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Some invariants related to threshold and chain graphs
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Abstract

Let G = (V,E) be a finite simple connected graph. We say a graph G realizes a code of the

type 0s11t10s21t2 · · · 0sk1tk if and only if G can obtained from the code by some rule. Some classes

of graphs such as threshold and chain graphs realizes a code of the above mentioned type. In

this paper, we develop some computationally feasible methods to determine some interesting graph

theoretical invariants. We present an efficient algorithm to determine the metric dimension of

threshold and chain graphs. We compute threshold dimension and restricted threshold dimension

of threshold graphs. We discuss L(2, 1)-coloring of threshold and chain graphs. In fact, for every

threshold graph G, we establish a formula by which we can obtain the λ-chromatic number of G.

Finally, we provide an algorithm to compute the λ-chromatic number of chain graphs.

Keywords: Threshold graph, chain graph, metric dimension, threshold dimension, λ-chromatic num-

ber.

2020 AMS Classification Code: 05C12, 05C15, 05C85.

1 Introduction

This paper is concerned with threshold and chain graphs. Recall that a graph G is called a chain

graph if it is bipartite and the neighbourhoods of vertices in each partite set form a chain with respect

to set inclusion. The color classes U , V of a chain graph G can be partitioned into h non-empty

cells U1, · · · , Uh and V1, · · · , Vh such that N(u) = V1 ∪ · · · ∪ Vh−i+1 for any vertex u ∈ Ui with

1 ≤ i ≤ h, N(u) denotes the neighbourhood of a vertex u of G. Equivalently, chain graphs are

{2K2, C3, C5}-free graphs. Chain graphs present a broad class of graphical models for description of

conditional independence structures, including computer networks, social networks, communication

networks, information networks, software designs and Bayesian networks.

On the other hand, threshold graphs are {P4, C4, 2K2}-free graphs. The concept of threshold graphs

was first established by the authors Chvátal and Hammer [3] and Henderson and Zalcstein [9]. Thresh-

old graphs play an important role in graph theory as well as in several applied areas such as psychology,

computer science, scheduling theory, etc. These graphs can be used to control the flow of information

between processors, much like the traffic lights used in controlling the flow of the traffic. These graphs
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can be viewed as special cases of some wider classes of graphs like cographs, split graphs and interval

graphs.

It is important to mention here that threshold and chain graphs can be generated by some binary

code. In fact, given a binary code of the type 0s11t1 · · · 0sk1tk , where si and ti are positive integers with

1 ≤ i ≤ k, we can construct these graphs. A formal definition is presented in section 2. In this paper,

we are mainly interested to determine some graph theoretical invariants such as metric dimension,

threshold dimension, restricted threshold dimension and λ-chromatic number from a binary generating

code 0s11t1 · · · 0sk1tk . We focus on developing some computationally feasible methods to determine the

invariants discussed in the succeeding sections.

We have organized the theory and the results involved in this investigation as follows. In section 2,

we present some preliminary information related to threshold and chain graphs. We discuss some results

regarding metric dimension of threshold and chain graphs. We present an algorithm for computing the

metric dimension of a threshold graph and a chain graph from their respective binary generating code.

In section 3, we provide bounds for the threshold dimension and describe the method (Algorithm-

(a)) for computing the restricted threshold dimension of a threshold graph. Finally, we discuss the

λ-chromatic number of a threshold graph and introduce an algorithm (Algorithm-(b)) to determine

the λ-chromatic number of chain graphs.

2 Metric dimension

A threshold graph can be defined in several different ways as can be seen in [13]. We follow the

definition through binary generating codes, that is, a threshold graph G(b) is obtained from a binary

code of the form b = (b1b2 · · · bn) in the following way,

(i) Assume G1 = G(b1) = K1, a single isolated vertex.

(ii) For i ≥ 2, let Gi−1 = G(b1b2...bi−1). Then the graph Gi = G(b1b2...bi−1bi) is obtained by adding

bi vertices to Gi−1 (already constructed). Note that bi = 0 if the vertex vi is added as an isolated

vertex to Gi−1, and bi = 1 if vi is added as a dominating vertex to Gi−1. This representation is

called a binary generating code for the threshold graph and is written as,

b = (0s11t1)(0s21t2) · · · (0sk1tk),where si, ti > 0 for 1 ≤ i ≤ k.

We restrict ourselves with connected graphs only, so bk = 1. A simplified illustration of threshold

graph is shown in Figure 1-(a).

Chain graphs are analogues to threshold graphs in the class of all connected bipartite graphs of specified

order and size. By deleting all the edges that belong to the complete part of a threshold graph, we

obtain the chain graph. Accordingly, a chain graph can also be generated by a binary code in the

following way,

(i) Assume G1 = G(b1) = K1, a single isolated vertex.

(ii) For i ≥ 2, let Gi−1 = G(b1b2...bi−1). Then the graph Gi = G(b1b2...bi−1bi) is obtained by adding
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bi vertices to Gi−1 (already constructed). Note that bi = 0 if the vertex vi is added as an isolated

vertex to Gi−1 and bi = 1 if vi is added as a dominating vertex to the only previously added

isolated vertices of Gi−1. A representation of the chain graph is shown in Figure 1-(b).
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Figure 1: Representation of threshold and chain graphs generated by a code 0101010101

Note that, we call a part 0s1t of a binary generating code as a string. The power bit 0s represents

the independent part (white class) and 1t represents the complete part (black class) of vertices of the

graph G realized by 0s11t10s21t2 · · · 0sk1tk .

Let W = {v1, v2, · · · , vk} be an ordered set of vertices of G and let w ∈ V (G). The representation of

w with respect to W is the ordered k-tuple d(w|W) =
(
d(w, v1), d(w, v2), · · · , d(w, vk)

)
, where d(w, vi)

represents distance between the vertex w and vertices vi, where 1 ≤ i ≤ k. If every two vertices of G

have distinct representations with respect to W, then the set W is called a resolving set (locating set)

for G. The metric dimension of G is the minimum cardinality of a resolving set of G denoted by β(G).

A resolving set containing a minimum number of vertices is called a basis (reference set) for G.

Resolving sets for graphs were introduced independently by Slater [16] and Harary and Melter[8],

while the concept of a resolving set and that of metric dimension were defined much earlier in the more

general context of metric spaces by Blumenthal in his monograph theory and applications of distance

geometry. Graphs are special examples of metric spaces with their intrinsic path metric. The metric

dimension has appeared in various applications in graph theory as diverse as pharmaceutical chemistry,

combinatorial optimization [15], mastermind game tactics [4], network discovery and verification [1],

robot navigation [11] and so on. According to the authors [5], the problem of determining the metric

dimension of an arbitrary graph is NP-complete. The following interesting results have appeared in

[2].

