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A PROBLEM OF ERDŐS-GRAHAM-GRANVILLE-SELFRIDGE ON

INTEGRAL POINTS ON HYPERELLIPTIC CURVES

HUNG M. BUI, KYLE PRATT AND ALEXANDRU ZAHARESCU

Abstract. Erdős, Graham, and Selfridge considered, for each positive integer n, the least
value of tn so that the integers n+1, n+2, . . . , n+ tn contain a subset the product of whose
members with n is a square. An open problem posed by Granville concerns the size of tn,
under the assumption of the ABC Conjecture. We establish some results on the distribution
of tn, and in the process solve Granville’s problem unconditionally.

1. Introduction

A question of Erdős, Graham, and Selfridge ([5] and [8, B30]) asks to find the least value
of tn so that the integers n + 1, n + 2, . . . , n + tn contain a subset the product of whose
members with n is a square. (If n is a square then we set tn = 0.) That is, tn ≥ 0 is the
least integer such that there are integers 1 ≤ j1 < · · · < js = tn with

n

s
∏

i=1

(n+ ji) = �,

where “m = �” means that the integer m is a square. For instance, we easily compute that
t2 = 4, t3 = 5, t5 = 5, and t6 = 6 since

2 · 3 · 6 = 62

3 · 6 · 8 = 122

5 · 8 · 10 = 202

6 · 8 · 12 = 242

and none of the last numbers in the products can be replaced by smaller integers.
One can interpret tn in terms of integer points on hyperelliptic curves. As an example,

we have t14 = 7 from 14 · 15 · 18 · 20 · 21 = 12602, and this gives rise to the integral point
(x, y) = (14, 1260) on the hyperelliptic curve y2 = x(x + 1)(x + 4)(x+ 6)(x + 7). Granville
noted this connection [8, B30] and observed that effective versions of Faltings’ Theorem [6]
would lead to corresponding effective bounds on tn. Granville mentioned that the ABC
conjecture should lead, via work of Elkies [3] and Langevin [12], to stronger bounds on tn.
He also stated that, presumably, tn > nc for some fixed constant c > 0, and perhaps one
could prove this assuming the ABC conjecture.

Our first result below shows that this supposition fails dramatically. A beautiful result
of Granville and Selfridge [7, Corollary 1] shows that if the largest prime factor P+(n) of n
satisfies P+(n) >

√
2n+1 then tn = P+(n). This inspired us to study closely the relationship
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between P+(n) and tn. While tn and P+(n) may no longer be close if P+(n) ≤
√
2n+1, we

find the distribution of tn continues to follow that of P+(n) in larger ranges.

Theorem 1.1. For any fixed c ∈ (0, 1],

lim
x→∞

#{n ≤ x : tn ≤ nc}
x

= lim
x→∞

#{n ≤ x : P+(n) ≤ nc}
x

.

Remark 1. The right-hand side in the statement of Theorem 1.1 is equal to ρ(1/c), where
ρ(u) is the well-known Dickman-de Bruijn function which plays a prominent role in the

theory of smooth numbers [10]. Therefore, for every fixed c > 0 a positive proportion of

integers n satisfy tn ≤ nc.

Theorem 1.1 is a corollary of a slightly stronger theorem (Theorem 3.1) which we state
and prove in Section 3 below.

Our next result shows there are integers n attaining even smaller values of tn, much smaller
than nc.

Theorem 1.2. Let ǫ > 0 be fixed and sufficiently small, and let x be sufficiently large

depending on ǫ. Then there are at least x exp
(

−
(

3
√
2

2
+ ǫ

)√
log x log log x

)

integers n ≤ x

such that

tn ≤ exp
(

√

(2 + ǫ) log n log log n
)

.

Suitable modification of the proof of Theorem 1.2 shows there exist hyperelliptic curves
of large genus which have integral points of large height.

Theorem 1.3. Fix a constant c ∈ (0, 1). There are arbitrarily large positive integers J such

that the following is true: there exist N positive integers 1 ≤ j1 < j2 < · · · < jN < J with

N ≥ J1−c and a positive integer

x ≥ exp

(

c2

5

(log J)2

log log J

)

such that

x(x+ J)

N
∏

i=1

(x+ ji)

is a square.

In the complementary direction, we prove a lower bound on tn when n is not a square
(recall tn = 0 when n is a square). The proof also uses a framework of hyperelliptic curves,
and requires bounding the height of integral points on curves.

Theorem 1.4. If n is a sufficiently large non-square integer, then

tn ≫ (log logn)6/5(log log log n)−1/5.

The implied constant is effectively computable.

The outline of the rest of the paper is as follows. In Section 2 we describe the notation
and conventions of the paper. In Section 3 we state Theorem 3.1, of which Theorem 1.1 is
essentially a special case; we assemble the ingredients for the proof and then prove Theorems
3.1 and 1.1. In Section 4 we prove Theorem 1.2. Section 5 contains the results and modi-
fications of the proof of Theorem 1.2 necessary to prove Theorem 1.3; we close the section
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with some comments and discussion. We prove Theorem 1.4 in Section 6. In the appendix
we detail calculations allowing one to obtain strong bounds for the heights of integral points
on hyperelliptic curves when the defining polynomial is monic of even degree. The results in
the appendix serve only to motivate a conjecture which we state near the end of Section 6.

2. Notation and conventions

Given a positive integer n, the integer tn is the smallest nonnegative integer so that the
integers n+ 1, n+ 2, . . . , n+ tn contain a subset the product of whose members with n is a
square. If n is a square then we define tn = 0.

The expression m = � means that the integer m is a square.
A number n is y–smooth if every prime divisor p of n satisfies p ≤ y. We write Ψ(x, y) for

the number of y–smooth integers n ≤ x, and ρ(u) for the Dickman-de Bruijn function.
Given two finite sets S and T , we write S∆T for the symmetric difference of S and

T . That is, S∆T consists of those elements which are in one of S or T but not both:
S∆T = (S ∪ T )\(S ∩ T ). By associativity one can consider the symmetric difference of any
finite number of sets

S1∆S2∆ · · ·∆Sk = {x : x is an element of an odd number of the sets Si}.
Given a finite set S we write #S or |S| for the cardinality of S. The power set of S, i.e.

the set that consists of all the subsets of S, is denoted by P(S).
The finite field with two elements is denoted as F2.
We write P+(n) for the largest prime factor of a positive integer n. We set P+(1) = 1.

We write ω(n) for the number of distinct prime factors of n.
The real number x is always large. The notation o(1) denotes a quantity tending to zero

as some other parameter, usually x, tends to infinity. We write f ≪ g, g ≫ f , or f = O(g)
if there exists a constant C such that f ≤ Cg. We write f ∼ g if f = (1 + o(1))g.

In discussion, but not in proofs, we sometimes refer to the height of an integral point (x, y)
on a curve. By this we mean the naive height max(|x|, |y|). We similarly refer to the height
of an integer polynomial, which is the maximum of the absolute value of its coefficients.

3. The distribution of tn: proof of Theorem 1.1

As mentioned in the introduction, Theorem 1.1 is a corollary of a somewhat stronger
result, which we state here.

Theorem 3.1. Let x be sufficiently large, and let c satisfy

(log log log x)2

log log x
≤ c ≤ 1.

Then
∑

n≤x
tn≤xc

1 =
∑

n≤x
P+(n)≤xc

1 +O
( x

c log x

)

uniformly in c.

Remark 2. The lower bound on c could be relaxed slightly. The point is that, on this range

of c, the error term O( x
c log x

) is smaller than the main term.
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We prove Theorem 3.1 by proving upper bounds for
∑

n≤x
tn≤xc

1 and
∑

n≤x
P+(n)≤xc

1

in terms of each other. More precisely, the proof of Theorem 3.1 relies on the following two
propositions.

Proposition 3.2 (tn less than P+(n) on average). Let 0 < c ≤ 1. Then
∑

n≤x
tn≤xc

1 ≤
∑

n≤x
P+(n)≤xc

1 +O(x exp(−
√

log x))

uniformly in c.

