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DETERMINING THE VISCOSITY OF THE NAVIER-STOKES

EQUATIONS FROM OBSERVATIONS OF FINITELY MANY

MODES

ANIMIKH BISWAS AND JOSHUA HUDSON

Abstract. In this work, we ask and answer the question: when is the viscos-
ity of a fluid uniquely determined from spatially sparse measurements of its
velocity field? We pose the question mathematically as an optimization prob-
lem using the determining map (the mapping of data to an approximation
made via a nudging algorithm) to define a loss functional, the minimization
of which solves the inverse problem of identifying the true viscosity given the
measurement data. We give explicit a priori conditions for the well-posedness
of this inverse problem. In addition, we show that smallness of the loss func-
tional implies proximity to the true viscosity. We then present an algorithm
for solving the inverse problem and provide a priori verifiable conditions that
ensure its convergence.

1. Introduction

In many instances, the general form of a particular dynamical system is com-
monly derived from well-accepted fundamental physical, biological or epidemiolog-
ical principles. However, frequently these systems have one or multiple parameters
which play a crucial role in their dynamical evolution. For instance, in geophysical
models such as the Navier–Stokes or the Boussinesq systems, physical parameters
such as the Reynolds, Raleigh or Prandtl numbers determine whether or not the sys-
tem approaches an equilibrium or transitions to chaos, while in the SEIRD model of
transmission of an epidemic, the associated parameters determine whether the dis-
ease is eradicated or becomes endemic. Other examples include reservoir modelling
[6] and determining the transmissivity coefficient of groundwater, which captures
its ability to move across an aquifer; it is a central parameter in these models that
must be estimated in some way [5, 13] in order to make accurate predictions.

Due to its ubiquity in applications, there has been a recent surge of interest in
parameter determination and estimation problems from finitely many partial ob-

servations of the system under consideration. For instance, in case of a geophysical
model with a state variable θ(x, t), depending on a spatial variable x and time t,
such observations may take the form of nodal values {θ(xi, t)}Ni=1 where {xi}Ni=1 is a
finite set of points in the spatial domain. These observations can either be collected
continuously in time or at a discrete sequence of time points t1 < t2 < · · · .

Other examples of commonly used observational data include finitely many

Fourier coefficients {θ̂(n, t) : |n| ≤ N} or volume elements {θ̄i}Ni=1 where θ̄i =∫
Ωi

θ(x, t)} and Ωi is a subset of the whole spatial domain Ω. For finite dimensional

dynamical systems, such partial observations constitute a time series of observa-
tions on a subset of the variables. In the SEIRD model of epidemic transmission,
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data may not be available for certain variables such as the exposed population due
to asymptomatic transmission, thus leading to partial observations in these cases.

The above mentioned examples can be mathematically formulated as follows.
Let {u(t)} be a dynamical system parameterized by ν, evolving on a Hilbert space,
H, according to the equation

du

dt
= Fν(u(t)), u(·) ∈ H, ν ∈ R

d. (1.1)

The problem under consideration then is the estimation of the parameter ν ∈ Rd

based on observations {O(u(t))}, where O : H −→ RN is an adequate linear (or
nonlinear) operator and t ∈ [t0, T ], T ≤ ∞. More generally, one may have ob-
servations on a discrete set of points {O(u(ti)}∞i=1 and the observations may be
contaminated with error. When ν is known, recovering the state variable from
the observational data is commonly referred to as data assimilation. When ν is
unknown, we may view this as a parameter estimation problem embedded in data
assimilation. This has led to various computational strategies using Bayesian es-
timation methods [23, 24, 25], machine learning [11, 12, 28, 29], the Kalman filter
[26, 27], or other numerical methods based on nudging [3, 8, 33, 34], as well as
software packages implementing solutions (e.g. [30, 31, 32]). In this context, we
note first that the parameter identification problem is not in general well-posed
even when the state variable is fully observable, i.e. when the solution u in (1.1)
is known exactly. As described below, this can be seen in the multi-parameter
identification problem addressed in [8].

Let Ω = [0, 2π] and

H = {f : Ω→ R, f is 2π − periodic,

∫

Ω

f = 0}

and A = −∂xx on H∩H2. Consider now the problem of determining the parameter
vector, (λ1, λ2), from the solution, u, of the equation

ut − λ1Au+ λ2A
2u = f, (1.2)

which is an illustrative example of the type of parameter identification problems
discussed in [8]. If one takes u = uδ to be an (time-independent) eigenfunction of
A corresponding to the eigenvalue δ, and f = cδuδ, then uδ solves the equation
(1.2) provided (λ1 − λ2δ) = c. However, one cannot determine the parameters λ1

and λ2, even if one knows u completely on the entire domain, Ω; in a neighborhood
of this solution, the inverse problem of determining the parameter (λ1, λ2) is ill-
posed. Thus, the question of whether or not the parameter, ν, can be determined
in (1.1) from partial observations (i.e. whether or not the parameter-to-data map
is one-to-one) is even more delicate.

1.1. Overview of Results. Here, for the specific case of determining the viscosity
parameter for the two-dimensional Navier–Stokes equations (2D NSE), we consider
the fundamental questions inherent in rigorous justification of the parameter esti-
mation methods mentioned before, namely, when can one recover the parameter
from observational data and what is the regularity property of the inverse map.
First, we find a lower bound on the resolution of the data (the number of Fourier
modes) which guarantees that the viscosity is uniquely determined by the data over
an interval of time, and then we show that this inverse mapping satisfies a Lipschitz
property.
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In addition, we define an algorithm for solving the inverse problem using the
determining map. Our algorithm can be seen as an improvement over the algorithm
originally presented in [3] due to the replacement of the a posteriori verifiable
condition with an a priori condition for the update to have a nonzero denominator.
Our rigorous convergence criteria is also an improvement over the recent work
in [7] (which was developed simultaneously with this work) for the same reason;
in addition, our criteria is independent of the magnitude of the observable error,
whereas the condition in [7] requires more data as the observable error decreases.

To give more context to our results, consider [10], where the authors considered
the stochastically perturbed Navier–Stokes equations and constructed estimators
which converge in probability to the true viscosity in the limit as the number of
modes collected from a given sample path tends to infinity. In comparison, we
show that, for the deterministically forced Navier–Stokes equations, the viscosity
is determined from a finite number of modes.

In Section 2 we will establish some notation and review the basic theory necessary
for studying the Navier–Stokes equations. We will also briefly review the nudging
data assimilation algorithm originally presented in [1]. Then, in Section 3, we define
the determining map, extending its domain from that of [2] to include viscosity as
a variable, and prove some of its regularity properties.

In Section 4, we frame the viscosity recovery inverse problem as a PDE con-
strained optimization problem, and provide rigorous conditions for the inverse prob-
lem to have a unique solution. Then, in Section 6, we prove that the loss function
controls the viscosity error, which we leverage in Section 7 to define an algorithm
that converges to the true viscosity, solving the inverse problem.

2. Preliminaries

2.1. The Navier–Stokes equations and their functional form. The Navier–
Stokes equations for a homogeneous, incompressible Newtonian fluid in two dimen-
sions are given by

∂u

∂t
− ν∆u+ (u · ∇)u +∇p = g, ∇ · u = 0, (2.1)

where u = (u1, u2) and p are the unknowns and denote the velocity vector field and
the pressure, respectively, while ν > 0 and g are given and denote the kinematic
viscosity parameter and the body forces applied to the fluid per unit mass, respec-
tively (see [18] for an introduction to the Navier–Stokes equations). In this work,
we consider the Navier–Stokes equations defined on the spatial domain

Ω = [0, L]× [0, L],

with periodic boundary conditions.
Let û(k),k = (k1, k2) ∈ Z2 denote the k-th Fourier coefficient of u. Given

finitely many Fourier coefficients {û(k) : |k| ≤ N}, we address the question as to
when the viscosity ν be determined from this finite observational data and whether
the data-to-viscosity map is Lipschitz.

We now proceed to recall the basic functional setting of the NSE, a systematic
development of which can be found in [19, 15, 16]. Let V be the space of test
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functions, given by

V =
{
ϕ : R2 → R

2 : ϕ is an L-periodic trigonometric polynomial,

∇ · ϕ = 0,

∫

Ω

ϕ(x)dx = 0

}
. (2.2)

We denote by H and V the closures of V with respect to the norms in (L2(Ω))2

and (H1(Ω))2, respectively. Moreover, we denote by H ′ and V ′ the dual spaces of
H and V , respectively. As usual, we identify H with H ′, so that V ⊆ H ⊆ V ′

with the injections being continuous and compact, with each space being densely
embedded in the following one. The duality action between V ′ and V ′ is denoted
by 〈·, ·〉V ′,V .

