
ar
X

iv
:2

21
1.

10
65

9v
1 

 [
m

at
h.

A
P]

  1
9 

N
ov

 2
02

2

Existence and nonexistence of solutions to a

critical biharmonic equation with logarithmic

perturbation
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School of Mathematics, Jilin University, Changchun 130012, PR China

Abstract In this paper, the following critical biharmonic elliptic problem




∆2u = λu+ µu lnu2 + |u|2

∗∗−2u, x ∈ Ω,

u =
∂u

∂ν
= 0, x ∈ ∂Ω

is considered, where Ω ⊂ R
N is a bounded smooth domain with N ≥ 5. Some interesting

phenomenon occurs due to the uncertainty of the sign of the logarithmic term. It is shown,

mainly by using Mountain Pass Lemma, that the problem admits at lest one nontrivial weak

solution under some appropriate assumptions of λ and µ. Moreover, a nonexistence result is

also obtained. Comparing the results in this paper with the known ones, one sees that some

new phenomena occur when the logarithmic perturbation is introduced.

Keywords Biharmonic equation; Critical exponent; Mountain Pass Lemma; Logarithmic

perturbation.
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1 Introduction

In this paper, we are concerned with the following critical biharmonic elliptic problem




∆2u = λu + µu lnu2 + |u|2

∗∗−2u, x ∈ Ω,

u =
∂u

∂ν
= 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R
N (N ≥ 5) is a bounded domain with smooth boundary ∂Ω, ν is the unit outward

normal on ∂Ω, 2∗∗ := 2N
N−4 is the critical Sobolev exponent for the embedding H2

0 (Ω) →֒

L2∗∗(Ω), λ, µ ∈ R, and ∆2 is the biharmonic operator.
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∗Supported by the National Key Research and Development Program of China (grant no.2020YFA0714101).
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Problem (1.1) is closely related to the stationary version of the following equation

utt +∆2u = f(t, x, u), (1.2)

which has wide application in describing a variety of phenomena in physics and other applied

sciences. For example, (1.2) can be used to describe the longitudinal motion of an elastic-plastic

bar. Interested reader may also refer to [1, 3, 4, 5] for more background of problems like (1.2).

On the other hand, problem (1.1) is a special from of the following critical elliptic boundary

value problem





(−∆)mu = λu + |u|p−2u+ f(x, u), x ∈ Ω,

Dαu = 0, for |α| ≤ m− 1, x ∈ ∂Ω,
(1.3)

where m ∈ N, Ω ⊂ R
N (N > 2m) is a bounded smooth domain, λ ∈ R, p = 2N

N−2m and f(x, u)

is a nonlinear term. One of the main features of problem (1.3) is that it involves a critical

term in the sense that the embedding Hm
0 (Ω) →֒ Lp(Ω) is not compact, which brings essential

difficulty when proving the existence of weak solutions to (1.3). For this reason, the study

of elliptic problems with critical exponents is both interesting and challenging. However, it

was mainly after the outstanding work of Brézis and Nirenberg [8] that such problems were

extensively studied, and many interesting results were obtained on the existence, nonexistence

and multiplicity of weak solutions to such problems.

In [8], problem (1.3) with m = 1, N ≥ 3 and f(x, u) = 0 was studied by Brézis and

Nirenberg, and a new idea for establishing a Palais-Smale compactness condition for the energy

functional was introduced. This makes it possible to obtain a solution of the critical problem

by using Mountain Pass Lemma. Interestingly, they found that the conditions for the existence

of positive solutions are quite different between N ≥ 4 and N = 3. When N ≥ 4, it is

shown that problem (1.3) admits a positive solution if λ ∈ (0, λ̃1), where λ̃1 denotes the first

eigenvalue of −∆ with homogeneous Dirichlet boundary condition on Ω. When N = 3 and Ω

is a ball, problem (1.3) has a positive solution if and only if λ ∈ (14 λ̃1, λ̃1). They also proved

that problem has no solution if λ < 0 and Ω is a star-shaped domain, which directly follows

from Pohozaev’s identity (see [17]). Later, their ideas were borrowed by Gu et al. [15] to study

higher order critical problems, i.e. problem (1.3) with m = 2, f(x, u) = 0 and N ≥ 5. They

showed that problem (1.3) possesses at least one nontrivial weak solution if λ ∈ (0, λ1(Ω))

and N ≥ 8. When N = 5, 6, 7 and Ω is a ball, they showed that there exist two positive

constants λ∗∗(N) < λ∗(N) < λ1(Ω) such that problem has at least one nontrivial weak solution

if λ ∈ (λ∗(N), λ1(Ω)), and there has no nontrivial solution if λ < λ∗∗(N). Here λ1(Ω) denotes

the first eigenvalue of ∆2 with homogeneous Dirichlet boundary condition on Ω. The above

mentioned results imply that whether or not problem (1.3) withm = 1, 2 and f(x, u) = 0 admits

a weak solution depends not only on the parameter λ, but also on the space dimension N . It

is worth mentioning that there are also many other interesting works about elliptic problems

with critical exponents, among the huge amount of which, we only refer the interested reader

to [2, 6, 9, 10, 11, 12, 13, 16, 20] and the references therein.
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A natural question is whether or not a lower order perturbation will affect the existence and

nonexistence results for problem (1.3). Recently, Deng et al. [10] investigated the existence and

nonexistence of positive solutions to problem (1.3) with m = 1, f(x, u) = µu lnu2 and µ 6= 0.

After some delicate estimates on the logarithmic term, they showed that problem (1.3) admits

a positive ground state solution, which is also a mountain pass type solution when N ≥ 4,

λ ∈ R and µ > 0. Comparing this result with the corresponding one in [8] one sees that the

range of λ for the problem with µ > 0 to admit a positive solution is larger than that with

µ = 0, which implies that the logarithmic term has a positive effect for the existence of positive

solutions in this case. When µ < 0, the discussion becomes a little more complicated. However,

when N = 3, 4, they also established the existence of at least one positive solution under

some additional assumptions on λ and µ. This also shows that the appearance of logarithmic

perturbation leads to some interesting phenomenon, mainly due to the uncertainty of the sign

of u lnu2.

Inspired mainly by [10, 15], we study problem (1.1) and consider how the term u lnu2 affects

the existence and nonexistence of nontrivial solutions to problem (1.1). It turns out that the

results depend heavily on the sign of µ. When µ > 0, we first show that the energy functional

satisfies the mountain pass geometry around 0. Then we obtain a local compactness condition

(known as (PS)c condition) for the (PS) sequences, with the help of Brézis-Lieb’s lemma.

Finally, a mountain pass type solution follows from a standard variational argument. A crucial

step in this process is to prove that the mountain pass level is smaller than a critical number

c(S), which is done after some delicate estimates on various norms of the truncated Talenti

functions. Special attention is paid to the case N = 8, due to the critical characterization of the

integrations. When µ < 0, the situation is different. Although the mountain pass geometry is

still satisfied and the mountain pass level around 0 is bounded from above by the same critical

number, we cannot prove the (PS)c condition in general. By applying the Mountain Pass

Lemma without compactness condition, we obtain a nontrivial solution to problem (1.1). But

we donot know whether or not the solution is of mountain pass type. Moreover, a nonexistence

result is also obtained when µ < 0. Comparing our results with that in [15], one sees that the

logarithmic term plays a positive role for problem (1.1) to admit weak solutions when N ≥ 8

and this leads to some interesting phenomena.

This paper is organized as follows. In Section 2 we give some notations, definitions and

introduce some necessary lemmas. The main results of this paper are also stated in this section.

In Section 3 we prove some technical lemmas and the detailed proof of the main results will be

given in Section 4.

2 Preliminaries and the main results.

In this section, we first introduce some notations and definitions that will be used throughout

the paper. In what follows, we denote by ‖ · ‖p the Lp(Ω) norm for 1 ≤ p ≤ ∞. The Sobolev

space H2
0 (Ω) will be equipped with the norm ‖u‖ := ‖u‖H2

0
(Ω) = ‖∆u‖2, which is equivalent to

the full one due to Poincaré’s inequality, and its dual space is denoted by H−2(Ω). For other
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linear normed space X , we denote its norm by ‖ · ‖X . We always use → and ⇀ to denote the

strong and weak convergence in each Banach space, respectively, and use C to denote (possibly

different) generic positive constants. We always denote by BR(x0) the ball with radius R

centered at x0 in R
N . Sometimes BR(0) will be simply written as BR if no confusion arises. We

use ωN to denote the area of the unit sphere in R
N . For each t > 0, O(t) denotes the quantity

satisfying |O(t)
t

| ≤ C, and o(t) means that | o(t)
t
| → 0 as t→ 0. Set

ρmax := sup{R > 0 : there exists an x ∈ Ω such that BR(x) ⊂ Ω} (2.1)

and on(1) is an infinitesimal as n→ ∞.

We use S to denote the best embedding constant from H2
0 (Ω) to L

2∗∗(Ω), i.e.,

S = inf
u∈H2

0
(Ω)\{0}

‖u‖2

‖u‖22∗∗
. (2.2)

λ1(Ω) > 0 denotes the first eigenvalue of eigenvalue problem




∆2u = λu, x ∈ Ω,

u =
∂u

∂ν
= 0, x ∈ ∂Ω.

(2.3)

Finally, following the ideas of [10], we introduce the following sets

A : = {(λ, µ)| µ > 0, λ ∈ R},

B : = {(λ, µ)| µ < 0, λ ∈ [0, λ1(Ω)),
2

N

(λ1(Ω)− λ

λ1(Ω)

)N
4

S
N
4 +

µ

2
|Ω| > 0},

C : = {(λ, µ)| µ < 0, λ ∈ R,
2

N
S

N
4 +

µ

2
e−

λ
µ |Ω| > 0}.

In this paper, we consider weak solutions to problem (1.1) in the following sense.

Definition 2.1. (Weak solution) A function u ∈ H2
0 (Ω) is called a weak solution to

problem (1.1), if for all φ ∈ H2
0 (Ω), it holds that

∫

Ω

∆u∆φdx− λ

∫

Ω

uφdx− µ

∫

Ω

uφ lnu2dx−

∫

Ω

|u|2
∗∗−2uφdx = 0.

The energy functional associated with problem (1.1) is given by

I(u) =
1

2
‖u‖2 −

1

2
λ‖u‖22 +

1

2
µ‖u‖22 −

1

2
µ

∫

Ω

u2 lnu2dx−
1

2∗∗
‖u‖2

∗∗

2∗∗, ∀ u ∈ H2
0 (Ω).