Theorem 2.1. If G is a connected graph of order n ≥ 2 and diameter d, then f(n, d) ≤ β(G) ≤ n− d,

where f(n, d) is the least positive integer k for which k + dk ≥ n.

Theorem 2.2. Let G be a connected graph of order n ≥ 2. Then the following hold,

(i) β(G) = 1 if and only if G is a path and,

(ii) β(G) = n− 1 if and only if G is a complete graph.

In the following result, we determine the metric dimension of a threshold graph realized by a string
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of type 0s1t.

Lemma 2.3. If G is a graph of order s + t realized by the string 0s1t, then β(G) = s + t − 2, where

s > 1.

Proof. We partition the vertex of G as, V (G) = U ∪ V , where U = {u1, u2, · · · , us} and V =

{v1, v2, · · · , vt} represents the independent and complete parts of G. Since G is threshold, therefore

d(ui, uk) = 2, for all i 6= k and d(ui, vj) = d(vj , vl) = 1, for all j 6= l. It follows that there are only two

vertices in G (one from each U and V ) whose distances are uniquely determined by the vertex set of

G. Therefore the resolving set of G contains exactly s− 1 vertices of U and t− 1 vertices of V , that is,

W = {u1, u2, · · · , us−1, v1, v2, · · · , vt−1} contains all but two vertices of G and the result follows.

Proposition 2.1. Let G1 be a graph realized by 0s11t1 with β(G1) = α and let G2 be a graph realized

by 0s11t10s21t2 . Then the metric dimension of G2 is one of the following.

(i) If s2 > 1, t2 > 1 and G1 is not a star graph, then β(G2) = α + (s2 + t2 − 2), otherwise it is

α+ (s2 + t2 − 1).

(ii) If s2 > 1, t2 = 1 and G1 is not a star graph, then β(G2) = α+ (s2 − 1), otherwise it is α + s2.

(iii) If s2 = 1, t2 > 1, then β(G2) = α+ t2.

(iv) If s2 = 1, t2 = 1, then β(G2) = α+ 1.

Proof. As before, we partition the vertex set of G2 as, V (G2) = U ∪V , where U = {(x1, x2, · · · , xs1)∪

(z1, z2, · · · , zs2)} = {I1 ∪ I2} and V = {(y1, y2, · · · , yt1)∪ (u1, u2, · · · , ut2)} = {J1 ∪J2}. The sets I1, I2

and J1, J2 respectively represents the independent and complete parts of G2. For all i, j, k and l,

d(xi, yj) = d(xi, ul) = d(zk, ul) = 1 and d(xi, zk) = d(yj , zk) = 2.

To prove (i), assume G1 is not a star graph. Then the distance vector of all vertices of I1 is of the

form (2, 2, · · · , 2, 1, 1, · · · , 1, 2, 2, · · · , 2, 1, 1, · · · , 1), where as the distance vectors of all vertices of J1,

I2 and J2 are of the forms (1, 1, · · · , 1, 1, 1, · · · , 1, 2, 2, · · · , 2, 1, 1, · · · , 1), (2, 2, · · · , 2, 2, 2, · · · , 2

, 2, 2, · · · , 2, 1, 1, · · · , 1) and (1, 1, · · · , 1, 1, 1, · · · , 1, 1, 1, · · · , 1, 1, 1, · · · , 1) respectively. Therefore, W =

{x1, x2, · · · , xs1−1, y1, y2, · · · , yt1−1, z1, z2, · · · , zs2−1, u1, u2, · · · , ut2−1} is the required resolving set and

consequently, β(G2) = s1 − 1 + t1 − 1 + s2 − 1 + t2 − 1 = α+ (s2 + t2 − 2).

If G1 is a star graph, then V (G2) = {x1, x2, · · · , xs1}∪{y1}∪{z1, z2, · · · , zs2}∪{u1, u2, · · · , ut2}. By

Lemma (2.3), the resolving set of G1 contain all but one vertices of I1. Taking this into consideration,

d(zk, xi) = 2 for all i, k and d(ul, xi) = 1 for all i, l. Thus, W = {x1, x2, · · · , xs1−1, z1, z2, · · · , zs2 , u1

, u2, · · · , ut2−1} and therefore, β(G2) = s1 − 1 + s2 + t2 − 1 = α+ (s2 + t2 − 1).

To prove (ii), we first assume that G1 is not a star graph. Then by Lemma (2.3), the resolv-

ing set of G1 is {x1, x2, · · · , xs1−1, y1, y2, · · · , yt1−1}. By adding s2 number of isolated vertices and

a single dominating vertex u1 to G1, the new graph G2 obtained from G1 has a vertex set of the

form {x1, x2, · · · , xs1} ∪ {y1, y2, · · · , yt1} ∪ {z1, z2, · · · , zs2} ∪ {u1}. However, d(zk, xi) = d(zk, yj) =

2 for all i, j, k and the vertex u1 is adjacent to every vertex of G2. Therefore, the resolving set of G2 con-

tains the resolving set of G1 and all but one vertices of I2. Thus, W = {x1, x2, · · · , xs1−1, y1, y2, · · · , yt1−1

, z1, z2, · · · , zs2−1} and β(G2) = s1 − 1 + t1 − 1 + s2 − 1 = α+ (s2 − 1).
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If G1 is a star graph, then V (G2) = {x1, x2, · · · , xs1}∪{y1}∪{z1, z2, · · · , zs2}∪{u1}. For each i and

k, we have d(zk, xi) = d(zk, y1) = 2, and therefore, the resolving set contains all but one independent

vertices of G2. This implies, W = {x1, x2, · · · , xs1−1, z1, z2, · · · , zs2} and β(G2) = s1− 1+ s2 = α+ s2.

For (iii), we consider the graph G2 obtained from G1 by adding a single isolated vertex z1 and

t2 number of dominating vertices. Then the vertex set of G2 is of the form {x1, x2, · · · , xs1} ∪

{y1, y2, · · · , yt1} ∪ {z1} ∪ {u1, u2, · · · , ut2}. For each i, j and l, d(z1, xi) = d(z1, yj) = 2 and d(ul, xi) =

d(ul, yj) = d(ul, z1) = 1. Therefore, the resolving set of G2 contains the resolving set of G1 and all the

newly added dominating vertices of G2. Thus, W = {x1, · · · , xs1−1, y1, · · · , yt1−1, u1, u2, · · · , ut2} and

β(G2) = s1 − 1 + t1 − 1 + t2 = α+ t2.