The inner product in H is given by

(u1,u2) =

∫

Ω

u1 · u2 dx ∀u1,u2 ∈ H,

with the corresponding norm denoted by |u| := ‖u‖L2 = (u,u)1/2. In V , we
consider the following inner product:

((u1,u2)) =

∫

Ω

∇u1 : ∇u2 dx ∀u1,u2 ∈ V,

where it is understood that ∇u1 : ∇u2 denotes the component-wise product be-
tween the tensors ∇u1 and ∇u2. The corresponding norm in V is given by
‖u‖ := ‖∇u‖L2 = ((u,u))1/2. The fact that ‖ · ‖ defines a norm on V follows
from the Poincaré inequality, given in (2.10), below.

For every subspace Λ ⊂ (L1(Ω))2, we denote

Λ̇per =

{
ϕ ∈ Λ : ϕ is L-periodic and

∫

Ω

ϕ(x)dx = 0

}
.

Observe that H is a closed subspace of (L̇2(Ω))2. Let Pσ denote the Helmholtz-

Leray projector, which is defined as the orthogonal projection from (L̇2
per(Ω))

2 onto
H . Applying Pσ to (2.1), we obtain the following equivalent functional formulation
of the Navier–Stokes equations.

System 2.1 (Navier–Stokes in functional form).

du

dt
+ νAu+B(u,u) = f in V ′, (2.3)

where f = Pσg.

The bilinear operator B : V × V → V ′ is defined as the continuous extension of

B(u,v) = Pσ[(u · ∇)v] ∀u,v ∈ V ,
and A : D(A) ⊂ V → V ′, the Stokes operator, is the continuous extension of

Au = −Pσ∆u ∀u ∈ V .
In fact, in the case of periodic boundary conditions, we have A = −∆.

We recall that D(A) = V ∩ (Ḣ2
per(Ω))

2 and that A is a positive and self-adjoint
operator with compact inverse. Therefore, the space H admits an orthonormal
basis {φj}∞j=1 of eigenfunctions of A corresponding to a non-decreasing sequence
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of eigenvalues {λj}∞j=1, where λj ∈ {κ2
0|k|2,k ∈ Z2 \ {0}} and λ1 := κ2

0 = (2π/L)2.
For a periodic function φ on Ω, we recall the Parseval’s identity:

|φ|2 = L2
∑

k

|φ̂k|2,

where φ̂k denotes the Fourier coefficient corresponding to k = (k1, k2) ∈ Z2. Fur-
thermore, φ ∈ L2(Ω) satisfies the mean-free condition

∫
Ω
φ = 0 if and only if

φ̂0 = 0.
Given a normed space X with norm ‖ · ‖X , let Cb(X ) denote the continuous

bounded mappings from R to X , and define the norm ‖φ‖Cb(X) = supt∈R
‖φ(t)‖X .

In particular, we have the norms ‖ · ‖Cb(H) and ‖ · ‖Cb(V ).

2.2. Global attractor for the Navier–Stokes equations. It is well-known that,
given u0 ∈ H , there exists a unique solution u of (2.3) on [0,∞) such that u(0) = u0

and

u ∈ C([0,∞);H) ∩ L2
loc([0,∞);V ) and

du

dt
∈ L2

loc([0,∞);V ′). (2.4)

Moreover, we also have u ∈ C((0,∞);D(A)) (see, e.g., [19, Theorem 12.1]). There-
fore, equation (2.3) has an associated semigroup {Sν(t)}t≥0, where, for each t ≥ 0,
Sν(t) : H → H is the mapping given by

Sν(t)u0 = uν(t), (2.5)

with uν being the unique solution of (2.3) on [0,∞) satisfying uν(0) = u0 and
(2.4). For simplicity, we will drop the subscript ν as it will be understood from
context and simply write S(t) and u(t) instead.

Recall that a bounded set B ⊂ H is called absorbing with respect to {S(t)}t≥0 if,
for any bounded subset B ⊂ H , there exists a time T = T (B) such that S(t)B ⊂ B
for all t ≥ T . The existence of a bounded absorbing set for (2.3) is a well-known
result; therefore, a global attractor Aν of (2.3) exists, and is uniquely defined by
any of the equivalent conditions given below.

Definition 2.2 (Global Attractor). Let B ⊂ H be a bounded absorbing set with
respect to {S(t)}t≥0. Then the global attractor, Aν , exists as given by any of the
following equivalent definitions (see [17]):

(1)

Aν =
⋂

t≥0

S(t)B.

(2) Aν is the largest compact subset of H which is invariant under the action
of the semigroup {S(t)}t≥0, i.e., S(t)Aν = Aν for all t ≥ 0.

(3) Aν is the minimal set that attracts all bounded sets.
(4) Aν is the set of all points inH through which there exists a globally bounded

trajectory u(t), t ∈ R, with supt∈R
‖u(t)‖L2 <∞.

Also, recall the definition of the (dimensionless) Grashof number, given by

Gν =
‖f‖L2

(νκ0)2
. (2.6)

In the periodic case, the following bounds hold on the global attractor, Aν :

‖u‖L2 ≤ νGν , ‖∇u‖L2 ≤ νκ0Gν ∀u ∈ Aν , (2.7)
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and
uu‖Au‖L2 ≤ c2νκ

2
0(Gν + c−2

0 )3 ∀u ∈ Aν , (2.8)

where c0 is the constant given below in (2.16), and c2 = 2137 c40. The proof of (2.7)
can be found in any of the references listed above ([19, 15, 16]), and the proof of
(2.8) is given in [22, Lemma 4.4].

In particular, we will make use of the following fact wich follows directly from
(2.7) and (2.8): if u ∈ Aν , then u ∈ Cb(H) and u ∈ Cb(V ).

2.3. Data Assimilation via Nudging. The data assimilation problem we con-
sider is defined as follows: given measurements of a reference solution of (2.3) on the
attractor, and a guess for the fluid viscosity, contruct an approximation of the solu-
tion. This kind of problem is typically known as data assimilation, but can also be
thought of as an inverse problem (mapping measurements of the velocity field back
to the full velocity field) or a regression problem (interpolating the measurements
in a way that generalizes to the entire space and time domain).

There are many approaches to solving data assimilation problems. Extensions of
the Kalman filter for nonlinear problems, like the extended Kalman filter, or ensem-
ble Kalman filter are common [26, 27], as well as 3DVAR and 4DVAR [67], or more
recently, machine learning approaches such as Physics Informed Neural Networks
[11, 12]. The approach we consider, often called nudging, benefits from a rigorous
mathematical framework for establishing convergence developed by Azouani, Olsen
and Titi in 2014 [1]. Since then, many authors have developed extensions of nudg-
ing and applied nudging to several equations (e.g. [35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 57]), and studied
the efficacy of nudging numerically [63, 64, 65, 66].

The idea can be simply stated as follows: given data collected on a variable,
y, and a method of interpolating the data, putting them together, we have an
interpolant operator Ih, where h is a measure of the resolution of the data, and
Ih(y) is the interpolation of the data. If y satisfies a differential equation ẏ = F (y),
then the nudging algorithm is to solve

˙̃y = F (y) + µ (Ih(y)− Ih(ỹ))

for an approximation, ỹ. The algorithm is succesful when ỹ converges to y.
In [1], the authors prove results for interpolant operators satisfying one of two

approximation criteria. The first kind of interpolant operator (and most strict) has
the following property:

Definition 2.3 (Type 1 Interpolant Operator).

|φ− Ih(φ)| ≤ c1h|∇φ| ∀φ ∈ (Ḣ1(Ω))2

In this work, we focus on the case where the measurements are exact values for
finitely many spectral coefficients, which are then interpolated to give approxima-
tions in the range of the modal projection, PN . Specifically, for any N ≥ 1, PN is
defined by:

P̂N (φ)k =

{
φ̂k, |k| < N

0, |k| ≥ N
∀k ∈ Z

2.

The modal projection is an example of a Type 1 interpolant operator, as can
easily be verified.

|φ− PNφ|2 ≤
1

κ2
0

1

N2
‖φ‖2 (2.9)
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In particular, for any φ ∈ H (which by the mean-free condition implies P1φ = 0)
we have the Poincaré inequality

|φ| = |φ− P1φ| ≤
1

κ0
‖φ‖. (2.10)

We explicitly state the nudging data assimilation algorithm for our current set-
ting in System 2.11.