Proposition 3.3 (P+(n) less than tn on average). Let 0 < c ≤ 1. Then
∑

n≤x
P+(n)≤xc

1 ≤
∑

n≤x
tn≤xc

1 +O
( x

c log x

)

uniformly in c.

Proof of Theorem 3.1 assuming Propositions 3.2 and 3.3. From Proposition 3.2 we have
∑

n≤x
tn≤xc

1 ≤
∑

n≤x
P+(n)≤xc

1 +O
(

x exp(−
√

log x)
)

,

and from Proposition 3.3 we have
∑

n≤x
tn≤xc

1 ≥
∑

n≤x
P+(n)≤xc

1− O
( x

c log x

)

,

so
∑

n≤x
tn≤xc

1 =
∑

n≤x
P+(n)≤xc

1 +O
( x

c log x

)

.

This asymptotic formula is non-trivial provided
∑

n≤x
P+(n)≤xc

1 > C
x

log(xc)

with C a sufficiently large absolute constant. By [9, Theorem 1] we have

Ψ(x, xc) ∼ xρ (1/c) .

Since ρ(1/c) ≫c 1 the asymptotic is non-trivial for c ≥ ǫ0 > 0, with ǫ0 > 0 sufficiently small
and fixed. If c < ǫ0 and ǫ0 is sufficiently small then by [10, Corollary 2.3] we have

ρ(1/c) ≥ exp
(

−c−1
(

log c−1 + log log c−1
))

.

By straightforward calculation we deduce that

exp
(

−c−1
(

log c−1 + log log c−1
))

≥ (log x)−0.1

if c ≥ (log log log x)2

log log x
, so the asymptotic formula is non-trivial in this range. �
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We first turn our attention to Proposition 3.2, since the proof is simpler and introduces
some of the key ideas. The first result we need is a simple inequality relating tn and P+(n).

Lemma 3.4. If P+(n)2 ∤ n, then tn ≥ P+(n).

Proof. Let p = P+(n). If p2 ∤ n, then n is not a square so by the definition of tn there are
integers 1 ≤ j1 < · · · < js = tn with

n

s
∏

i=1

(n+ ji) = �.

Since p divides the left-hand side to an even power but p2 ∤ n there is some i such that
p | n+ ji. Since p | n and p | n + ji we have p | ji, so tn ≥ ji ≥ p. �

We also need a result quantifying that it is rare for an integer n to be divisible by the
square of its largest prime factor (see also [4, p. 345]).

Lemma 3.5 (Bound for exceptional set with P+(n)2 | n). Let E denote the set of n ≤ x
such that P+(n)2 | n. Then

|E| ≪ x exp(−
√

log x).

Proof. Any n ∈ E may be written as n = p2m, where P+(m) ≤ p, and therefore

|E| ≤
∑

p≤x1/2

∑

m≤x/p2

P+(m)≤p

1.

We introduce a parameter 10 ≤ P ≤ x1/2 and split the sum over p at P . The contribution
from p > P is

≤
∑

P<p≤x1/2

∑

m≤x/p2

1 ≪
∑

P<p≤x1/2

(

x

p2
+ 1

)

≪ x

P
+ x1/2 ≪ x

P
.

We bound the contribution from p ≤ P using Rankin’s trick. Set α = 1− 1
logP

, so that

∑

p≤P

∑

m≤x/p2

P+(m)≤p

1 ≤ xα
∑

p≤P

1

p2α

∑

P+(m)≤p

1

mα
≪ xα

∑

p≤P

1

p2

∏

q≤p

(

1 +
3

q

)

≪ xα
∑

p≤P

(log p)3

p2
≪ xα = x exp

(

− log x

logP

)

.

We have therefore proved

|E| ≪ x

P
+ x exp

(

− log x

logP

)

,

and the optimal choice is to take P = exp(
√
log x). �

We now have the tools to prove Proposition 3.2.
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Proof of Proposition 3.2. We split the integers n ≤ x according to whether or not P+(n)2 | n,
so that

∑

n≤x
tn≤xc

1 =
∑

n≤x
tn≤xc

P+(n)2 ∤n

1 +
∑

n≤x
tn≤xc

P+(n)2|n

1 ≤
∑

n≤x
tn≤xc

P+(n)2∤n

1 + |E|,

where E is the set in Lemma 3.5. If P+(n)2 ∤ n then we have P+(n) ≤ tn by Lemma 3.4, so
∑

n≤x
tn≤xc

P+(n)2∤n

1 =
∑

n≤x
tn≤xc

P+(n)≤xc

P+(n)2 ∤n

1 ≤
∑

n≤x
P+(n)≤xc

1,

by positivity. Therefore
∑

n≤x
tn≤xc

1 ≤
∑

n≤x
P+(n)≤xc

1 + |E|,

and we finish with an appeal to Lemma 3.5. �

The proof of Proposition 3.3 is a little more circuitous, and relies upon an analysis of the
number of subsets S of an interval with

∏

n∈S n = �. For this we require two more lemmas,
though the reader may wish to skip ahead and see how the lemmas are used in establishing
Proposition 3.3 before examining their proofs.

Lemma 3.6 (Subset squares and tn in intervals). Let I = (x, x + y] be an interval. The

number of subsets S of I ∩ N such that
∏

n∈S n = � is equal to 2B, where

B := #{n > x : n+ tn ≤ x+ y} = #{n ∈ I : n+ tn ∈ I}.

Proof. If B = 0 then there is no nonempty subset S of I with
∏

n∈S n = �. Since 20 = 1 the
lemma is true in this case (the empty product is 1), and we may therefore assume B ≥ 1.

Denote the integers n ∈ I with n+tn ∈ I by n1 < · · · < nB, with B ≥ 1. By definition, for
any such ni we have ni(ni+tni

)
∏si

j=1(n+ki,j) = � for some integers 1 ≤ ki,1 < · · · < ki,si < tni

(there might be more than one choice of integers ki,j which works, and if this is the case we
arbitrarily choose one sequence ki,1 < · · · < ki,si to associate to ni). The subset of Si ⊂ I ∩N
associated with ni is {ni, ni + ki,1, . . . , ni + ki,si, ni + tni

}.
Given any subset T ⊂ {1, . . . , B}, the integer

∏

i∈T
∏

n∈Si
n is a square, since it is the

product of the squares
∏

n∈Si
n. By keeping track of how often an integer m ∈ I appears

among the different Si we may write
∏

i∈T

∏

n∈Si

n =
∏

m∈I
mem ,

where em is a nonnegative integer. We then consider the parity of em and note that
∏

m∈I
em odd

m = �.

We define a map G : P({1, . . . , B}) → P(I ∩ N) by setting G(T ) = {m ∈ I : em odd} as
above. Note that G(T ) is the symmetric difference of the sets Si, i ∈ T .
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We claim that the map G is injective. Let T, T ′ ⊂ {1, . . . , B} be two distinct subsets.
Since T 6= T ′, there is a least integer 1 ≤ k ≤ B such that k ∈ T∆T ′ (i.e. k is in one of T or
T ′ but not both). Without loss of generality we may assume k ∈ T and k 6∈ T ′. We write

∏

i∈T

∏

n∈Si

n =
∏

m∈I
mem ,

∏

i∈T ′

∏

n∈Si

n =
∏

m∈I
mfm ,

with em, fm nonnegative integers. Since T ∩ {1, . . . , k − 1} = T ′ ∩ {1, . . . , k − 1}, it follows
that

∏

i∈T∩{k,...,B}

∏

n∈Si

n =
∏

m∈I
mem−am ,

∏

i∈T ′∩{k+1,...,B}

∏

n∈Si

n =
∏

m∈I
mfm−am ,

where the am are nonnegative integers. Since nk ∈
⋃B

j=k Sj and nk 6∈ ⋃B
j=k+1 Sj, we see that

enk
−ank

= 1 and fnk
−ank

= 0. Hence enk
and fnk

have opposite parity, so nk ∈ G(T )∆G(T ′)
and G(T ) 6= G(T ′). It follows that the map G is injective.

