×p is the measurement
matrix the row of which is drawn from distribution N(0,Σ). We consider the class of Lq-

regularized least squares (LQLS) given by the formulation β̂(λ, q) = argminβ∈Rp
1
2‖y −

Xβ‖22 + λ‖β‖qq, where ‖ · ‖q (0 ≤ q ≤ 2) denotes the Lq-norm. In the setting p, n, k → ∞
with fixed k/p = ǫ and n/p = δ, we derive the asymptotic risk of β̂(λ, q) for arbitrary
covariance matrix Σ which generalizes the existing results for standard Gaussian design,

i.e. Xij
i.i.d∼ N(0, 1). We perform a higher-order analysis for LQLS in the small-error

regime in which the first dominant term can be used to determine the phase transition
behavior of LQLS. Our results show that the first dominant term does not depend on
the covariance structure of Σ in the cases 0 ≤ q<1 and 1<q ≤ 2 which indicates that
the correlations among predictors only affect the phase transition curve in the case q = 1
a.k.a. LASSO. To study the influence of the covariance structure of Σ on the performance
of LQLS in the cases 0 ≤ q<1 and 1<q ≤ 2, we derive the explicit formulas for the second
dominant term in the expansion of the asymptotic risk in terms of small error. Extensive
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computational experiments confirm that our analytical predictions are consistent with
numerical results.

Keywords: Lq-regularization, least squares, phase transition, higher order analysis

1 Introduction

The goal of linear regression is to estimate the parameter vector β0 ∈ R
p from a set of n

response variables y ∈ R
n under the model

y = Xβ0 +w, (1)

where X ∈ R
n×p is a known measurement matrix and w ∈ R

n is a noise vector. We consider

the popular class of Lq-regularized least square methods (LQLS), given by the optimization

problem

β̂ = argminβ∈Rp

1

2
‖y−Xβ‖22 + λ‖β‖qq, (2)

where ‖ · ‖q (0 ≤ q ≤ 2) denotes the Lq-norm and λ ≥ 0 is a fixed number.

In many modern statistical applications with large p, the true β0 vector is often sparse, i.e.

only k of the elements of β0 are non-zero and the rest are zero. We would like to identify the

useful predictors and also obtain good estimates of their coefficients. Among all LQLSs, the case

q = 1, or in other words L1 optimization a.k.a. LASSO, is the most popular and best studied

scheme for identifying a set of relevant features from a given list. LASSO enjoys attractive

statistical properties (Fu and Knight, 2000; Donoho, 2006; Meinshausen and Bühlmann, 2006)

and has been effectively used for simultaneously producing accurate and parsimonious models.

However, as a convex relaxation of L0-norm, the L1-norm may be sub-optimal for recovering

a real sparse signal because it tends to result in biased estimation by shrinking all the entries

toward to zero simultaneously, and sometimes leads to over-penalization. Many researchers

have shown that using the Lq-norm (0<q<1) to approximate the L0-norm is in fact a better

choice than using the L1-norm because the former provides a tighter optimization relaxation

to the original L0 sparsity finding formulation. For example, in the noiseless settings (w = 0),

Chartrand and Staneva (2008); Saab et al. (2008); Saab and Özgür Yılmaz (2010) have shown

that the global minima of (2) for q<1 outperforms the solution of LASSO. They have derived

the Restricted Isometry Property conditions that can guarantee the accurate recovers of the

sparse vector from (2).

To understand the behavior of these algorithms in high dimension more reliably, a new

asymptotic has been proposed recently which assumes that p, n, k → ∞ with fixed k/p = ǫ

and n/p = δ. One of the main studies undertaken in this asymptotic framework is to find

the relationship between the sparsity of the vector β0 and the successful recovery of it using
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Lq-minimization algorithm (2) under the noiseless setting. In other word, for different values

of δ, we need to know the boundary of sparsity ǫ that differentiates the success and failure of

recovering by Lq-minimization. This boundary is known as the phase transition curve.

Stojnic (2013) characterizes the phase transition curve for the case of q = 0. Wang et al.

(2011) analyzes the phase transition curve for δ → 1. Kabashima et al. (2009) and Rangan et al.

(2009) derives the exact value of phase transition curve for any value of 0 ≤ q ≤ 1 and any

value of δ using the non-rigorous replica method. In addition to the sharp characterization

of the phase transition in noiseless case, Weng et al. (2016); Zheng et al. (2017) also present

accurate calculation of the mean squared error (MSE) in the presence of noise and compare the

accuracy of estimator (2) for different values of q under the optimal tuning of the parameter

λ. They observe that if the measurement noise w is zero or small, then the global minima of

(2) for q<1 (when λ is optimally picked) outperforms the solution of LASSO with optimal λ.

Furthermore, all values of q<1 have the same performance when w = 0. When w is small,

LQLS with the value of q closer to 0 has a better performance. This coincides with the intu-

ition that the performance of Lq- minimization is improved when q decreases since it is closer to

L0-minimization. The analysis of Zheng et al. (2017) is based on approximate message passing

(AMP) algorithm and replica method.

The phase transition of LQLS in the case 1<q ≤ 2, also known as bridge regression, has been

thoroughly studied in last several decades with different techniques, such as combinatorial ge-

ometry (Donoho and Tanner, 2005), statistical dimension framework (Amelunxen et al., 2013),

Gordon’s lemma (Thrampoulidis et al., 2018), and AMP (Donoho et al., 2011; Weng et al.,

2018; Wang et al., 2020; Ma et al., 2019). It was summarized inWeng et al. (2018); Weng and Maleki

(2019); Wang et al. (2021) that the phase transition curve is δq(ǫ) = 1 if 2 ≥ q>1 and

δq(ǫ) = M1(ǫ) if q = 1, where M1(ǫ) is an increasing function with M1(0) = 0 and M1(1) = 1.

Similar to Zheng et al. (2017), they also propose a higher-order analysis for LQLS in the small-

error regime in which the first dominant term is the one that specifies the phase transition curve

and the second dominant term can be used to compare the performance of different values of q.

They observed that the actual MSE is smaller than the one predicted by the first-order term.

All the above results are based on the i.i.d. Gaussian design assumption i.e. Xi,j ∼
N(0, 1/n). Our aim in this paper is to study the phase transition under arbitrary covari-

ance dependence, i.e. X consists of i.i.d. Gaussian rows xi ∼ N(0,Σ) with covariance matrix

Σ ≻ 0 and Σ 6= Ip. The phase transition curve in the case q = 1, i.e. LASSO, under arbi-

trary covariance dependence has been studied in Huang (2021). It was found that the LASSO

phase transition curve changes with the correlation coefficients when the signed patterns of the

nonzero components of β0 are not symmetric. In current paper, we focus on 0 ≤ q<1 and

1<q ≤ 2. Toward this goal, we first derive the limiting prediction risk of LQLS estimator (2)

under asymptotic setting p, n → ∞ with fixed n/p = δ using the non-rigorous, but widely ac-

cepted replica method from statistical physics. Then we apply the higher order analysis to the
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asymptotic prediction risk in terms of small noise error for a simple block diagonal covariance

matrix structure.

Here is the summary of our results: 1. The first dominant term is not influenced by the

actual covariance matrix Σ in both cases of 0 ≤ q<1 and 1<q ≤ 2. This is in sharp contrast

to the case q = 1 and indicates that the phase transition curve is δ = ǫ if 0 ≤ q<1 and δ = 1 if

1<q ≤ 2 for any covariance structure; 2. The second dominant term depends on the correlation

coefficient ρ which is positive in the case 0<q<1 and negative in the case 1<q ≤ 2. To the best

of our knowledge, this is the first result to illustrate the phase transition and higher analysis

for LQLS estimators under design matrices X that have non-independent entries.

The rest of this paper is organized as follows: In Section 2, we present the asymptotic

framework of our analysis from which the distributional limit of estimator (2) is derived. In

Section 3, we study the phase transition and higher analysis for the case 0 ≤ q<1. In Section

4, we study the phase transition and higher analysis for the case 1<q ≤ 2. In Section 5, we

show some simulation results to verify that our analytic derivations are indeed correct. The

last section is devoted to the conclusion and the proofs of our main propositions are placed in

Appendix.

2 Distributional limit of LQLS estimator

The main goal of this section is to formally introduce the asymptotic setting under which we

study the prediction risk of LQLS estimator (2). We write a sequence of instances {β0(p),w(p),Σ(p),X(p)}
indexed by p which is called a converging sequence if the following conditions hold:

1. p, n→ ∞ with n/p→ δ for some positive constant δ.

2. The empirical distribution of the entries of β0(p) converges weakly to a probability mea-

sure pβ0 on R with
∑p

i=1 β0,i(p)
2/p→ Epβ0

{β2
0}<∞.

3. The empirical distribution of the entries ofw(p) converges weakly to a probability measure

pw on R with
∑n

i=1wi(p)
2/n2 → σ2

w<∞.

4. Denote λmin(Σ(p)) and λmax(Σ(p)) the smallest and largest eigenvalues of Σ(p). Then

1/λmin(Σ(p)) = O(1) and λmax(Σ(p)) = O(1).

5. The rows of X(p) are drawn independently from distribution N(0,Σ(p)/n).

6. The sequence of functions

E (p)(a, b) ≡ 1

p
E min
β∈Rp

{

1

2
‖β − β0(p)−

√
aΣ(p)−1/2z‖2Σ(p)

+ b‖β‖qq
}

(3)
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admits a differentiable limit E(a, b) on R+ × R+ with divE (p)(a, b) → divE(a, b), where
‖v‖2

Σ
= vTΣv and the expected value is with respect to two independent random vectors

z ∼ N(0, Ip×p) and β0(p).