System 2.4 (Navier–Stokes with data feedback). Given φ ∈ Cb(V ) (the data) and
an approximate viscosity, γ, find v ∈ Cb(V ) satisfying

d

dt
v + γAv +B (v,v) = f + µ(φ− PNv). (2.11)

When solving the data assimilation problem, we typically have φ = PNu, where
u ∈ Aν . However, (2.11) remains valid in the general setting with φ ∈ Cb(V ), and
is the basis for the definition of the determining map in Section 3.

2.4. Standard Inequalities. We now review several standard inequalities which
are used throughout the subsequent sections. We often use Young’s inequality to
establish estimates,

apb1−p ≤ pa+ (1− p)b, ∀a, b ≥ 0, p ∈ [0, 1]. (2.12)

In particular, we frequently use Young’s inequality in the following form:

ab ≤ 1

2ǫ
a2 +

ǫ

2
b2, ∀a, b ≥ 0, ǫ > 0. (2.13)

We also make use of Jensen’s inequality,

(
1

L

∫ L

0

φ(x)dx

)2

≤ 1

L

∫ L

0

φ2(x)dx (2.14)

We use Ladyzhenskaya’s inequality (for periodic boundary conditions) in the fol-
lowing form to obtain estimates of the nonlinear term in (2.11) (a proof is provided
in the Appendix):

‖φ‖L4(Ω) ≤ |φ|
1

2

(
1
L |φ|+ ‖φ‖

) 1

2 (2.15)

Remark 2.5. Note that, using (2.10), we can rewrite (2.15) in the more usual form

‖φ‖L4(Ω) ≤ c0|φ|
1

2 ‖φ‖ 1

2 (2.16)

where c0 =
√
1 + 1

2π .

Using (2.15), we have the following estimate:

|b (u,v,w) | ≤ ‖u‖L4(Ω)|∇v|‖w‖L4(Ω)

≤ |u| 12
(
1
L |u|+ ‖u‖

) 1

2 ‖v‖|w| 12
(
1
L |w|+ ‖w‖

) 1

2 (2.17)

where b (u,v,w) := (B (u,v) ,w).
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3. Determining Map

The determining map was first defined in [20, 21] as the mapping of data to
the corresponding solution of (2.11). It was exploited in [2] for statistical data
assimilation. We extend the definition of the determining map to include viscosity
as an input and establish its Lipschitz property in all its arguments, which plays a
pivotal role in establishing the results in Section 4 and Section 7.

Definition 3.1 (Determining Map). Fix an arbitrary lower bound ν0 > 0 for
the viscosity, and fix an arbitrary radius R > 0 for a ball BR(0) ⊂ Cb(V ). The
determining map, W : (ν0,∞) × BR(0) → Cb(V ), is the mapping of viscosity and
data to the corresponding solution of (2.11) on the attractor.

For example, W(ν̃, PNu) is the solution of (2.11) with γ = ν̃ and φ = PNu.
However, we don’t in general require that the data φ come from a solution of (2.3).

We begin by deriving sufficient conditions for the determining map to be a well-
defined Lipschitz continuous mapping. These conditions are placed on µ and N .
Note that in contrast to the usual analysis taken wherein N depends on µ, we
derive our results in such a way that the lower bound for N comes directly from
the data, forcing, and ν0, and µ is chosen to be larger than a lower bound which
grows with N2. Specifically, we parameterize µ in terms of a (non-dimensional)
constant µ0 > 0 as follows:

µ = µ0ν0κ
2
0N

2. (3.1)

Lemma 3.2. Fix ν0 ∈ R+ and suppose that

µ0 ≥ 1 i.e. µ ≥ ν0κ
2
0N

2. (3.2)

For any f ,φ ∈ Cb(V ), and for any 1 ≤ N ∈ R, if

γ ∈ [ν0,∞)

and v is a corresponding solution of (2.11), then the following bounds are satisfied:

‖v‖2Cb(H) ≤
2

(ν0κ2
0N

2)2
‖f‖2Cb(H) + 2µ2

0‖φ‖2Cb(H) ≤ (MH(φ))2, (3.3)

and

‖v‖2Cb(V ) ≤
2

(ν0κ2
0N

2)2
‖f‖2Cb(V ) + 2µ2

0‖φ‖2Cb(V ) ≤ (MV (φ))
2. (3.4)

Here, given fixed f ∈ Cb(V ), ν0, κ0 > 0, and µ0 ≥ 1, we define

MH(φ) =
√
2

√
1

(ν0κ2
0)

2
‖f‖2Cb(H) + µ2

0‖φ‖2Cb(H) (3.5)

and

MV (φ) =
√
2

√
1

(ν0κ2
0)

2
‖f‖2Cb(V ) + µ2

0‖φ‖2Cb(V ). (3.6)

Proof. Let v be a solution of (2.11). Then taking the inner product of (2.11) with
v, we have

1

2

d

dt
|v|2 + γ‖v‖2 = 〈f ,v〉+ µ 〈φ,v〉 − µ|PNv|2.
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Therefore, for any choice of c1, c2 > 0,

1

2

d

dt
|v|2+γ‖v‖2+µ|PNv|2 ≤ |f ||v|+µ|φ||v| ≤ 1

2c1
|f |2+ µ

2c2
|φ|2+ c1 + µc2

2
|v|2

≤ 1

2c1
|f |2 + µ

2c2
|φ|2 + c1 + µc2

2
|PNv|2 +

1

κ2
0

c1 + µc2
2N2

‖v‖2,

where to obtain the last inequality, we used |v|2 = |PNv|2+ |(I−PN )v|2 and (2.9).
Collecting terms, we have

1

2

d

dt
|v|2 +

(
γ − 1

κ2
0

c1 + µc2
2N2

)
‖v‖2 +

(
µ− c1 + µc2

2

)
|PNv|2 ≤

1

2c1
|f |2 + µ

2c2
|φ|2.

Let ǫ, δ ∈ (0, 1), and define

r =
ν0κ

2
0N

2

µ
.

Choosing
c1 = 2µrδ(1 − ǫ) and c2 = 2r(1− δ),

we have
c1 + µc2 = 2µr(1 − δǫ)

and the previous differential inequality becomes

1

2

d

dt
|v|2+(γ − ν0(1− δǫ)) ‖v‖2+

(
µ− ν0κ

2
0N

2(1 − δǫ)
)
|PNv|2 ≤

1

2c1
|f |2+ µ

2c2
|φ|2.
(3.7)

Observe that

‖v‖2 = ‖PNv‖2 + ‖(I − PN )v‖2 ≥ κ2
0N

2|(I − PN )v|2,
where to obtain the last inequality we used (2.9). Consequently,

1

2

d

dt
|v|2 + ν0δǫ‖v‖2 +

(
µ− ν0κ

2
0N

2(1− δǫ)
)
|PNv|2

≥ 1

2

d

dt
|v|2 + ν0κ

2
0N

2δǫ|v|2 +
(
µ− ν0κ

2
0N

2
)
|PNv|2. (3.8)

Note that by imposing the constraint ǫ, δ ∈ (0, 1), we have ensured that γ − ν0(1−
δǫ) ≥ ν0δǫ > 0. Using (3.7), (3.8) and (3.2), and by dropping the last term in (3.8),
we obtain

d

dt
|v|2 + β|v|2 ≤ 1

c1
|f |2 + µ

c2
|φ|2,

with β := 2ν0κ
2
0N

2δǫ.
So, by Gröwall’s inequality,

|v(t)|2 ≤ e−β(t−s)|v(s)|2 +
∫ t

s

e−β(t−τ)

(
1

c1
|f(τ)|2 + µ

c2
|φ(τ)|2

)
dτ

≤ e−β(t−s)|v(s)|2 +
(

1

c1
‖f‖2Cb(H) +

µ

c2
‖φ‖2Cb(H)

)
1

β

(
1− e−β(t−s)

)

We get the stated result by choosing ǫ = 2
3 and δ = 3

4 (so c1 = 1
2ν0κ

2
0N

2 and

c2 = 1
2
ν0κ

2

0
N2

µ ), and taking the limit as s→ −∞.

Taking the inner product of (2.11) with Av and proceeding similarly, but this
time using the enstrophy cancelation property (B(v,v), Av) = 0, we obtain (3.4).

�
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We now derive the main Lipschitz continuity property of the determining map
which is essential to the proofs of the subsequent results.

Lemma 3.3. Let v1 and v2 be solutions of (2.11) with viscosity γ1 ≥ ν0 and

γ2 ≥ ν0 and data φ1 and φ2 respectively. Let p ∈ [0, 1] and set

α =
γ1 + γ2

2

(
1− 1

2

(
2
|γ1 − γ2|
γ1 + γ2

)p)
.