Since the map G is injective, each of the 2B subsets T of {1, . . . , B} has
∏

n∈G(T ) n = �.

To complete the proof, we must show that if S ⊂ I ∩ N with
∏

n∈S n = �, then S = G(T )
for some T ⊂ {1, . . . , B}. If S = ∅ then S = G(∅), so we may assume S 6= ∅. We
write S = {b1, . . . , br} with x < b1 < · · · < br ≤ x + y. Since

∏r
i=1 bi = � we have

b1+tb1 ≤ br ≤ x+y by the definition of tb1 . It follows that b1 = nu1
for some u1 ∈ {1, . . . , B}.

Let Su1
be the subset of I associated with nu1

. Since nu1
is the least element of S and

Su1
, and since the sets Si only contain integers ≥ ni, we see that either S∆Su1

= ∅, or else
S∆Su1

6= ∅ and the least element of S∆Su1
is ≥ nu1

+1. If S∆Su1
is nonempty then we may

replace repeat this process, with S replaced by S∆Su1
. We see this process must eventually

terminate in the empty set, since the least element of the sets S, S∆Su1
, S∆Su1

∆Su2
, . . . is a

strictly increasing sequence of integers ≤ x+ y. We therefore have S = Su1
∆ · · ·∆Suk

with
1 ≤ u1 < · · · < uk ≤ B, but then by definition we have S = G({u1, . . . , uk}). �

Lemma 3.7 (tn in intervals and smooth numbers). Let I = (x, x + y] be an interval. We

have

#{n > x : n + tn ≤ x+ y} ≥ #{y − smooth integers in I} − π(y).

Proof. The idea is to construct many different subsets with the product of elements in the
subset equal to a square, and utilize smooth numbers and basic linear algebra over F2 to this
end.

The lemma is trivially true if #{y − smooth integers in I} ≤ π(y). We may therefore
assume #{y − smooth integers in I} > π(y) ≥ 1. Let n1 < · · · < nM be the y–smooth
integers in I, where M ≥ 1 + π(y). Each integer ni may be factored

ni =
∏

p≤y

pep,i,

where ei,p is a nonnegative integer. We reduce the exponents ei,p modulo 2 and form a
π(y)×M matrix M = (ep,i (mod 2)) p≤y

i≤M
. We consider the entries of the matrix as lying in

the field F2. Let r denote the rank of M, and observe that 1 ≤ r ≤ π(y).
Let V1, . . . , VM be the column vectors of M. We let W denote the vector space spanned

by the column vectors Vi, and note that W has dimension r. As W is spanned by any r
of the vectors Vi which are linearly independent over F2, we may reorder and relabel the
columns to assume that W is spanned by V1, . . . , Vr.
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Given any subset S ⊂ {r + 1, . . . ,M}, we have
∑

i∈S Vi ∈ W . This vector has a unique
representation

∑

i∈S
Vi =

r
∑

k=1

ck,SVk, ck,S ∈ F2.

If we write TS = {1 ≤ k ≤ r : ck,S 6= 0} then we see that for every subset S ⊂ {r+1, . . . ,M}
there is a subset TS ⊂ {1, . . . , r} such that

∏

i∈S∪TS

ni = �.

There are ≥ 2M−r such subsets S, and since S ∪ TS 6= S ′ ∪ TS′ if S 6= S ′ we see there are
≥ 2M−r subsets U of {1, . . . ,M} such that

∏

i∈U ni = �. By Lemma 3.6 we have

2#{n>x:n+tn≤x+y} ≥ 2M−r,

and therefore

#{n > x : n+ tn ≤ x+ y} ≥ M − r ≥ M − π(y). �

Proof of Proposition 3.3. If x is sufficiently large and c > 0.51, say, then [7, Corollary 1]
implies tn = P+(n), and therefore

∑

n≤x
P+(n)≤xc

1 =
∑

n≤x
P+(n)≤x0.51

1 +
∑

n≤x
x0.51<tn≤xc

1.

The proposition in the case c > 0.51 therefore follows from the proposition in the case
c ≤ 0.51, so we may assume c ≤ 0.51. We set Y = xc, so P+(n) ≤ xc is the same as
P+(n) ≤ Y .

We partition the sum over Y -smooth integers as
∑

n≤x
P+(n)≤Y

1 =
∑

n≤x
P+(n)≤Y

tn≤Y

1 +
∑

n≤x
P+(n)≤Y

tn>Y

1 ≤
∑

n≤x
tn≤Y

1 +
∑

n≤x
P+(n)≤Y

tn>Y

1. (1)

The first of these sums is the main term, and we must show that the second is an error term.
We split into short intervals of length Y . Write Ik = (kY, (k + 1)Y ], and note that

Ik ∩ N ⊂ [1, x] for k ≤ x/Y − 1. Then
∑

n≤x
P+(n)≤Y

tn>Y

1 ≤
∑

0≤k≤x/Y−1

∑

n∈Ik
P+(n)≤Y

tn>Y

1 + Y.

We next remove “exceptional” intervals Ik which contain many elements of E , where E as in
Lemma 3.5 is the set of n ≤ x such that P+(n)2 | n. We partition the set of Ik into sets G
and B where Ik ∈ G if

∑

n∈Ik∩E
1 ≤ Y

log x
,
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and Ik ∈ B if the opposite inequality holds. By Lemma 3.5

Y

log x
|B| ≤

∑

0≤k≤x/Y−1
Ik∈B

∑

n∈Ik∩E
1 ≤ |E| ≪ x exp(−

√

log x),

so

|B| ≪ x

Y
(log x)−100,

say. Therefore
∑

n≤x
P+(n)≤Y

tn>Y

1 ≤
∑

0≤k≤x/Y−1
Ik∈G

∑

n∈Ik
P+(n)≤Y

tn>Y

1 +O(x(log x)−100), (2)

since Y ≤ x0.51.
For any k with Ik ∈ G we have from Lemma 3.7 that

∑

n∈Ik
P+(n)≤Y

1− π(Y ) ≤
∑

n∈Ik
n+tn≤(k+1)Y

1.

Since n > kY the condition n+ tn ≤ (k+1)Y implies tn ≤ Y . We split according to whether
P+(n)2 | n, and use the fact that Ik ∈ G to obtain

∑

n∈Ik
P+(n)≤Y

1− π(Y ) ≤
∑

n∈Ik
tn≤Y

P+(n)2∤n

1 +
∑

n∈Ik∩E
1 ≤

∑

n∈Ik
tn≤Y

P+(n)≤Y

1 +
Y

log x
.

Since
∑

n∈Ik
tn≤Y

P+(n)≤Y

1 =
∑

n∈Ik
P+(n)≤Y

1−
∑

n∈Ik
tn>Y

P+(n)≤Y

1

we see that for Ik ∈ G we have
∑

n∈Ik
tn>Y

P+(n)≤Y

1 ≤ π(Y ) +
Y

log x
≪ Y

log Y
. (3)

Together (2) and (3) yield
∑

n≤x
P+(n)≤Y

tn>Y

1 ≪ x

log Y
, (4)

and by (1) we obtain
∑

n≤x
P+(n)≤Y

1 ≤
∑

n≤x
tn≤Y

1 +O
( x

log Y

)

,

as desired. �
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Proof of Theorem 1.1. By [7, Corollary 1] we may assume c ≤ 0.51. We have
∑

n≤x
P+(n)≤xc

1 ∼
∑

n≤x
tn≤xc

1 ∼
∑

x/ logx<n≤x
tn≤xc

1

by Theorem 3.1 and trivial estimation. we split the sum acording to the size of tn so that
∑

x/ log x<n≤x
tn≤xc

1 =
∑

x/ log x<n≤x
tn≤nc

1 +
∑

x/ log x<n≤x
nc<tn≤xc

1 ∼
∑

n≤x
tn≤nc

1 +O
(

∑

n≤x
(x/ log x)c<tn≤xc

1
)

.