Finally for (iv), let V (G2) = {x1, x2, · · · , xs1} ∪ {y1, y2, · · · , yt1} ∪ {z1} ∪ {u1}. Then the resolving

set of G2 contains the resolving set of G1 along with one of the vertex from {z1, u1} and therefore,

β(G2) = α+ 1.

Theorem 2.4. For each si > 1, ti > 1 with 1 ≤ i ≤ k, the metric dimension of a graph G realized by

a code of the type 0s11t10s21t2 · · · 0sk1tk is
k∑

i=1
(si + ti − 2).

Proof. Apply Proposition (2.1) to each string of the form (0s31t3), (0s41t4), · · · , (0sk1tk ). Then the

resolving set of G contains exactly si −1+ ti − 1 number of vertices. Thus, β(G) =
k∑

i=1
(si + ti − 2).

Next, we provide bounds for the metric dimensions of a graph G realized by any code of the type

0s11t10s21t2 · · · 0sk1tk . We also present families of graphs for which the bounds are attained.

Theorem 2.5. Let G be a graph realized by a code 0s11t10s21t2 · · · 0sk1tk . Then the following hold,

k∑

i=1

(si + ti − 2) ≤ β(G) ≤

k∑

i=1

(si + ti − 1).

If si > 1 and ti > 1 with 1 ≤ i ≤ k, then the lower bound is attained and the upper bound is attained

if and only if si = 1 and ti ≥ 1.

Proof. By Lemma (2.3), the resolving set of every graph realized by a string (0si1ti) contains atleast

(si+ ti−2) vertices. Therefore, β(G) ≥
k∑

i=1
(si + ti − 2) and the equality follows from Theorem (2.4).

By Lemma (2.3), we see that for each i, 1 ≤ i ≤ k there are at most two vertices in each string

(0si1ti) (one from each partite set) which does not belong to W of G. If si = 1 for all i, then by

Theorem (2.4), the set W does not contain any vertex from the independent part of the string (0si1ti).

This implies that W contains all vertices of the complete part. However, if si ≥ 2, then W contains

atleast one vertex from the independent part of the string (0si1ti), which resolves any pair of vertices

from two consecutive complete parts say Ji and Ji+1 of G. Note that if si = 1 for each i, then |W|

is maximum (that is, when every string in the graph G is of the form 01ti , where ti ≥ 2), that is,

|W| ≤
k∑

i=1
(si+ ti− 2+1) =

k∑

i=1
(si+ ti− 1). Moreover, if for each i, si = 1 and ti ≥ 1, then the equality
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follows directly from Theorem (2.4) and consequently, β(G) =
k∑

i=1
(1 + ti − 1) =

k∑

i=1
ti.

Conversely, suppose that there is atleast one si > 1. Without loss of generality say it is s1. Then the

graph G realizes a code 0s11t101t2 · · · 01tk . By Lemma (2.3), we have seen that if the cardinality of the

independent part in any string 0si1ti is greater than 1, then the resolving set contains exactly si+ ti−2

vertices. Using this argument, the metric dimension of G is (s1+t1−2)+(s2+t2−1)+· · ·+(sk+tk−1) =
k∑

i=1
(si + ti − 1)− 1 < β(G), a contradiction.

It is pertinent to mention that from preceding results, the metric dimension β(G) of a graph G

realized by any code of the type 0s11t10s21t2 · · · 0sk1tk is dependent on the powers of bits 0 and 1 of

strings (0si1ti), that is, by varying the powers of bits in the code, β(G) also varies. In fact β(G) gets

effected if and only if si = 1 or ti = 1. As seen above in Theorem (2.5), the upper bound for β(G) is

attained if and only if si = 1 and ti ≥ 1 for each i and the lower bound is attained if for each i, si > 1

and ti > 1. Below, we present an algorithm to determine the metric dimension of any graph G realized

by a code of the type 0s11t10s21t2 · · · 0sk1tk . The input is a binary code of length k ≥ 3, and in return

we obtain β(G) .

Algorithm-(a) (method to compute the metric dimension of threshold graphs)

INPUT: (0s11t1)(0s21t2) · · · (0sk1tk ).

OUTPUT: β(G).

Step-1. If i = 2, 1 ≤ i ≤ k, then β(G) = α1 (computed in Proposition (2.1)). For i = 3, go to Step-2.

Step-2. If s3 > 1 and t3 ≥ 1, then β(G) = α1 + (s3 + t3 − 1) = α2, only if s2 > 1, t2 = 1 or s2 > 1

and t1 = s1 = t2 = 1, otherwise, apply Proposition (2.1). For i = 4, go to Step-3.

Step-3. If s4 > 1 and t4 ≥ 1, then β(G) = α2 + (s3 + t3 − 1) = α3, only if s3 > 1, t3 = 1 or s2 > 1

and t2 = s3 = t3 = 1 or s1 > 1 and t1 = t2 = t3 = s2 = s3 = 1, otherwise, apply Proposition (2.1). For

i = 5, go to Step-4.

Step-4. Follow the same iteration for i = 5, 6, · · · , k− 1 and suppose that for i = k− 1, β(G) = αk−2.

Finally, for i = k go to Step-5.

Step-5. If sk > 1 and tk ≥ 1, then β(G) = αk−2 + (sk + tk − 1) = αk−1, only if sk−1 > 1 and tk−1 = 1

or for any i, 1 ≤ i ≤ k − 2, si > 1, ti = 1 and si+1 = si+2 = · · · = sk−1 = ti+1 = ti+2 = · · · = tk−1 = 1,

otherwise, apply Proposition (2.1).

Step-6. END.

It is not difficult to see that the algorithm-(a) is linear. Indeed for each i, 1 ≤ i ≤ k, β(G) is

computed on the basis of previous iteration and we have at most n iterations such that each one is

performed with O(1) operations, which gives O(n) for these steps.

We notice that by removing all the edges in the complete part of a threshold graph, the resultant

graph is a chain graph. As discussed above, chain graphs can also be generated by a binary code of

the type 0s11t10s21t2 · · · 0sk1tk . The metric dimension of a threshold graph 0s1t is either s + t − 2 or

s+ t− 1. However, the metric dimension of its corresponding chain graph of order greater or equal to

three is always s+ t− 2.
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In the following result, we determine the metric dimension of a chain graph realized by a code

0s11t10s21t2 .

Lemma 2.6. Let H1 be a chain graph realized by 0s11t1 with β(H1) = α′ and let H2 be a chain graph

realized by 0s11t10s21t2 . Then the following hold.

(i) For each s2 > 1 and t2 > 1,

β(H2) =







α′ + (s2 + t2 − 1) if s1 > 1 and t1 = 1

α′ + (s2 + t2 − 2) otherwise.

(ii) For s2 > 1 and t2 = 1,

β(H2) =







α′ + s2 if s1 > 1 and t1 = 1

α′ + (s2 − 1) otherwise.