Assume we observe training data (X(p),y(p)), where y(p) = X(p)β0(p) +w(p). We insist on

the fact that β0(p), w(p), Σ(p), X(p), y(p) depend on p. However, we will drop this dependence

most of the time to ease the reading. In order to present our main result, for any v ∈ R
p and

α>0, we need to introduce the generalized thresholding operation ηq : R
p → R

p which is defined

as

ηq(v, α) = argminβ∈Rp

{

1

2
‖β − v‖2Σ + α‖β‖qq

}

. (4)

It can be easily verified that ηq(v, α)
α→0−−→ v and ηq(v, α)

α→∞−−−→ 0. For Σ = Ip×p, each

component of ηq(v, α) can be solved independently using the corresponding scalar thresholding

operator ηq(u, α) = argminβ∈R

{

1
2
(β − u)2 + α|β|q

}

whose solution is

ηq(u, α) =























uI(|u|>
√
2α) if q = 0

sign(u)β̃I[|u|>Cqα
1/(2−q)] if 0<q<1

sign(u)(|u| − α)I(|u|>α) if q = 1
sign(u)β̄ if 1<q<2
u/(1 + 2α) if q = 2

where Cq = [2(1 − q)]1/(2−q) + q[2(1 − q)](q−1)/(2−q), β̃ is the largest solution of β + qα
β1−q = |u|,

and β̄ is the solution of β + qαβq−1 = |u|. Figure 1 exhibits ηq for different values of q.

For a converging sequence of instances, we can define the function

ψq(τ
2, λ) = σ2

w + lim
p→∞

1

pδ
E
(

‖ηq(β0 + τΣ−1/2z, λ)− β0‖2Σ
)

, (5)

where z ∼ N(0, Ip×p) is independent of β0. Notice that the function ψq(·, ·) depends implicitly

on the law pβ0.

Denote β̂(λ, p) the LQLS estimator for instance {β0(p),w(p), Σ(p),X(p)} with λ>0 based

on (2). Then the following proposition establishes the distributional limit of (β̂(λ, p),β0).

Proposition 1 (β̂(λ, p),β0) converges in distribution to the random vector (ηq(β0+τ⋆Σ
−1/2z, α),β0)

as p → ∞, where z ∼ N(0, Ip×p) is independent of β0 ∼ pβ0, and α, τ
2
⋆ satisfy the following

equations

τ 2⋆ = ψq(τ
2
⋆ , α), (6)

λ = α

(

1− 1

δ
E{〈η′

q(β0 + τ⋆Σ
−1/2z, α)〉}

)

, (7)

where the expectation is with respect to z ∼ N(0, Ip×p) and β0, η
′
q(·, ·) is the derivative of the

generalized thresholding function over its first argument, and 〈v〉 ≡
∑p

j=1 vj/p is the average of

the vector v ∈ R
p.
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Figure 1: ηq(u, α) for 5 different values of q. α is set to 1.

The derivation of this proposition is presented in the supplementary material using the replica

method which is a non-rigorous technique invented in statistical physics to study the behavior

of large magnetic and disordered systems. This method has been used to analyze the accuracy

of β̂(λ, p) for i.i.d. Gaussian X, i.e. Σ = Ip in Rangan et al. (2009). Here we generalize it to

arbitrary Σ.

The performance of LQLS estimator (2) depends on the choice of the threshold parameters

λ. Any fair comparison between LQLS for different values of q must take this fact into account.

Consider a test point x0 ∼ N(0,Σ) independent of the train data. For an estimator β̂ (a

function of the training data X,y), we define its prediction risk (or simply, risk) as

Rq(β̂(λ)) =
1

p
E(xT

0 β̂(λ)− xT
0 β0) =

1

p
E‖β̂(λ)− β0‖2Σ.

For Σ = Ip, Rq(β̂(λ)) is equivalent to the MSE defined in Weng et al. (2016). Hence, it is

important to pick λ optimally by minimizing the prediction risk, i.e. λ⋆ = argminλRq(β̂(λ)).

This is equivalent to consider the following optimal thresholding policy

α⋆(τ) = argminα lim
p→∞

1

p
E
(

‖ηq(β0 + τΣ−1/2z, α)− β0‖2Σ
)

(8)

since Rq(β̂(λ⋆)) = δ[ψ(τ 2⋆ , α⋆(τ⋆)) − σ2
w]. This enables us to focus the analysis on a single

equation rather than two equations (6) and (7). The results we will present in the next two

sections are mainly based on investigating the solution of the following fixed point equation

τ 2⋆ = ψq(τ
2
⋆ , α⋆(τ⋆)). (9)

We consider the cases 0 ≤ q<1 and 1<q ≤ 2 separately.
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3 Asymptotic performance for 0 ≤ q<1

When 0 ≤ q<1, the Lq regularization has the nice property of creating coefficient sparsity

because the generalized thresholding operation ηq(v, λ) defined in (4) maps small values of v

to zero. Also the smaller values of q correspond to a preference for increasingly sparse solutions.

However, the penalty term is not convex for q<1 which makes solving the optimization problem

much more difficult because the local minima may not be unique.

3.1 Noiseless Settings

This section discusses our main results in the noiseless setting σ2
w = 0. Since there is no

measurement noise, ψq(τ
2, α⋆(τ)) → 0 as τ 2 → 0, thus τ 2 = 0 is a fixed point of (9). If

τ 2 = 0 is also a stable fixed point of (9), i.e. there exists τi>0 such that for every 0<τ<τi,

ψq(τ
2, α⋆(τ))<τ

2, then we say LQLS has successfully recovered the sparse solution of y = Xβ0.

Otherwise, we say LQLS has failed.

The shape of ψq(τ
2, α⋆(τ)) and its fixed points depend on the distribution pβ0. In this work

we focus on pβ0 ∈ Fǫ, where Fǫ denotes the set of distributions whose mass at zero is greater

than or equal to 1 − ǫ. In other words, β0 ∼ pβ0 implies that P (β0 6= 0) ≤ ǫ. This class of

distributions is considered as a good model for exactly sparse signals and has been studied in

many other papers. The following proposition identifies the conditions under which zero is a

stable fixed point under noiseless setting.

Proposition 2 Let pβ0 be an arbitrary distribution in Fǫ. For any 0 ≤ q<1, zero is the stable

fixed point of ψq(τ
2, α⋆(τ)) under noiseless settings if and only if δ>ǫ. Thus the phase transition

curve is δ = ǫ.

The proof of this result can be found in Section 7.2. This result extends the conclusion of

Theorem 4 in Zheng et al. (2017) from Σ = Ip×p to general Σ. There are three main features of

this proposition that we would like to emphasize. Firstly, the actual distribution that is picked

from Fǫ does not have any impact on the behavior of the fixed point at zero. Secondly, this

proposition is universal in the sense that it does not depend on the actual structure of covariance

matrix Σ. Thirdly, the number of the measurements δ that is required for the stability of this

fixed point is the same as the sparsity level ǫ. As long as δ>ǫ, zero is a stable fixed point and

LQLS recovers β0 accurately for every 0 ≤ q<1. If we are concerned with the noiseless settings,

all Lq-minimization algorithms are the same.

Note that since Lq is not convex for 0 ≤ q<1, ψq(τ
2, α⋆(τ)) may have additional stable fixed

points than τ 2 = 0. The conditions under which this case happens depend on q, pβ0 , and the

actual structure of Σ. We will provide a numeric study on this type of phase transition in

Section 5.1 for q = 0 and a block diagonal Σ.
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As pointed out in Zheng et al. (2017), this result seems to be counter-intuitive. For instance,

we expect to see that the performance difference between q = 0 and q = 0.9 is bigger than the

performance difference between q = 0 and q = 0.1. We also expect to see the impact of

covariance structure of Σ on the performance of LQLS estimators. However, according to the

phase transition analysis of Proposition 2, the performance of all LQLS are the same under

the noiseless settings. This naturally leads to the following question: to what extent are the

phase transition analysis applicable if the response variables include small amount of errors in

practice, i.e. the variance σ2
w of the error w is assumed to be small. In the next section, we will

clarify this surprising phenomenon by performing high order analysis in terms of σw.

3.2 Noisy Settings

In this section, we assume that σ2
w>0. This implies that zero is no longer a fixed point of

ψq(τ
2, α⋆(τ)) defined in (9) and the reconstruction error of LQLS is greater than zero for all

values of q. Denote τl the lowest fixed point of ψq(τ
2, α⋆(τ)). Our first result is concerned with

the first dominant term for small amount of noise.

Proposition 3 If ǫ<δ, then there exists τ 2s such that for every σ2
w<τ

2
s , limσ2

w→0
τ2
l

σ2
w
= δ

δ−ǫ
.

As discussed in Section 3.1, the first dominant term determines the phase transition which is

the same for all q and Σ. In order to see the discrepancy between different values of q and

different structures of Σ, we have to do high-order analysis and explore how τ 2l − δσ2
w

δ−ǫ
behaves

for small values of σ2
w. We consider the simplest block diagonal matrix Σ with two-dimensional

block

(

1 ρ
ρ 1

)

where 0 ≤ ρ<1. For this choice of the covariance matrix, it can be easily

verified that the function (3) defined in Condition 5 has a differentiable limit.

Consider pβ0
∈ Fǫ. Let pβ0 = (1 − ǫ)δ0 + ǫG and U is a random variable with distribution

G, where δ0 denotes a point mass at zero and G denotes the distribution of nonzero elements of

β0. Let us discuss the result for q = 0 and 0<q<1 separately in the following two propositions.

Proposition 4 Suppose E|U |2<∞ and P (|U |>µ) = 1, where µ = supv{v : P (|U |>v) = 1}>0.
Then for q = 0 and ǫ<δ,

lim
σw→0

τ 2l =
δ

δ − ǫ
σ2
w + o

(

φ

(

µ̃

√

δ − ǫ

δ
σ−1
w

))

, (10)

where φ denotes the standard normal density function and µ̃ is any constant that is smaller

than (2− ρ−
√

1− ρ2)
√

1− ρ2µ/2.

Proposition 5 Suppose E|U |2<∞ and P (|U |>µ) = 1, where µ = supv{v : P (|U |>v) = 1}>0.
Then for 0<q<1 and ǫ<δ,

lim
σw→0

τ 2l − δ
δ−ǫ

σ2
w

σ4−2q
w (log 1

σw
)2−q

=
ǫC4−2q

q q2(ǫD0 + (1− ǫ)C0)δ
2−q

(4− 4q)2−q(δ − ǫ)3−q
, (11)

8



where Cq = [2(1−q)]1/(2−q)+q[2(1−q)](q−1)/(2−q), D0 = [E{|U |2q−2} − ρ(E{|U |q−1sign(U)})2] /(1−
ρ2), and C0 = E{|U |2q−2}.