We must show
∑

n≤x
(x/ log x)c<tn≤xc

1 = o(x).

We split the sum over n according to whether or not n ∈ E , with E as in Lemma 3.5. The
size of E is o(x). If n 6∈ E then P+(n) ≤ tn, and we may further split the sum with n 6∈ E
according to whether or not P+(n) ≤ (x/ log x)c. Hence

∑

n≤x
(x/ logx)c<tn≤xc

1 =
∑

n≤x
n 6∈E

(x/ log x)c<tn≤xc

1 + o(x) =
∑

n≤x
n 6∈E

(x/ log x)c<tn≤xc

P+(n)≤(x/ logx)c

1 +O
(

∑

n≤x
(x/ log x)c<P+(n)≤xc

1
)

+ o(x).

The O-term is easily bounded, since

∑

n≤x
(x/ log x)c<P+(n)≤xc

1 ≤
∑

n≤x

∑

(x/ log x)c<p≤xc

p|n

1 ≪ x
∑

(x/ log x)c<p≤xc

1

p
≪ x

log log x

log x
,

the last inequality following from Mertens’ theorem. For the other sum, we set Y =
(x/ log x)c and note that

∑

n≤x
n 6∈E

(x/ log x)c<tn≤xc

P+(n)≤(x/ log x)c

1 ≤
∑

n≤x
tn>Y

P+(n)≤Y

1,

and this is o(x) by (4).
We have therefore shown that

∑

n≤x
tn≤nc

1 ∼
∑

n≤x
P+(n)≤xc

1.

Also,
∑

n≤x
P+(n)≤xc

1 ∼
∑

x/ logx<n≤x
P+(n)≤xc

1 =
∑

x/ log x<n≤x
P+(n)≤nc

1 +
∑

x/ log x<n≤x
nc<P+(n)≤xc

1 ∼
∑

n≤x
P+(n)≤nc

1 +O
(

∑

n≤x
(x/ log x)c<P+(n)≤xc

1
)

,

and this last error was already shown to be o(x), which completes the proof. �
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4. Small values of tn: Proof of Theorem 1.2

The proof of Theorem 1.2 uses estimates for smooth numbers and some elementary com-
binatorics. We introduce parameters y < L ≤ xo(1), and the first idea is to find many short
intervals I ⊂ [1, x] of length L which contain roughly the expected number of y–smooth
numbers.

Lemma 4.1 (Many intervals with expected number of smooths). Let x be sufficiently large,

and let y < L ≤ xo(1) with y ≥ exp((log x)1/100). Then there are ≫ Ψ(x, y)L−1 disjoint

intervals I ⊂ [x/ log x, x] of length L such that

#{y − smooth integers in I} ≫ L
Ψ(x, y)

x
.

Proof. With y as in the statement of the lemma we have by [9, Theorem 1] that

Ψ(x, y) ∼ xρ
( log x

log y

)

.

We similarly have

Ψ(x/ log x, y) ∼ x

log x
ρ
( log x

log y
− log log x

log y

)

∼ x

log x
ρ
( log x

log y

)

,

the last asymptotic following by the continuity of ρ. It follows that the number of smooth
numbers in (x/ log x, x] is

≥ (1− o(1))Ψ(x, y).

For k a positive integer write Ik = (kL, (k + 1)L], and let I denote those Ik which are
contained in (x/ log x, x]. By trivial estimation #I ≍ x/L, and

∑

I∈I
#{y − smooth integers in I} ≥ (1− o(1))Ψ(x, y).

Let δ > 0 be a sufficiently small positive constant, and write I = B ∪ G, where I ∈ B if
#{y − smooth integers in I} ≤ δLΨ(x, y)/x, and I ∈ G if #{y − smooth integers in I} >
δLΨ(x, y)/x. Then

(1− o(1))Ψ(x, y) ≤
∑

I∈B
δL

Ψ(x, y)

x
+
∑

I∈G
#{y − smooth integers in I}

≤ O (δΨ(x, y)) +
∑

I∈G
#{y − smooth integers in I}.

If δ is sufficiently small then

Ψ(x, y) ≪
∑

I∈G
#{y − smooth integers in I},

where the implied constant is absolute. Since trivially #{y − smooth integers in I} ≤ L we
find that

#G ≫ Ψ(x, y)

L
. �

If a short interval contains sufficiently many y–smooth numbers, then we can construct
an integer n with small tn.
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Lemma 4.2 (Build small tn with many smooths). Let I be an interval of length L such that

#{y − smooth integers in I} > π(y).

Then there exists an integer n ∈ I with tn ≤ L.

Proof. The basic idea is somewhat similar to that of the proof of Lemma 3.7.
Let p1 < p2 < · · · < pR ≤ y be the primes ≤ y, so that π(y) = R. A y–smooth integer n

may be written as

n =
R
∏

i=1

peii ,

where ei is a nonnegative integer. By considering only the parity of ei we obtain a map
θ : {y − smooth integers} → FR

2 given by

θ(n) = (e1 (mod 2), . . . , eR (mod 2)). (5)

Now let m1, . . . , mM be the y–smooth integers in I, and note that, by assumption, we
have M > R. Given J ⊂ {1, . . . ,M}, let

nJ =
∏

j∈J
mj ,

and observe that nJ is a y–smooth integer. Since M > R the number 2M of subsets of
{1, . . . ,M} is strictly greater than 2R = #FR

2 , so by the pigeonhole principle there exist
distinct subsets J, J ′ of {1, . . . ,M} such that θ(nJ) = θ(nJ ′). By the definition of θ this
implies

∏

m∈J
m ·

∏

m∈J ′

m = �.

Note that
∏

m∈J
m ·

∏

m∈J ′

m =
∏

m∈J∆J ′

m ·
∏

m∈J∩J ′

m2,

where J∆J ′ is the symmetric difference of the sets J and J ′. Since J 6= J ′ we see that
J∆J ′ 6= ∅ and

∏

m∈J∆J ′

m = �.

The least element n of J∆J ′ is then the desired integer. �

Proof of Theorem 1.2. We define y = exp(
√
2
2

√
log x log log x) and

L = exp
((√

2 + (log log x)−1/2
)

√

log x log log x
)

.

By [9, Theorem 1] and Lemma 4.1 there are ≫ xL−1ρ
(

log x
log y

)

intervals I ⊂ [x/ log x, x] of

length L such that each interval I contains

≫ Lρ
( log x

log y

)

y–smooth numbers. By [10, Corollary 2.3] we have

ρ(u) ≥ exp (−u (log u+ log log u))
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provided u ≥ 1 is sufficiently large, and therefore

ρ
( log x

log y

)

≥ exp

(

−
(

√
2

2
+O

( log log log x

log log x

))

√

log x log log x

)

.

The number of y–smooth integers in each interval I of length L is therefore

≫ exp

(

(

√
2

2
+ (log log x)−1/2 − O

( log log log x

log log x

))

√

log x log log x

)

≫ y exp
(

(log x)1/2(log log x)1/4
)

,

hence the number of y–smooth integers in each interval is > π(y) ∼ y
log y

. It follows from
Lemma 4.2 that each interval I contains an integer n with

tn ≤ exp
((√

2 + (log log x)−1/2
)

√

log x log log x
)

.

Since n ∈ [x/ log x, x] we see x ≤ n(log n)2, and therefore

tn ≤ exp
((√

2 + 2(log log x)−1/2
)

√

logn log logn
)

,

as desired. �

We remark that our proof of Theorem 1.2 has some similarities to heuristic run-time
analysis of factoring algorithms [15, p. 1477] (see also [2] and [7, Section 1]).