(iii) For s2 = 1 and t2 > 1, β(H2) = α′ + t2.

(iv) For each s2 = t2 = 1,

β(H2) =







1 if s1 = t1 = 1

α′ + 1 otherwise.

Proof. We partition the vertex set of H2 as, V (H2) = U ∪ V = {u1, u2, · · · , us1} ∪ {v1, v2, · · · , vt1} ∪

{u′1, u
′
2, · · · , u

′
s2
}∪{v′1, v

′
2, · · · , v

′
t2
} = U1∪V1∪U2∪V2, where U1, U2 represents classes of white vertices

and V1, V2 represents classes of black vertices in H2. Then for every i, j, k and l, d(ui, u
′
k) = d(vj , v

′
l) = 2,

d(ui, vj) = d(ui, v
′
l) = d(u′k, v

′
l) = 1 and d(vj , u

′
k) = 3.

To prove (i), suppose s1 > 1 and t1 = 1. Then, V (H2) = {u1, · · · , us1} ∪ {v1} ∪ {u′1, · · · , u
′
s2
} ∪

{v′1, v
′
2, · · · , v

′
t2
}. From the structure of the graph H2, we see that there are vertices x ∈ U1 ∪ U2,

y ∈ V2 and z ∈ V1 such that d(x|W) 6= d(y|W) 6= d(z|W), where W = V (H2) \ {x, y, z}. Therefore,

β(H2) = s1 − 1 + s2 + t2 − 1 = α′ + (s2 + t2 − 1), where α′ = β(H1).

If s1 = 1 and t1 > 1 , then V (H) = {u1}∪{v1, · · · , vt1}∪{u
′
1, · · · , u

′
s2
}∪{v′1, · · · , v

′
t2
}. Using the same

argument as above, the resolving set of H2 is given as, W = {v1, · · · , vt1−1, u
′
1, · · · , u

′
s2−1, v

′
1, · · · , v

′
t2−1}.

Thus, β(H) = t1 − 1 + s2 − 1 + t2 − 1 = α′ + (s2 + t2 − 2).

For (ii), it is given that s2 > 1 and t2 = 1. Then for s1 > 1 and t1 = 1, V (H2) = {u1, u2, · · · , us1}∪

{v1} ∪ {u′1, u
′
2, · · · , u

′
s2
} ∪ {v′1}. There are vertices x ∈ U1 ∪U2, y ∈ V2 and z ∈ V1 such that d(x|W) 6=

d(y|W) 6= d(z|W), where W = V (H2)\{x, y, z}. Therefore, β(H) = |U1|+|U2|−1 = s1−1+s2 = α′+s2.

If s1 = 1 and t1 > 1, then using the same argument as above, the resolving set of H2 is, W =

{v1, v2, · · · , vt1−1, u
′
1, u

′
2, · · · , u

′
s2−1} and consequently, β(H2) = t1 − 1 + s2 − 1 = α′ + s2 − 1.

To prove (iii), let s1 > 1 and t1 = 1. Then, V (H2) = {u1, u2, · · · , us1}∪{v1}∪{u
′
1}∪{v

′
1, v

′
2, · · · , v

′
t2
}.

The proof follows from (ii).

For (iv), it is given that s2 = t2 = 1, suppose that s1 = t1 = 1. Then the graph H2 is a path on

four vertices and therefore, β(H2) = 1. If s1 > 1 and t1 = 1, then the basis of H2 contains all vertices

of H2 except one vertex of U1. Thus, β(H2) = s1 − 1 + 1 = α′ + 1.

7



Remark 2.2. By Lemma (2.6), the metric dimension of any chain graph H realized by (0s11t1)(0s21t2)

· · · (0si1ti) can be obtained iteratively for each i ≥ 3. In fact, for 3 ≤ i ≤ k, the Algorithm-(a) can be

applied to determine the metric dimension of H, note that for i = 2, β(H) = α2 (Lemma (2.6)). The

Algorithm-(a) establishes a relationship between β(H) and β(G) and the equality β(H) = β(G) − 1 or

β(H) = β(G) follows, where G is threshold graph.

Now, we provide an example which illustrates the above theory and Algorithm-(a) related to β(H)

and β(G).

Example 2.7. Let G be a threshold graph and H be a chain graph generated by a code of the type

01203102120314010314. By Algorithm-(a), we see that β(G) = 18 whereas β(H) = 17. Moreover, for

s1 ≥ 2, if G and H are realized by 0s110s210s310s410s510s610s710s81, then β(H) = β(G) =
( 8∑

i=1
si
)
−1.

3 Threshold dimension, restricted threshold dimension of a threshold

graph

The metric basis determines the location of landmarks in a graph with a fixed number of vertices.

Chartrand et. al [2] and Khuller et. al [10] previously posed a question that how the metric dimension

of a graph is related to its subgraphs? However, in [14], the authors have asked that how much the

metric dimension of a graph can be reduced by adding edges? Equivalently, for a given graph G, what

is the smallest metric dimension among all graphs that contain G as a spanning subgraph? Recall that

the threshold dimension of a graph G, denoted by τ(G), is defined as,

τ(G) = min{β(H) : H contaning G as a spanning subgraph}.

A graph G is called irreducible if β(G) = τ(G), otherwise it is reducible. In this section, a graph of

order less or equal to 4 is always irreducible.

Lemma 3.1. For s ≥ 3, let G be a graph realized by 0s1t. If s ≤ 2k − 1 + k, then τ(G) = t− 1 + k,

where k ≥ 2 is the minimum number of isolated vertices taken from the independent part of G.

Proof. Let V (G) = I ∪ J , where I and J represents the independent and complete parts of G with

cardinalities s and t respectively. The only way to add edges in G is to add edges between the isolated

vertices in I. Choose W ⊂ I, a proper subset of I with cardinality k ≥ 2. Then it can be verified that

there are 2k−1 vertices of I such that their distance vectors are distinct with respect to W . In fact, the

distance vectors are of the form (1, 1, · · · , 1, 2), · · · , (1, 2, 2, · · · , 2, 1), · · · , (2, 1, · · · , 1), · · · , (2, 2, · · · , 2).

Therefore the resolving set of G contains |J | − 1 and |W | vertices. Thus, τ(G) = t− 1 + k.

Example 3.2. Let G be a graph realized by 02359115. Then for k = 11, τ(G) = 15− 1 + 11 = 25 and

2359− 11 ≤ 211− 1. However, if k = 10, then it can be verified that for G, Lemma (3.1) does not hold.

Theorem 3.3. Let G be a threshold graph realized by 0s11t10s21t2 . Then one of the following holds.