Obviously, the energy functional I(u) is a C1 functional in H2
0 (Ω) (see [10, 15]). From I(u) =

I(|u|), we may assume that u ≥ 0 in the sequel.

For each u ∈ H2
0 (Ω) \ {0}, consider the fibering maps ψu(t): (0,+∞) → R defined by

ψu(t) = I(tu) =
1

2
t2‖u‖2 −

1

2
λt2‖u‖22 +

1

2
µt2‖u‖22 −

1

2
µ‖u‖22t

2 ln t2

−
1

2
µt2
∫

Ω

u2 lnu2dx−
1

2∗∗
t2

∗∗

‖u‖2
∗∗

2∗∗. (2.4)
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In order to obtain the existence of weak solutions, we introduce the Nehari manifold

N = {u ∈ H2
0 (Ω)\{0} : 〈I ′(u), u〉 = 0}

= {u ∈ H2
0 (Ω)\{0} : ψ′

u(1) = 0}.

Here we use 〈 , 〉 to denote the pairing between H−2(Ω) and H2
0 (Ω). We usually split N into

three disjoint parts as N = N+ ∪ N 0 ∪ N−, where

N+ = {u ∈ N : ψ′′
u(1) > 0},

N− = {u ∈ N : ψ′′
u(1) < 0},

N 0 = {u ∈ N : ψ′′
u(1) = 0}.

It is well known that if u ∈ H2
0 (Ω) is a nontrivial solution to problem (1.1), then u ∈ N .

Next we introduce the definition of a compactness condition, usually referred to as the (PS)c

condition.

Definition 2.2. ((PS)c condition) Assume that X is a real Banach space, I : X → R is a

C1 functional and c ∈ R. We say that {un} ⊂ H2
0 (Ω) is a (PS)c sequence for I if

I(un) → c and I ′(un) → 0 in X−1(Ω) as n→ ∞,

where X−1 is the dual space of X. Furthermore, we say that I satisfies the (PS)c condition if

any (PS)c sequence has a convergent subsequence.

The following two lemmas will play a fundamental role in proving the existence of weak

solutions when µ > 0. The first one is the famous Mountain Pass Lemma, and the second one

is Brézis-Lieb’s lemma.

Lemma 2.1. (Mountain Pass Lemma [19]) Assume that (X, ‖ · ‖X) is a real Banach space,

I : X → R is a C1 functional and there exist β > 0 and r > 0 such that I satisfies the following

mountain pass geometry:

(i) I(u) ≥ β > 0 if ‖u‖X = r;

(ii) there exists a u ∈ X such that ‖u‖X > r and I(u) < 0.

Then there exist a (PS)c0 sequence {un} ⊂ X, i.e., I(un) → c0 and I ′(un) → 0 in X−1 as

n→ ∞, where X−1 is the dual space of X and

c0 := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ β, Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, I(γ(1)) < 0} ,

which is called the mountain pass level. Furthermore, c0 is a critical vale of I if I satisfies the

(PS)c0 condition.

Lemma 2.2. (Brézis-Lieb’s lemma [7]) Let p ∈ (1,∞). Suppose that {un} is a bounded

sequence in Lp(Ω) and un → u a.e. in Ω. Then

lim
n→∞

(‖un‖pp − ‖un − u‖pp) = ‖u‖pp.
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To deal with the logarithmic nonlinearity u lnu2, we need the following two lemmas. Lemma

2.3 can be directly verified and Lemma 2.4 is the modified logarithmic Sobolev inequality.

Lemma 2.3. (1) For all t ∈ (0, 1], there holds that

|t ln t| ≤
1

e
. (2.5)

(2) For any α, δ > 0, there exists a positive constant Cα,δ such that

| ln t| ≤ Cα,δ(t
α + t−δ), ∀ t > 0. (2.6)

(3) For any σ > 0, there holds that

ln t

tσ
≤

1

σe
, ∀ t > 0. (2.7)

Lemma 2.4. (Logarithmic Sobolev inequality) Assume that Ω ⊂ R
N (N ≥ 5) is a bounded

domain with smooth boundary. Then for any u ∈ H2
0 (Ω) and a > 0, we have

∫

Ω

u2 lnu2dx ≤
a2

πλ̃1
‖u‖2 +

(
ln ‖u‖22 −N(1 + ln a)

)
‖u‖22, (2.8)

where λ̃1 > 0 denotes the first eigenvalue of −∆ with zero Dirichlet boundary condition on Ω.

Proof. According to [14], for any u ∈ H2(RN ) and a > 0, one has

∫

RN

u2 ln u2dx ≤
a2

π

∫

RN

|∇u|2dx+
(
ln ‖u‖2L2(RN ) −N(1 + ln a)

)
‖u‖2L2(RN ). (2.9)

For any u ∈ H2
0 (Ω), extend the domain of u to R

N by letting u(x) = 0 for x ∈ R
N \Ω and still

denote it by u. Then u ∈ H2(RN ) and therefore the above inequality holds with R
N replaced

by Ω. Moreover, by integrating by parts and applying Cauchy’s inequality with ε, one has

∫

Ω

|∇u|2dx =

∫

∂Ω

u
∂u

∂ν
ds−

∫

Ω

u∆udx = −

∫

Ω

u∆udx

≤
ε

2

∫

Ω

|u|2dx+
1

2ε

∫

Ω

|∆u|2dx

≤
ε

2λ̃1

∫

Ω

|∇u|2dx+
1

2ε

∫

Ω

|∆u|2dx.

Taking ε = λ̃1 in the above inequality yields

∫

Ω

|∇u|2dx ≤
1

λ̃1

∫

Ω

|∆u|2dx. (2.10)

Combining (2.9) with (2.10) one obtains (2.8). This completes the proof.

The main existence results in the paper can be summarized into the following theorem.
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Theorem 2.1. (i) Assume that N ≥ 8. If (λ, µ) ∈ A, then problem (1.1) has a nonnegative

mountain pass type solution, which is also a ground state solution.

(ii) Assume that N = 8. If (λ, µ) ∈ B ∪ C and
25 · 1920e

λ
µ
+ 34

3

ρ4max

< 1, then there exists at

least one nonnegative nontrivial weak solution to problem (1.1), where

ρmax := sup{R > 0 : there exists an x ∈ Ω such that BR(x) ⊂ Ω}.

(iii) Assume that N = 5, 6, 7. If (λ, µ) ∈ B ∪ C, then there exists at least one nonnegative

nontrivial weak solution to problem (1.1).

Remark 2.1. Notice that the assumption
25 · 1920e

λ
µ
+ 34

3

ρ4max

< 1 implies that the domain Ω

should be appropriately large.

As for the nonexistence result for problem (1.1), we have the following theorem.

Theorem 2.2. Assume that N ≥ 5. If −µ(N−4)
4 + µ(N−4)

4 ln
(−µ(N−4)

4

)
+ λ − λ1(Ω) ≥ 0

and µ < 0, then problem (1.1) has no positive solutions.

3 Some technical lemmas

We begin this section with a lemma that gives some properties of the Nehari manifold and

fibering maps, which will help us to show that the mountain pass solution is a ground state

solution to problem (1.1) when µ > 0.

Lemma 3.1. Assume that µ > 0. Then, N = N−. Moreover, for any u ∈ H2
0 (Ω)\{0}

there exists a unique t(u) > 0 such that t(u)u ∈ N .

Proof. For each u ∈ N , we have

ψ′
u(1) = ‖u‖2 − λ‖u‖22 − µ

∫

Ω

u2 lnu2dx− ‖u‖2
∗∗

2∗∗ = 0.

Consequently, it follows from µ > 0 that

ψ′′
u(1) = ‖u‖2 − λ‖u‖22 − 2µ‖u‖22 − µ

∫

Ω

u2 lnu2dx− (2∗∗ − 1)‖u‖2
∗∗

2∗∗

= −2µ‖u‖22 − (2∗∗ − 2)‖u‖2
∗∗

2∗∗

< 0,

which implies that u ∈ N−(⊂ N ).

For any u ∈ H2
0 (Ω)\{0}, according the definition of ψu(t) in (2.4), we deduce that

lim
t→0

ψu(t) = 0, lim
t→+∞

ψu(t) = −∞, (3.1)

and ψu(t) is positive for t > 0 suitably small (since µ > 0), which imply that there exists a

unique t(u) > 0 such that max
t≥0

ψu(t) = ψu(t(u)). Indeed, the existence of t(u) is obvious. If
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there were 0 < t1(u) < t2(u) such that max
t≥0

ψu(t) = ψu(t1(u)) = ψu(t2(u)), then there must

be a t3(u) ∈ (t1(u), t2(u)) which is a local minimum of ψu(t). Direct computation shows that

t3(u)u ∈ N+, which is impossible since N = N−. This completes the proof.

Remark 3.1. (i) Following from Lemma 3.1, if µ > 0, one can give an equivalent charac-

terization of c0 defined in Lemma 2.1, i.e., c0 = cN , where

cN := inf
u∈N

I(u) = inf
u∈H2

0
(Ω)\{0}

max
t≥0

I(tu).

The proof of this equivalent characterization can be founded in Theorem 4.2 of [19].

(ii) Since all the nontrivial critical points of I belong to N , if u is a nontrivial critical point

of I satisfying I(u) = cN , it must be a ground state solution to problem (1.1).

In order to apply the Mountain Pass Lemma, we first verify the mountain pass geometry

for I when (λ, µ) ∈ A ∪B ∪ C.

Lemma 3.2. Assume that N ≥ 5 and (λ, µ) ∈ A∪B∪C. Then the functional I(u) satisfies

the mountain pass geometry.

Proof. The proof is divided into three cases.

Case 1: (λ, µ) ∈ A.