5. Large integral points on hyperelliptic curves: Proof of Theorem 1.3

As mentioned in the introduction, the proof of Theorem 1.3 draws on ingredients in the
proof of Theorem 1.2. We also need an additional lemma, which provides for the existence
of sets with large symmetric difference provided we have sufficiently many sets upon which
to draw.

Lemma 5.1 (Many subsets implies a large symmetric difference). Let N be large and let

S1, . . . , SK be distinct subsets of {1, . . . , N}. If K ≥ 2Q with Q ≥ N1/100, then there exist

i 6= j such that

|Si∆Sj | >
1

6

Q

logN
.

Remark 3. Lemma 5.1 is not far from best possible, since the subsets S1, . . . , SK could be

all the subsets of {1, . . . , Q}.
Proof. Let A be an arbitrarily chosen (nonempty) subset Si. For any other subset S, we may
uniquely write S as the disjoint union S = S ′ ∪SA, where S

′ ∩A = ∅ and SA ⊂ A. Observe
that

A∆S = (A\S) ∪ (S\A) = (A\SA) ∪ S ′.

Let δ ≥ 1
100

be a parameter. If |A∆S| ≤ δ Q
logN

, then |S ′| ≤ δ Q
logN

and |A\SA| ≤ δ Q
logN

.

The number of choices for the set S ′ is

≤
∑

0≤k≤δQ/ logN

(

N

k

)

,
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and the number of choices for the set SA is

≤
∑

0≤k≤δQ/ logN

( |A|
|A| − k

)

≤
∑

0≤k≤δQ/ logN

(|A|
k

)

≤
∑

0≤k≤δQ/ logN

(

N

k

)

.

By the upper bound
(

N
k

)

≤ (eN/k)k, which is valid for k ≥ 1, we find

∑

0≤k≤δQ/ logN

(

N

k

)

≤ 1 + (eN)δQ/ logN
∑

k≥1

k−k ≤ (3N)δQ/ logN ≤ exp (2δQ) .

It follows that the total number of choices of subset S such that |A∆S| ≤ δQ/ logN is
≤ exp(4δQ) < 1.95Q, the last inequality following if we choose δ = 1

6
, say. Since there are

K ≥ 2Q subsets, there must be some subset Si such that |A∆Si| > 1
6
Q/ logN . �

Proof of Theorem 1.3. Let x be a large integer, which we think of as tending to infinity. In
particular, x is sufficiently large compared to any fixed quantity like c. As in the proof of
Theorem 1.2, we set our “smoothness” parameter

y = exp
(

√
2

2

√

log x log log x
)

.

Given a constant C >
√
2, we also define a length parameter

L = exp
(

C
√

log x log log x
)

.

Wemay apply Lemma 4.1 to deduce the existence of many disjoint intervals I ⊂ [x/ log x, x]
of length L such that the number of y–smooth integers in I is ≫ LΨ(x, y)/x. We fix one
such interval I, and note that by the argument of Theorem 1.3 the number of y–smooth
integers in I is

≥ exp

(

(

C −
√
2

2
− o(1)

)

√

log x log log x

)

.

If we let M denote the number of y–smooth integers in I, and R = π(y), then we see that

M − R ≥ exp

(

(

C −
√
2

2
− o(1)

)

√

log x log log x

)

− exp
(

√
2

2

√

log x log log x
)

≥ exp

(

(

C −
√
2

2
− o(1)

)

√

log x log log x

)

≥ L1−
√

2
2C

−o(1).

Let n1, . . . , nM be the y–smooth integers in I. Given a subset S ⊂ {1, . . . ,M} we may
construct the y–smooth integer

nS =
∏

s∈S
ns,

and then map nS to FR
2 using the map θ from (5) in the proof of Lemma 4.2. By the

pigeonhole principle, there is some v ∈ FR
2 and ≥ 2M−R subsets S of {1, . . . ,M} such that

θ(nS) = v for every such S. We apply Lemma 5.1 to obtain the existence of two subsets,
call them S and T , of {1, . . . ,M} such that

|S∆T | ≥ 1

6

M − R

logM
≥ L1−

√
2

2C
−o(1).
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By construction we have
∏

s∈S∆T

ns = �.

We may arrange the integers ns in increasing order and write them as n, n + j1, . . . , n + jV
for some integer n ∈ [x/ log x, x] and some integers 1 ≤ j1 < j2 < · · · < jV ≤ L. It follows
that

n(n + jV )

V−1
∏

i=1

(n + ji) = �.

We claim that setting J = jV gives rise to a J as in the statement of the theorem. First,

note that V − 1 ≥ L1−
√

2
2C

−o(1) − 2 ≥ L1−
√

2
2C

−o(1) ≥ J1−c, the last inequality holding if we set

C =

√
2

c
,

say. Since x ≤ n(log n)2 we see that

L = exp
(

C
√

log x log log x
)

≤ exp
(

(C + o(1))
√

log n log log n
)

.

This implies

1− o(1)

C2
(logL)2 ≤ logn log logn,

which in turn implies

logn ≥ 1− o(1)

2C2

(logL)2

log logL
.

Recalling our choice for C and that J ≤ L we find

n ≥ exp

(

c2

5

(log J)2

log log J

)

.

Since every large x gives rise to such a J , and since J ≥ L1/3, say, which tends to infinity
with x, we may take J to be arbitrarily large, as claimed. �

We close this section with some comments on Theorem 1.3. In particular, it is worth
comparing Theorem 1.3 with more trivial considerations.

First, we note that it is easy to obtain points (x, y) on a hyperelliptic curve of large genus
if we allow x = 0 (so that y is large). Indeed, consider the hyperelliptic curve y2 = P (x) =
xg + D2, where g ≥ 5 is large and D is a large positive integer. The point (0, D) clearly
lies on the hyperelliptic curve, and since the height H of P is D2 we see the integral point
(0, D) has height ≫ H1/2. We might expect that all integral points on a hyperelliptic curve
y2 = P (x) have height ≪ HO(1), so this trivial construction is already fairly sharp.

Second, we consider hyperelliptic curves with integral points (x, y) where x 6= 0. The
hyperelliptic curve

y2 = P (x) =
J
∏

i=1

(x+ j), J ≥ 5,
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is similar to the curves constructed in Theorem 1.3, and this curve has the integral point
(−J, 0). The polynomial P has height H = J !, so the integral point (−J, 0) on the curve has
height

≫ logH

log logH

for large J . In contrast, Theorem 1.3 provides integral points (x, y) on curves y2 = P (x)
with xy 6= 0 and

x ' (logH)
log logH

log log logH ≫A (logH)A,

where H is the height of P .
It would be very interesting to construct hyperelliptic curves of large genus having integral

points (x, y) with x ≥ Hc, for c > 0 some fixed constant.

6. Lower bounds on tn: Proof of Theorem 1.4

If n is a large non-square integer, then by definition

n(n + tn)
s
∏

i=1

(n+ ji) = �,

where 1 ≤ j1 < · · · < js < tn are integers (obviously we must have s < tn). If tn is very
small compared to n, then the curve

y2 = x(x+ J)

s
∏

i=1

(x+ ji) (6)

contains an integral point with x extremely large (here and throughout the section we write
J = tn in keeping with the notation of our other theorems). We rely on a uniform bound for
the height of integral points on hyperelliptic curves due to Bérczes, Evertse, and Győry [1].
Their method utilizes linear forms in logarithms.

We use different arguments depending on the size of s, with s as in (6). When s = 0 trivial
arguments suffice to bound the size of x. If s is at least one but is smaller than a small power
of J , then we consider the hyperelliptic equation (6) directly and apply the result of Bérczes,
Evertse, and Győry. When s is larger than a small power of J it is more efficient to extract a
suitable system of generalized Pell equations from (6) and bound the size of solutions to these
Pell equations. The coefficients of the Pell equations have size controlled by prime divisors
≤ J , and we can use some elementary arguments to find a system with coefficients that are
smaller than what a trivial bound would give. The final bound results from balancing the
arguments coming from small s and large s.