Then, α ∈
[
1
2ν0, γ̄

]
where γ̄ := 1

2 (γ1 + γ2). Moreover, if

µ0 ≥ max

{
1,

α

ν0

}
, (3.9)

and

N ≥ 4

ακ0
MV (φi), i = 1, 2. (3.10)

then

‖v1 − v2‖2Cb(H) ≤
5

2

|γ1 − γ2|2−p

(
γ1+γ2

2

)1−p

‖ 12 (v1 + v2)‖2Cb(V )

ακ2
0N

2
+

5

2
µ2
0

(ν0
α

)2
‖φ1 − φ2‖2Cb(H).

(3.11)

Proof. Observe that

α = γ̄ − 1

2
γ̄1−p|γ1 − γ2|p = γ̄

(
1− 1

2

(
2
|γ1 − γ2|
γ1 + γ2

)p)
,

and note that for all p ∈ [0, 1],

γ̄ ≥ α ≥ γ̄

(
1− 1

2
max

{
1, 2
|γ1 − γ2|
γ1 + γ2

})
= min

{
1

2
γ̄,min {γ1, γ2}

}
≥ 1

2
ν0.

(3.12)
Thus, α ∈

[
1
2ν0, γ̄

]

Now let v1 and v2 be solutions of (2.11) with viscosity γ1 and γ2 and data φ1 and
φ2 respectively. We now analyze the difference w := v1 − v2, and for convenience
of presentation, we define the average quantities v̄ = 1

2 (v1+v2) and γ̄ = 1
2 (γ1+γ2).

Writing the evolution equation for w using (2.11),

∂tw + γ̄Aw + (γ1 − γ2)Av̄ +B (v̄,w) +B (w, v̄) = µ(φ1 − φ2)− µPNw

and taking the inner product with w and using (2.17), we have

1

2

d

dt
|w|2+γ̄‖w‖2+µ|PNw|2 = −(γ1−γ2) 〈Av̄,w〉+µ 〈(φ1 − φ2),w〉−b (w, v̄,w)

≤ |γ1 − γ2|‖v̄‖‖w‖+ µ|φ1 − φ2||w|+ ‖v̄‖|w|( 1
L |w|+ ‖w‖)

Using (2.13), for any p ∈ [0, 1], we can write

|γ1 − γ2|‖v̄‖‖w‖ ≤
1

2
γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + 1

2
γ̄1−p|γ1 − γ2|p‖w‖2,

therefore,

1

2

d

dt
|w|2 +

(
γ̄ − 1

2
γ̄1−p|γ1 − γ2|p

)
‖w‖2 + µ|PNw|2

≤ 1

2
γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + µ|φ1 − φ2||w|+ ‖v̄‖|w|( 1

L |w|+ ‖w‖).
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For the remaining terms, using (2.13) and (2.9), for any c1 > 0 we have

µ|φ1 − φ2||w| ≤
µ

2c1
|φ1 − φ2|2 +

µc1
2κ2

0N
2
‖w‖2 + µc1

2
|PNw|2,

and

‖v̄‖|w|( 1
L |w|+ ‖w‖)

≤
(

1

κ2
0N

2L
+

1

κ0N

)
‖v̄‖‖w‖2 +

(
1

L
+

κ0N

2

)
‖v̄‖|PNw|2.

Therefore,

1

2

d

dt
|w|2 +

(
α− µc1

2κ2
0N

2
−
(

1

κ2
0N

2L
+

1

κ0N

)
‖v̄‖

)
‖w‖2

+

(
µ− µc1

2
−
(
1

L
+

κ0N

2

)
‖v̄‖

)
|PNw|2

≤ 1

2
γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + µ

2c1
|φ1 − φ2|2

and after choosing c1 = α
κ2

0
N2

µ and simplifying,

1

2

d

dt
|w|2 +

(
1

2
α−

(
1 +

1

2πN

) ‖v̄‖
κ0N

)
‖w‖2

+

(
µ− 1

2
ακ2

0N
2 − 1

L
(1 + πN) ‖v̄‖

)
|PNw|2

≤ 1

2
γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + µ2

2ακ2
0N

2
|φ1 − φ2|2.

Now, by (3.10) and (3.4), we have

N ≥ 4

ακ0
‖v̄‖, (3.13)

so,

1

2
α−

(
1 +

1

2πN

) ‖v̄‖
κ0N

≥ 1

2
α−

(
1 +

1

2πN

)
α

4
=

1

4
α

(
1− 1

2πN

)
>

1

5
α > 0.

(3.14)
Therefore, we can apply (2.9), obtaining

1

2

d

dt
|w|2 +

(
1

2
α−

(
1 +

1

2πN

) ‖v̄‖
κ0N

)
κ2
0N

2|w|2

+

(
µ− ακ2

0N
2 +

1

2
κ0N‖v̄‖

)
|PNw|2

≤ 1

2
γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + µ2

2ακ2
0N

2
|φ1 − φ2|2.

By assumption (3.9) we can drop the third term. Then, after simplifying and
applying the estimate (3.14) to the second term on the left hand side, we have

d

dt
|w|2 + 2

5
ακ2

0N
2|w|2 ≤ γ̄p−1|γ1 − γ2|2−p‖v̄‖2 + µ2

ακ2
0N

2
|φ1 − φ2|2.
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From here, for any −∞ < s < t we can apply Grönwall’s inequality,

|w(t)|2 ≤ e−
2

5
ακ2

0
N2(t−s)|w(s)|2

+ γ̄p−1|γ1 − γ2|2−p‖v̄‖2Cb(V )

5

2

1

ακ2
0N

2

(
1− e−

2

5
ακ2

0
N2(t−s)

)

+
µ2

ακ2
0N

2
‖φ1 − φ2‖2Cb(H)

5

2

1

ακ2
0N

2

(
1− e−

2

5
ακ2

0
N2(t−s)

)

and taking the limit as s→ −∞ we get the stated result. �

In the previous lemma, the lower bound for N depends on the value of α, which
depends on the viscosities. If we impose an upper bound, ν1, on the viscosities in
addition to the lower bound, ν0, we can easily replace this dependence to be on ν1
and ν0.

Corollary 3.4. Let v1 and v2 be solutions of (2.11) with viscosity γ1 and γ2 and

data φ1 and φ2 respectively, and suppose that γ1, γ2 ∈ [ν0, ν1], where ν1 > ν0. If

µ0 ≥
ν1
ν0

, (3.15)

and

N ≥ 8

ν0κ0
MV (φi) (3.16)

for i = 1, 2, then

‖v1 − v2‖2Cb(H) ≤ 5
|γ1 − γ2|2−p

(
γ1+γ2

2

)1−p

‖ 12 (v1 + v2)‖2Cb(V )

ν0κ2
0N

2
+ 10µ2

0‖φ1 − φ2‖2Cb(H).

Proof. Substituting for α using the bounds ν0
2 ≤ α ≤ γ1+γ2

2 ≤ ν1 proves the
corollary. �

We can also allow for γ1 and γ2 to be arbitrarily large, as long as their relative
difference is smaller than 1.

Corollary 3.5. Let v1 and v2 be solutions of (2.11) with viscosity γ1 ≥ ν0 and

γ2 ≥ ν0 and data φ1 and φ2 respectively. If

µ0 ≥ 1, (3.17)

and

N ≥ 8

ν0κ0
MV (φi) (3.18)

for i = 1, 2, and if
|γ1 − γ2|
1
2 (γ1 + γ2)

≤ 1,

then

‖v1 − v2‖2Cb(H) ≤ 5

(
|γ1 − γ2|

γ1+γ2

2

)2−p ‖ 12 (v1 + v2)‖2Cb(V )

κ2
0N

2
+ 10µ2

0‖φ1 − φ2‖2Cb(H).

Proof. Using the same notation as before, we have by assumption |γ1−γ2|
γ̄ ≤ 1, so

1
2ν0 ≤ α ≤ ν0, hence (3.9) and (3.10) are satisfied by (3.17) and (3.18). Also,

α ≥ γ̄

(
1− 1

2
max

{
1, 2
|γ1 − γ2|
γ1 + γ2

})
=

1

2
γ̄.
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Substituting this lower bound for α in (3.11) along with the more general lower
bound, α > 1

2ν0, gives the result. �

We can now show the well-posedness of the determining map.

Theorem 3.6. Let R > 0 and ν0 > 0, and let f ∈ Cb(V ). If

N ≥ 8

ν0κ0

√
2

(
1

ν0κ2
0N

2
‖f‖Cb(V ) + µ0R

)
, (3.19)

for any µ0 ≥ 1 with µ given by (3.1), then W as defined by Definition 3.1 is well-

defined.

Proof. The existence of solutions on the attractor for any given pair (γ,φ) on the
domain of W can be shown by first taking a Galerkin truncation and proceeding to
the limit as is done in the classical case for the 2D Navier–Stokes, and so we omit
the details here.