Since µ > 0, by using Sobolev embedding inequality and applying (2.7) with σ = 2∗∗−2
2 , one

has

−
1

2
λ‖u‖22 +

1

2
µ‖u‖22 −

1

2
µ

∫

Ω

u2 lnu2dx ≥ −
1

2
λ‖u‖22 −

1

2
µ

∫

Ω

u2 lnu2dx

= −
µ

2

∫

Ω

u2(
λ

µ
+ lnu2)dx = −

µ

2
e−

λ
µ

∫

Ω

e
λ
µu2 ln(e

λ
µu2)dx

= −
µ

2
e−

λ
µ

∫

{e
λ
µ u2≥1}

e
λ
µu2 ln(e

λ
µu2)dx −

µ

2
e−

λ
µ

∫

{e
λ
µ u2≤1}

e
λ
µu2 ln(e

λ
µu2)dx

≥ −
µ

2
e−

λ
µ

∫

{e
λ
µ u2≥1}

e
λ
µu2 ln(e

λ
µu2)dx ≥ −

µ

2
e−

λ
µ
−1 2

2∗∗ − 2

∫

{e
λ
µ u2≥1}

(e
λ
µ u2)

2∗∗

2 dx

≥ −
µ

2∗∗ − 2
e−

λ
µ
−1+ 2∗∗λ

2µ S− 2∗∗

2 ‖u‖2
∗∗

,

which ensures that

I(u) ≥
1

2
‖u‖2 −

S− 2∗∗

2

2∗∗
‖u‖2

∗∗

−
µ

2∗∗ − 2
e−

λ
µ
−1+ 2∗∗λ

2µ S− 2∗∗

2 ‖u‖2
∗∗

.

Therefore, there exist positive constants β and r such that

I(u) ≥ β for all ‖u‖ = r.

On the other hand, for any u ∈ H2
0 (Ω)\{0}, in view of (3.1), there exists a tu > 0 suitably

large such that ‖tuu‖ > r and ψu(tu) = I(tuu) < 0.

Case 2: (λ, µ) ∈ B.
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Since µ < 0, recalling (2.5), one has

1

2
µ‖u‖22 −

1

2
µ

∫

Ω

u2 lnu2dx = −
µ

2

∫

Ω

u2 ln(e−1u2)dx

= −
µ

2
e

∫

{e−1u2≥1}

e−1u2 ln(e
λ
µu2)dx−

µ

2
e

∫

{e−1u2≤1}

e−1u2 ln(e
λ
µu2)dx

≥ −
µ

2
e

∫

{e−1u2≤1}

e−1u2 ln(e
λ
µu2)dx ≥

µ

2
|Ω|,

which, together with (2.3) and Sobolev embedding inequality, yields

I(u) ≥
1

2

(
λ1(Ω)− λ

λ1(Ω)

)
‖u‖2 −

S− 2∗∗

2

2∗∗
‖u‖2

∗∗

+
µ

2
|Ω|.

Set

g(t) =
1

2

(
λ1(Ω)− λ

λ1(Ω)

)
t2 −

S− 2∗∗

2

2∗∗
t2

∗∗

+
µ

2
|Ω|, t > 0.

By a direct calculation, g takes its maximum at t0 :=
(

λ1(Ω)−λ

λ1(Ω)

)N−4

8

S
N
8 and

0 < g(t0) =
2

N

(
λ1(Ω)− λ

λ1(Ω)

)N
4

S
N
4 +

µ

2
|Ω|,

due to (λ, µ) ∈ B, which implies that there exist positive constants β := g(t0) and r := t0 such

that

I(u) ≥ β for all ‖u‖ = r.

Applying a similar argument to Case 1, one can show that there is a v ∈ H2
0 (Ω) such that

‖v‖ > r and I(v) < 0.

Case 3: (λ, µ) ∈ C.

Since µ < 0, using (2.5) again, one has

−
1

2
λ‖u‖22 +

1

2
µ‖u‖22 −

1

2
µ

∫

Ω

u2 lnu2dx = −
µ

2

∫

Ω

u2(
λ

µ
− 1 + lnu2)dx

= −
µ

2
e−

λ
µ
+1

∫

Ω

e
λ
µ
−1u2 ln(e

λ
µ
−1u2)dx

= −
µ

2
e−

λ
µ
+1

∫

{e
λ
µ

−1
u2≥1}

e
λ
µ
−1u2 ln(e

λ
µ
−1u2)dx−

µ

2
e−

λ
µ
+1

∫

{e
λ
µ

−1
u2≤1}

e
λ
µ
−1u2 ln(e

λ
µ
−1u2)dx

≥ −
µ

2
e−

λ
µ
+1

∫

{e
λ
µ

−1
u2≤1}

e
λ
µ
−1u2 ln(e

λ
µ
−1u2)dx ≥

µ

2
e−

λ
µ |Ω|,

and

I(u) ≥
1

2
‖u‖2 −

S− 2∗∗

2

2∗∗
‖u‖2

∗∗

+
µ

2
e−

λ
µ |Ω|.

Set

g̃(t) :=
1

2
t2 −

S− 2∗∗

2

2∗∗
t2

∗∗

+
µ

2
e−

λ
µ |Ω|, t > 0.

9



A direct calculation shows that g̃ takes its maximum at t̃0 := S
N
8 and

0 < g̃(t̃0) =
2

N
S

N
4 +

µ

2
e−

λ
µ |Ω|,

due to (λ, µ) ∈ C, which implies that there exist positive constants β := g̃(t̃0) and r := t̃0 such

that

I(u) ≥ β for all ‖u‖ = r.

Applying a similar argument to Case 1, one can show that there is a v ∈ H2
0 (Ω) such that

‖v‖ > r and I(v) < 0.

In a conclusion, I satisfies the mountain pass geometry around 0 if (λ, µ) ∈ A∪B ∪C. The

proof is complete.

Now we show the boundedness of (PS)c sequence of I.

Lemma 3.3. Assume that N ≥ 5, µ ∈ R\{0} and λ ∈ R. If {un} is a (PS)c sequence of

I, then {un} must be bounded in H2
0 (Ω) for all c ∈ R.

Proof. Recalling the definition of the (PS)c sequence {un}, we have

I(un) → c and I ′(un) → 0 in H2
0 (Ω) as n→ ∞.

When µ < 0, from the above equalities and using (2.5), we have, as n→ ∞, that

c+ 1 + on(1)‖un‖ ≥ I(un)−
1

2∗∗
〈I ′(un), un〉

=
2

N
‖un‖

2 −
2

N
λ‖un‖

2
2 +

1

2
µ‖un‖

2
2 −

2

N
µ

∫

Ω

u2n lnu
2
ndx

=
2

N
‖un‖

2 −
2

N
µ

∫

Ω

u2n ln
(
e

λ
µ
−N

4 u2n
)
dx

≥
2

N
‖un‖

2 −
2

N
µe−

λ
µ
+N

4

∫

{e
λ
µ

−
N
4 u2

n≤1}

e
λ
µ
−N

4 u2n ln
(
e

λ
µ
−N

4 u2n
)
dx

≥
2

N
‖un‖

2 +
2

N
µe−

λ
µ
+N

4
−1|Ω|,

which shows that {un} is bounded in H2
0 (Ω).

Assume now µ > 0. It follows from the definition of {un}, we have, as n→ ∞, that

c+ 1 + on(1)‖un‖ ≥ I(un)−
1

2
〈I ′(un), un〉 =

1

2
µ‖un‖

2
2 +

2

N
‖un‖

2∗∗

2∗∗ ≥
1

2
µ‖un‖

2
2,

which shows that

‖un‖
2
2 ≤ C + C‖un‖.

From this and (2.8), we can deduce, for n large enough, that

∫

Ω

u2n lnu
2
ndx ≤ a2

πλ̃1

‖un‖2 +
[
ln(C + C‖un‖)−N(1 + ln a)

]
(C + C‖un‖). (3.2)
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On the other hand, one has, as n→ ∞, that

c+ 1 + on(1)‖un‖ ≥ I(un)−
1

2∗∗
〈I ′(un), un〉

=
2

N
‖un‖

2 −
2

N
λ‖un‖

2
2 +

1

2
µ‖un‖

2
2 −

2

N
µ

∫

Ω

u2n lnu
2
ndx

≥
2

N
‖un‖

2 − C‖un‖
2
2 −

2

N
µ

∫

Ω

u2n lnu
2
ndx.

Then, in view of (3.2) and µ > 0, one has, as n→ ∞, that

c+ 1 + on(1)‖un‖

≥
2

N
‖un‖

2 − (C + C‖un‖)−
2

N
µ
( a2

πλ̃1
‖un‖

2 +
[
ln(C + C‖un‖)−N(1 + ln a)

]
(C + C‖un‖)

)

=
2

N

(
1−

µa2

πλ̃1

)
‖un‖

2 −
2

N
µ(C + C‖un‖) ln(C + C‖un‖) + [2µN(1 + ln a)− 1](C + C‖un‖)

≥
1

N
‖un‖

2 −
2

eσN
µ(C + C‖un‖)

1+σ + [2µN(1 + ln a)− 1](C + C‖un‖),

where we choose a > 0 with µa2

πλ̃1

< 1
2 , and the last inequality is justified by (2.7) with σ < 1.

Therefore, {un} is a bounded sequence in H2
0 (Ω). The proof is complete.

On the basis of Lemma 3.3, we can prove that the (PS)c condition is valid for some c when

µ > 0.

Lemma 3.4. Assume that N ≥ 5, µ > 0, and λ ∈ R. If c < c(S), then I satisfies the (PS)c

condition, where c(S) :=
2

N
S

N
4 .

Proof. Let {un} be a (PS)c sequence of I. According to Lemma 3.3, {un} is bounded in H2
0 (Ω).

Consequently, by using the Sobolev embedding one sees that there is a subsequence of {un}

(which we still denote by {un}) such that, as n→ ∞,





un ⇀ u in H2
0 (Ω),

un → u in Lr(Ω) (1 ≤ r < 2∗∗),

un → u in H1
0 (Ω),

|un|2
∗∗−2un ⇀ |u|2

∗∗−2u in L
2∗∗

2∗∗−1 (Ω),

un → u a.e. in Ω.

(3.3)

Next, we are going to prove

lim
n→∞

∫

Ω

u2n lnu
2
ndx =

∫

Ω

u2 lnu2dx. (3.4)

Indeed, since un → u a.e. in Ω as n→ ∞, we get

u2n lnu
2
n → u2 lnu2 a.e. in Ω as n→ ∞. (3.5)
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Moreover, combining (2.5) and (2.7) we get

|u2n lnu
2
n| ≤

1

e
+

1

eδ
u2(1+δ)
n →

1

eq
+

1

eδ
u2(1+δ) in L1(Ω) as n→ ∞, (3.6)

where δ > 0 is chosen to satisfy 2(1 + δ) < 2∗∗. Then (3.4) follows from (3.5), (3.6) and

Lebesgue’s dominated convergence theorem.