The following lemma handles the trivial case where s = 0.

Lemma 6.1 (Trivial case, s = 0). Let J ≥ 1 be an integer. If x and y are positive integers

with y2 = x(x+ J), then x ≤ J2.

Proof. If x and x+ J have greatest common divisor d ≥ 1, then d | J . We change variables
x = dz and find (y/d)2 = z(z + J/d), where (z, z + J/d) = 1. Then z = a2 and z + J/d = b2

for some positive integers b > a. Then

J/d = b2 − a2 = (b+ a)(b− a) ≥ b+ a,

so a, b ≤ J/d. Then z = a2 ≤ J2/d2 and x = dz ≤ J2/d ≤ J2. �
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The next lemma is the theorem of Bérczes, Evertse, and Győry [1] in the special case we
require.

Lemma 6.2 (Height of integral points). Let P (x) =
∑n

i=0 aix
i ∈ Z[x] with deg(P ) ≥ 3 and

no repeated roots. Write maxi |ai| = H. If x and y are positive integers with y2 = P (x) then

max(log x, log y) ≤ (4n)212n
4

H50n4

.

Proof. This is [1, Thereom 2.2] with K = Q and S equal to the infinite place of Q, where
b = 1 in [1, (2.5)]. �

The following lemma is useful when s is small.

Lemma 6.3 (Bound on height when s is small). Let J ≥ 2 be an integer, and let 1 ≤
j1 < · · · < js < J be integers, where s ≥ 1. If x and y are positive integers with y2 =
x(x+ J)

∏s
i=1(x+ ji) then

log x ≤ exp
(

O(s5 log J)
)

.

Proof. The integer polynomial x(x + J)
∏s

i=1(x + ji) has degree s + 2 and clearly has no
repeated roots. The coefficients of the polynomial all have size ≤ Js+1, so by Lemma 6.2 we
see any solution to y2 = x(x+ J)

∏s
i=1(x+ ji) satisfies

log x ≤
(

4(s+ 2)
)212(s+2)4

(Js+1)50(s+2)4 ≤ exp
(

O(s5 log J)
)

. �

When s is large we argue more carefully. We use the following lemma to control the
coefficients of an auxiliary hyperelliptic equation.

Lemma 6.4 (Finding numbers with fewer prime factors). Let J be a sufficiently large positive

integer, and let b1, . . . , bt be positive integers all of whose prime factors are ≤ J . If 100 ≤
t ≤ J1/2/ log J and gcd(bi, bj) ≤ J for all i 6= j, then there exist distinct bi, bj, bk with

ω(bi), ω(bj), ω(bk) ≪
J

t log J
.

Proof. The goal is to improve upon the trivial bound ω(bi) ≪ J/ log J by a factor of t. We
observe that, by the prime number theorem, any distinct bi and bj have ≪ log J/ log log J ≤
log J prime factors in common, since gcd(bi, bj) ≤ J . Let si denote the set of prime factors
of bi. Note that |si ∩ sj | ≤ log J for any i 6= j, and that each si is contained in the set of all
primes ≤ J .

Without loss of generality we may assume that |s1| ≥ |s2| ≥ · · · ≥ |st|. We claim that

|s1 ∪ · · · ∪ sr| ≥ r|sr| −
r(r − 1)

2
log J (7)

for each 1 ≤ r ≤ t. This inequality trivially holds for r = 1, so suppose the inequality holds
for r and we wish to show it holds for r + 1.

Let A = s1 ∪ · · · ∪ sr, so that by inclusion-exclusion we have

|s1 ∪ · · · ∪ sr+1| = |A ∪ sr+1| = |A|+ |sr+1| − |A ∩ sr+1|

≥ r|sr| −
r(r − 1)

2
log J + |sr+1| −

r
∑

i=1

|si ∩ sr+1|,
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where in the second line we have used the induction hypothesis and

|A ∩ sr+1| =
∣

∣

∣

∣

r
⋃

i=1

(si ∩ sr+1)

∣

∣

∣

∣

≤
r

∑

i=1

|si ∩ sr+1|.

Since |si ∩ sr+1| ≤ log J for every i and |sr| ≥ |sr+1|, we obtain

|A ∩ sr+1| ≥ (r + 1)|sr+1| −
r(r + 1)

2
log J,

as desired. This completes the proof of the claim.
Applying (7) yields

|sr| ≤
1

r
|s1 ∪ · · · ∪ sr|+

r − 1

2
log J

for any 1 ≤ r ≤ t. Since each set si is contained in the set of all primes ≤ J we have

|sr| ≪
J

r log J
+ r log J,

and since r ≤ t ≤ J1/2/ log J we have

|sr| ≪
J

r log J
.

We finish the proof by taking i = t− 2, j = t− 1, and k = t. �

We are now ready to obtain a bound when s is large.

Lemma 6.5 (Bound on height when s is large). Let J be a sufficiently large positive integer,

and let 1 ≤ j1 < · · · < js < J be integers, where J1/100 ≤ s < J . If x and y are positive

integers with y2 = x(x+ J)
∏s

i=1(x+ ji) then

log x ≤ exp

(

O
( J

t log J

)

)

,

where t is any integer satisfying J1/100 ≤ t ≤ min(s, J1/2/ log J).

Proof. We write j0 = 0 and js+1 = J , so that the hyperelliptic equation is

y2 =

s+2
∏

i=0

(x+ ji).

We observe that if d | (x+ ji) and d | (x+ ji′) then d | |ji − ji′ | ≤ J , so the greatest common
divisor of any two distinct x+ ji is ≤ J . Therefore, we may uniquely write

x+ ji = aiy
2
i ,

where ai is divisible only by primes ≤ J and yi is divisible only by primes > J . By pulling
out square factors of ai we obtain the more convenient factorization

x+ ji = biz
2
i ,

where bi is squarefree and divisible only by primes ≤ J . Observe that gcd(bi, bi′) ≤ J for
i 6= i′.

Choose any t of the bi, with t as in statement of the lemma. Then by Lemma 6.4 there
exist three distinct bi, bk, and bℓ with ω(bi), ω(bk), ω(bℓ) ≪ J

t log J
. From the equations

x+ ji = biz
2
i , x+ jk = bkz

2
k, x+ jℓ = bℓz

2
ℓ ,
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we deduce

(bkbℓzkzℓ)
2 = bkbℓ(x+ jk)(x+ jℓ) = bkbℓ(biz

2
i + jk − ji)(biz

2
i + jℓ − ji). (8)

The quartic polynomial bkbℓ(biz
2
i +jk−ji)(biz

2
i +jℓ−ji) has no repeated roots (since jk 6= jℓ)

and has coefficients with absolute value

≤ J2bibkbℓ ≤ J2+ω(bi)+ω(bk)+ω(bℓ) ≤ exp
(

O (J/t)
)

.

We apply Lemma 6.2 to the hyperelliptic equation (8) to find

log zi ≤ 16212·4
4

exp
(

O (J/t)
)50·44 ≪ exp

(

O (J/t)
)

.

Since x+ ji = biz
2
i this implies log x ≤ exp (O (J/t)). �

Proof of Theorem 1.4. Let n be a large non-square integer. Write J = tn so that by definition
we have

y2 = n(n+ J)

s
∏

i=1

(n + ji)

for some integers 1 ≤ ji < · · · < js < J and s ≥ 0. If s = 0 then Lemma 6.1 implies n ≤ J2.
We may therefore assume s ≥ 1.

If J is bounded then by Lemma 6.2 we see n is effectively bounded in terms of J , so we
may assume J is sufficiently large. We define t = ⌊(J/ log J)1/6⌋. If 1 ≤ s ≤ t then Lemma
6.3 gives

log n ≤ exp
(

O(t5 log J)
)

= exp
(

O
(

J5/6(log J)1/6
)

)

.

If t ≤ s < J then applying Lemma 6.5 gives

log n ≤ exp
(

O(J/t)
)

= exp
(

O
(

J5/6(log J)1/6
)

)

.