The uniqueness of solutions follows from Corollary 3.5: for any (γ,φ) ∈ (ν0,∞)×
BR(0), note that the conditions of the corollary are satisfied. Therefore, given two
solutions v1 and v2 of (2.11) corresponding to γ and φ, by Corollary 3.5 we have

‖v1 − v2‖Cb(H) = 0,

therefore, by the embedding V ⊂ H ,

‖v1 − v2‖Cb(V ) = 0.

�

Remark 3.7. Theorem 3.6 also provides an alternate proof of the classical result
that there are finitely many determining modes for the Navier–Stokes equations.
To see that this is true, suppose u and v are two solutions of (2.3) in Cb(V ) with
viscosity ν, which agree at low modes, i.e. PNu = PNv for all t ∈ R. If N satisfies
the conditions of Theorem 3.6 with ν0 = ν, R = max{‖u‖Cb(V ), ‖v‖Cb(V )}, and
µ0 = 1, then

u = W(ν, PNu) = W(ν, PNv) = v.

4. The Parameter Recovery Inverse Problem

Our goal in this section is to define and study the following optimization problem.

Problem 4.1. Let PNu be given on R. Define the cost functional, L, by
L(γ) = ‖PNW(γ, PNu)− PNu‖Cb(H). (4.1)

Find γ∗ > 0 such that

L(γ∗) = min
γ>0
L(γ).

As motivation, consider the following:

Fact 4.2. If u ∈ Cb(V ) is a solution of (2.3) with viscosity ν, then

min
γ>0
‖W(γ, PNu)− u‖Cb(H)

has a unique solution, namely ν, provided that µ and N satisfy the conditions of

Theorem 3.6 with R = ‖u‖Cb(V ), and that f 6≡ 0.
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Proof. Choosing γ = ν makes the cost exactly 0, as u solves (2.11) when γ = ν,
and therefore, by Theorem 3.6, W(ν, PNu) = u. To see that this solution is unique,
suppose that v := W(γ, PNu) satisfies ‖v − u‖Cb(H) = 0. Then

d

dt
v + γAv +B (v,v) = f + PNu− PNv.

Taking an inner-product with v, we obtain

1

2

d

dt
|v|2 + γ‖v‖2 = 〈f ,v〉+ 〈PNu,v〉 − |PNv|2,

whereas, by the definition of u we have

d

dt
u+ νAu +B (u,u) = f ,

and taking an inner-product with u, we get

1

2

d

dt
|u|2 + ν‖u‖2 = 〈f ,u〉 .

Now, by assumption, |v − u| = 0 for each t, so 〈f ,v〉 = 〈f ,u〉, 〈PNu,v〉 =
|PNv|2, and ‖u‖ = ‖v‖. Therefore, taking the difference of the two energy equa-
tions, we see that for all t ∈ (−∞,∞),

(γ − ν)‖u‖ = 0.

This can only hold if u ≡ 0 or if γ = ν. However, u ≡ 0 only if f ≡ 0. Therefore
γ = ν. �

Note that the minimization problem presented in Fact 4.2 is not useful, because
to calculate the cost we would need to know u exactly. In which case, rather than
solving the minimization problem using W(·, ·), we could compute ν directly by
averaging the energy equation over [−T, T ] for any T > 0:

ν =

∫ T

−T
〈f ,u〉 −

(
|u(T )|2 − |u(−T )|2

)
∫ T

−T
‖u‖2

. (4.2)

The point of posing Problem 4.1 is to obtain a similar result while requiring a
minimal amount of data. Note that (4.2) could be modified by replacing u with
PNu, which is essentially the approach taken in [10], but for the stochastically
forced NSE. In contrast, rather than use the data PNu directly, we leverage the
convergence properties of the determining map with finite N to solve for ν.

5. Uniqueness of the Inverse Problem

Given the same data, the Lipschitz properties we proved in Section 3 show that
closeness in the viscosity implies smallness of the cost function, L. Now that we
are considering the inverse problem, we are interested in the converse: when does
smallness in the cost function imply closeness to the true viscosity? We give con-
ditions for the converse to be true in Section 6, but first, we directly address the
simpler question of uniqueness of the solution, γ = ν, to Problem 4.1.

In the following lemma, we provide an inequality bounding the difference between
two viscosities which, given the same data φ, map (via W) to trajectories with
identical projections on range(PN ). We leverage this result to show the uniqueness
of solutions of Problem 4.1 in the subsequent theorem.
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Lemma 5.1. Let f ,φ ∈ Cb(V ) and γ1, γ2 ∈ [ν0, ν1], and fix µ0 ≥ ν1
ν0

and N ≥
8

ν0κ0

MV (φ). If

‖PNW(γ1,φ)− PNW(γ2,φ)‖Cb(H) = 0, (5.1)

then either |γ1 − γ2| = 0, or for any p ∈ [0, 1],
(
|γ1 − γ2|

γ1+γ2

2

)p/2

‖ψ‖Cb(H) N ≤
2
√
5c

ν0κ2
0

√
|Ω|
√
ln(N + 1)MH(φ)MV (φ), (5.2)

where ψ := PNW(γ1,φ) = PNW(γ2,φ).

Proof. Let v1 = W(γ1,φ) and v2 = W(γ2,φ), and assume that PNv1 = PNv2 =: ψ.
Let w = v1 − v2 (note that PNw is therefore 0). Writing (2.11) in Fourier space,
for any k ∈ Z2, |k| ≤ N , we have

d

dt
v̂1(k)+ γ1κ

2
0|k|2v̂1(k)+ iκ0Pσ

∑

h

(k · v̂1(h))v̂1(k−h) = f̂(k)+µφ̂(k)−µv̂1(k)

and

d

dt
v̂2(k)+γ2κ

2
0|k|2v̂2(k)+ iκ0Pσ

∑

h

(k · v̂2(h))v̂2(k−h) = f̂(k)+µφ̂(k)−µv̂2(k).

Subtracting these equations and using the fact that v̂1(k) = v̂2(k) = ψ̂(k) and
ŵ(k) = 0 for |k| ≤ N , we find

(γ1−γ2)κ2
0|k|2ψ̂(k)+iκ0Pσ

∑

h

(k·v̂1(h))ŵ(k−h)+iκ0Pσ

∑

h

(k·ŵ(h))v̂2(k−h) = 0.

Next we estimate the convolutions. First, we may write

|γ1 − γ2|κ0|k|2|ψ̂(k)| ≤
∑

h

|k||v̂1(h)||ŵ(k − h)|+
∑

h

|k||v̂2(k − h)||ŵ(h)|.

Then, applying the Cauchy-Schwarz inequality and Parseval’s theorem, we obtain

|γ1 − γ2|κ0|k|2|ψ̂(k)| ≤ |k|
1

|Ω| |v1||w|+ |k|
1

|Ω| |v2||w|.

Now, for any k 6= 0, we can multiply both sides by |ψ̂(k)|
|k|2 |Ω|,

|γ1 − γ2|κ0|ψ̂(k)|2|Ω| ≤
1

|k| |ψ̂(k)|(|v1|+ |v2|)|w|,

and taking the sum over k ∈ Z2, 0 < |k| ≤ N, and using the Cauchy-Schwarz
inequality,

|γ1 − γ2|κ0|PNψ|2 ≤


 ∑

0<|k|≤N

1

|k|2




1

2

1√
|Ω|
|PNψ|(|v1|+ |v2|)|w|.

Using the estimate
∑

0<|k|≤N

1

|k|2 ≤ 8 + 2π(1 + ln(N)) ≤ c ln(N + 1),

and noting that ψ = PNψ, we have

|γ1 − γ2|κ0

√
|Ω||ψ|2 ≤

√
c ln(N + 1)|ψ|(|v1|+ |v2|)|w|.
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Finally, by Corollary 3.4,

|w(t)| ≤
√
5
|γ1 − γ2|1−p/2

(
γ1+γ2

2

)1/2−p/2

‖ 12 (v1 + v2)‖Cb(V )√
ν0κ0N

,

and using Lemma 3.2, we can bound the norms involving v1 and v2. The resulting
inequality is

(
|γ1 − γ2|

γ1+γ2

2

)p/2

|γ1 − γ2||ψ|2

≤ |γ1 − γ2||ψ|
2
√
5

ν0κ2
0

√
|Ω|

√
c ln(N + 1)

N
MH(φ)MV (φ),

so either |γ1 − γ2| = 0 (taking care in the case where p = 0), or
(
|γ1 − γ2|

γ1+γ2

2

)p/2

|ψ|N ≤ 2
√
5c

ν0κ2
0

√
|Ω|
√
ln(N + 1)MH(φ)MV (φ).