It can be easily verified that when ρ = 0, results from Proposition 4 and Proposition 5 are

the same as the results from Theorem 8 and Theorem 9 in Zheng et al. (2017). Comparing

(10) and (11), we conclude that the second dominant term for q = 0 decays exponentially

faster than the polynomial rate for 0<q<1 in low noise regime. Since the second dominant

term in (11) is positive, optimally tuned L0 regularization will outperform optimally tuned Lq

regularization for 0<q<1 in this regime. Another interesting feature of Proposition 5 is that the

second dominant term is proportional to σ4−2q
w , thus if q1<q2, LQLS for q1 outperforms LQLS

for q2 for small enough σ2
w. Moreover, the second dominant term increases with ǫ and decreases

with δ. Examining the impact of ρ based on (11), we conclude that if the distribution of U is

symmetric about zero, the second dominant term increases with ρ since D0 is proportional to

1/(1−ρ2) and E{|U |q−1sign(U)} = 0. All these observations are consistent with the numerical

studies shown in Section 5.

4 Asymptotic Performance for 1<q ≤ 2

The difference between the regularization for 1<q ≤ 2 and the regularization for 0 ≤ q<1 is

that the former is convex and its optimization problem has a unique global minimum. However,

since its penalty is differentiable everywhere, it never leads to a coefficient been zero rather

only minimizes it when λ 6= 0. Our first result is concerned with the first dominant term of the

optimally tuned asymptotic prediction risk defined as Rq(τ⋆, σw) = minλ
1
p
‖β̂(λ)−β0‖2Σ which

is related to the phase transition curve for successful recovery.

Proposition 6 For β0 ∈ Fǫ, suppose E|U |2 ≤ ∞ and P (|U |>µ) = 1, where µ = supv{v :

P (|U |>v) = 1}>0. Then for 1<q ≤ 2, we have

lim
σ2
w→0

Rq(τ⋆, σw)

{

>0 if δ<1
→ 0 if δ>1

.

Therefore, assume the error σ2
w equals zero, for 1<q ≤ 2 and any γ>0, if δ>1 + γ, then (2)

succeeds in recovering β, while if δ<1 − γ, (2) fails. The phase transition curve δ = 1 is

independent of ǫ, q, and the covariance structure of Σ. As pointed out by Zheng et al. (2017),

phase transition analysis based on the first dominant term may lead to misleading conclusions

in any practical setting where there is always error in the response variables. To study the

impact of them, we need to conduct higher-order analysis of LQLS in the small-error regime in

the expansion of prediction risk Rq(τ⋆, σw).

Our second result is concerned with the second dominant term of the optimally tuned MSE

of LQLS when the number of response variables is larger than the number of predictors p, i.e.

δ>1. The key is to characterize the convergence rate for Rq(τ⋆, σw) as σw → 0.
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Proposition 7 Denote Z ∼ N(0, 1) and U a random variable whose distribution is specified

by the nonzero elements of β0. Suppose E|U |2<∞ and P (|U |>µ) = 1, where µ = supv{v :

P (|U |>v) = 1}>0. Then for 1<q ≤ 2 and δ>1, we have

Rq(τ⋆, σw)

=
δσ2

w

δ − 1
− δq+1

(δ − 1)q+1

(1− ǫ)2

ǫ

[E(|Z|q)]2σ2q
w

(1− ρ2)q−1{E(|U |2q−2)− ǫρ[E(|U |q−1sign(U))]2} . (12)

The first term δσ2
w

δ−1
shows a notion of phase transition. For as σw → 0, Rq(τ⋆, σw) = O(σ2

w),

and will go to zero. For ρ = 0, the second dominant term is the same as the one derived in

Theorem 3.1 in Weng et al. (2018). The important facts of the second dominant term include:

(1) it is negative; (2) its order is σ2q
w ; (3) its magnitude decreases with ǫ for fixed q and ρ; (4)

its magnitude decreases with q for fixed ǫ and ρ; (5) its magnitude increases with ρ for fixed q

and ǫ. Facts (3) and (4) have been studied thoroughly in Weng et al. (2018). Our numerical

studies in Section 5 focus on the verification of fact (5).

5 Numerical results

This section performs several numerical studies to evaluate the Rq(τ⋆, σw) of LQLS as a function

of σw for several different values of q and ρ. Here we consider a block diagonal matrix Σ with

two-dimensional block

(

1 ρ
ρ 1

)

. The equation can be decomposed into 2-dimensional blocks.

Sections 5.1 and 5.2 study the performance of LQLS with 0 ≤ q<1 and 1<q ≤ 2 respectively.

5.1 0 ≤ q<1

We first study the phase transition result for q = 0, i.e. σw = 0, in Figure 2 to identify conditions

under which ψq(τ
2, α⋆(τ)) has additional stable fixed points than τ 2 = 0. The following quantity

plays an important role in our analysis

M0(ǫ, ρ) = sup
µ1,µ2

inf
α

{

ǫ2

2
E‖β̂1 − β1

0‖2Σ + ǫ(1− ǫ)E‖β̂2 − β2
0‖2Σ +

(1− ǫ)2

2
E‖β̂3‖2Σ

}

, (13)

where

β̂1 = η0(β
1
0 +Σ−1/2z, α), β̂2 = η0(β

2
0 +Σ−1/2z, α), β̂3 = η0(Σ

−1/2z, α),

where

Σ =

(

1 ρ
ρ 1

)

, β1
0 =

(

µ1

µ2

)

, β2
0 =

(

µ1

0

)

.

Here we consider 3 different situations according to the nonzero components of 2-dimensional

vector β0. The first term in (13) is for situation that both components are nonzero. The

10



second term is for situation that one is nonzero and the other is zero. The third term is for

situation that both are zero. From (8) we obtain that if δ>M0(ǫ, ρ), ψ0(τ
2, λ⋆(τ)) has a unique

stable fixed point at zero. On the other hand, if δ<M0(ǫ, ρ), there exists Pβ0 ∈ Fǫ for which

ψ0(τ
2, λ⋆(τ)) has more than one stable fixed point. Figure 2 compares the phase transition

curves for different values of ρ. For larger ρ, we need larger δ to achieve unique fixed point for

ψ0(τ
2, λ⋆(τ)). Figures 3 and 4 exhibit the lowest fixed point τ 2l of ψ0(τ

2, λ⋆(τ)) as a function

of σ2
w for different values of ρ. Figure 3 is for the case of δ>M0(ǫ, ρ) while Figure 4 is for the

case of δ<M0(ǫ, ρ). Note that the performance of L0 regularized method for smaller ρ is better

than its performance for larger ρ. Moreover, τ 2l is a continuous function of σ2
w if ψ0(τ

2, λ⋆(τ))

has a unique stable fixed point as shown in Figure 3. On the other hand, if ψ0(τ
2, λ⋆(τ)) has

more than one stable fixed points, the function is discontinuous as shown in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
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ε

δ

ρ=0.9
ρ=0.7
ρ=0.5
ρ=0

Figure 2: Comparison of the phase transition of the L0 regularized method. The phase transition
exhibited is the value of δ at which the number of stable fixed points changes from one to more
than one for at least some prior Pβ0 ∈ F .

Figure 5 illustrates the dependence of the risk function on the correlation coefficient ρ for

0<q<1 under different choices of q. It is shown clearly that the risk increases with ρ for fixed q

which is consistent with the analytical result (11) derived in Proposition 5 based on high order

analysis. Moreover, the magnitude of changes due to ρ is larger for small q than that for large

q. In particular, as q close to 1, the curve for ρ = 0 and the curve for ρ = 0.9 in the right

panel of Figure 5 are almost indistinguishable. This is consistent with the conclusion drawn in

Theorems 3.3 of Weng et al. (2018) which states that the first order term is sufficient to describe

the performance of LASSO (q=1) in the small-error regime because the second dominant term

is exponentially small. Figure 6 depicts the impact of q on risk for fixed ρ. It is shown that
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Figure 3: The curve of τ 2l as a function of σ2
w for ρ ∈ [0, 0.5.0.7.0.9]. Here δ = 0.9, ǫ = 0.1, and

the non-zero elements of β0 are i.i.d. ±1 with probability 0.5.
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Figure 4: The curve of τ 2l as a function of σ2
w for ρ ∈ [0, 0.5.0.7.0.9]. Here δ = 0.1, ǫ = 0.01,

and the non-zero elements of β0 are i.i.d. ±1 with probability 0.5.
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LQLS for q1 outperforms LQLS for q2 when q1<q2. This is consistent with the conclusion in

Weng et al. (2018) and also confirms our observation in Proposition 5. Moreover, it is shown

from Figure 6 that the discrepancies caused by different values of q decreases with ρ.
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Figure 5: The curve of MSE as a function of σ2
w for ρ ∈ [0, 0.9] under three different values of

q. Here δ = 0.9, ǫ = 0.1, and the non-zero elements of β0 are i.i.d. ±3 with probability 0.5.

5.2 1<q ≤ 2

In this section, we check the approximation accuracy of the first and second order expansions

of the risk over a reasonable range of σw in the case 1<q ≤ 2. The dependence of risk on

parameters δ, ǫ, and q has been studied extensively in Weng et al. (2018). Here we focus on

the dependence of risk on the correlation coefficient ρ. Throughout this section, we set the

distribution of U to f(b) = 0.5δ1(b) + 0.5δ−1(b).