Therefore, in any case we have

logn ≤ exp
(

O
(

J5/6(log J)1/6
)

)

,

which implies

log log n ≪ J5/6(log J)1/6.

This last inequality implies in turn that J ≫ (log logn)6/5(log log logn)−1/5. �

One can likely obtain improvements to Theorem 1.4 by working with a version of Lemma
6.2 which exploits particular features of the hyperelliptic equation (6). For example, it
should be possible to take advantage of the fact that the polynomial x(x + J)

∏s
i=1(x+ ji)

has rational roots.
In certain situations, it is possible to obtain a strong bound on the height of an integral

point on a hyperelliptic curve y2 = P (x) through elementary methods. This is possible, for
instance, when the polynomial P is monic of even degree, in which case Runge’s method
may apply (see [14, Chapter 4]). In our case of interest, we may obtain strong bounds on
the height of an integral point on the hyperelliptic curve

y2 = x(x+ J)
s
∏

i=1

(x+ ji)
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when s is even. There are several results in the literature in this direction e.g. [13, 17], and
we provide an alternative account in the appendix

By Theorem A.2, if the product

n(n + tn)

s
∏

i=1

(n+ ji) = y2

has an even number of terms (i.e. if s is even) then n ≪ t
O(tn)
n and hence

tn ≫ logn

log log n
. (9)

We might expect that the bound n ≪ t
O(tn)
n holds if s is odd as well, so that the lower bound

(9) holds in all cases (provided that n is not a square). We therefore make the following
conjecture, which features a little breathing room compared to (9).

Conjecture 1. Let c ∈ (0, 1) be a fixed constant, and assume n is a non-square integer

which is sufficiently large in terms of c. Then

tn ≥ (log n)1−c.

In making this conjecture we reason by analogy with conjectures for elliptic curves. Given
a monic quartic polynomial p(x) of height H , one may show, using methods similar to those
of the appendix, that any integral point on the curve y2 = p(x) has height ≪ HO(1). The
Hall-Lang conjecture (see [11, Conjecture 5], also [16, p. 1122]) says the same bound should
hold when y2 = p(x) is an elliptic curve in minimal Weierstrass form (so that, in particular,
p(x) is a cubic).

Appendix A. Bounds for integral points on hyperelliptic curves of even

degree

We let J be sufficiently large, and let u ≥ 2 be an integer. Let 0 = j1 < · · · < j2u = J be
integers. We write

P (x) =

2u
∏

i=1

(x+ ji). (10)

We wish to bound the size of a positive integer x which satisfies P (x) = y2. There is no
harm in assuming u ≥ 2 since if u = 1 we already have a satisfactory bound via Lemma 6.1.

We first show that one may write P (x) = f(x)2 + g(x), where f(x) is monic of degree
u, deg(g) < deg(f), and the coefficients of f are rational numbers with denominators of
controlled size.

Lemma A.1 (P is close to a square). Let P (x) be given as in (10). There exists a monic

polynomial f(x) =
∑u

i=0 aix
i ∈ Q[x] with |ai| ≤ (u − i)u−i(uJ)u−i and 4u−iai ∈ Z, and a

polynomial g(x) =
∑u−1

i=0 bix
i ∈ Q[x] with |bi| ≤ 5u4u−2iJ2u−i such that P (x) = f(x)2 + g(x).

Proof. It is not difficult to choose a polynomial f such that f 2 matches the coefficients of P
down to order xu, but it is somewhat tedious to prove bounds for the coefficients of f .
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Write P (x) =
∑2u

i=0 qix
i ∈ Z[x] and note that 0 ≤ qi ≤

(

2u
i

)

J2u−i with q2u = 1. Now write
f(x) =

∑u
i=0 aix

i, where the ai are rational numbers to be determined and au = 1. Since

f(x)2 =

2u
∑

ℓ=0

xℓ
∑

max(ℓ−u,0)≤i≤min(ℓ,u)

aiaℓ−i

we wish to choose the ai so that
∑

ℓ−u≤i≤u

aiaℓ−i = qℓ (11)

for u ≤ ℓ ≤ 2u. We choose the coefficients ai, beginning with au and proceeding successively
down to a0. Actually, we have already chosen au = 1, so (11) holds when ℓ = 2u.

Assume we have chosen the coefficients au, . . . , au−r for some 0 ≤ r ≤ u − 1 so that (11)
holds for 2u− r ≤ ℓ ≤ 2u. When ℓ = 2u− r − 1 we have

∑

ℓ−u≤i≤u

aiaℓ−i = 2au−r−1 +
∑

u−r≤i≤u−1

aia2u−r−1−i,

so (11) holds if

2au−r−1 +
∑

u−r≤i≤u−1

aia2u−r−1−i = q2u−r−1.

With i in the stated range we have i, 2u− r−1− i ≥ u− r, so the coefficient au−r−1 appears
only in the first term. We may therefore choose

au−r−1 =
1

2

(

q2u−r−1 −
∑

u−r≤i≤u−1

aia2u−r−1−i

)

,

so (11) holds for ℓ = 2u− r − 1. By induction we find

aj =
1

2

(

qu+j −
∑

j+1≤i≤u−1

aiau−i+j

)

(12)

for 0 ≤ j ≤ u− 1.
It follows readily from (12) and induction that the denominator of ai divides 22(u−i)−1,

0 ≤ i ≤ u− 1 (here we use that the qi are integers), and therefore 22(u−i)ai = 4u−iai ∈ Z for
0 ≤ i ≤ u.

If we rewrite j = u− k in (12) and use the upper bound for qj then we deduce

|au−k| ≤
1

2

((

2u

k

)

Jk +
∑

u−k+1≤i≤u−1

|au−(u−i)||au−(i+k−u)|
)

. (13)

We claim that |au−k| ≤ (kuJ)k for 1 ≤ k ≤ u. Taking k = 1 in (13) gives |au−1| ≤ 1
2

(

2u
1

)

J =
uJ , so the claim is true for k = 1. When we take k = 2 the sum over i in (13) contains the
single term i = u − 1, so the inequality is |au−2| ≤ 1

2

((

2u
2

)

J2 + |au−1|2
)

≤ 3
2
u2J2, where we

have used the bound for |au−1|. Hence the claim holds for k = 2 since 3/2 ≤ 22.
Now assume k ≥ 3, and assume that the claim holds for all |au−j| with j < k. Then by

(13) we have

|au−k| ≤
1

2

((

2u

k

)

Jk +
∑

u−k+1≤i≤u−1

(u− i)u−i(uJ)u−i(i+ k − u)i+k−u(uJ)i+k−u

)
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≤ (uJ)k

2

(

2k

k!
+

∑

1≤n≤k−1

nn(k − n)k−n

)

,

where in going from the first line to the second we have changed variables. We note that by
symmetry

∑

1≤n≤k−1

nn(k − n)k−n ≤ 2kk−1 + 2
∑

2≤n≤k/2

nn(k − n)k−n

= 2kk−1 + 2kk
∑

2≤n≤k/2

(n

k

)n (k − n

k

)k−n

≤ 2kk−1 + 2kk
∑

n≥2

2−n = kk
(

1 +
2

k

)

,

and therefore

1

2

(2k

k!
+

∑

1≤n≤k−1

nn(k − n)k−n
)

≤ kk
(1

2
+

1

k
+

2k−1

k!kk

)

.

Since

1

2
+

1

k
+

2k−1

k!kk
≤ 1

2
+

1

k
+

1

2

(2e

k2

)k

≤ 0.95 ≤ 1

for k ≥ 3 this completes the proof of the claim.
It remains to prove the upper bound on the coefficients of g. Since g = P − f 2 and by

construction deg(g) ≤ u− 1 we have

g(x) =

u−1
∑

i=0

bix
i =

u−1
∑

i=0

xi
(

qi −
∑

0≤ℓ≤i

aℓai−ℓ

)

.