To show that un → n in H2
0 (Ω) as n→ ∞, set wn = un − u. Then {wn} is also a bounded

sequence in H2
0 (Ω). So there exists a subsequence of {wn} (which we still denoted by {wn})

such that

lim
n→∞

‖wn‖
2 = l ≥ 0. (3.7)

We claim that l = 0. Indeed, by virtue of the weak convergence un ⇀ u in H2
0 (Ω), we have

‖un‖
2 = ‖wn‖

2 + ‖u‖2 + on(1), n→ ∞. (3.8)

From the boundedness of {un} and the Sobolev embedding, we can easily conclude that

‖un‖2∗∗ ≤ C. This, together with un → u a.e. in Ω, implies that we can apply Brézis-Lieb’s

lemma to obtain

‖un‖
2∗∗

2∗∗ = ‖wn‖
2∗∗

2∗∗ + ‖u‖2
∗∗

2∗∗ + on(1), n→ ∞. (3.9)

Therefore, in accordance with (3.3), (3.4), (3.8), (3.9) and the assumption that I ′(un) → 0 in

H−2(Ω) as n→ ∞, we have

on(1) = 〈I ′(un), un〉 = 〈I ′(u), u〉+ ‖wn‖
2 − ‖wn‖

2∗∗

2∗∗ + on(1), n→ ∞,

and for all φ ∈ H2
0 (Ω),

on(1) = 〈I ′(un), φ〉 = 〈I ′(u), φ〉+ on(1), n→ ∞,

which implies that u is a weak solution to problem (1.1). Combining the above two equalities,

and taking φ = u, one obtains

〈I ′(u), u〉 = 0, (3.10)

and

‖wn‖
2 − ‖wn‖

2∗∗

2∗∗ = on(1), n→ ∞. (3.11)

In addition, by the Sobolev embedding one has

‖wn‖
2∗∗

2∗∗ ≤ S− 2∗∗

2 ‖wn‖
2∗∗ < C, ∀ n ∈ N. (3.12)

In view of (3.3), (3.11) and (3.12), it is easy to see that there is a subsequence of {wn} such

that

lim
n→∞

‖wn‖
2∗∗

2∗∗ = lim
n→∞

‖wn‖
2 = l ≥ 0. (3.13)

Letting n→ ∞ in (3.12), we have l ≤ S− 2∗∗

2 l
2∗∗

2 . If l > 0, then

l ≥ S
2∗∗

2∗∗−2 = S
N
4 . (3.14)
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On one hand, with the help of (3.10), we can derive

I(u) = I(u)−
1

2
〈I ′(u), u〉 =

1

2
µ‖u‖22 +

2

N
‖u‖2

∗∗

2∗∗ ≥ 0,

since µ > 0.

On the other hand, in view of (3.3), (3.4), (3.8), (3.9) and the fact that I(un) = c + on(1)

as n→ ∞, we have

on(1) + c = I(un) = I(u) +
1

2
‖wn‖

2 −
1

2∗∗
‖wn‖

2∗∗

2∗∗ + on(1), n→ ∞.

Thus, we can deduce that

I(u) = c−
1

2
‖wn‖

2 +
1

2∗∗
‖wn‖

2∗∗

2∗∗ + on(1), n→ ∞.

From this and recalling (3.13) and (3.14) one has

I(u) = c−
(1
2
−

1

2∗∗

)
l ≤ c−

2

N
S

N
4 < 0,

a contradiction. Thus, lim
n→∞

‖wn‖2 = l = 0, i.e., un → u in H2
0 (Ω) as n → ∞. The proof is

complete.

The case µ < 0 is quite different from the case µ > 0 since we can not check the (PS)c

condition in general. However, we can still obtain a nontrivial weak solution by apply the

Mountain Pass Lemma without (PS)c condition.

Lemma 3.5. Assume that N ≥ 5, µ < 0, λ ∈ R and c ∈ (−∞, 0) ∪ (0, c(S)), where c(S) is

given in Lemma 3.4. If {un} is a (PS)c sequence of I, then there exists a u ∈ H2
0 (Ω)\{0} such

that un ⇀ u in H2
0 (Ω) as n→ ∞ and u is a nontrivial weak solution to problem (1.1).

Proof. From Lemma 3.3, we know that {un} is bounded in H2
0 (Ω). Therefore, (3.3) and (3.4)

are valid. As was done in proving Lemma 3.4, set wn = un − u. Then {wn} is bounded in

H2
0 (Ω), and there exists a subsequence of {wn}, still denoted by {wn}, such that

lim
n→∞

‖wn‖
2 = l ≥ 0.

In view of (3.3) and Brézis-Lieb’s lemma, we know that (3.8) and (3.9) are still valid. From

the definition of the (PS)c sequence, we have, as n→ ∞,

I ′(un) → 0 in H−2(Ω), I(un) → c. (3.15)

This, together with (3.3), (3.8) and (3.9), shows that, for any φ ∈ H2
0 (Ω),

on(1) = 〈I ′(un), φ〉 = 〈I ′(u), φ〉+ on(1), n→ ∞,

i.e., u is a weak solution to problem (1.1).

Next, we claim that u 6= 0. Assume on the contrary that u = 0. Following from (3.3), (3.4),

(3.8), (3.9) and (3.15), we have

on(1) = 〈I ′(un), un〉 = ‖wn‖
2 − ‖wn‖

2∗∗

2∗∗ + on(1), n→ ∞, (3.16)
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and

on(1) + c = I(un) =
1

2
‖wn‖

2 −
1

2∗∗
‖wn‖

2∗∗

2∗∗ + on(1), n→ ∞. (3.17)

It then follows from (3.16) that there is a subsequence of {wn} such that

lim
n→∞

‖wn‖
2∗∗

2∗∗ = lim
n→∞

‖wn‖
2 = l ≥ 0.

Letting n → ∞ in (3.12), we also have l ≤ S− 2∗∗

2 l
2∗∗

2 . In what follows, we are going to show

that l > 0. In fact, if l = 0, one has

lim
n→∞

‖wn‖
2∗∗

2∗∗ = lim
n→∞

‖wn‖
2 = 0.

This, together with (3.17), implies that I(un) → 0 as n → ∞, which contradicts with the

assumption that c 6= 0. Therefore, l > 0 and (3.14) still holds. Letting n → ∞ in (3.17) and

recalling (3.14), one has

c =
(1
2
−

1

2∗∗

)
l ≥

2

N
S

N
4 ,

a contradiction. Therefore, u is a nontrivial weak solution to problem (1.1). This completes

the proof.

The successful application of the Mountain Pass Lemma in proving the existence of weak

solutions is based on the following lemma.

Lemma 3.6. Assume that N ≥ 5 and (λ, µ) ∈ A∪B ∪C. If there exists a u∗ ∈ H2
0 (Ω)\{0}

such that

sup
t≥0

I(tu∗) < c(S), (3.18)

where c(S) is given in Lemma 3.4, then problem (1.1) possesses a nontrivial weak solution.

Proof. From Lemma 3.2, one sees that I has a mountain pass geometry around 0 if (λ, µ) ∈

A ∪ B ∪ C. Thus, according to the Mountain Pass Lemma without (PS)c condition stated in

Lemma 2.1, there exists a sequence {un} ⊂ H2
0 (Ω) such that I(un) → c0 and I ′(un) → 0 in

H−2(Ω) as n→ ∞, where

0 < β ≤ c0 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and Γ = {γ ∈ C([0, 1], H2
0 (Ω)) : γ(0) = 0, γ(1) = tu∗u∗},

(3.19)

and tu∗ > 0 is determined in the proof of Lemma 3.2 such that I(tu∗u∗) < 0. According to the

assumption (3.18), we have

c0 ≤ max
t∈[0,1]

I(ttu∗u∗) ≤ sup
t≥0

I(tu∗) < c(S). (3.20)

Next, we are going to prove the existence of nontrivial weak solutions to problem (1.1).

When µ > 0, according to (3.20) and Lemma 3.4, we know that there exists a convergent

subsequence of {un}, still denoted by {un}, such that un → u in H2
0 (Ω) as n → ∞, which

implies that I(u) = c0 and I ′(u) = 0, i.e., u is a mountain pass type solution to problem (1.1).

When µ < 0, following from (3.20) and Lemma 3.5, it is easy to see that problem (1.1) possesses

a nontrivial weak solution. The proof is complete.
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4 Proofs of the main results

In view of Lemma 3.6, one sees that it is sufficient to find u∗ ∈ H2
0 (Ω) satisfying (3.18) to

show the existence of weak solutions to problem (1.1). Inspired by Brezis and Nirenberg [8] and

Deng et al. [10], we shall do this with the help of the truncated Talenti functions. Without loss

of generality, we may assume that 0 ∈ Ω is the geometric center of Ω. Thus, ρmax = dist(0, ∂Ω).

For any ε > 0, define

Uε(x) = CN

ε
N−4

2

(ε2 + |x|2)
N−4

2

, x ∈ R
N , (4.1)

where CN = [N(N − 4)(N2 − 4)]
N−4

8 . Then Uε(x) is a solution of the critical problem

∆2u = u2
∗∗−1, x ∈ R

N , N ≥ 5,

and ‖Uε‖
2 = ‖Uε‖

2∗∗

2∗∗ = S
N
4 , where S = inf

u∈H2
0
(Ω)\{0}

‖u‖2

‖u‖22∗∗
=

‖Uε‖2

‖Uε‖22∗∗
.

We have the following estimates on the Talenti functions with a cut-off function (see [15]).

Lemma 4.1. Assume that N ≥ 5. Let ϕ ∈ C∞
0 (Ω) be a cut-off function such that ϕ(x) =

ϕ(|x|), 0 ≤ ϕ(x) ≤ 1 for x ∈ Ω, and

ϕ(x) =





1, |x| < ρ,

0, |x| > 2ρ,

where ρ > 0 is a constant such that B2ρ(0) ⊂ Ω. Set uε(x) = ϕ(x)Uε(x). Suppose that ε → 0.

Then

‖uε‖
2 = S

N
4 +O(εN−4),

‖uε‖
2∗∗

2∗∗ = S
N
4 +O(εN ).

In what follows, by carefully estimating each term of ψuε
(t) we shall verify that (3.18) holds

with u∗ = uε for suitable ε. The discussion will be divided into three cases, i.e., N ≥ 9, N = 8

and N = 5, 6, 7.