Figures 7 and 8 compare the true value, first order approximation, and second order approx-

imation of risk under different choices of ρ for q = 1.5 and q = 1.9 respectively. Our numerical

results in Figures 7 and 8 show that both the first order and second order expansions present a

good approximation when σw is small enough. As we increase σw, both first order and second

order expansions are larger than the true values and the second order approximation is more

accurate than the first order approximation. The discrepancies between the approximation and

the true values increase with ρ as demonstrated in these Figures. Therefore, the expansion

approximation is less accurate under large correlation than under small correlation. Consis-

tence with the analytical form of the second-order term in (12), we conclude from the numerical
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Figure 6: The curve of MSE as a function of σ2
w for q ∈ [0.1, 0.6, 0.9] under two different values

of ρ. Here δ = 0.9, ǫ = 0.1, and the non-zero elements of β0 are i.i.d. ±3 with probability 0.5.

studies that the second order approximation outperforms the first order, however, it may not

be sufficient if the following conditions hold: (i) δ is close to 1; (ii) ǫ is small, (iii) q is close to

1, (iv) ρ is close to 1.

Figure 9 exhibits the impact of ρ on the true value of risk for different values of q. As is

clear in this figure, the risk decreases with both ρ and q which is in agreement with the second

order approximation in (12).

6 Discussion

Lq-regularized least square is one of the most popular schemes for recovering a high-dimensional

sparse vector from low-dimensional measurements. This paper focuses on asymptotic behavior

of LQLS estimators in the framework in which it is assumed that p, n, k → ∞ while n/p→ δ and

k/p→ ǫ are fixed. We first derive the distributional limit of LQLS estimators for nonstandard

Gaussian design models where the row of design matrix X are drawn independently from

distribution N(0,Σ) with arbitrary Σ. Then we obtain an explicit characterization of the

asymptotic risk by deriving its higher order expansion in the small-error regime. Our analysis

is performed on both the convex case 1<q ≤ 2 and non-convex case 0 ≤ q<1. We conclude

that the first order term does not depend on the covariance structure of Σ and thus the phase

transition curves are the same as the in the case of standard Gaussian design. This is different

from the case q = 1 in which the correlation can change the phase transition boundary if the
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Figure 7: Plots of actual risk and its approximation for q = 1.5, δ = 2, and ǫ = 0.7. The true
value, first order approximation, and second order approximation are denoted by black, red,
and blue curves respectively.
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Figure 8: Plots of actual risk and its approximation for q = 1.9, δ = 2, and ǫ = 0.7. The true
value, first order approximation, and second order approximation are denoted by black, red,
and blue curves respectively.
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Figure 9: Plots of actual risk for q = 1.5, δ = 2, and ǫ = 0.7. The results for ρ = 0.1, ρ = 0.5,
and ρ = 0.9 are denoted by black, red, and blue curves respectively.

signed pattern of signal is not symmetric. The second order term depends on the correlation

and the explicit formulas are derived in both cases based on a simple two-dimensional block

diagonal covariance model.

Note that part of our analysis is based on the replica method which are not fully rigorous

yet. So far the rigorous work in this area mainly focuses on i.i.d. randomness. For example,

the mean square error of LQLS for the case of 1 ≤ q ≤ 2 is characterized using Gordon’s lemma

in Thrampoulidis et al. (2018) and AMP in Weng et al. (2018). For nonstandard Gaussian

design models, Σ 6= Ip×p the rigorous analysis for the case q = 1 have been conducted recently

Celentano et al. (2020) using Gordon’s comparison inequality and in Huang (2021) using AMP.

Our next step is to derive the rigorous results for Proposition 1 for the case 1<q ≤ 2. The case

0<q ≤ 1 is more challenging because the penalty term is not convex and even in the i.i.d. case

its rigorous results have not been established yet.

Our conclusion in this paper is based on higher-order analysis in small error region. It

may not be applicable if the noisy error is large enough. As shown in Zheng et al. (2017),

for large values of noise, the LASSO outperforms L0-minimization and if q1>q2, then optimal

Lq1-minimization outperforms optimal Lq2-minimization. Proposition 3 of Zheng et al. (2017)

provides theoretical justification on this high-noise phenomenon. Another direction of our

future research is to study the high-noise phenomenon of LQLS for nonstandard Gaussian
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design models.

7 Appendix

This appendix outlines the proofs of the Propositions in the main text.

7.1 Proof of Proposition 1

Proof 1 We limit ourselves to the main steps of replica calculations leading to Propositions 1.

For a general introduction to the method and its motivation, we refer to Mezard et al. (1987);

Mézard and Montanari (2009).

We consider Lq-regularized least squares estimators of the form 1

θ̂ = argminθ∈Rp

{

1

2n
‖y −Xθ‖22 + λ‖θ‖qq

}

. (A1)

Define g : R × R → R a continuous function strictly convex in its first argument. Then

its Lagrange dual g̃(x, y) ≡ maxµ∈R{µx − g(µ, y)} is also a continuous function convex in its

first argument. We start from estimating the following moment generating function also called

partition function

Zp(β, s) =

∫

exp

{

− β

2n

n
∑

i=1

(yi − xT
i θ)

2 − βλ‖θ‖qq − βs

p
∑

j=1

[g(µj, β0,j)− µjθj ]

}

dθdµ, (A2)

where s>0, (yi,xi) are i.i.d. pairs distributed as model (2) in the main text, and β>0 is the

inverse temperature parameter. The free energy is the low temperature limit

F(s) = − lim
p→∞

lim
β→∞

1

pβ
logZp(β, s), (A3)

which is assumed to converge to

F(s) = − lim
p→∞

lim
β→∞

1

pβ
E logZp(β, s), (A4)

where the expectation is with respect to the distribution of (y1,x1), · · · , (yn,xn). Using Laplace

method in the integral (A2), we have

F(s) = lim
p→∞

1

p
min

θ,µ∈Rp

{

1

2n

n
∑

i=1

(yi − xT
i θ)

2 + λ‖θ‖qq + s

p
∑

j=1

[g(µj, β0,j)− µjθj]

}

. (A5)

1There is a subtle discrepancy between this definition and (2) in the main text, i.e. X and y are scaled by
1/

√
n.
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Taking the derivative of F(s) as s→ 0, we have

dF
ds

(s = 0) = lim
p→∞

1

p

p
∑

j=1

min
µi∈R

[g(µj, β0,j)− µj θ̂j ] = − lim
p→∞

1

p

p
∑

j=1

g̃(θ̂j , β0,j), (A6)

where θ̂ is the solution of (A1).

Now we compute E logZp(β, s) using the replica method. Instead of performing integration

over the log-term directly, we use the following identity

E logZp(β, s) =
∂E{Zp(β, s)

d}
∂d

∣

∣

∣

∣

d=0

. (A7)

We first compute the expectation for integer d, and then extrapolate it as d → 0.

Define the measure ν(dθ) over θ ∈ R
p as follows

ν(dθ) =

∫

exp

{

−βλ‖θ‖qq − βs

p
∑

j=1

[g(µj, θ0,j)− µjθj ]

}

dµdθ, (A8)

where the integration is with respect to dµ. Then for integer d, define νd(dθ) = ν(dθ1) · · ·ν(dθd)

be a measure over (Rp)d, with θ1, · · · , θd ∈ R
p. With these notations and substituting (1.1), we

have

E{Zp(β, s)
d} =

∫

E exp

{

− β

2n

d
∑

a=1

n
∑

i=1

[

xT
i (β0 − θa) + wi

]2

}

νd(dθ),

where the expectation is with respect to w and xi. Using identity
∫

δ(uai − xT
i (β0 − θa))duai = 1, (A9)

and Fourier transformation

δ(uai − xT
i (β0 − θa)) =

1

2πi

∫

exp{iûai (uai − xT
i (β0 − θa))}dûai , (A10)

where δ(·) is the Dirac delta function, we obtain

E{Zp(β, s)
d} =

1

(2πi)nd

(

β

n

)
nd
2
∫

E exp

{

− β

2n

∑

a,i

(uai + wi)
2

+i

√

β

n

∑

a,i

ûai (u
a
i − xT

i (β0 − θa))

}

νd(dθ)νd(du)νd(dû), (A11)

where νd(du) = ν(du1) · · ·ν(dud) is a measure over (Rn)d with u1, · · · ,ud ∈ R
n and νd(dû)

is defined similarly. For fixed
∑d

a=1(β0 − θa), the product term xT
i

∑d
a=1(β0 − θa) follows a
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multivariate normal distribution with mean zero and covariance matrix
∑

a,b(β0 − θa)TΣ(β0 −
θb). After integration over x1, · · · ,xn, we have

E{Zp(β, s)
d} =

1

(2πi)nd

(

β

n

)
nd
2
∫

E exp

{

− β

2n

∑

a,i

(uai + wi)
2 + i

√

β

n

∑

a,i

ûai u
a
i

− β

2n

∑

a,b

(ûa)T ûb(β0 − θa)TΣ(β0 − θb)

}

νd(dθ)νd(du)νd(dû). (A12)

We next follow the similar procedure as in Javanmard and Montanari (2014) and use the iden-

tity

exp(−xy) = 1

2πi

∫

(−i∞,i∞)

∫

(−∞,∞)

exp(−ζζ̂ + ζx− ζ̂y)dζdζ̂ (A13)

to (A12) and introduce integration variables Q = (Qab)1≤a,b≤d and Λ = (Λab)1≤a,b≤d. Letting

dQ =
∏

a,b dQab and dΛ =
∏

a,b dΛab, we have

E{Zp(β, s)
d} =

(

βn

4πi

)d2 ∫

exp{−pSd(Q,Λ)}dQdΛ, (A14)

Sd(Q,Λ) =
βδ

2

∑

a,b

ΛabQab −
1

p
log ξ(Λ)− δ log ξ̂(Q), (A15)

ξ(Λ) =

∫

exp

{

β

2

∑

a,b

Λab(β0 − θa)TΣ(β0 − θb)

}

νd(dθ),

ξ̂(Q) =
1

(2πi)d
E exp

{

β

2n
w2
∑

a,b

(Id×d + (βQ)−1)−1
ab − 1

2
log det(Id×d + βQ)− β

2n
dw2

}

,

where in ξ̂(Q) we have performed integrations over du and dû and the remaining expectation

is over the noise variable w. We next use the saddle point method in (A14) to obtain