(i) If s1 + t1 + s2 − k1 ≤ 2k1 − 1, then τ(G) = (t2 − 1) + k1.

(ii) If t1 ≥ 2s2 − 1 and s1 − k2 ≤ 2s2+k2 − 2s2 , then τ(G) = (t2 − 1) + s2 +m1 + k2.
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(iii) If t1 < 2s2 − 1 and s1 −m2 − k2 ≤ 2s2+k2 − 2s2 , then τ(G) = (t2 − 1) + s2 + k2,

where,m1 = t1 − 2s2 + 1, m2 = 2s2 − 1− t1 and k1, k2 are positive integers.

Proof. Let V (G) = U ∪ V , where U = U1 ∪ U2 and V = V1 ∪ V2 represents the independent and

complete parts of G with cardinalities s1 + s2 and t1 + t2. Clearly, from the structure of G, the

resolving set of G contains atleast |V2| − 1 vertices.

To prove (i), choose W ⊆ U2, a proper subset with cardinality k1 ≥ 2. Then by the similar argument

as in Lemma (3.1), we have the required result.

If |V1| ≥ 2|U2| − 1, then t1 − 2s2 + 1 ≥ 0. Note that m1 = t1 − 2s2 + 1 vertices from V1 have same

distance vectors with respect to U2 after adding s2(2
s2−1−1) edges between V1 and U2. Further adding

of edges between vertices of V1 is not possible, since V1 is complete. It remains to add edges between

the vertices of partite sets U1 and U2. As before, choose W ⊆ U1, a proper subset with cardinality k2.

Then the resolving set of G contains exactly |V2| − 1 + |U2| + |V1| − 2|U2| + 1 + k2 vertices, provided

|U1| − k2 ≤ 2|U2|+k2 − 2|U2|. Thus, τ(G) = (t2 − 1) + s2 +m1 + k2, whenever s1 − k2 ≤ 2s2+k2 − 2s2 .

Therefore, (ii) follows.

If |V1| < 2|U2| − 1, then m2 = t1 − 2s2 + 1 < 0 and there is nothing to prove. Suppose |U1| ≤ |m2|,

then it gets reduced to (i) proven above. If |U1| > |m2|, then as in (ii), we take a smallest subset

of U1 with cardinality as k2 satisfying m2 − k2 ≤ 2s2+k2 − 2s2 . Therefore resolving set of G contains

(t2)− 1 + s2 + k2 vertices, whenever m2 − k2 ≤ 2s2+k2 − 2s2 . Thus, (iii) follows.

Theorem 3.4. Let G be a threshold graph realized by 0s11t10s21t20s31t3 . Then one of the following

holds.

(i) If
3∑

i=1
(si + t3−i)− k1 ≤ 2k1 − 1, then τ(G) = (t3 − 1) + k1.

(ii) If t2 ≥ 2s3 −1 and s1+ t1+ s2−k2 ≤ 2s3+k2 −2s3 , then τ(G) = (t3−1)+ s3+
(
t2− (2s3 −1)

)
+k2.

(iii) If t2 < 2s3 − 1,
(
t1 − (2s3 − 1 − t2)

)
≥ (2s2+s3 − 2s3) and s1 + s2 − k3 ≤ 2s3+k3 − 2s3 , then

τ(G) = (t3 − 1) + s3 + (t1 + t2 + 1− 2s2+s3) + k3.

(iv) If t1 + t2 < 2s3 − 1,
2∑

i=1
(si + ti) ≥ 2s3 − 1 and

2∑

i=1
(si + ti) − k3 ≤ 2s3+k3 − 2s3 , then

τ(G) = (t3 − 1) + s3 + k3.

The numbers k3, k2 and k1 are any positive integers.

Proof. The inequalities of the above type are extensions of the inequalities given in Theorem (3.3),

therefore the result can be proven by the similar approach.

Remark 3.1. By Theorems { (3.3), (3.4)}, we can determine the threshold dimension of any thresh-

old graph G realized by a code of the type 0s11t10s21t2 · · · 0sk1tk . Suppose for each i, si ≥ ti and
k∑

i=1
(si + tk−i)− k1 ≤ 2k1 − 1, where 1 ≤ i ≤ k and k1 a positive integer. Then τ(G) = (tk − 1) + k1.

Moreover, if
k−1∑

i=1
< 2sk − 1,

k−1∑

i=1
(si + ti) ≥ 2sk − 1 and

k−1∑

i=1
(si + ti) − r ≤ 2sk+r − 2sk , then

τ(G) = (tk − 1) + sk + r, r is some positive integer. Therefore, based on the conditions of the powers
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of bits 0 and 1 of the code we can establish the threshold dimension of any threshold graph.

3.1 Restricted threshold dimension

As defined in the preceding section, the threshold dimension of a threshold graph G is the minimum

metric dimension among all graphs that contain G as a spanning subgraph. However, the resulting

graph with the least metric dimension may or may not be threshold. Related to the threshold dimension

of G, there is another graph theoretical invariant called as the restricted threshold dimension of G,

denoted by τr(G), which is defined as the smallest metric dimension among all threshold graphs which

contains G as a spanning subgraph, that is,

τr(G) = min{β(H) : H is a threshold graph contaning G as a spanning subgraph}.

This section is devoted to study the restricted threshold dimension of the threshold graph.

Proposition 3.2. Let G be a threshold graph realized by 0s1t. Then the following hold,

τr(G) = ⌈
s

2
⌉+ (t− 1),

where s ≥ 4.

Proof. We partition the vertex of G as, V (G) = U ∪ V . The set U = {u1, u2, · · · , us}, represents

the independent part of G and V = {v1, v2, · · · , vt}, represents the complete part of G. By Lemma

(2.3), β(G) = s+ t− 2. The only way to add edges in G such that G continues to remain a threshold

is to add edges between the vertices in U . Suppose u1 ∼ {u2, u3, · · · , us}, that is u1 is adjacent to

each of the vertex from {u2, u3, · · · , us}. Then the resulting graph H is the threshold graph realized

by0s−11t+1 with β(G) = β(H). Now, suppose u1 ∼ u2 and {u1, u2} ∼ {u3, u4, · · · , us}. Then the

resulting threshold graph is some H realized by 0s−21t+2 with β(G) = β(H). We continue the same

process of adding edges till the power of a bit 0 is reduced to two and the resulting graph is a threshold

graph realized by 021s+t−2. The total number of such graphs realized by strings of length 1 are
(
s
1

)
−2.