4.1 The case N ≥ 9.

Lemma 4.2. If N ≥ 9, then, as ε→ 0,

‖uε‖
2
2 = C2

Nε
4

∫

RN

1

(1 + |y|2)N−4
dy +O(εN−4), (4.2)

and ∫

Ω

u2ε lnu
2
εdx = (N − 4)C2

Nε
4 ln

1

ε

∫

RN

1

(1 + |y|2)N−4
dy +O(ε4). (4.3)

Proof. Using (4.1), the properties of the cut-off function ϕ, change of variable, and polar coor-

dinates transformation, we have

‖uε‖
2
2 =

∫

Ω

ϕ2U2
ε dx
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= C2
N

∫

Bρ

εN−4

(ε2 + |x|2)N−4
dx+ C2

N

∫

B2ρ\Bρ

ϕ2 εN−4

(ε2 + |x|2)N−4
dx

= C2
N

∫

B ρ
ε

εN−4

ε2(N−4)(1 + |y|2)N−4
εNdy +O(εN−4)

= C2
Nε

4

(∫

RN

−

∫

B ρ
ε

)
1

(1 + |y|2)N−4
dy +O(εN−4)

= C2
Nε

4

∫

RN

1

(1 + |y|2)N−4
dy +O(εN−4),

where we have used the fact that
∫

B2ρ\Bρ

ϕ2 εN−4

(ε2 + |x|2)N−4
dx ≤ εN−4

∫

B2ρ\Bρ

1

|x|2(N−4)
dx = O(εN−4),

and
∫

Bc
ρ
ε

1

(1 + |y|2)N−4
dy = ωN

∫ +∞

ρ
ε

rN−1

(1 + r2)N−4
dr ≤ ωN

∫ +∞

ρ
ε

1

rN−7
dr = O(εN−8). (4.4)

This shows (4.2).

Next we prove (4.3). According to the definition of uε, we have
∫

Ω

u2ε lnu
2
εdx =

∫

Ω

ϕ2U2
ε ln(ϕ

2U2
ε )dx =

∫

Ω

U2
εϕ

2 lnϕ2dx+

∫

Ω

ϕ2U2
ε lnU

2
ε dx := I + II. (4.5)

To calculate I and II, we first estimate
∫
B2ρ\Bρ

U2k
ε dx with N

2(N−4) < k < 1 and k ≥ 1,

respectively. When N
2(N−4) < k < 1, one has

∫

B2ρ\Bρ

U2k
ε dx = C2k

N

∫

B2ρ\Bρ

εk(N−4)

(ε2 + |x|2)k(N−4)
dx

= C2k
N ωNε

N−k(N−4)

∫ 2ρ
ε

ρ
ε

yN−1

(1 + y2)k(N−4)
dy ≤ C2k

N ωNε
N−k(N−4)

∫ +∞

0

yN−1

(1 + y2)k(N−4)
dy

= O(ε4). (4.6)

When k ≥ 1, we deduce that

∫

B2ρ\Bρ

U2k
ε dx = C2k

N

∫

B2ρ\Bρ

εk(N−4)

(ε2 + |x|2)k(N−4)
dx ≤ C2k

N εk(N−4)

∫

B2ρ\Bρ

1

|x|2k(N−4)
dx

= O(ε4). (4.7)

By recalling the fact that 0 ≤ ϕ ≤ 1 with (2.5) and applying (4.7) with k = 1, we have

|I| ≤
1

e

∫

B2ρ\Bρ

U2
ε dx = O(ε4). (4.8)

Set

II =

∫

Bρ

U2
ε lnU2

ε dx+

∫

B2ρ\Bρ

ϕ2U2
ε lnU2

ε dx := II1 + II2. (4.9)
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Using (2.6) with δ > 0 satisfying N
2(N−4) < 1− δ < 1, we have

|II2| ≤

∫

B2ρ\Bρ

|U2
ε lnU2

ε |dx ≤ Cα,δ

∫

B2ρ\Bρ

(U2(1+α)
ε + U2(1−δ)

ε )dx = O(ε4), (4.10)

where the last equality is justified by (4.6) and (4.7). In addition, one has

II1 = C2
N

∫

Bρ

εN−4

(ε2 + |x|2)N−4
ln

C2
Nε

N−4

(ε2 + |x|2)N−4
dx

= C2
N

∫

B ρ
ε

ε4

(1 + |y|2)N−4
ln

C2
N

εN−4(1 + |y|2)N−4
dy

= (N − 4)C2
Nε

4 ln
1

ε

∫

B ρ
ε

1

(1 + |y|2)N−4
dy + C2

Nε
4

∫

B ρ
ε

1

(1 + |y|2)N−4
ln

C2
N

(1 + |y|2)N−4
dy

= (N − 4)C2
Nε

4 ln
1

ε



∫

RN

−

∫

Bc
ρ
ε


 1

(1 + |y|2)N−4
dy

+ C2
Nε

4

∫

B ρ
ε

1

(1 + |y|2)N−4
ln

C2
N

(1 + |y|2)N−4
dy

= (N − 4)C2
Nε

4 ln
1

ε

∫

RN

1

(1 + |y|2)N−4
dy +O(ε4), (4.11)

where we have used (4.4) and the fact that

|

∫

B ρ
ε

1

(1 + |y|2)N−4
ln

C2
N

(1 + |y|2)N−4
dy|

≤ | lnC2
N |

∫

B ρ
ε

1

(1 + |y|2)N−4
dy + (N − 4)

∫

B ρ
ε

1

(1 + |y|2)N−4
ln(1 + |y|2)dy

≤ | lnC2
N |

∫

RN

1

(1 + |y|2)N−4
dy + (N − 4)

4

e

∫

RN

1

(1 + |y|2)N−4− 1
4

dy

≤ C.

Notice that we have used (2.7) with σ = 1
4 in the last but one inequality. Therefore, in

accordance with (4.5), (4.8), (4.9), (4.10) and (4.11), one obtains (4.3). The proof is complete.

Then, we verify condition (3.18) for N ≥ 9 with the help of Lemma 4.2.

Lemma 4.3. If N ≥ 9, µ > 0 and λ ∈ R, then condition (3.18) holds.

Proof. Since µ > 0, for uε given in Lemma 4.1, one has lim
t→0

ψuε
(t) = 0, ψuε

(t) > 0 for t > 0

suitably small and lim
t→+∞

ψuε
(t) = −∞ uniformly for ε ∈ (0, ε1), where ε1 > 0 is a suitably

small but fixed number. Thus, for each ε ∈ (0, ε1), there exists a tε ∈ (0,+∞) such that

sup
t≥0

I(tuε) = sup
t≥0

ψuε
(t) = ψuε

(tε),

17



and

0 = ψ′
uε

(
tε) = tε(‖uε‖

2 − λ‖uε‖
2
2 − µ

∫

Ω

u2ε ln(tεuε)
2dx− t2

∗∗−2
ε ‖uε‖

2∗∗

2∗∗
)
,

that is

‖uε‖
2 − λ‖uε‖

2
2 − µ

∫

Ω

u2ε lnu
2
εdx = t2

∗∗−2
ε ‖uε‖

2∗∗

2∗∗ + µ‖uε‖
2
2 ln t

2
ε. (4.12)

We first show that there exist 0 < T0 < T 0 such that T0 ≤ tε ≤ T 0 for all suitably small ε.

From (4.12), Lemmas 4.1 and 4.2, one has, for suitably small ε,

2S
N
4 ≥

1

2
S

N
4 t2

∗∗−2
ε − C| ln t2ε|,

which implies that tε is bounded from above. On the other hand, by (4.12), Lemmas 4.1, 4.2

and making use of (2.7) with σ = 1, one also has

1

2
S

N
4 ≤ 2S

N
4 t2

∗∗−2
ε + Ct2ε,

which implies that tε is bounded from below by some positive constant.

Set

h(t) :=
1

2
t2‖uε‖

2 −
1

2∗∗
t2

∗∗

‖uε‖
2∗∗

2∗∗ , t > 0. (4.13)

Direct computation shows that h takes its maximum at t∗ε :=
(

‖uε‖
2

‖uε‖2∗∗

2∗∗

)N−4

8

and by Lemma

4.1, one has

h(t∗ε) =
2

N

(
‖uε‖

‖uε‖2∗∗

)N
2

=
2

N
S

N
4 + O(εN−4), ε→ 0. (4.14)

Thus, in view of (4.14), Lemma 4.2 and recalling T0 < tε < T 0 and µ > 0, one sees, for ε small

enough, that

sup
t≥0

I(tuε) = h(tε)−
1

2
λt2ε‖uε‖

2
2 +

1

2
µt2ε‖uε‖

2
2 −

1

2
µ‖uε‖

2
2t

2
ε ln t

2
ε −

1

2
µt2ε

∫

Ω

u2ε lnu
2
εdx

≤ h(t∗ε)−
1

2
λt2ε‖uε‖

2
2 −

1

2
µt2ε(ln t

2
ε − 1)‖uε‖

2
2 −

1

2
µt2ε

∫

Ω

u2ε lnu
2
εdx

≤
2

N
S

N
4 +O(ε4)− Cµε4 ln

1

ε

<
2

N
S

N
4 .

Fix such an ε > 0 and take u∗ ≡ uε. The proof is complete.

4.2 The case N = 8.

Lemma 4.4. If N = 8, then, as ε→ 0,

‖uε‖
2
2 = 1920ω8ε

4 ln
1

ε
+O(ε4), (4.15)

18



∫

Ω

u2ε lnu
2
εdx ≥ 1920ω8ε

4 ln
1

ε
ln

(
1920(ε2 + ρ2)2

e
47
3 (ε2 + 4ρ2)4

)
+O(ε4), (4.16)

and

∫

Ω

u2ε lnu
2
εdx ≤ 1920ω8ε

4 ln
1

ε
ln

(
1920e

37
3 (ε2 + 4ρ2)2

(ε2 + ρ2)4

)
+O(ε4). (4.17)

Proof. By definition

‖uε‖
2 = 1920

∫

Bρ

ε4

(ε2 + |x|2)4
dx+ 1920

∫

B2ρ\Bρ

ϕ2 ε4

(ε2 + |x|2)4
dx := I + II, (4.18)

where

|II| ≤ 1920

∫

B2ρ\Bρ

ε4

(ε2 + |x|2)4
dx ≤ 1920ε4

∫

B2ρ\Bρ

1

|x|8
dx = O(ε4), (4.19)

and

I =
1920

2
ω8ε

4

∫ ρ

0

r6

(ε2 + r2)4
d(ε2 + r2)

=
1920

2
ω8ε

4

∫ ρ

0

[
1

ε2 + r2
−

3ε2

(ε2 + r2)2
+

3ε4

(ε2 + r2)3
−

ε6

(ε2 + r2)4

]
d(ε2 + r2)

=
1920

2
ω8ε

4

[
ln(ε2 + r2) +

3ε2

ε2 + r2
−

3ε4

2(ε2 + r2)2
+

ε6

3(ε2 + r2)3

] ∣∣∣∣
ρ

0

= 1920ω8ε
4 ln

1

ε
+

1920

2
ω8ε

4

[
ln(ε2 + ρ2) +

3ε2

ε2 + ρ2
−

3ε4

2(ε2 + ρ2)2
+

ε6

3(ε2 + ρ2)3
−

11

6

]

= 1920ω8ε
4 ln

1

ε
+O(ε4). (4.20)

From (4.18), (4.19) and (4.20), we immediately obtain (4.15).