By the triangle inequality and the bounds for qj , aj we obtain

|bi| ≤
(

2u

i

)

J2u−i + (uJ)2u−i
∑

0≤ℓ≤i

(u− ℓ)u−ℓ(u− i+ ℓ)u−i+ℓ.

We multiply and divide by u2u−i to deduce
∑

0≤ℓ≤i

(u− ℓ)u−ℓ(u− i+ ℓ)u−i+ℓ = u2u−i
∑

0≤ℓ≤i

(

1− ℓ

u

)u−ℓ(

1− i− ℓ

u

)u−i+ℓ

≤ u2u−i
∑

0≤ℓ≤u−1

(

1− ℓ

u

)u−ℓ

.

This latter sum over ℓ is bounded above by an absolute constant independent of u. The
contribution from 0 ≤ ℓ ≤ u/2 is

≤
∑

0≤ℓ≤u/2

(

1− ℓ

u

)u/2

≤
∑

0≤ℓ≤u/2

exp(−ℓ/2) ≤ e1/2

e1/2 − 1
,

and the contribution from u/2 < ℓ ≤ u− 1 is

≤
∑

u/2<ℓ≤u−1

2−(u−ℓ) ≤
∞
∑

j=1

2−j = 1.



E.G.G.S. AND INTEGRAL POINTS ON HYPERELLIPTIC CURVES 23

Therefore

|bi| ≤ u4u−2iJ2u−i
(2i

i!
u−(4u−3i) + 1 +

e1/2

e1/2 − 1

)

≤ 5u4u−2iJ2u−i,

the second inequality following since u ≥ 2. �

With Lemma A.1 in hand we can prove that any positive integer n which satisfies y2 =
P (n) for some y ∈ N is efficiently bounded in terms of P .

Theorem A.2 (Strong height bound in even degree). Let P (x) ∈ Z[x] be defined as in (10).
If n is a positive integer such that P (n) = y2 for some y ∈ N then n ≤ 5(2u)4uJ2u.

Proof. We assume for contradiction that n > 5(2u)4uJ2u and P (n) = y2. Let f(x) and g(x)
be the polynomials of Lemma A.1. We note first that g(x) is not the zero polynomial, since
otherwise P (x) = f(x)2 would have repeated roots but this contradicts the definition of P .

We claim that g(n) 6= 0. Since g(x) 6= 0 there is a least 0 ≤ k ≤ u − 1 such that bk 6= 0.
By Lemma A.1 we see that 16ug(x) ∈ Z[x]. If g(n) = 0 then x−n divides g(x) and therefore
x− n divides

∑

0≤j≤u−k−1

bk+j16
uxj ∈ Z[x].

Then n divides 16u|bk|, but 16u|bk| is a nonzero integer of size ≤ 5(2u)4uJ2u < n, so n does
not divide 16u|bk| and g(n) 6= 0.

We next need an upper bound on |g(n)|. By the triangle inequality and Lemma A.1

|g(n)| ≤ 5
u−1
∑

i=0

niu4u−2iJ2u−i = 5nu−1u2u+2Ju+1
u−1
∑

ℓ=0

(u2J

n

)ℓ

≤ 5

1− u2J/n
nu−1u2u+2Ju+1

≤ 6nu−1u2u+2Ju+1,

the sum over ℓ coming from a change of variables i = u − 1 − ℓ and the last inequality
following since n > (2u)4uJ and u ≥ 2.

Lastly, we need a lower bound on f(n). From Lemma A.1 we obtain

f(n) ≥ nu −
u−1
∑

i=0

(u− i)u−i(uJ)u−ini ≥ nu − u2Jnu−1
u−1
∑

ℓ=0

(u2J

n

)ℓ

≥ 1

2
nu,

say, since n > (2u)4uJ and u ≥ 2.
From the upper bound for |g(n)|, the lower bound for f(n), and the lower bound for n we

have

|g(n)|
f(n)

≤ 12 · 16−uu−2uJ1−u ≤ 1

100
,

say, since u ≥ 2. Recall now that we assume y2 = P (n) = f(n)2
(

1 + g(n)
f(n)2

)

. Taking square

roots gives y = f(n)
(

1 + g(n)
f(n)2

)1/2
, where we recall that y is a positive integer. For any real

y with |y| ≤ 3/4, say, we have

1 +
y

2
− y2

4
≤

√

1 + y ≤ 1 +
y

2
,
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and therefore
∣

∣

∣

∣

y − f(n)− g(n)

2f(n)

∣

∣

∣

∣

≤ g(n)2

4f(n)3
.

We multiply through by 4u to obtain
∣

∣

∣

∣

4uy − 4uf(n)− 4ug(n)

2f(n)

∣

∣

∣

∣

≤ 4ug(n)2

4f(n)3
,

where we note that 4uf(n) ∈ Z so 4uy − 4uf(n) ∈ Z. It follows that there is an integer in
the interval

[

4ug(n)

2f(n)

(

1− |g(n)|
2f(n)2

)

,
4ug(n)

2f(n)

(

1 +
|g(n)|
2f(n)2

)

]

⊂
[

3

8

4ug(n)

f(n)
,
5

8

4ug(n)

f(n)

]

,

say, the inclusion following from easy estimations with the upper bound for |g(n)| and the
lower bound for f(n), along with the fact that u ≥ 2. However,

4u|g(n)|
f(n)

≤ 12 · 4uu2u+2Ju+1

n
<

12 · 4uu2u+2Ju+1

5(2u)4uJ2u
≤ 1

40

since u ≥ 2, so the only possible integer in the interval
[

3
8
4ug(n)
f(n)

, 5
8
4ug(n)
f(n)

]

is zero. But g(n) 6= 0,

so zero is not contained in this interval. �
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[1] A. Bérczes, J.-H. Evertse, K. Győry, Effective results for hyper- and superelliptic equations over number
fields, Publ. Math. Debrecen 82 (2013), 727–756.

[2] E. Croot, A. Granville, R. Pemantle, P. Tetali, On sharp transitions in making squares, Ann. of Math.
175 (2012), 1507–1550.

[3] N. D. Elkies, ABC implies Mordell, Internat. Math. Res. Notices 7 (1991), 99–109.
[4] P. Erdős, R. L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica 4 (1976), 337–355.
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[12] M. Langevin, Cas d’égalité pour le théorème de Mason et applications de la conjecture (abc), C. R.

Acad. Sci. Paris Ser. I Math. 317 (1993), 441–444.
[13] M. H. Le, A note on the integer solutions of hyperelliptic equations, Colloq. Math. 68 (1995), 171–177.
[14] D. Masser, Auxiliary polynomials in number theory. Cambridge Tracts in Mathematics 207, Cambridge

University Press, Cambridge, 2016.
[15] C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473–1485.
[16] K. Stange, Integral points on elliptic curves and explicit valuations of division polynomials, Canad. J.

Math. 68 (2016), 1120–1158.
[17] L. Szalay, Superelliptic equations of the form yp = xkp + akp−1x

kp−1 + · · ·+ a0, Bull. Greek Math. Soc.
46 (2002), 23–33.



E.G.G.S. AND INTEGRAL POINTS ON HYPERELLIPTIC CURVES 25

Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Email address : hung.bui@manchester.ac.uk

All Souls College, Oxford OX1 4AL, UK

Email address : kyle.pratt@all-souls.ox.ac.uk

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West

Green Street, Urbana, IL 61801, USA and Simion Stoilow Institute of Mathematics of

the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

Email address : zaharesc@illinois.edu


	1. Introduction
	2. Notation and conventions
	3. The distribution of tn: proof of Theorem 1.1
	4. Small values of tn: Proof of Theorem 1.2
	5. Large integral points on hyperelliptic curves: Proof of Theorem 1.3
	6. Lower bounds on tn: Proof of Theorem 1.4
	Appendix A. Bounds for integral points on hyperelliptic curves of even degree
	References