− lim
p→∞

1

p
logE{Zp(β, s)

d} = Sd(Q
⋆,Λ⋆), (A16)

where Q⋆,Λ⋆ is the saddle-point location. From replica symmetry, Q⋆,Λ⋆ are invariant under

permutations of the row/column indices, which is equivalent to

Q⋆
ab =

{

q1 if a = b,
q0 otherwise

, Λ⋆
ab =

{

βζ1 if a = b,
βζ0 otherwise

, (A17)

The next step is to substitute the above expressions for Q⋆ and Λ⋆ in (A15) and then taking
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the limit d → 0. Hence

lim
d→0

βδ

2d

∑

a,b

Λ⋆
abQ

⋆
ab =

β2δ

2
(ζ1q1 − ζ0q0)

lim
d→0

−δ log ξ̂(Q⋆)

d
=

δ

2
log(1 + β(q1 − q0)) +

δ

2

β(q0 + σ2
w)

1 + β(q1 − q0)

lim
d→0

− log ξ(Λ⋆)

d
= E

{

log

[
∫

exp

{

β2

2
(ζ1 − ζ0)‖θ − β0‖2Σ

+β
√

ζ0z
TΣ1/2(θ − β0)

}

ν(dθ)
]}

,

where expectation is with respect to z ∼ N(0, Ip×p). In order for the exponent in above equation

to be extensive in p, we introduce q1− q0 = q/β and ζ1− ζ0 = −ζ/β. We find in the asymptotic

limit β → ∞ the free energy becomes

F(s) = − lim
β→∞

lim
p→∞

1

pβ
E logZp(β, s) = lim

β→∞
lim
d→0

1

dβ
Sd(Q

⋆,Λ⋆)

=
δ

2
(ζ0q − ζq0) +

δ

2

q0 + σ2
w

1 + q

+ lim
p→∞

1

p
E min
θ∈Rp

{

ζ

2
‖θ − β0‖2Σ −

√

ζ0z
TΣ1/2(θ − β0) +D(θ; s)

}

, (A18)

where

D(θ; s) = min
µ∈Rp

{

λ‖θ‖qq − sθTµ+ s

p
∑

j=1

g(µj, θ0,j)

}

. (A19)

After eliminating q and q0 using their saddle-point equations and renaming ζ0 = ζ2τ 2, we have

F(s) = −1

2
(1− δ)ζτ 2 − δ

2
ζ2τ 2 +

δ

2
σ2
0ζ

+ lim
p→∞

1

p
E min
θ∈Rp

{

ζ

2
‖θ − β0 − τΣ−1/2z‖2Σ +D(θ, s)

}

. (A20)

In the case s = 0, solving the saddle-point equations for ζ and τ 2, we finally get

τ 2 = σ2
w +

1

δ
lim
p→∞

1

pδ
E
(

‖ηq(β0 + τΣ−1/2z, λ/ζ)− β0‖2Σ
)

,

ζ = 1− 1

δ
E{〈η′

q(β0 + τΣ−1/2z, λ/ζ)〉}, (A21)

where ηq(v, λ) is defined in (2.2). Then taking the derivative of (A20) as s→ 0 and minimizing

over µ, we get

dF
ds

(s = 0) = − lim
p→∞

1

p

p
∑

j=1

Eg̃(θ̃j , β0,j), (A22)

where θ̃ = ηq(β0+τΣ
−1/2z, λ/ζ). Comparing (A22) with (A6) for a complete set of functions g̃

and using the standard weak convergence arguments, we prove the claim that the distributional

limit of LQLS estimator does indeed hold.
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7.2 Proof of Proposition 2

Proof 2 Define λ = α0τ
2−q. This will enable us to employ the scale invariance properties of

the general thresholding operation (4) more efficiently. We can write (8) as

ψq(τ
2, α0τ

2−q) =
1

pδ
E‖ηq(β0 + τΣ−1/2z, α0τ

2−q)− β0‖2Σ (A23)

Note that τ 2 = 0 is actually a fixed point of ψq(τ
2, α0τ

2−q). Furthermore, it is straightforward

to see that 0 is a stable fixed point if and only if

dψq(τ
2, α0τ

2−q)

dτ 2

∣

∣

∣

∣

τ2=0 = lim
τ2→0

ψq(τ
2, α0τ

2−q)

τ 2
<1

Denote U = β0/τ . Then (A23) can be written as

ψq(τ
2, α0τ

2−q) =
τ 2

δ
Rq(τ

2, α0),

where

Rq(τ
2, α0) =

1

p
E‖β̂ − U‖2Σ, (A24)

where

β̂ = argminβ

{

1

2
‖β −U− Σ−1/2z‖2Σ + α0‖β‖qq

}

. (A25)

For fixed U , denote S = {j|Uj 6= 0}. As τ → 0, β̂S = Us + oP (µ/τ), we obtain

ΣSS(β̂S −US) +ΣSS̄β̂S̄ − (Σ1/2z)S + qα0|β̂S|q−1sign(β̂S) = 0,

which can be written as

β̂S −US = (Σ−1/2z)S −Σ−1
SSΣSS̄β̂S̄ − qα0Σ

−1
SS|β̂S|q−1sign(β̂S). (A26)

Substituting into (A24), we have

Rq(τ
2, α0) =

1

p
E{(β̂S −US)

TΣSS(β̂S −US) + 2(β̂S −US)
TΣSS̄β̂S̄ + β̂

T

S̄ΣS̄S̄β̂S̄}

=
1

p
E[{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S) +ΣSS̄β̂S̄}TΣ−1

SS

{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S)−ΣSS̄β̂S̄}+ β̂
T

S̄ΣS̄S̄β̂S̄]

=
1

p
E[{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S)}TΣ−1

SS{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S)}

+β̂
T

S̄ (ΣS̄S̄ −ΣS̄SΣ
−1
SSΣSS̄)β̂S̄] (A27)
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As τ → 0, β̂S → US. Thus, |β̂S|q−1 = Op(τ
1−q), we have

Rq(τ
2, α0) =

1

p
E[(Σ1/2z)TSΣ

−1
SS(Σ

1/2z)S + β̂
T

S̄ (ΣS̄S̄ −ΣS̄SΣ
−1
SSΣSS̄)β̂S̄] +O(τ 1−q).

The second term β̂
T

S̄ (ΣS̄S̄ −ΣS̄SΣ
−1
SSΣSS̄)β̂S̄ ≥ 0. Combining (A25) and (A26), we obtain the

equation for β̂S̄ as

β̂S̄ = argminβ

{

|β̂ −Σ
−1

S̄S̄{(Σ1/2z)S −ΣS̄S(Σ
1/2z)S̄}|ΣS̄S̄

+ qα0|β̂|q−1sign(β̂)
}

which goes to 0 if α0 is large enough. Here ΣS̄S̄ = ΣS̄S̄ − ΣS̄SΣ
−1
SSΣSS̄. Therefore denote α0⋆

the optimal α0, we obtain

Rq(τ
2, α0⋆)

τ→0−−→ 1

p
E[(Σ1/2z)TSΣ

−1
SS(Σ

1/2z)S] = ǫ,

and

dψq(τ
2, α0⋆τ

2−q)

dτ 2

∣

∣

∣τ2=0 =
ǫ

δ
.

7.3 Proof of Proposition 4

Proof 3 Define λ = α0τ
2, then from (4), we have for q = 0

β̄ = β̂/τ = η0(β0/τ +Σ−1/2z, α0)

= argminβ∈Rp

{

1

2
‖β − β0/τ −Σ−1/2z‖2Σ + α0‖β‖0

}

. (A28)

For block diagonal covariance Σ with block

(

1 ρ
ρ 1

)

, equation (A28) can be decomposed into

2-dimensional blocks each of which can be solved as

(β̄1, β̄2) = (β̂1/τ, β̂2/τ) = argminβ1,β2
L,

where

L =
1

2
{(β1 − y1)

2 + (β2 − y2)
2 + 2ρ(β1 − y1)(β2 − y2)}+ α0(‖β1‖0 + ‖β2‖0).

For problem (A28), y1 = U1+ ξ1, y2 = U2+ ξ2, where U1 = β0,1/τ , U2 = β0,2/τ , β0,1, β0,2
i.i.d.∼ G,

and

ξ1 =
1

2

(
√

1

1 + ρ
+

√

1

1− ρ

)

z1 +
1

2

(
√

1

1 + ρ
−
√

1

1− ρ

)

z2,

ξ2 =
1

2

(
√

1

1 + ρ
−
√

1

1− ρ

)

z1 +
1

2

(
√

1

1 + ρ
+

√

1

1− ρ

)

z2,
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with z1, z2
i.i.d.∼ N(0, 1).