Further, let H be a threshold graph realized by 0s11t10s21t containing G as a spanning subgraph. Note

that H is obtained from G by making t1 dominating vertices in U and partition s isolated vertices of U

into s1 and s2 isolated vertices. The total number of such graphs is
(
s
3

)
. Using the same procedure, it

can be verified that if s is even, then there are exactly
(
s
1

)
−2+

(
s
3

)
+
(
s
5

)
+ · · ·+

(
s

s−1

)
different threshold

graphs with strings of lengths 1, 2, · · · , s2 . If s is odd, there are
(
s
1

)
− 2 +

(
s
3

)
+

(
s
5

)
+ · · · +

(
s

s−2

)
+ 1

different threshold graphs with lengths 1, 2, · · · , ⌈ s2⌉.

By Theorem (2.5), among all 2s−1 − 2 threshold graphs with strings of lengths less or equal to ⌊ s4⌋,

the metric dimension is greater than ⌈ s2⌉. Using the Algorithm-(a), the metric dimension of all these

2s−1 − 2 threshold graphs with G as a spanning subgraph lies in [⌈ s2⌉, s + t− 2], where the maximum

is attained for graphs with strings of length 1 and the minimum is attained if the graph with string is

of length atleast ⌊ s4⌋+1. Furthermore, the graphs obtained by adding the maximum number of edges

with smaller metric dimension are clearly dependent on the cardinality of U alone. So, we consider the

following cases.
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Case - I. s ∈ {4k : k ≥ 1} ∪ {4k + 2 : k ≥ 1}, then following the above computations, there is a

unique graph H realized by 0210101 · · · 0101t with strings of length s
2 . In fact H is obtained by adding

2k(2k − 1) or 2k(2k + 1) edges with metric dimension 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

s
2
−1

+t = s
2 + t− 1

Case - II. s ∈ {4k+1 : k ≥ 1}∪{4k−1 : k ≥ 2}, then there is a unique graph H = 0210101 · · · 0101t+1

with strings of length s−1
2 . The graph H is obtained by adding 2k(2k + 1) or 2k(2k − 1) edges with

metric dimension 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

s−1

2
−1

+(t+ 1) = s−1
2 + t = ⌈ s2⌉+ t− 1.

Thus, τr(G) = β(H) = ⌈ s2⌉+ t− 1.

Theorem 3.5. Let G a threshold graph realized by 0s11t10s21t2 · · · 0sk1tk . Then for each i, τr(G) =
k∑

i=1

(
⌈si2 ⌉+ (ti − 1)

)
, where 1 ≤ i ≤ k, si ≥ 4 and ti ≥ 2.

Proof. By Proposition (3.2), the string 0s11t1 can be expressed in two ways only. If s1 is even, then

the string can be uniquely written as 0210101 · · · 0101t1 . On the other hand, if s1 is odd, then it can

be written as 0210101 · · · 0101t1+1. Using this approach to each string 0si1ti , 2 ≤ i ≤ k of the graph G.

Since G has k strings, therefore, the metric dimension of H is
(
⌈s12 ⌉ + (t1 − 1)

)
+

(
⌈s22 ⌉+ (t2 − 1)

)
+

· · ·+
(
⌈sn2 ⌉+ (tn − 1)

)
=

n∑

i=1

(
⌈si2 ⌉+ (ti − 1)

)
= τr(G).

Remark 3.3. For any threshold graph G realized by 0s11t10s21t2 · · · 0sk1tk , β(G) = τr(G), where 1 ≤

i ≤ k, si ≤ 3 and ti ≥ 2. If si ≥ 4 and ti = 1, then τr(G) = ⌈s12 ⌉+(⌈s22 ⌉+1)+ ⌈s32 ⌉+(⌈s42 ⌉+1)+ · · ·+
(
(⌈sk2 ⌉+1) or ⌈sk2 ⌉

)
(depending on the length of the binary generating code). If si ≤ 3 and ti = 1, then

τr(G) =
k∑

i=1
⌈si2 ⌉. Summing up all the theory related to the restricted threshold dimension of a threshold

graph G realized by 0s11t10s21t2 · · · 0sk1tk , τr(G) can be obtained by the following procedure.

(i) If si ∈ {4k : k ≥ 1}∪{4k+2 : k ≥ 1}, then write each of the strings 0si1ti of G as 0210101 · · · 0101ti .

If si ∈ {4k + 1 : k ≥ 1} ∪ {4k − 1 : k ≥ 2}, then write G as 0210101 · · · 0101ti+1. In each case the

strings of G are of the form (031ti), we write it as 0101ti , and continue the process untill the power of

a bit 0 in the resulting graph is reduced to not more than 2.

(ii) If the code of the resulting graph H is free from the string 0s1t, t ≥ 2 and strings (021) are repeated

n number of times, then replace 021 −→ (012) at even places of the code. If in the code of H, the string

(021) is repeated n number of times between strings 0s1t, t ≥ 2, then again replace (021) −→ (012)

at even places of the code. Finally, if the string (021) is repeated n number of times before or after

the string 0s1t, t ≥ 2, then follow the same process as mentioned. Therefore, by the Algorithm-(a),

β(H) = τr(G).

The following example illustrates Proposition (3.2) and Remark (3.3).

Example 3.6. Let G be a threshold graph realized by 0312081205106140712. Then by Algorithm-(a),

β(G) = 29. Further, by applying Proposition(3.2) to each of the strings of G, the code of the re-

sulting threshold graph H is (01012)(0210101012)(021012)(02101014)(02101013) and H contains G as

a spanning subgraph. Therefore, again by the Algorithm-(a), τr(G) = 22 = β(H). However, if G =

021041061081, then β(G) = 19 and the code of the resulting graph H is (021)(02101)(0210101)(021010101).

Note that the code of H contains the string 021 four times. Therefore, by Remark (3.3) replace
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021 −→ 012 at even places. Consequently, τr(G) = 12 = β(H).

4 λ-chromatic number

Let j and k be two positive integers, an L(j, k)-coloring of a graph G is a function from V (G) to

the set of non-negative integers such that |f(x) − f(y)| ≥ j, whenever x, y ∈ V (G) are adjacent and

|f(x) − f(y)| ≥ k, whenever x, y ∈ V (G) are at distance two apart. The difference between the

maximum and minimum values of f is called its span denoted by span(f). If f is a L(j, k)-coloring

of G with a minimum value δ (say), then the function g defined on V (G) by g(v) = f(v) is also an

L(j, k)-coloring with a minimum value of 0 and a maximum value of span(f) = span(g). An L(j, k)-

chromatic number, denoted by Lj,k(G), is the minimum span over all L(j, k)-colorings of G, and the

minimal coloring is the L(j, k) coloring that corresponds to it. For the cases j = 2 and k = 1, an

L(2, 1)-coloring problem was first studied by Griggs and Yeh [7]. An L(2, 1)- coloring that uses colors

from the set {1, 2, · · · , s} (not necessarily all) is called an s-coloring. The minimum s, so that G has a

s-coloring is called the λ- chromatic number of G and is denoted by λ(G). If the color h, 0 < h < s, is

not used in an s-coloring of G, then h is called the hole of the coloring. The L(j, k)-coloring problem

and L(2, 1)-coloring problem have been extensively studied in [6, 12].