This holds for all time, so we may take the supremum over all time and get the
stated result. �

In the previous lemma no conclusions can be drawn regarding the viscosity in
the event that the data are zero in Cb(H) (compare to the nonzero requirement
of Fact 4.2). However, given a nonzero function φ ∈ Cb(H), we always have
‖Pn(φ)‖Cb(H) > 0 for some n > 1. Therefore, given 0 6= φ ∈ Cb(H), let

n0(φ) = sup{n ∈ R | ‖Pn(φ)‖Cb(H) = 0}. (5.3)

Then 1 ≤ n0(φ) <∞, and ‖PN (φ)‖Cb(H) > 0 for any N > n0(φ).
We now give conditions for Problem 4.1 to have a unique solution.

Theorem 5.2. Let u ∈ Cb(V ) be a solution of (2.3) with viscosity ν ∈ [ν0, ν1],
where 0 < ν0 < ν1 <∞ are given, and suppose that u 6= 0. Choose µ0 ≥ ν1

ν0
. If

N > max

{
8

ν0κ0
MV (u), n0(u)

}

and
N√

ln(N + 1)
>

2
√
5c

ν0κ2
0

√
|Ω|

MH(u)MV (u)

‖PNu‖Cb(H)
, (5.4)

then ν is the unique solution of Problem 4.1 on [ν0, ν1].

Proof. By the assumption that u ∈ Cb(V ), we may take R = ‖PNu‖Cb(V ) ≤
‖u‖Cb(V ) <∞, in Theorem 3.6 and conclude that u = W(ν, PNu).

Let γ ∈ [ν0, ν1] and suppose that L(γ) = 0. Then by Lemma 5.1 with p = 0,
either ν = γ or

‖PNu‖Cb(H) N ≤
2
√
5c

ν0κ2
0

√
|Ω|
√
ln(N + 1)MH(PNu)MV (PNu)

≤ 2
√
5c

ν0κ2
0

√
|Ω|
√
ln(N + 1)MH(u)MV (u).

This inequality is invalidated by (5.4), so we conclude that ν = γ. �
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In Theorem 5.2, condition (5.4) depends on the solution u on which we only
have knowledge of its finite-dimensional projection PNu. The previous Theorem
can be reformulated in terms of a dynamical property namely the distance between
zero and the attractor, A.

Theorem 5.3. Assume ν ∈ [ν0, ν1] with ν0 > 0 and assume 0 /∈ Aν . Let

G = max

{‖f‖L2

ν20κ
2
0

,
‖f‖H1

ν20κ
3
0

}
and δ = dH(0,Aν) = inf

u∈Aν

|u|.

Then n0(u) . ν1G
δ where G :=

‖f‖
L2

ν2

0
κ2

0

. Moreover, ν is the unique solution of

Problem 4.1 provided

N & max{ν1G
δ

,
ν1
ν0

G

√
1 +

ν1
ν0
} and N√

ln(N + 1)
&

ν21(1 +
ν1
ν0
)G

ν0δ
. (5.5)

Proof. Note that in view of (2.9). we have

|Pnu− u|2 ≤
1

κ2
0N

2
‖u‖2 . ν21G

2

N2
, (5.6)

where, with Gν as in (2.6), we used the classical bounds (2.7) yielding

sup
u∈Aν

|u| ≤ νGν ≤ ν1G and sup
u∈Aν

‖u‖ ≤ νκ0Gν ≤ ν1κ0G. (5.7)

Then, providedN & ν1G
δ , from (5.6), we have |PNu−u|2 ≤ 1

2δ
2. Using the equality

|u|2 = |PNu|2 + |(I − PN )u|2 and the inequality |u|2 ≥ δ2 for u ∈ Aν , it follows
that |PNu|2 ≥ 1

2δ
2. It follows from the definition (5.3) that n0(u) ≤ ν1G

δ .
Let µ0 = ν1

ν0
. Since ν ∈ [ν0, ν1]. it follows readily from (5.7) and the definition

of MH(u) and MV (u) in (3.5) and (3.6) that

MH(u) . ν1

√
1 +

ν0
ν1

G̃ and MH(u) . ν1

√
1 +

ν0
ν1

κ0 G̃.

The conclusion now follows immediately from Theorem 5.2 by inserting the bound
|PNu|2 ≥ 1

2δ
2 in (5.4). �

We can easily see that the condition u 6= 0 is necessary for the unique recovery
of ν by inspecting (2.3): if u ≡ 0 satisfies (2.3) for a given force f , then it does so
with any value for ν because Au ≡ 0, hence there is no unique ν to recover. As
evidenced by the following example, the condition N > n0(u) in Theorem 5.2 is
also necessary.

Example 5.4. Fix k ∈ Z2/{0} and c ∈ C/{0} and define f : Ω→ V by

f(x) = ck⊥eiκ0k·x + c̄k⊥e−iκ0k·x, ∀x ∈ Ω,

(where k⊥ is a unit vector orthogonal to k, for example, [−k2, k1]T /|k|), i.e. f is a
time-autonomous “single mode” force in V . Then

u ≡ 1

νκ2
0|k|2

f

is a stationary solution of (2.3) for any ν > 0. Note that

‖f‖ = 2
√
2π|k||c|,
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so, by choosing c = 1
2
√
2π|k| , we have ‖f‖ = 1 for any choice of k, and

‖u‖ = 1

νκ2
0|k|2

,

so

MV (PNu) =
√
2

√
1

(νκ2
0N

2)2
+ µ2

0‖PNu‖2 ≤
√
2

νκ2
0

√
1

N4
+ µ2

0

1

|k|4 .

Now, choosing µ0 > 1 and N ≥ 8
√
2

ν2κ3

0

√
1 + µ2

0, for any γ ∈ [ ν
µ0
, µ0ν],

W(γ, PNu) =
1

γκ2
0|k|2 + µ

(f + µPNu).

Therefore,

‖W(γ, PNu)− u‖Cb(H) =
|f |

γκ2
0|k|2 + µ

1

ν

{
|γ − ν|, if |k| < N∣∣∣γ − ν + µ

κ2

0
|k|2

∣∣∣ , if |k| ≥ N

and

‖PNW(γ, PNu)− PNu‖Cb(H) =

{ |f |
γκ2

0
|k|2+µ

|γ−ν|
ν , if |k| < N

0, if |k| ≥ N
.

So, if |k| ≥ N , then PNu = 0, and ‖PNW(γ, PNu)− PNu‖Cb(H) = 0 while |ν − γ|
can be arbitrarily large. Hence, we have found cases with N arbitrarily large and
u 6= 0 where there are infinitely many solutions of Problem 4.1 because PNu = 0.

6. Lipschitz Continuity of the Inverse Problem

In the previous section we derived conditions for Problem 4.1 to have a unique
solution. In so doing, we found conditions on N for Problem 4.1 to be a well-defined
mapping of data, PNu, to viscosity. We now provide conditions for this mapping,
which can be thought of as the inverse of the determining map, W(·, PNu)

−1, to be
Lipschitz continuous; i.e., we derive bounds on the viscosity discrepancy in terms of
L. In addition, we propose an algorithm for solving Problem 4.1, which is revealed
by the proof of the Lipschitz continuity.

When L ≥ 0, the rate of change of the difference between two trajectories cor-
responding to different viscosities is dynamic, and needs to be integrated. As a
consequence, the following results explicitly involve the time-derivative of the data,
PNu.

Before focusing on the case where φ = PNu for some solution u of (2.3), we first
obtain a bound valid for the determining map in the general setting.

Lemma 6.1. Let φ ∈ Cb(V ) and γ1, γ2 ∈ [ν0, ν1], where 0 < ν0 < ν1 < ∞ are

given. Let µ0 ≥ ν1
ν0
, and

N >
8

ν0κ0
MV (φ).

Let v1 = W(γ1,φ) and v2 = W(γ2,φ). Then for any interval of time [s, t] ⊂ R,

|γ1 − γ2|
(
inf
[s,t]
|PNv1|2 −

1

N
M1

)
≤M2‖PN(v1 − v2)‖Cb(H),

where

M1 =
2
√
5c20

ν0κ2
0

MH(φ) (MV (φ))
2
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and

M2 = µ
1 + δN

2

1− δN2
‖A−1PNv1‖Cb(H) + ‖A−1∂tPNv1‖Cb(H) + γ2‖PNv1‖Cb(H),

and δ = e−µ0ν0κ
2

0
(t−s).