Now, we are going to estimate the logarithmic term. Notice that

∫

Ω

u2ε lnu
2
εdx = 1920

∫

Ω

ϕ2 ε4

(ε2 + |x|2)4
ln

[
1920ϕ2 ε4

(ε2 + |x|2)4

]
dx

= 1920

∫

B2ρ

ϕ2 ε4

(ε2 + |x|2)4
ln

ε4

(ε2 + |x|2)4
dx+ 1920 ln(1920)

∫

B2ρ

ϕ2 ε4

(ε2 + |x|2)4
dx

+ 1920

∫

B2ρ\Bρ

ϕ2 ε4

(ε2 + |x|2)4
lnϕ2dx

:= I1 + I2 + I3. (4.21)

Recalling (2.5), one has

|I3| ≤
1920

e

∫

B2ρ\Bρ

ε4

(ε2 + |x|2)4
dx ≤

1920

e
ε4
∫

B2ρ\Bρ

1

|x|8
dx = O(ε4). (4.22)

It follows from (4.20) and (4.22) that

I2 = 1920 ln(1920)

∫

Bρ

ε4

(ε2 + |x|2)4
dx+ 1920 ln(1920)

∫

B2ρ\Bρ

ϕ2 ε4

(ε2 + |x|2)4
dx

19



= 1920 ln(1920)ω8ε
4 ln

1

ε
+O(ε4). (4.23)

In addition, by a direct computation, we have

I1 = 1920

∫

B2ρ

ϕ2 ε4

(ε2 + |x|2)4
ln

1

ε4
[
1 +

(
|x|
ε

)2]4 dx

= 4 · 1920 ln
1

ε

∫

B2ρ

ϕ2 ε4

(ε2 + |x|2)4
dx− 4 · 1920

∫

B2ρ

ϕ2 ε4

(ε2 + |x|2)4
ln

[
1 +

(
|x|

ε

)2
]
dx

:= I11 + I12. (4.24)

Applying similar argument to the proof of (4.20), one has

I11 ≥ 4 · 1920 ln
1

ε

∫

Bρ

ε4

(ε2 + |x|2)4
dx

= 4 · 1920ω8ε
4 ln

1

ε

{
ln

1

ε
+

1

2

[
ln(ε2 + ρ2) +

3ε2

ε2 + ρ2
−

3ε4

2(ε2 + ρ2)2
+

ε6

3(ε2 + ρ2)3
−

11

6

]}

= 4 · 1920ω8ε
4

(
ln

1

ε

)2

+ 2 · 1920ω8ε
4 ln

1

ε
ln
ε2 + ρ2

e
11
6

+O(ε6 ln
1

ε
), (4.25)

and

I11 ≤ 4 · 1920 ln
1

ε

∫

B2ρ

ε4

(ε2 + |x|2)4
dx

= 4 · 1920ω8ε
4 ln

1

ε

{
ln

1

ε
+

1

2

[
ln(ε2 + 4ρ2) +

3ε2

ε2 + 4ρ2
−

3ε4

2(ε2 + 4ρ2)2
+

ε6

3(ε2 + 4ρ2)3
−

11

6

]}

= 4 · 1920ω8ε
4

(
ln

1

ε

)2

+ 2 · 1920ω8ε
4 ln

1

ε
ln
ε2 + 4ρ2

e
11
6

+O(ε6 ln
1

ε
). (4.26)

On the other hand,

I12 ≥ −4 · 1920

∫

B2ρ

ε4

(ε2 + |x|2)4
ln

[
1 +

(
|x|

ε

)2
]
dx

= −2 · 1920ω8ε
4

∫ 2ρ
ε

0

r6

(1 + r2)4
ln(1 + r2)d(1 + r2)

= −2 · 1920ω8ε
4

∫ 2ρ
ε

0

[
1

1 + r2
−

3

(1 + r2)2
+

3

(1 + r2)3
−

1

(1 + r2)4

]
ln(1 + r2)d(1 + r2)

≥ −2 · 1920ω8ε
4

∫ 2ρ
ε

0

[
1

1 + r2
+

3

(1 + r2)3

]
ln(1 + r2)d(1 + r2)

≥ −2 · 1920ω8ε
4

∫ 2ρ
ε

0

[
1

1 + r2
ln(1 + r2) +

3

1 + r2

]
d(1 + r2)

= −2 · 1920ω8ε
4

[
1

2

(
ln(1 + r2)

)2
+ 3 ln(1 + r2)

] ∣∣∣∣

2ρ
ε

0

= −2 · 1920ω8ε
4

{
1

2

[
ln(ε2 + 4ρ2) + 2 ln

1

ε

]2
+ 3

[
ln(ε2 + 4ρ2) + 2 ln

1

ε

]}
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= −4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln(ε2 + 4ρ2)− 1920ω8ε

4
(
ln(ε2 + 4ρ2)

)2

− 6 · 1920ω8ε
4 ln(ε2 + 4ρ2)− 12 · 1920ω8ε

4 ln
1

ε

= −4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln
[
e3(ε2 + 4ρ2)

]
+O(ε4), (4.27)

where we have used (2.7) with σ = 2 and the fact that 1
2e < 1. Similar to (4.27), we have

I12 ≤ −4 · 1920

∫

Bρ

ε4

(ε2 + |x|2)4
ln

[
1 +

(
|x|

ε

)2
]
dx

= −2 · 1920ω8ε
4

∫ ρ
ε

0

r6

(1 + r2)4
ln(1 + r2)d(1 + r2)

= −2 · 1920ω8ε
4

∫ ρ
ε

0

[
1

1 + r2
−

3

(1 + r2)2
+

3

(1 + r2)3
−

1

(1 + r2)4

]
ln(1 + r2)d(1 + r2)

≤ −2 · 1920ω8ε
4

∫ ρ
ε

0

[
1

1 + r2
−

3

(1 + r2)2
−

1

(1 + r2)4

]
ln(1 + r2)d(1 + r2)

≤ −2 · 1920ω8ε
4

∫ ρ
ε

0

[
1

1 + r2
ln(1 + r2)−

3

1 + r2
−

1

1 + r2

]
d(1 + r2)

= −2 · 1920ω8ε
4

[
1

2

(
ln(1 + r2)

)2
− 4 ln(1 + r2)

] ∣∣∣∣

ρ
ε

0

= −2 · 1920ω8ε
4

{
1

2

[
ln(ε2 + ρ2) + 2 ln

1

ε

]2
− 4

[
ln(ε2 + ρ2) + 2 ln

1

ε

]}

= −4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln(ε2 + ρ2)− 1920ω8ε

4
(
ln(ε2 + ρ2)

)2

+ 8 · 1920ω8ε
4 ln(ε2 + ρ2) + 16 · 1920ω8ε

4 ln
1

ε

= −4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln

(
ε2 + ρ2

e4

)
+O(ε4). (4.28)

Therefore, from (4.21)-(4.28), we conclude that

∫

Ω

u2ε lnu
2
εdx ≥ 4 · 1920ω8ε

4

(
ln

1

ε

)2

+ 2 · 1920ω8ε
4 ln

1

ε
ln
ε2 + ρ2

e
11
6

+O(ε6 ln
1

ε
)

− 4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln
[
e3(ε2 + 4ρ2)

]
+O(ε4)

+ 1920 ln(1920)ω8ε
4 ln

1

ε
+O(ε4)

= 1920ω8ε
4 ln

1

ε
ln

(
1920(ε2 + ρ2)2

e
47
3 (ε2 + 4ρ2)4

)
+O(ε4),

and

∫

Ω

u2ε lnu
2
εdx ≤ 4 · 1920ω8ε

4

(
ln

1

ε

)2

+ 2 · 1920ω8ε
4 ln

1

ε
ln
ε2 + 4ρ2

e
11
6

+O(ε6 ln
1

ε
)
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− 4 · 1920ω8ε
4

(
ln

1

ε

)2

− 4 · 1920ω8ε
4 ln

1

ε
ln

(
ε2 + ρ2

e4

)
+O(ε4)

+ 1920 ln(1920)ω8ε
4 ln

1

ε
+O(ε4)

= 1920ω8ε
4 ln

1

ε
ln

(
1920e

37
3 (ε2 + 4ρ2)2

(ε2 + ρ2)4

)
+O(ε4).

This completes the proof.

With Lemma 4.4 at hand, we will verify condition (3.18) for N = 8 under appropriate

assumptions on λ, µ and Ω.

Lemma 4.5. Assume that N = 8. If (λ, µ) ∈ A or (λ, µ) ∈ B∪C with
25 · 1920e

λ
µ
+ 34

3

ρ4max

< 1,

then (3.18) holds.

Proof. As in the proof of Lemma 4.3, one has lim
t→0

ψuε
(t) = 0 and lim

t→+∞
ψuε

(t) = −∞ uniformly

for ε ∈ (0, ε2), where ε2 > 0 is a suitably small but fixed number and uε is given in Lemma 4.1.

This, together with Lemma 3.2, implies that there is a tε ∈ (0,+∞) satisfying (4.12) and

sup
t≥0

I(tuε) = h(tε)−
1

2
λt2ε‖uε‖

2
2 +

1

2
µt2ε‖uε‖

2
2 −

1

2
µ‖uε‖

2
2t

2
ε ln t

2
ε −

1

2
µt2ε

∫

Ω

u2ε lnu
2
εdx, (4.29)

where h is defined in (4.13). Moreover, there exist 0 < T0 < T 0 such that

T0 < tε < T 0 (4.30)

for both µ > 0 and µ < 0. Indeed, the boundedness of tε for µ > 0 and the upper bound of

tε for µ < 0 can be obtained by similar argument to that of the proof of Lemma 4.3. We only

need to show that tε > T0 for µ < 0. Suppose on the contrary that there exist a sequence {εn}

such that εn → 0 and tεn → 0 as n→ ∞. For each n, take γ(1) = tuεn
uεn in (3.19), where tuεn

is suitably large such that I(γ(1)) < 0. From this, we have

0 < β ≤ c0 ≤ I(tεnuεn) → 0, n→ ∞,

a contradiction. Thus, the positive lower bound of tε follows and (4.30) is valid.