In this section, we study the λ-chromatic number of threshold and chain graphs. In the following

result, we exactly determine the λ- chromatic number of a graph with diameter two.

Lemma 4.1. Let G be a diameter two graph with λ(G) = s. Then the following hold,

λ(Gm,n) = s+
|m− k|+ (m− k)

2
+ 2n,

where Gm,n is the graph obtained from G by adding m isolated and n dominating vertices, and k is the

number of holes in the s-coloring of G.

Proof. Let f be the minimum L(2, 1)-coloring of G with λ(G) = s and let {h1, h2, · · · , hk} be its holes.

We obtain Gm,n from G by adding {x1, x2, · · · , xm} isolated vertices and {y1, y2, · · · , yn} dominating

vertices. Define the L(2, 1)-coloring g on Gm,n as follows,

g(yi) = 2i− 2, 1 ≤ i ≤ n,

g(v) = f(v) + 2n, v ∈ V (G),

g(xi) = hi + 2n, 1 ≤ i ≤ m.

If m > k and 1 ≤ j ≤ m− k, then we define, g(xk+j) = s+ j + 2n.

Therefore, max
v∈V (Gm,n)

g(v) = s+
|m− k|+ (m− k)

2
+ 2n.

Since the diameter of G is two, therefore f must be one-one and this implies g is well defined L(2, 1)-

coloring of Gm,n. Further, f is minimum, therefore, λ(Gm,n) < s + |m−k|+(m−k)
2 + 2n is not possible

and we conclude λ(Gm,n) = s+ |m−k|+(m−k)
2 + 2n.
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The following result is an immediate consequence of Lemma (4.1).

Theorem 4.2. Let G be any threshold graph realized by (0s11t1)(0s21t2) · · · (0sk1tk). Then

λ(G) = 2

k∑

i=1

ti + (s1 − 1) +
1

2

k−1∑

i=1

(
|si+1 − hi|+ (si+1 − hi)

)

where hi = ti +
1
2

(
|ti−1 − si| + (ti−1 − si)

)
, 1 ≤ i ≤ k, denotes the number of holes in the minimum

coloring of G.

Proof. To prove the result, we use an iterative procedure on k. For k = 1, let G be a graph realized

by (0s11t1) with V (G) = X ∪Y = {x1, x2, · · · , xs1}∪ {y1, y2, · · · , yt1}. Define the L(2, 1)-coloring f on

V (G) as follows,

f(yi) = 2i− 2, 1 ≤ i ≤ t1,

f(xi) = 2t1 + (i− 1), 1 ≤ i ≤ s1.

Since G is threshold with diameter less than three, this implies that f is one-one. Moreover, the clique

number of G is t1+1, therefore f has t1 number of holes. Thus, f is minimal and λ(G) = 2t1+s1−1. Let

Gs2,t2 be a graph realized by (0s11t1)(0s21t2), obtained from G by adding s2 isolated and t2 dominating

vertices. Then by Lemma (4.1),

λ(Gs2,t2) = 2
2∑

i=1

ti + (s1 − 1) +
1

2

(
|s2 − h1|+ (s2 − h1)

)
,

where h1 = t1. We iterate further and finally, we obtain Gsk,tk = G realized by (0s11t1)(0s21t2) · · · (0sk1tk).

Again, by Lemma (4.1),

λ(G) = 2

k∑

i=1

ti + (s1 − 1) +
1

2

k−1∑

i=1

(
|si+1 − hi|+ (si+1 − hi)

)
.

For 1 ≤ i ≤ k, the equality hi = ti +
1
2

(
|ti−1 − si|+ (ti−1 − si)

)
follows directly from the definition of

minimal coloring f of G.

Recall that a chain graph satisfy the nesting property, that is, there exists a partition of U =

U1 ∪U2 ∪ · · · ∪Ul and V = V1 ∪ V2 ∪ · · · ∪ Vl such that for each i, 1 ≤ i ≤ l, the neighbourhood of each

vertex in Ui is V1 ∪ V2 ∪ · · · ∪ Vl+1−i. If |Ui| = mi and |Vi| = ni, where i = 1, 2, · · · , l, then the another

representation of G is G(m1, · · · ,ml; n1, · · · , nl). Below, we present an algorithm for determining the

λ-chromatic number of chain graphs.

Algorithm-(b) (method for computing the λ-chromatic number of chain graph)

INPUT: Chain graph G(m1, · · · ,ml; n1, · · · , nl)

Output: λ(G)

Step-1. For each vertices of the type ui1 ∈ U1, ui2 ∈ U2, · · · , uil ∈ Ul, where 1 ≤ i1 ≤ m1, 1 ≤ i1 ≤
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m2, · · · , 1 ≤ il ≤ ml. Define L(2, 1)-coloring on V (G) as,

f(ui1) = i1 − 1, 1 ≤ i1 ≤ m1,

f(ui2) = m1 − 1 + i2, 1 ≤ i2 ≤ m2,

...

f(uil) =
l−1∑

i=1

(mi)− 1 + il 1 ≤ il ≤ ml.

and for vertices of type vi1 ∈ V1, v12 ∈ V2, where 1 ≤ i1 ≤ n1, define L(2, 1)-coloring as,

f(vi1) =

l∑

i=1

mi + i1, 1 ≤ i1 ≤ n1 and f(v12) =

l∑

i=1

mi.

The sum
l∑

i=1
mi is the hole of f . To color the remaining vertices of the graph G, we go to Step-2 (note

that by definition of the graph, coloring of vertices of vi2 ∈ V2, 2 ≤ i2 ≤ n2, depends on the colors of

vertices of Ul).

Step-2. Compute |V2| − |Ul|, if s1 = |V2| − |Ul| ≤ 0, then go to Step-3.

Step-3. If r1 = |V2| − |Ul| > 0, define,

f(v
i2

′ ) =

l∑

i=1

(mi) + n1 + i
′

2 1 ≤ i
′

2 ≤ r1.

Step-4. Compute |V3| − |Ul−1|, if s2 = |V3| − |Ul−1| ≤ 0, then go to Step-5.

Step-5. If r2 = |V3| − |Ul−1| > 0, then compute r2 + s1. If s3 = r2 + s1 ≤ 0, then go to Step-6.