Proof. Define w = v1 − v2 and ψ = PNv1. Writing the evolution equation for w
using (2.11),

∂tw + γ2Aw + (γ1 − γ2)Av1 +B (v1,w) + B (w,v2) + µPNw = 0,

and taking an inner-product with respect to A−1ψ, we have

〈
∂tw, A−1ψ

〉
+ γ2 〈w,ψ〉+ (γ1 − γ2)|ψ|2

+ b
(
v1,w, A−1ψ

)
+ b

(
w,v2, A

−1ψ
)
+ µ

〈
PNw, A−1ψ

〉
= 0.

Using the product rule, we have d
dt

〈
w, A−1ψ

〉
=
〈
∂tw, A−1ψ

〉
+
〈
w, ∂tA

−1ψ
〉
and

using the facts that PNψ = ψ, PN is self-adjoint, and PN commutes with A−1, we
can rewrite the last differential inequality as

d

dt

〈
A−1PNw,ψ

〉
−
〈
A−1PNw, ∂tψ

〉
+ γ2 〈PNw,ψ〉+ (γ1 − γ2)|ψ|2

+ b
(
v1,w, A−1ψ

)
+ b

(
w,v2, A

−1ψ
)
+ µ

〈
A−1PNw,ψ

〉
= 0.

Let β :=
〈
A−1PNw,ψ

〉
. Then

β̇ + µβ −
〈
A−1PNw, ∂tψ

〉
+ γ2 〈PNw,ψ〉+ (γ1 − γ2)|ψ|2

+ b
(
v1,w, A−1ψ

)
+ b

(
w,v2, A

−1ψ
)
= 0,

so, multiplying by the integrating factor eµ(τ−s) and taking the time-integral over
the interval [s, t], we have

β(t)− e−µ(t−s)β(s) + (γ1 − γ2)

∫ t

s

e−µ(t−τ)|ψ|2 dτ

=

∫ t

s

e−µ(t−τ)
(〈
A−1PNw, ∂tψ

〉
− γ2 〈PNw,ψ〉

)
dτ

−
∫ t

s

e−µ(t−τ)
(
b
(
v1,w, A−1ψ

)
+ b

(
w,v2, A

−1ψ
))

dτ (6.1)

Therefore,

|γ1 − γ2|
1

µ

(
1− e−µ(t−s)

)
inf
[s,t]
|ψ|2 ≤ |β(t)|+ e−µ(t−s)|β(s)|

+
1

µ

(
1− e−µ(t−s)

)
sup
[s,t]

(
|A−1∂tψ|+ γ2|ψ|

)
‖PNw‖Cb(H)

+
1

µ

(
1− e−µ(t−s)

)
sup
[s,t]

(
(‖v1‖L4 + ‖v2‖L4)‖A− 1

2ψ‖L4

)
‖w‖Cb(H).

Note that for all t,

|β(t)| ≤ |PNw||A−1ψ| ≤ ‖PNw‖Cb(H)‖A−1ψ‖Cb(H) <∞,
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and letting δN
2

= e−µ(t−s) = e−µ0ν0κ
2

0
N2(t−s) (so t − s =

ln( 1

δ
)

µ0ν0κ2

0

), we can replace

the previous inequality with

|γ1 − γ2| inf
[s,t]
|ψ|2

≤
(
µ
1 + δN

2

1− δN2
‖A−1ψ‖Cb(H) + ‖A−1∂tψ‖Cb(H) + γ2‖ψ‖Cb(H)

)
‖PNw‖Cb(H)

+ sup
[s,t]

(
(‖v1‖L4 + ‖v2‖L4)‖A− 1

2ψ‖L4

)
‖w‖Cb(H).

Now, by Corollary 3.4 with p = 0,

‖w‖Cb(H) ≤
√
5

|γ1 − γ2|
((γ1 + γ2)/2)

1/2

‖ 12 (v1 + v2)‖Cb(V )√
ν0κ0N

≤
√
5

2

|γ1 − γ2|
ν0κ0N

(‖v1‖Cb(V ) + ‖v2‖Cb(V )),

so

|γ1 − γ2|
(
inf
[s,t]
|ψ|2 − 1

N
M̃1

)
≤M2‖PNw‖Cb(H)

where

M̃1 =

√
5

2ν0κ0
(‖v1‖Cb(V ) + ‖v2‖Cb(V )) sup

[s,t]

(
(‖v1‖L4 + ‖v2‖L4)‖A− 1

2ψ‖L4

)

and

M2 = µ
1 + δN

2

1− δN2
‖A−1ψ‖Cb(H) + ‖A−1∂tψ‖Cb(H) + γ2‖ψ‖Cb(H).

Finally, we use (2.15) to bound the L4 norms,

sup
[s,t]

(‖v1‖L4 + ‖v2‖L4) ≤ c0 sup
[s,t]

(
|v1|

1

2 ‖v1‖
1

2 + |v2|
1

2 ‖v2‖
1

2

)

≤ c0

(
‖v1‖

1

2

Cb(H)‖v1‖
1

2

Cb(V ) + ‖v2‖
1

2

Cb(H)‖v2‖
1

2

Cb(V )

)

and (additionally using (2.10)),

sup
[s,t]

(
‖A− 1

2ψ‖L4

)
≤ c0‖A− 1

2ψ‖
1

2

Cb(H)‖A− 1

2ψ‖
1

2

Cb(V )

≤ c0
1

κ
1

2

0

‖ψ‖
1

2

Cb(H)

1

κ
1

2

0

‖ψ‖
1

2

Cb(V ) ≤
c0
κ0
‖v1‖

1

2

Cb(H)‖v1‖
1

2

Cb(V )

so that we can replace M̃1 with M1 using Lemma 3.2:

M̃1 ≤
√
5

2ν0κ0
2MV (φ) 2c0

√
MH(φ)

√
MV (φ)

c0
κ0

√
MH(φ)

√
MV (φ) = M1.

�

In the following Theorem, we apply Lemma 6.1 to the case where v1 is a solution
of (2.3) with viscosity ν.
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Theorem 6.2. Let u ∈ Cb(V ) be a solution of (2.3) with viscosity ν ∈ [ν0, ν1],
where 0 < ν0 < ν1 < ∞ are given, and suppose that for some n ≥ 1 and a time

interval, [s, t],

inf
[s,t]
|Pnu|2 > 0.

Choose µ0 ≥ ν1
ν0
. If

N > max

{
8

ν0κ0
MV (u), n, 2

M1

inf [s,t] |PNu|2
}
,

then for any γ ∈ [ν0, ν1],

|ν − γ| ≤ 2
M2

inf [s,t] |PNu|2
L(γ),

where M1 and M2 are defined as in Lemma 6.1 with v1 = u and φ = PNu.

Proof. By the assumption that u ∈ Cb(V ), we may take R = ‖PNu‖Cb(V ) ≤
‖u‖Cb(V ) < ∞, in Theorem 3.6 and conclude that u = W(ν, PNu). The rest is an
immediate consequence of Lemma 6.1. �

Remark 6.3. We chose to state Theorem 6.2 with the a priori assumption that
there exists an interval of time where finitely many modes of u are bounded away
from zero. However, given the continuity of u in time, the weaker assumption that
u 6= 0 is sufficient to guarantee the existence of such a time interval.

To see this, if u 6= 0. there exists t0 such that u(t0) 6= 0. This implies that
there exists an ǫ > 0 such that inft0−ǫ,t0+ǫ] |u(t)| ≥ δ. Proceeding as in the
proof of Theorem 5.3, it follows that there exists n0 sufficiently large such that
inf [t0−ǫ,t0+ǫ] |Pn0

u(t)| ≥ 1
2δ. One can in fact show that if 0 /∈ Aν , then there exists

δ > 0 and t0 > 0 such that inf [t0,∞) |Pn0
u(t)| ≥ δ, where n0 depends only on the

Grashoff number and the distance of 0 from the attractor.

7. Algorithm for Solving the Inverse Problem

So far we have shown the validity of Problem 4.1 as a means of parameter re-
covery. We now present a method of computing its solution. In [3], the authors
proposed the following update for the approximate viscosity, γ, as part of an algo-
rithm to recover the true viscosity, ν, using the available data only:

ν ≈ γ +
1
2

1
t−s

(
|PNw(t)|2 − |PNw(s)|2

)
+ µ

〈
|PNw|2

〉t
s

〈〈PNAW(γ, PNu), PNw〉〉ts
, (7.1)

where PNw = PNu − PNW(γ, PNu). Rigorous conditions for the convergence of
this algorithm were obtained in [7].