On the basis of (4.30), we claim that

‖uε‖
2
2t

2
ε ln t

2
ε = o(ε4| ln ε|). (4.31)

Indeed, from (4.15), we have

‖uε‖
2
2 = O(ε4| ln ε|). (4.32)

On the other hand, by (4.30), (4.12), Lemmas 4.1 and 4.4, one has

t2
∗∗−2

ε =
‖uε‖2 − λ‖uε‖22 − µ

∫
Ω u

2
ε lnu

2
εdx− µ‖uε‖22 ln t

2
ε

‖uε‖2
∗∗

2∗∗

22



=
S

N
4 +O(ε4 ln 1

ε
)

S
N
4 +O(ε8)

→ 1, ε→ 0.

Consequently, t2ε ln t
2
ε → 0 as ε→ 0. Combining this with (4.32), one arrives at

‖uε‖
2
2t

2
ε ln t

2
ε

ε4| ln ε|
=
O(ε4| ln ε|)t2ε ln t

2
ε

ε4| ln ε|
→ 0, ε→ 0,

which implies (4.31).

In what follows, we divide the proof into two cases.

Case 1: µ > 0.

Let ρ > 0 be such that
384e

λ
µ
− 50

3

125ρ4
> 1 and take ε < ρ. Following from (4.14), (4.15), (4.16),

(4.29), (4.31) and the fact that

(ε2 + ρ2)2

(ε2 + 4ρ2)4
>

(ρ2)2

(ρ2 + 4ρ2)4
=

1

625ρ4
,

one obtains

sup
t≥0

I(tuε) ≤ h(t∗ε)−
1

2
µt2ε

∫

Ω

[
(
λ

µ
− 1)u2ε + u2ε lnu

2
ε

]
dx−

1

2
µ‖uε‖

2
2t

2
ε ln t

2
ε

≤
2

N
S

N
4 +O(ε4)−

1

2
µt2ε

[
(
λ

µ
− 1)1920ω8ε

4 ln
1

ε

+ 1920ω8ε
4 ln

1

ε
ln

(
1920(ε2 + ρ2)2

e
47
3 (ε2 + 4ρ2)4

)]
+ o(ε4| ln ε|)

≤
2

N
S

N
4 +O(ε4)−

1

2
µt2ε

[
1920ω8ε

4 ln
1

ε
ln

(
1920e

λ
µ
−1(ε2 + ρ2)2

e
47
3 (ε2 + 4ρ2)4

)]
+ o(ε4| ln ε|)

≤
2

N
S

N
4 +O(ε4)−

1

2
µC

[
1920ω8ε

4 ln
1

ε
ln

(
384e

λ
µ
− 50

3

125ρ4

)]
+ o(ε4| ln ε|).

Recalling that µ > 0 and
384e

λ
µ
− 50

3

125ρ4
> 1, we know

sup
t≥0

I(tuε) <
2

N
S

N
4 ,

for ε suitably small. Fix such an ε > 0 and take u∗ ≡ uε. We obtain (3.18).

Case 2: µ < 0.

For this case we fix ρ = ρmax and let ε < ρ. Then, in view of (4.14), (4.15), (4.17), (4.29)

and (4.31), one obtains, for ε suitably small, that

sup
t≥0

I(tuε) ≤ h(t∗ε)−
1

2
µt2ε

∫

Ω

[
(
λ

µ
− 1)u2ε + u2ε lnu

2
ε

]
dx−

1

2
µ‖uε‖

2
2t

2
ε ln t

2
ε

≤
2

N
S

N
4 +O(ε4) + o(ε4| ln ε|)

−
1

2
µt2ε

[
(
λ

µ
− 1)1920ω8ε

4 ln
1

ε
+ 1920ω8ε

4 ln
1

ε
ln

(
1920e

37
3 (ε2 + 4ρ2)2

(ε2 + ρ2)4

)]
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≤
2

N
S

N
4 +O(ε4)−

1

2
µt2ε

[
1920ω8ε

4 ln
1

ε
ln

(
1920e

λ
µ
+ 34

3 (ε2 + 4ρ2)2

(ε2 + ρ2)4

)]
+ o(ε4| ln ε|)

≤
2

N
S

N
4 +O(ε4)−

1

2
µC

[
1920ω8ε

4 ln
1

ε
ln

(
25 · 1920e

λ
µ
+ 34

3

ρ4

)]
+ o(ε4| ln ε|),

where we have used the fact that (ε2+4ρ2)2

(ε2+ρ2)4 <
(ρ2+4ρ2)2

(ρ2)4 = 25
ρ4 and µ < 0. Noticing that

25·1920e
λ
µ

+34
3

ρ4
max

< 1, similar to Case 1, one sees that (3.18) holds with u∗ ≡ uε for suitably small

ε. The proof is complete.

4.3 The case N = 5, 6, 7.

Lemma 4.6. If N = 5, 6, 7, then, as ε→ 0,

‖uε‖
2
2 = C2

NωNε
N−4

∫ 2ρ

0

ϕ2r7−Ndr +O(εN−3), (4.33)

∫

Ω

u2ε lnu
2
εdx = (N − 4)C2

NωNε
N−4 ln ε

∫ 2ρ

0

ϕ2r7−Ndr +O(εN−4). (4.34)

Proof. We first estimate ‖uε‖22 with N = 5, 6, 7, respectively. When N = 5, one has

‖uε‖
2
2 = C2

5

∫

B2ρ

ϕ2 ε

ε2 + |x|2
dx = C2

5ω5ε

∫ 2ρ

0

ϕ2r2
r2

ε2 + r2
dr

= C2
5ω5ε

∫ 2ρ

0

ϕ2r2dr − C2
5ω5ε

∫ 2ρ

0

ϕ2r2
ε2

ε2 + r2
dr

:= C2
5ω5ε

∫ 2ρ

0

ϕ2r2dr + I, (4.35)

where

|I| ≤ C2
5ω5ε

3

∫ 2ρ

0

r2

ε2 + r2
dr ≤ C2

5ω5ε
3

∫ 2ρ

0

r2

r2
dr = O(ε3) = O(ε2). (4.36)

When N = 6, one has

‖uε‖
2
2 = C2

6

∫

B2ρ

ϕ2 ε2

(ε2 + |x|2)2
dx = C2

6ω6ε
2

∫ 2ρ

0

ϕ2r
r4

(ε2 + r2)2
dr

= C2
6ω6ε

2

∫ 2ρ

0

ϕ2rdr − C2
6ω6ε

2

∫ 2ρ

0

ϕ2r
ε4 + 2ε2r2

(ε2 + r2)2
dr

:= C2
6ω6ε

2

∫ 2ρ

0

ϕ2rdr + II, (4.37)

where

|II| ≤ C2
6ω6ε

2

∫ 2ρ

0

ε4r + 2ε2r3

(ε2 + r2)2
dr
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=
1

2
C2

6ω6ε
6

∫ 2ρ

0

1

(ε2 + r2)2
d(ε2 + r2) + C2

6ω6ε
4

∫ 2ρ

0

(
1

ε2 + r2
−

ε2

(ε2 + r2)2

)
d(ε2 + r2)

= −
1

2
C2

6ω6ε
6 1

ε2 + r2

∣∣∣∣
2ρ

0

+ C2
6ω6ε

4

(
ln(ε2 + r2) +

ε2

ε2 + r2

) ∣∣∣∣
2ρ

0

= −
1

2
C2

6ω6ε
6 1

ε2 + 4ρ2
+

1

2
C2

6ω6ε
4 + C2

6ω6ε
4

(
ln(ε2 + 4ρ2) +

ε2

ε2 + 4ρ2
− ln ε2 − 1

)

= O(ε3). (4.38)

When N = 7, direct computation shows that

‖uε‖
2
2 = C2

7

∫

B2ρ

ϕ2 ε3

(ε2 + |x|2)3
dx = C2

7ω7ε
3

∫ 2ρ

0

ϕ2 r6

(ε2 + r2)3
dr

= C2
7ω7ε

3

∫ 2ρ

0

ϕ2dr − C2
7ω7ε

3

∫ 2ρ

0

ϕ2 ε
6 + 3ε4r2 + 3ε2r4

(ε2 + r2)3
dr

:= C2
7ω7ε

3

∫ 2ρ

0

ϕ2dr + III, (4.39)

where

|III| ≤ C2
7ω7ε

3

∫ 2ρ

0

ε6 + 3ε4r2 + 3ε2r4

(ε2 + r2)3
dr

= C2
7ω7ε

3

∫ 2ρ

0

[
3ε2

ε2 + r2
−

3ε4

(ε2 + r2)2
+

ε6

(ε2 + r2)3

]
dr

= C2
7ω7ε

4

∫ 2ρ
ε

0

[
3

1 + y2
+

3

(1 + y2)2
+

1

(1 + y2)3

]
dy

≤ C2
7ω7ε

4

∫ +∞

0

[
3

1 + y2
+

3

(1 + y2)2
+

1

(1 + y2)3

]
dy

= O(ε4). (4.40)

Therefore, in accordance with (4.35)-(4.40), we obtain (4.33).