As shown in Figure 10, the two dimensional space can be divided into nine regions. In each

region, the estimator is chosen to be the one that gives the lowest loss L. The solution can be

summarized as






























































β̂1>0 & β̂2>0 if y ∈ I1
β̂1>0 & β̂2 = 0 if y ∈ I5
β̂1>0 & β̂2<0 if y ∈ I4
β̂1 = 0 & β̂2>0 if y ∈ I7
β̂1 = 0 & β̂2<0 if y ∈ I8
β̂1<0 & β̂2>0 if y ∈ I2
β̂1<0 & β̂2 = 0 if y ∈ I6
β̂1<0 & β̂2<0 if y ∈ I3
β̂1 = 0 & β̂2 = 0 if y ∈ I9

(A29)

where























































































I1 = I
(

y1>
√

2α0

1−ρ2
& y2>

√

2α0

1−ρ2

)

I5 = I
(

|y2|<
√

2α0

1−ρ2
& |y1|>|y2| & y1 + ρy2>

√
2α0

)

I4 = I
(

y1>
√

2α0

1−ρ2
& y2<−

√

2α0

1−ρ2
& y21 + y22 + 2ρy1y2>

√
4α0

)

I7 = I
(

|y1|<
√

2α0

1−ρ2
& |y1|<|y2| & y2 + ρy1>

√
2α0

)

I8 = I
(

|y1|<
√

2α0

1−ρ2
& |y1|<|y2| & y2 + ρy1<−

√
2α0

)

I2 = I
(

y1<−
√

2α0

1−ρ2
& y21 + y22 + 2ρy1y2>

√
4α0 & y2>

√

2α0

1−ρ2

)

I6 = I
(

|y2|<
√

2α0

1−ρ2
& |y1|>|y2| & y1 + ρy2<−

√
2α0

)

I3 = I
(

y1<−
√

2α0

1−ρ2
& y2<−

√

2α0

1−ρ2

)

I9 = (∪8
i=1Ii)

c

We consider three different scenarios. The first scenario includes regions 1-4 where both β̂1 and

β̂2 are nonzero and the loss is L = 2α0. Its contribution to the prediction risk is

R1(τ
2, α0) = E{(β̂1 − β0,1)

2 + (β̂2 − β0,2)
2 + 2ρ(β̂1 − β0,1)(β̂2 − β0,2)}(I1 + I2 + I3 + I4)/2

= τ 2E{(ξ21 + ξ22 + 2ρξ1ξ2)}(I1 + I2 + I3 + I4)/2. (A30)

The second scenario includes regions 5-8 where β̂1 6= 0, β̂2 = 0 or β̂1 = 0, β̂2 6= 0 and the loss is

L = 1
2
(1− ρ2)y22 + α0 or L = 1

2
(1− ρ2)y21 + α0. Its contribution to the prediction risk is

R2(τ
2, α0) = τ 2

[

E{(ξ1 + ρξ2)
2 + (1− ρ2)U2

2}(I5 + I6)

+E{(ξ2 + ρξ1)
2 + (1− ρ2)U2

1}(I7 + I8)
]

/2. (A31)
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The third scenario includes regions 9 where β̂1 = β̂2 = 0 and the loss is L = (y21+y
2
2+2ρy1y2)/2.

Its contribution to the prediction risk is

R3(τ
2, α0) = τ 2E{(U2

1 + U2
2 + 2ρU1U2)}I9/2. (A32)

−4 −2 0 2 4

−
4

−
2

0
2

4

y1

y 2 I9

I1

I5

I4

I7

I8

I2

I6

I3

Figure 10: Illustration of the solution (A29) for equation (A28) in two dimensional space. Here
ρ = 0.5 and α0 = 1.

To find the optimal α0 for minimizing R(τ 2, α0) = R1(τ
2, α0) +R2(τ

2, α0) +R3(τ
2, α0), we

need to take derivative over α0. Since the explicit function R(τ 2, α0) in each region does not

depend on α0, changing α0 only causes the change of the boundaries among different regions.

According to Stokes’s theorem, as in Theorem 1 of Baddeley (1977), we conclude that the

dominant contributions to limτ→0
∂R(τ2,α0)

∂α0
come from the boundaries between scenarios 1 and

2 as well as the boundaries between scenarios 2 and 3. For example, the contribution from the

boundary between regions 1 and 5 is

τ 2

√

1− ρ2

2α0
E

{

(
√

2α0

1− ρ2
− U2

)2

− U2
2

}

I

(

U1 + ξ1>

√

2α0

1− ρ2

)

δ

(

U2 + ξ2 =

√

2α0

1− ρ2

)

∼ ǫ2+E

{

(
√

2α0

1− ρ2
− U2

)2

− U2
2

}

φ(
√
2α0 −

√

1− ρ2U2) + ǫ+(1− ǫ)
2α0

1− ρ2
φ(
√
2α0),
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where ǫ+ = P (β0>0). The contribution from the boundary between regions 5 and 9 is

τ 2
√

1

2α0
E{(

√
2α0 − U1 + ρU2)

2 − (U1 + ρU2)
2}I
(√

2α0

1 + ρ
>U2 + ξ2>−

√

2α0

1− ρ2

)

δ
(

U1 + ρU2 + ξ1 + ρξ2 =
√
2α0

)

∼ (1− ǫ)2Eα0φ(
√
2α0).

The contributions from other boundaries can be derived similarly. The total contributions in-

clude three dominant terms: φ(
√
2α0), φ(

√
2α0 −

√

1− ρ2U1), and φ(
√
2α0 −

√

1− ρ2U2).

Therefore, we need to have limτ→0

√
2α0⋆τ = µ

√

1− ρ2/2 to ensure the existence of the finite

solutions for ∂R(τ2,α0)
∂α0

= 0. Substituting into (A30), (A31), and (A32), we obtain

R1(τ
2, α0⋆) =

τ 2

2
E{(ξ21 + ξ22 + 2ρξ1ξ2)}I

(

|U1 + ξ1|>
√

2α0⋆

1− ρ2

)

I

(

|U2 + ξ2|>
√

2α0⋆

1− ρ2

)

= τ 2[ǫ2(1 + o(
√
2α0⋆φ(

√
2α0⋆))) + ǫ(1− ǫ)o(

√
2α0⋆φ(

√
2α0⋆)) + (1− ǫ)2o(φ(

√
2α0⋆)

2)]

= τ 2[ǫ2 + o(
√
2α0⋆φ(

√
2α0⋆))],

R2(τ
2, α0⋆) =

τ 2

2
E{(ξ1 + ρξ2)

2 + (1− ρ2)U2
2}I

(

|y1 + ρy2|>
√
2α0⋆

)

I

(

|U2 + ξ2|<
√

2α0⋆

1− ρ2

)

+
τ 2

2
E{(ξ2 + ρξ1)

2 + (1− ρ2)U2
1}I

(

|y2 + ρy1|>
√
2α0⋆

)

I

(

|U1 + ξ1|<
√

2α0⋆

1− ρ2

)

= τ 2[ǫ2o(
√
2α0⋆φ(

√
2α0⋆)) + ǫ(1 − ǫ)(1 + o(

√
2α0⋆φ(

√
2α0⋆))) + (1− ǫ)2o(

√
2α0⋆φ(

√
2α0⋆))]

= τ 2[ǫ(1− ǫ) + o(
√
2α0⋆φ(

√
2α0⋆))],

and

R3(τ
2, α0⋆) =

τ 2

2
E(U2

1 + U2
2 + 2ρU1U2)

(

|y1 + ρy2|>
√
2α0⋆

) (

|y2 + ρy1|>
√
2α0⋆

)

≤ τ 2

2
E(U2

1 + U2
2 + 2ρU1U2)I

(

|U1 + ξ1|<
(ρ+

√

1− ρ2)
√
2α

√

1− ρ2

)

I

(

|U2 + ξ2|<
(ρ+

√

1− ρ2)
√
2α0⋆

√

1− ρ2

)

= τ 2[ǫ2o(φ((2− ρ−
√

1− ρ2)
√
2α0⋆)

2) + ǫ(1− ǫ)o(
√
2α0⋆φ((2− ρ−

√

1− ρ2)
√
2α0⋆))]

= τ 2o(
√
2α0⋆φ((2− ρ−

√

1− ρ2)
√
2α0⋆)).

Thus, as τ → 0, the total MSE becomes R(τ 2, α0⋆) = τ 2(ǫ + o(φ(µ̃τ−1)), where µ̃ = (2 − ρ −
√

1− ρ2)
√

1− ρ2µ/2. The fixed point equation for small σ2
w can be written as

τ 2l = σ2
w +

R(τ 2l , α0⋆)

δ

= σ2
w +

τ 2l
δ
(ǫ+ o(φ(µ̃τ−1

l ))).
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Therefore,

τ 2l =
δσ2

w

δ − ǫ
+ o

(

φ

(

µ̃

√

δ − ǫ

δ
σ−1
w

))

.

7.4 Proof of Proposition 5

Proof 4 For Σ =

(

1 ρ
ρ 1

)

, denote ρ1 =
1
2
(
√
1 + ρ+

√
1− ρ) and ρ2 =

1
2
(
√
1 + ρ−√

1− ρ).

Let λ = α0τ
2−q, then the solution can be decomposed into 2-dimensional block of β ∈ R

2 as

β̂1, β̂2 = argminβ1,β2
[L] ,

where

L =
1

2
‖β − β0 − τΣ−1/2z‖2Σ + α0τ

2−q‖β‖qq

=
1

2
{(β1 − β0,1)

2 + (β2 − β0,2)
2 + 2ρ(β1 − β0,1)(β2 − β0,2)}

−τξ1(β1 − β0,1)− τξ2(β2 − β0,2) +
1

2
τ 2‖z‖2 + α0τ

2−q(|β1|q + |β2|q), (A33)

with ξ1 = ρ1z1 + ρ2z2, ξ2 = ρ2z1 + ρ1z2. If both β̂1 and β̂2 are nonzero, they should satisfy
{

β̂1 − β0,1 + ρ(β̂2 − β0,2)− τξ1 + α0τ
2−qq|β̂1|q−1sign(β̂1) = 0,

ρ(β̂1 − β0,1) + β̂2 − β0,2 − τξ2 + α0τ
2−qq|β̂2|q−1sign(β̂2) = 0.

(A34)

The ψ function defined in (2.3) can now be written as

ψq(τ
2, α0τ

2−q) = σ2
w +

1

2δ
E‖β̂ − β0‖Σ

= σ2
w +

1

2δ
E{(β̂1 − β0,1)

2 + (β̂2 − β0,2)
2 + 2ρ(β̂1 − β0,1)(β̂2 − β0,2)}.(A35)

We consider three different situations. In the first case: β0,1 6= 0 and β0,2 6= 0. Then as τ → 0,

both β̂1 and β̂2 are nonzero and (A34) can be written as

β̂ = β0 + τΣ−1/2z− α0τ
2−qqΣ−1|β0|q−1sign(β0) + op(τ

2−q).

Substituting into (A35), its contribution to the prediction risk is

R1(τ
2, α0τ

2−q) = ǫ2τ 2E

[

1 +
1

2
α2
0τ

2−2qq2{(β0)
q−1sign(β0)}TΣ−1(β0)

q−1sign(β0)

]

+o(τ 4−2q). (A36)

Taking derivative over α0, we obtain

∂R1(τ
2, α0τ

2−q)

τ 2∂α0

= ǫ2E
[

α0τ
2−2qq2{(β0)

q−1sign(β0)}TΣ−1|β0|q−1sign(β0)
]

+ o(τ 2−2q)

= 2ǫ2α0τ
2−2qq2D0 + o(τ 2−2q). (A37)
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where D0 = E{|β0|2q−2} − ρ(E{|β0|q−1sign(β0)})2/(1− ρ2).