Step-6. If r3 = r2 + s1 > 0, define,

f(v
i3

′ ) =

l∑

i=1

(mi) + n1 + i
′

3, 1 ≤ i
′

3 ≤ r3,

otherwise go to Step-7.

Step-7. If no such s1 exists, then define,

f(v
i3

′ ) =

l∑

i=1

(mi) + n1 + r1 + i
′

3, 1 ≤ i
′

3 ≤ r3.

Step-8. Continue the same iterations.

Step-9. End.

Next, we provide extreme values (bounds) for λ-chromatic number of chain graphs.
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Theorem 4.3. Let G(m1, · · · ,ml; n1, · · · , nl) be a chain graph. Then the following hold,

l∑

i=1

mi + n1 ≤ λ(G) ≤

l∑

i=1

mi + n1 +

l−1∑

i=1

(ni+1 −ml+1−i).

If ni+1 > ml+1−i, then the maximum is attained and if ni+1 ≤ ml+1−i, then the minimum is attained,

where 1 ≤ i ≤ l − 1.

Proof. Since G is a bipartite graph with partite sets U and V , where U is partitioned into disjoint

sets U1, U2, · · · , Ul and V is partitioned into V1, V2, · · · ., Vl with cardinalities mi and ni, respectively

for 1 ≤ i ≤ l. We specify the vertices of U1, · · · , Ul and V1, · · · , Vl as follows,

U1 = {u11 , u21 , · · · , um1
},

U2 = {u12 , u22 , · · · , um2
},

...

Ul = {u1l , u2l , · · · , uml
},

V1 = {v11 , v21 , · · · , vn1
},

V2 = {v12 , v22 , · · · , vn2
},

...

Vl = {v1l , v2l , · · · , vnl
}.

We define L(2, 1)-coloring f : V (G) → [0,∞) of G as,

f(ui1) = i1 − 1, 1 ≤ i1 ≤ m1,

f(ui2) = m1 + i2, 1 ≤ i2 ≤ m2,

...

f(uil) =

l−1∑

i=1

(mi)− 1 + il, 1 ≤ il ≤ ml,

f(vi1) =

l∑

i=1

(mi) + i1, 1 ≤ i1 ≤ n1,

f(v12) =

l∑

i=1

mi.

Note that the vertex v12 is colored by the hole
l∑

i=1
mi. The coloring for rest of the vertices of V2 depends

on the cardinality of Ul, since d(uil , vi2) = 3 for each uil and vi2 . Similarly, coloring of vertices of V3

depends on the cardinalities of Ul and Ul−1 and in general, the coloring of vertices of Vl depends on

the cardinalities of sets U2, · · · , Ul. Suppose, |V2| ≤ |Ul|. Then color all but one (v12) vertices of V2

by the existing colors of vertices of Ul. In fact, if for each i, 3 ≤ i ≤ l, |Vi| ≤ |Ul+2−i|, then color the

vertices of Vi by the existing colors of Ul+2−i. Therefore by the definition, f is well-defined minimal

coloring. Thus, span(f) =
l∑

i=1
(mi) + n1 and consequently, λ(G) =

l∑

i=1
(mi) + n1.
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For each 2 ≤ i ≤ l, suppose |Vi| > |Ul+2−i|. Then, |V2|− |Ul| = r1, |V3|− |Ul−1| = r2, · · · , |Vl|− |U2| =

rk. By Algorithm-(b), we define L(2, 1)-colors of r1, · · · , rk vertices as,

f(v
i2

′ ) =

l∑

i=1

(mi) + n1 + i
′

2, 1 ≤ i
′

2 ≤ r1,

f(v
i3

′ ) =
l∑

i=1

(mi) + n1 + r1 + i
′

3, 1 ≤ i
′

3 ≤ r2,

...

f(v
il
′ ) =

l∑

i=1

(mi) + n1 + r1 + · · ·+ rk−1 + i
′

l, 1 ≤ i
′

l ≤ rk.

Again, by the definition, f is the well-defined minimal coloring of G and therefore, λ(G) = span(f) =
l∑

i=1
(mi)+n1+r1+· · ·+rk =

l∑

i=1
(mi)+n1+(n2−ml)+· · ·+(nl−m2) =

l∑

i=1
mi+n1+

l−1∑

i=1
(ni+1−ml+1−i).

We conclude this paper with the following example which illustrates Algorithm-(b) and Theorem

(4.3).

Example 4.4. Let G(5, 2, 3, 2, 4, 3, 3; 2, 2, 5, 3, 6, 2, 5) be a chain graph. Define the L(2, 1)-coloring

f : V (G) → [0,∞) of G as,

f(ui1) = i1 − 1, 1 ≤ i1 ≤ 5,

f(ui2) = 4 + i2, 1 ≤ i2 ≤ 2,

f(uij ) = 4 +
7∑

j=3

(mj−1) + ij , 1 ≤ ij ≤ mj and 3 ≤ j ≤ 7,

f(vi1) =

7∑

i=1

(mi) + i1 = 22 + i1, 1 ≤ i1 ≤ 2.

We compute |V2| − |U7| = −1 = s1 (say), it follows that the vertices of V2 can be colored by already

existing colors of vertices of U7. Therefore by Algorithm-(b), we define the colors of vertices of V2 as,

f(v12) =

7∑

i=1

(mi) = 22,

f(v22) =

7∑

i=1

(mi)− 1 = 21.

Next, we compute |V3| − |U6| = 2 = r1 and r1 + s1 = 1. Then by Algorithim-(b), we define the coloring
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of vertices of V3 as,

f(vi3) =

7∑

i=1

(mi)− (i3 + 1) = 22, 1 ≤ i3 ≤ 4

f(v53) =
7∑

i=1

(mi) + n1 + 1 = 25.

The coloring for rest of the vertices of V can be defined as,

f(vi4) =
7∑

i=1

(mi)− |V3| − i4, 1 ≤ i4 ≤ 3,

f(vi5) =
7∑

i=1

(mi)− |V3| − |V4| − i5, 1 ≤ i5 ≤ 3,

f(v
i
′

5

) =

7∑

i=1

(mi) + n1 + 1 + i
′

5, 1 ≤ i
′

5 ≤ 3,

f(vi6) =
7∑

i=1

(mi)− |V3| − |V4| − |V5 − 3| − i6, 1 ≤ i6 ≤ 2,

f(vi7) =
7∑

i=1

(mi)− |V3| − |V4| − |V5 − 3| − |V6| − i7, 1 ≤ i7 ≤ 3,

f(v
i
′

7

) =
7∑

i=1

(mi) + n1 + 1 + 3 + i
′

7, 1 ≤ i
′

7 ≤ 2.

Therefore, λ(G) = span(f) =
7∑

i=1
(mi) + n1 + 1 + 3 + 2 = 30.
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