Next, we consider
∫
Ω
u2ε lnu

2
εdx with N = 5, 6, 7. One has, for N = 5, 6, 7, that

∫

Ω

u2ε lnu
2
εdx = C2

N

∫

B2ρ

ϕ2 εN−4

(ε2 + |x|2)N−4
ln
(
C2

Nϕ
2 εN−4

(ε2 + |x|2)N−4

)
dx

= C2
NωN

∫ 2ρ

0

ϕ2 εN−4rN−1

(ε2 + r2)N−4
ln

(
C2

Nϕ
2 εN−4

(ε2 + r2)N−4

)
dr

= C2
N ln(C2

N )ωNε
N−4

∫ 2ρ

0

ϕ2 rN−1

(ε2 + r2)N−4
dr

+ (N − 4)C2
NωNε

N−4 ln ε

∫ 2ρ

0

ϕ2 rN−1

(ε2 + r2)N−4
dr

+ C2
NωNε

N−4

∫ 2ρ

0

ϕ2 rN−1

(ε2 + r2)N−4
lnϕ2dr

+ C2
NωNε

N−4

∫ 2ρ

0

ϕ2 rN−1

(ε2 + r2)N−4
ln

1

(ε2 + r2)N−4
dr
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:= I1 + I2 + I3 + I4, (4.41)

where

|I1| ≤ C2
N ln(C2

N )ωNε
N−4

∫ 2ρ

0

rN−1

r2(N−4)
dr = C2

N ln(C2
N )ωNε

N−4

∫ 2ρ

0

r7−Ndr

= O(εN−4), (4.42)

and in virtue of (2.5),

|I3| ≤
1

e
C2

NωNε
N−4

∫ 2ρ

0

rN−1

(ε2 + r2)N−4
dr ≤

1

e
C2

NωNε
N−4

∫ 2ρ

0

rN−1

r2(N−4)
dr = O(εN−4). (4.43)

According to (4.33),

I2 = (N − 4)C2
NωNε

N−4 ln ε

∫ 2ρ

0

ϕ2r7−Ndr +O(εN−3 ln ε). (4.44)

As for I4, we set

I4 = C2
NωNε

N−4

∫ ρ

0

rN−1

(ε2 + r2)N−4
ln

1

(ε2 + r2)N−4
dr

+ C2
NωNε

N−4

∫ 2ρ

ρ

ϕ2 rN−1

(ε2 + r2)N−4
ln

1

(ε2 + r2)N−4
dr

:= I41 + I42. (4.45)

Similar to the proof of (4.33), it is shown that

I41 = −(N − 4)C2
NωNε

N−4

∫ ρ

0

rN−1

(ε2 + r2)N−4
ln(ε2 + r2)dr

= −(N − 4)C2
NωNε

N−4

∫ ρ

0

r7−N

(
1−

(ε2 + r2)N−4 − r2N−8

(ε2 + r2)N−4

)
ln(ε2 + r2)dr

= −(N − 4)C2
NωNε

N−4

∫ ρ

0

r7−N ln(ε2 + r2)dr

+ (N − 4)C2
NωNε

N−4

∫ ρ

0

r7−N (ε2 + r2)N−4 − r2N−8

(ε2 + r2)N−4
ln(ε2 + r2)dr

:= I411 + I412, (4.46)

where

I411 = −
1

8−N
(N − 4)C2

NωNε
N−4

∫ ρ

0

ln(ε2 + r2)dr8−N

= −
1

8−N
(N − 4)C2

NωNε
N−4

{[
r8−N ln(ε2 + r2)

]
|ρ0 −

∫ ρ

0

2r9−N

ε2 + r2
dr

}

≤ −
1

8−N
(N − 4)C2

NωNε
N−4

{
[r8−N ln(ε2 + r2)]|ρ0 −

∫ ρ

0

2r9−N

r2
dr

}

= −
1

8−N
(N − 4)C2

NωNε
N−4

{
ρ8−N ln(ε2 + ρ2) +O(1)

}
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= O(εN−4). (4.47)

The estimate of I412 will be done separately, depending on N . When N = 5, by applying

(2.7) with σ = 1 and using
1

e
< 1, we have

|I412| = C2
5ω5ε

∫ ρ

0

r2
ε2

ε2 + r2
| ln(ε2 + r2)|dr

= C2
5ω5ε

4

∫ ρ
ε

0

y2

1 + y2

∣∣ ln
(
ε2(1 + y2)

) ∣∣dy

≤ C2
5ω5ε

4| ln ε2|

∫ ρ
ε

0

y2

1 + y2
dy + C2

5ω5ε
4

∫ ρ
ε

0

y2

1 + y2
ln(1 + y2)dy

≤ C2
5ω5ε

4| ln ε2|

∫ ρ
ε

0

1dy + C2
5ω5ε

4

∫ ρ
ε

0

y2dy

= C2
5ω5ρε

3| ln ε2|+
1

3
C2

5ω5ρ
3ε

= O(ε). (4.48)

When N = 6, direct computation yields

I412 = 2C2
6ω6ε

2

∫ ρ

0

ε4r + 2ε2r3

(ε2 + r2)2
ln(ε2 + r2)dr

= C2
6ω6ε

2

∫ ρ

0

[
ε4

(ε2 + r2)2
+

2ε2r2

(ε2 + r2)2

]
ln(ε2 + r2)d(ε2 + r2)

= C2
6ω6ε

6

∫ ρ

0

1

(ε2 + r2)2
ln(ε2 + r2)d(ε2 + r2)

+ 2C2
6ω6ε

4

∫ ρ

0

[ 1

ε2 + r2
−

ε2

(ε2 + r2)2

]
ln(ε2 + r2)d(ε2 + r2)

= −C2
6ω6ε

6

∫ ρ

0

1

(ε2 + r2)2
ln(ε2 + r2)d(ε2 + r2)

+ 2C2
6ω6ε

4

∫ ρ

0

1

ε2 + r2
ln(ε2 + r2)d(ε2 + r2)

= −C2
6ω6ε

6

[
−
ln(ε2 + r2)

ε2 + r2
−

1

ε2 + r2

] ∣∣∣∣
ρ

0

+ C2
6ω6ε

4
(
ln(ε2 + r2)

)2 ∣∣ρ
0

= −C2
6ω6ε

6

[
−
ln(ε2 + ρ2)

ε2 + ρ2
+

ln ε2

ε2
−

1

ε2 + ρ2
+

1

ε2

]
+ C2

6ω6ε
4
[(
ln(ε2 + ρ2)

)2
− (ln ε2)2

]

= O(ε2). (4.49)

When N = 7, by applying (2.7) with σ = 1, one has

|I412| = 3C2
7ω7ε

3

∫ ρ

0

ε6 + 3ε4r2 + 3ε2r4

(ε2 + r2)3
| ln(ε2 + r2)|dr

= 3C2
7ω7ε

4

∫ ρ
ε

0

[
3

1 + y2
−

3

(1 + y2)2
+

1

(1 + y2)3

]
| ln(ε2(1 + y2))|dy

≤ 3C2
7ω7ε

4| ln ε2|

∫ ρ
ε

0

[
3

1 + y2
−

3

(1 + y2)2
+

1

(1 + y2)3

]
dy
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+ 3C2
7ω7ε

4

∫ ρ
ε

0

[
3

1 + y2
−

3

(1 + y2)2
+

1

(1 + y2)3

]
ln(1 + y2)dy

≤ 3C2
7ω7ε

4| ln ε2|

∫ +∞

0

[
3

1 + y2
+

1

(1 + y2)3

]
dy + 3C2

7ω7ε
4

∫ ρ
ε

0

4dy

= O(ε3). (4.50)

In conclusion, from (4.41)-(4.50), we obtain (4.34). The proof is complete.

Now, we are able to verify condition (3.18) for N = 5, 6, 7.

Lemma 4.7. Assume that N = 5, 6, 7. If (λ, µ) ∈ B ∪C, then (3.18) holds.

Proof. The proof is similar to the proof of Lemma 4.5 and we only sketch the outline. Notice

that for ε suitable small, we still have there is a tε ∈ (0,+∞) satisfying (4.29) and (4.30). From

this, (4.14), and Lemma 4.6, one has

sup
t≥0

I(tuε) ≤ h(t∗ε)−
1

2
λt2ε‖uε‖

2
2 −

1

2
µt2ε(ln t

2
ε + 1)‖uε‖

2
2 −

1

2
µt2ε

∫

Ω

u2ε lnu
2
εdx

≤
2

N
S

N
4 +O(εN−4)− CµεN−4 ln ε.

Then the conclusion follows by choosing u∗ ≡ uε with suitable small ε. The proof is complete.

By virtue of the above lemmas, we can establish the existence results for problem (1.1).

Proof of Theorem 2.1 . (i) When N ≥ 8 and (λ, µ) ∈ A, following from Lemmas 4.3 and 4.5,

we know that condition (3.18) holds. Consequently, there exists a mountain pass type solution

u to problem (1.1) from Lemma 3.6. Furthermore, in view of Remark 3.1, we know that u is a

ground state solution to problem (1.1).

(ii) When N = 8, (λ, µ) ∈ B ∪C with
25 · 1920e

λ
µ
+ 34

3

ρ4max

< 1, it follows from Lemma 4.5 that

condition (3.18) is valid. Thus, from Lemma 3.6, we know that there exists a nontrivial weak

solution u to problem (1.1).

(iii) When N = 5, 6, 7 and (λ, µ) ∈ B ∪ C, by combining Lemma 3.6 with Lemma 4.7, we

know that there exists a nontrivial weak solution u to problem (1.1). The proof of Theorem

2.1 is complete.

Finally, we give the proof of the nonexistence of positive solutions in the following.

Proof of Theorem 2.2. To this end, we assume by contradiction that problem (1.1) admits a

positive solution u0. Let φ1(x) > 0 be the first eigenfunction corresponding to λ1(Ω). Then,

by integrating by parts, one has

∫

Ω

(λ+ µ lnu20 + u2
∗∗−2

0 )u0φ1dx =
∫
Ω
∆u0∆φ1dx =

∫
Ω
φ1∆

2u0dx = λ1(Ω)
∫
Ω
u0φ1dx,
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or equivalently
∫

Ω

(λ − λ1(Ω) + µ lnu20 + u2
∗∗−2

0 )u0φ1dx = 0.

Set

f(t) := λ− λ1(Ω) + µ ln t2 + t2
∗∗−2, t > 0,

Direct computation shows that f attains its minimum at t̃ :=
(

−µ(N−4)
4

)N−4

8

and

f(t) ≥ f(t̃) =
−µ(N − 4)

4
+
µ(N − 4)

4
ln

(
−µ(N − 4)

4

)
+ λ− λ1(Ω) ≥ 0,

by assumption. Following from u0 ∈ H2
0 (Ω) and u0 > 0, φ1 > 0, we claim that

∫
Ω
f(u0)u0φ1dx >

0. Otherwise, f(u0) = 0 a.e. in Ω, which implies that u0 =
(

−µ(N−4)
4

)N−4

8

a.e. in Ω, and this

contradicts with the assumption that u0 ∈ H2
0 (Ω). Thus, we see that

0 =

∫

Ω

(λ − λ1(Ω) + µ lnu20 + u2
∗∗−2

0 )u0φ1dx =

∫

Ω

f(u0)u0φ1dx > 0,

a contradiction. Hence problem (1.1) has no positive solutions. This completes the proof.
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