In the second case: β0,1 6= 0 and β0,2 = 0 (or β0,2 6= 0 and β0,1 = 0). The first equation of

(A34) becomes

β̂1 − β0,1 = τξ1 − ρβ̂2 − α0τ
2−qq|β0,1|q−1sign(β0,1) + op(τ

2−q).

Substituting into (A33), we obtain the solution for β2

β̂2 = argminβ

{

(1− ρ2)[β − (1− ρ2)−1τ(ξ2 − ρξ1)]
2 + α0τ

2−qq|β|q−1sign(β)
}

which is zero when |ξ2 − ρξ1|<(1 − ρ2)Cq(
α0

1−ρ2
)1/(2−q) with Cq = [2(1 − q)]1/(2−q) + q[2(1 −

q)](q−1)/(2−q) and nonzero solved otherwise Denote I1 = I
(

|ξ2 − ρξ1|>(1− ρ2)Cq(
α0

1−ρ2
)

1
2−q

)

. Its

contribution to the prediction risk can be written as

R2(τ
2, α0τ

2−q) = ǫ(1 − ǫ)E{(τξ1 − α0τ
2−qq|β0,1|q−1sign(β0,1))

2 + (1− ρ2)β̂2
2}

= ǫ(1 − ǫ)τ 2{1 + α2
0τ

2−2qq2E|β0,1|2q−2 + (1− ρ2)Eβ̃2I1}+ o(τ 2−2q).(A38)

where β̃ is the solution of

(1− ρ2)β̃ − (ξ2 − ρξ1) + α0q|β̃|q−1sign(β̃) = 0.

Taking derivative over α0, we obtain

∂R2(τ
2, α0τ

2−q)

τ 2∂α0

= 2ǫ(1− ǫ)

{

α0τ
2−2qq2C0 − (1− ρ2)D2

q

(

α0

1− ρ2

)
2

2−q

Cq

(

1

1− ρ2

)
q

2(2−q) 1

2− q
α

q−1
2−q

0

φ

(

Cq

(

1

1− ρ2

)
q

2(2−q)

α
1

2−q

0

)}

+ o(τ 2−q) (A39)

= 2ǫ(1− ǫ)

{

α0τ
2−2qq2C0 −

(

1

1− ρ2

)
3q

2(2−q) CqD
2
q

2− q
α

q+1
2−q

0 φ

(

Cq

(

1

1− ρ2

)
q

2(2−q)

α
1

2−q

0

)}

,

where C0 = E|β0,1|2q−2 and Dq = [2(1− q)]
1

2−q .

In the third case, β0,1 = β0,2 = 0, its contribution to MSE can be summarized as

R3(τ
2, α0τ

2−q) =
1

2
E(β̂2

1 + β̂2
2 + 2ρβ̂1β̂2), (A40)

where β̂1 and β̂2 are the solution that minimizes

L =
1

2
‖β − τΣ−1/2z‖2Σ + α0τ

2−q‖β‖qq. (A41)

As shown in Figure 11, we can divide the 2-dimensional space into nine regions. In region

I9, β̂1 = 0 and β̂2 = 0; in regions I5 and I6, β̂2 = 0 and β̂1 is solved by β̂1 − τξ1 +
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α0τ
2−qq|β̂1|q−1sign(β̂1) = 0; in regions I7 and I8, β̂1 = 0 and β̂2 is solved by β̂2 − τξ2 +

α0τ
2−qq|β̂1|q−1sign(β̂2) = 0; In regions I1, I2, I3, and I4, β̂1 6= 0 and β̂2 6= 0 which are solved by

{

β̂1 + ρβ̂2 − τξ1 + α0τ
2−qq|β̂1|q−1sign(β̂1) = 0,

ρβ̂1 + β̂2 − τξ2 + α0τ
2−qq|β̂2|q−1sign(β̂2) = 0.

Then the derivative of R3(τ
2, α0τ

2−q) over α0 involves the explicit derivative inside each region

and integrals over the boundaries among different regions over 1-dimensional boundary curve.

According to Stokes’s theorem, as in Theorem 1 of Baddeley (1977), we conclude that the main

contributions come from the four dominated boundaries which connect region 9 and four other

regions 5, 6, 7, and 8 respectively. The contribution can be summarized as

∂R3(τ
2, α0τ

2−q)

τ 2∂α0

= −2(1− ǫ)2
CqD

2
q

2− q
α
(q+1)/(2−q)
0 φ(Cqα

1/(2−q)
0 ) + o(τ 2−q). (A42)

Put (A37), (A52), and (A42) together, we obtain

2ǫ2α0τ
2−2qq2D0 + 2ǫ(1− ǫ)α0τ

2−2qq2C0

−2ǫ(1 − ǫ)f(ρ)
CqD

2
q

2− q
α
(q+1)/(2−q)
0 φ

(

Cq

(

1

1− ρ2

)
q

2(2−q)

α
1/(2−q)
0

)

−2(1− ǫ)2
CqD

2
q

2− q
α
(q+1)/(2−q)
0 φ(Cqα

1/(2−q)
0 ) = 0,

where f(ρ) = ( 1
1−ρ2

)
3q

2(2−q) . Therefore, for 0<ρ<1, we have

τ 2−2q

α
2q−1
2−q

0 φ(Cqα
1/(2−q)
0 )

=
(1− ǫ)2CqD

2
q

ǫq2(2− q)(ǫD0 + (1− ǫ)C0)
; (A43)

while for ρ = 0, we have

τ 2−2q

α
2q−1
2−q

0 φ(Cqα
1/(2−q)
0 )

=
(1− ǫ)CqD

2
q

ǫq2(2− q)C0
. (A44)

From (A43) and (A44), it is straightforward to show that

e−
C2
qα

2
2−q
0
2 ∼ τ 2−2q and (4− 4q) log

1

τ
∼ C2

qα
2

2−q

0 .

Combining (A36), (A38), and (A40) together, we obtain the risk function

R(τ 2, α0τ
2−q) = τ 2

{

ǫ+ ǫα2
0τ

2−qq2 (ǫD0 + (1− ǫ)C0)
}

= τ 2

{

ǫ+ ǫ

(

4− 4q

C2
q

log
1

τ

)2−q

τ 2−qq2 (ǫD0 + (1− ǫ)C0)

}

.
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From the high order analysis for the fixed point equation

τ 2 = σ2
w +

R(τ 2, α0τ
2−q)

δ
,

we obtain the leading order term τ 20 = δ
δ−ǫ

σ2
w and the next-to-leading order term

τ 21 =
q2ǫτ 4−2q

0

δ − ǫ

(

4− 4q

C2
q

log
1

τ0

)2−q

(ǫD0 + (1− ǫ)C0)

=
q2ǫδ2−qσ4−2q

w

(δ − ǫ)3−q

(

4− 4q

C2
q

log
1

σw

)2−q

(ǫD0 + (1− ǫ)C0) .

Hence we obtain (3.2).
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Figure 11: Illustration of the solution for equation (A41) in two dimensional space. Here ρ = 0.5
and α = 1.

7.5 Proof of Proposition 6

Proof 5 Denote U = β0/τ . For fixed U , denote S = {j|Uj 6= 0}. From (A27), we obtain

Rq(τ
2, α0) ≥ 1

p
E[{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S)}TΣ−1

SS{(Σ1/2z)S − qα0|β̂S|q−1sign(β̂S)}

which goes to infinity as τ → 0 for fixed α0>0 since β̂S → β0,S

τ
and q>1. Therefore, α0⋆(τ) = 0

and we obtain Rq(τ
2, α⋆(τ))

τ→0−−→ 1. From (9), we have τ 2 = σ2
w + τ2Rq(τ2,α0⋆(τ))

δ
which implies

that τ 2(δ − Rq(τ
2, α0⋆(τ))) = δσ2

w. If δ>1, we have τ
σw→0−−−→ 0 since Rq(τ

2, α0⋆(τ))
τ→0−−→

1<δ. On the other hand, if δ<1, we have τ>0 as σw → 0 because Rq(τ
2, α0⋆(τ))

τ→0−−→ 1

and Rq(τ
2, α⋆(τ))

τ→∞−−−→ 0 which leads to τ
σw→0−−−→ τ⋆>0 such that Rq(τ⋆, α0⋆(τ⋆)) = δ.
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7.6 Proof of Proposition 7

Proof 6 For λ = α0τ
2−q, the the solution of ηq in (4) in the case 1<q ≤ 2 is the minimizer of

loss

L =
1

2
‖β − β0 − τΣ−1/2z‖2Σ + α0τ

2−q‖β‖qq.

It is the solution of the following equation

Σ(β̂ − β0)− τΣ1/2z+ qα0τ
2−q|β̂|q−1sign(β̂) = 0 (A45)

which can also be written as

β̂ − β0 = τΣ−1{Σ1/2z− qα0τ
1−q|β̂|q−1sign(β̂)}, (A46)

or

β̂ = β0 + τΣ−1/2z− qα0τ
2−qΣ−1|β̂|q−1sign(β̂). (A47)

Taking derivative of (A47) over z, we have

∂β̂

∂z
= τΣ−1/2 − q(q − 1)α0τ

2−qΣ−1diag[|β̂|q−2sign(β̂)]
∂β̂

∂z
.

Thus

∂β̂

∂z
= τ

{

I+ q(q − 1)α0τ
2−qΣ−1diag[|β̂|q−2sign(β̂)]

}−1

Σ−1/2.

Taking derivative of (A47) over α0, we have

∂β̂

∂α0

= −qτ 2−qΣ−1|β̂|q−1sign(β̂)− q(q − 1)α0τ
2−qΣ−1|β̂|q−2sign(β̂)

∂β̂

∂α0

.

Thus

∂β̂

∂α0

= −
{

I+ q(q − 1)α0τ
2−qΣ−1diag[|β̂|q−2sign(β̂)]

}−1

qτ 2−qΣ−1|β̂|q−1sign(β̂).(A48)

Using (A45), we can derive the risk function as

R(τ 2, α0) =
1

p
E‖β̂ − β0‖2Σ

=
τ 2

p
E
{

‖z‖2 − 2qα0τ
1−qzTΣ−1/2|β̂|q−1sign(β̂)

+q2α2
0τ

2−2q(|β̂|q−1sign(β̂))TΣ−1|β̂|q−1sign(β̂)
}

. (A49)
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Then we can conclude that as τ → 0, the optimal α⋆
0 → 0 because β → β0 and 2 − 2q<0.

Therefore in order for the third term to be finite, we need α⋆
0 → 0.

In order to obtain the second dominant term, we need to take the first order derivative of

R(τ 2, α0) over α0 and assume it equal to 0. For Σ =

(

1 ρ
ρ 1

)

, the equation can be decomposed

into 2-dimensional block. Denote ρ1 =
1
2
(
√
1 + ρ+

√
1− ρ) and ρ2 =

1
2
(
√
1 + ρ−√

1− ρ), we

can obtain

R(τ 2, α0) =
1

2
E‖β̂ − β0‖2Σ

=
1

2
E{(β̂1 − β0,1)

2 + (β̂2 − β0,2)
2 + 2ρ(β̂1 − β0,1)(β̂2 − β0,2)},

and the two explicit equations for β̂1 and β̂2

{

β̂1 − β0,1 + ρ(β̂2 − β0,2)− τξ1 + α0τ
2−qq|β̂1|q−1sign(β̂1) = 0,

ρ(β̂1 − β0,1) + β̂2 − β0,2 − τξ2 + α0τ
2−qq|β̂2|q−1sign(β̂2) = 0,

where ξ1 = ρ1z1 + ρ2z2, ξ2 = ρ2z1 + ρ1z2.

We consider three different cases according to the nonzero components of β0,1 and β0,2. In

the first case: β0,1 6= 0 and β0,2 6= 0. Using (A49), we obtain its contribution to the derivative

of R(τ 2, α0) as

R′
1(τ

2, α0) = ǫ2τ 2E

{

−2qτ 1−qzTΣ−1/2|β|q−1sign(β)− 2q(q − 1)α0τ
1−qzTΣ−1/2|β|q−2sign(β)

∂β

∂α0

+2q2α0τ
2−2q(|β|q−1sign(β))TΣ−1|β|q−1sign(β)

+2q2(q − 1)α2
0τ

2−2q(|β|q−1sign(β))TΣ−1|β|q−2sign(β)
∂β

∂α0

}

. (A50)

Since both components of β0 are nonzero, as τ → 0, (A47) can be written as

β̂ = β0 + τΣ−1/2z− pα0τ
2−qΣ−1|β0|q−1sign(β0) + op(τ

q).

Thus, using (A48), we obtain the two leading terms of (A51) as

R′
1(τ

2, α0) =
1

2
ǫ2τ 2E{−2q(q − 1)τ 2−qTr[Σ−1diag{|β0|q−2sign(β0)}]

+2q2α0τ
2−2q(|β0|q−1sign(β0))

TΣ−1|β0|q−1sign(β0)}. (A51)

In the second case, β0,1 6= 0 and β0,2 = 0 (or β0,1 = 0 and β0,2 6= 0). We have

R2(τ
2, α0) =

1

2
ǫ(1− ǫ)E{(β̂1 − β0,1)

2 + β̂2
2 + 2ρ(β̂1 − β0,1)β̂2}

=
1

2
ǫ(1− ǫ)E{β̂2

2 + [α0τ
2−qq|β̂1|q−1sign(β̂1)− τξ1 − ρβ̂2][α0τ

2−qq|β̂1|q−1sign(β̂1)− τξ1 + ρβ̂2]}

=
1

2
ǫ(1− ǫ)E{(1− ρ2)β̂2

2 + [α0τ
2−qq|β̂1|q−1sign(β̂1)− τξ1]

2}

=
1

2
ǫ(1− ǫ)E{(1− ρ2)β̂2

2 + α2
0τ

4−2qq2|β̂1|2q−2 + τ 2ξ21 − 2α0τ
3−qqξ1|β̂1|q−1sign(β̂1)}. (A52)
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Taking derivative over α0, using (A48), we obtain the dominant terms as

R′
2(τ

2, α0) = ǫ(1− ǫ)E{(1− ρ2)β̂2
∂β̂2
∂α0

+ q2α0τ
4−2q|β0,1|2q−2}

= −ǫ(1 − ǫ)qτ 2−qE{|β̂2|q − ρβ̂2|β0,1|q−1sign(β0,1)− qα0τ
2−q|β0,1|2q−2}

= −ǫ(1 − ǫ)qτ 2−qE{|β̂2|q −
qα0τ

2−qρ2|β0,1|2q−2

1− ρ2
− qα0τ

2−q|β0,1|2q−2}

= −ǫ(1 − ǫ)qτ 2E

{ |z|q
(1− ρ2)q/2

− qα0τ
2−2q|β0,1|2q−2

1− ρ2

}

. (A53)

In the third case, β0,1 = 0 and β0,2 = 0. Using (A47), we obtain

β̂ = τΣ−1/2z− qα0τ
2−qΣ−1|β̂|q−1sign(β̂).

Its contribution to risk function is

R3(τ
2, α0) =

1

2
(1− ǫ)2E‖β̂‖2Σ. (A54)

Taking derivative over α0, we obtain the dominant term as

R′
3(τ

2, α0) = (1− ǫ)2Eβ̂
T
Σ
∂β̂

∂α0
= −(1 − ǫ)2qτ 2−qE〈|β̂|q〉 = −2(1− ǫ)2qτ 2

(1− ρ2)q/2
E{|z|q}. (A55)

Combining (A51), (A53), and (A55) together, we obtain

R′
1(τ

2, α0) + 2R′
2(τ

2, α0) +R′
3(τ

2, α0)

= −2(1− ǫ)qτ 2

(1− ρ2)q/2
E{|z|q}+ 2ǫ(1− ǫ)q2τ 2α0τ

2−2qE{|β0|2q−2}
2(1− ρ2)

+
2ǫ2q2τ 2α0τ

2−2q

1− ρ2
[

E
{

|β0|2q−2
}

− ρ(E|β0|q−1sign(β0))
2
]

.

Therefore, the optimal tuning α0⋆ satisfies

α0⋆τ
2−2q =

(1− ǫ)E(|Z|q)(1− ρ2)1−q/2

ǫq{E(|β0|2q−2)− ǫρ[E|β0|q−1sign(β0)]2}
, (A56)

where Z ∼ N(0, 1) is independent of β0. Now we can obtain the dominant terms in the corre-

sponding R functions. From (A49), we obtain

R1(τ
2, α0⋆) = τ 2ǫ2E

{

1 +
1

2
q2α2

0⋆τ
2−2q(|β0|q−1sign(β0))

TΣ−1|β0|q−1sign(β0)

}

.

From (A52), we obtain

R2(τ
2, α0⋆) = 2ǫ(1− ǫ)τ 2E

{

1− qα0⋆τ
−q|β̂2|q +

q2α2
0⋆τ

2−2q|β0|2q−2

1− ρ2

}

.
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From (A54), we obtain

R3(τ
2, α0⋆) = (1− ǫ)2τ 2E

{

1

2
‖z‖2 − qα0⋆τ

1−qzTΣ−1/2|β̂|q−1sign(β̂)

}

= (1− ǫ)2τ 2E

{

1

2
‖z‖2 − qα0⋆τ

−q〈|β̂|q〉
}

= (1− ǫ)2τ 2
(

1− qα0⋆

(1− ρ2)q/2
E {〈|z|q〉}

)

.

Putting them together, we have

R(τ 2, α0⋆) = τ 2
(

1 +
q2α2

0⋆τ
2−2q

1− ρ2
(E|β0|2q−2 − ǫρ[E|β0|q−1sign(β0)]

2)

)

. (A57)

Substituting (A56) into (A57), we have

R(τ 2, α0⋆) = τ 2 + Cτ 2q,

where

C =
(1− ǫ)2

ǫ

[E(|Z|q)]2(1− ρ2)1−qτ 2q

{E(|β0|2q−2)− ǫρ[E|β0|q−1sign(β0)]2}
.

Therefore, the fixed point equation is

τ 2 = σ2
w +

τ 2 + Cτ 2q

δ
.

The first and second dominant terms are

τ 2 =
δ

δ − 1
σ2
w − Cτ 2q

δ − 1
.

We obtain the prediction risk

Risk = δ(τ 2 − σ2
w) =

δσ2
w

δ − 1
− Cδτ 2q

δ − 1

=
δσ2

w

δ − 1
− δq+1

(δ − 1)q+1

(1− ǫ)2

ǫ

[E(|Z|q)]2(1− ρ2)1−qσ2q
w

{E(|β0|2q−2)− ǫρ[E|β0|q−1sign(β0)]2}
.
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Mézard, M. and A. Montanari (2009). Information, Physics, and Computation. Oxford Grad-

uate Texts. OUP Oxford.

Mezard, M., G. Parisi, and M. Virasoro (1987). Spin Glass Theory and Beyond: An Introduction

to the Replica Method and Its Applications. World Scientific Lecture Notes in Physics. World

Scientific.

34



Rangan, S., V. Goyal, and A. K. Fletcher (2009). Asymptotic analysis of map estimation

via the replica method and compressed sensing. In Y. Bengio, D. Schuurmans, J. Lafferty,

C. Williams, and A. Culotta (Eds.), Advances in Neural Information Processing Systems,

Volume 22. Curran Associates, Inc.

Saab, R., R. Chartrand, and O. Yilmaz (2008). Stable sparse approximations via noncon-

vex optimization. In 2008 IEEE International Conference on Acoustics, Speech and Signal

Processing, pp. 3885–3888.
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