We provide a proof for the convergence of a slightly modified version of this
algorithm, which is presented in Algorithm 1. This new algorithm is based on the
approach taken in Lemma 6.1. In comparison to (7.1), the new update formula
(see the definition of Γ in Algorithm 1) is computed using inner-products with
the data, PNu, and the time derivative of the data, as opposed to the observable
error, PNu − PNw. Convolutions are taken with the decaying exponential factor
τ 7→ e−µτ over a time interval, [s, t]; with µ fixed, we denote this operation by 〈·〉ts,

〈φ〉ts :=
1

t− s

∫ t

s

e−µ(t−τ)φ(τ) dτ, ∀φ ∈ C([s, t];R).
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The benefit of this new update formula is that the condition for the denominator

Algorithm 1 Viscosity inference from data using the determining map

Require: 0 < ν0 < ν1 such that ν ∈ [ν0, ν1] ⊲ bounds for the unknown viscosity, ν
Require: N,µ0 ⊲ both chosen sufficiently large (see Theorem 7.1)
Require: PNu(t) ∀t ∈ R ⊲ observations of the reference solution

Require: s < t such that
〈
|PNu|2

〉t
s
> 0

Require: ǫ1 ∈ (0, ν0) ⊲ the convergence factor (also limited by N)
Require: ǫ2 > 0 ⊲ a stopping tolerance for the viscosity error
1: γ ← γ0 ⊲ an initial guess for the true viscosity
2: repeat

3: γ0 ← γ
4: γ ← Γ(γ)
5: until |γ − γ0|/|ν1 − ν0| ≤ ǫ2/(ν1 − ν0 + ǫ1) ⊲ the stopping condition
6: return γ
7: procedure Γ(γ)
8: v ←W(γ, PNu) ⊲ compute the solution of the determining map
9: ψ ← PNu− PNv ⊲ compute the observable velocity error

10: c1 ← 1
t−s

(〈
A−1ψ(t), PNu(t)

〉
− e−µ(t−s)

〈
A−1ψ(s), PNu(s)

〉)

11: c2 ← −
〈〈
A−1ψ, ∂tPNu

〉〉t
s

12: c3 ← γ 〈〈ψ, PNu〉〉ts
13: return γ − c1+c2+c3

〈|PNu|2〉ts
⊲ return a new approximation for the viscosity

14: end procedure

to be nonzero is an a priori condition depending on the observations of the refer-
ence solution only, as opposed to an a posteriori condition which depends on the
observable error, and so cannot be verified until the update is computed.

Conditions for the convergence of Algorithm 1 are given in the following theorem.

Theorem 7.1. Let u be a solution of (2.3) with viscosity ν ∈ [ν0, ν1], and suppose

there exists an n > 1 and a time interval [s, t] over which
〈
|Pnu|2

〉t
s
> 0.

Let ǫ1 ∈ (0, ν0) and fix µ0 ≥ ν1+ǫ1
ν0−ǫ1

. If

N > max

{
8

ν0κ0
MV (u), n,

ν1 − ν0 + ǫ1
ǫ1

M1

〈|PNu|2〉ts

}
,

where M1 :=
2
√
5c2

0

ν0κ2

0

MH(u) (MV (u))
2, then, with Γ as defined in Algorithm 1, for

any choice of γ ∈ [ν0 − ǫ1, ν1 + ǫ1],

|ν − Γ(γ)| < ǫ1
ν1 − ν0 + ǫ1

|ν − γ| < |ν − γ|,

and Γ(γ) ∈ [ν0 − ǫ1, ν1 + ǫ1]. Therefore, Γ can be applied iteratively, and the result

converges to ν.
Furthermore, let ǫ2 > 0 be a tolerance for stopping. We can infer closeness to

the true viscosity by examining the residuals:

|Γk+1(γ)− Γk(γ)|
(ν1 − ν0)

≤ ǫ2
ν1 − ν0 + ǫ1

=⇒ |Γk(γ)− ν| ≤ ǫ2.
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Proof. Let v = W(γ, PNu), and let w = u − v = W(ν, PNu) −W(γ, PNu). Pro-
ceeding as in Lemma 6.1 up to equation (6.1), we obtain

β(t)−e−µ(t−s)β(s)+(ν−γ)
〈
|PNu|2

〉t
s
=
〈〈
A−1PNw, ∂tPNu

〉
− γ 〈PNw, PNu〉

〉t
s

−
〈
b
(
u,w, A−1PNu

)
+ b

(
w,v, A−1PNu

)〉t
s

where β :=
〈
A−1PNw,PNu

〉
. Moving the first term on the right hand side over to

the left, and dividing by the term multipying (ν − γ), we have

ν − Γ(γ) = − 1

〈|PNu|2〉ts

(〈
b
(
u,w, A−1PNu

)〉t
s
+
〈
b
(
w,v, A−1PNu

)〉t
s

)

where Γ(γ) is as defined in Algorithm 1.
We then take the absolute value of both sides and estimate the remaining terms

on the right hand side as was done in Lemma 6.1, and obtain

|ν − Γ(γ)| ≤ 1

N

M1

〈|PNu|2〉ts
|ν − γ|.

Let δ > 0. Taking N > 1
δ

M1

〈|PNu|2〉ts
, we have

|ν − Γ(γ)| ≤ δ|ν − γ|.
Choosing δ < 1 ensures Γ(γ) is closer to ν than γ, but we also need to ensure that
Γ(γ) satisfies the feasibility condition: Γ(γ) ∈ [ν0 − ǫ1, ν1 + ǫ1]. From the previous
inequality and the feasibility condition imposed on γ, as well as the assumption
ν ∈ [ν0, ν1], we have

ν0 − δ(ν1 − ν0 + ǫ1) ≤ Γ(γ) ≤ ν1 + δ(ν1 − ν0 + ǫ1).

Therefore, the feasibility condition for Γ(γ) is satisfied with δ = ǫ1
ν1−ν0+ǫ1

. This

expression for δ is an increasing function of ǫ1 ∈ (0, ν0), and so attains its max
when ǫ1 = ν0. Therefore, δ = ǫ1

ν1−ν0+ǫ1
< ν0

ν1
< 1, and iterating Γ results in

convergence to ν:

|Γk(γ)− ν| ≤ δk|γ − ν| → 0 as k →∞.

Now, for the stopping condition, note that

|Γk(γ)−ν| = |Γk(γ)−Γk+1(γ)+Γk+1(γ)−ν| ≤ |Γk+1(γ)−Γk(γ)|+|Γk+1(γ)−ν|
so,

|Γk+1(γ) − Γk(γ)| ≥ |Γk(γ) − ν| − |Γk+1(γ) − ν| ≥ (1 − δ)|Γk(γ) − ν|.
Therefore, if after k iterations we have |Γk(γ)− ν| > ǫ2, then

|Γk+1(γ)− Γk(γ)| > (1− δ)ǫ2 =
(ν1 − ν0)ǫ2
ν1 − ν0 + ǫ1

.

We get the stopping condition from the last statement by taking its contrapositive.
�

In Theorem 7.1, we first chose the convergence factor ǫ1 and then chose N .
However, we can instead let the data dictate the convergence factor; if

N >
ν1
ν0

M1

〈|PNu|2〉ts
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then
(ν1 − ν0)M1

N 〈|PNu|2〉ts −M1

< ν0,

so we can choose ǫ1 such that

ν0 > ǫ1 ≥
(ν1 − ν0)M1

N 〈|PNu|2〉ts −M1

=⇒ |ν − Γ(γ)| < ǫ1
ν1 − ν0 + ǫ1

|ν − γ|.

8. Conclusions

We extended the definition of the determining map to include viscosity as a
variable. We then studied the inverse problem of determining the viscosity from
the velocity data using the determining map, and found conditions for the well-
posedness of the inverse problem, as well as conditions for the regularity of the
inverse mapping, and defined an iterative algorithm for obtaining its solution. In
future work, we plan to compare this algorithm with gradient based solvers applied
to Problem 4.1, leveraging the recent sensitivity results in [9] for the analysis.

One consequence of our results is that, on the attractor, viscosity is determined,
just like all higher modes, from the low modes only. Therefore, we have extended
the concept of determining modes to include a parameter of the equation as being
determined from finitely many low modes. This also has consequences for how
different attractors (indexed by the viscosity) can intersect, as no two solutions
on the attractor can overlap for any interval of time without the viscosities and
solutions being identical

For simplicity of presentation, we chose to frame our results as well as Algo-
rithm 1 in terms of solutions on the attractor, which requires having data for the
reference solution for all time and computing the solution of the determining map
for all time. However, our results easily extend to the initial value problem, where
the data are only required on a bounded interval of time, and the determining map
is solved as an initial value problem with an arbitrary initial condition. Algorithm 1
can also be modified as an “on-the-fly” algorithm, as was done in [3].
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Appendix A. Proof of Ladyzhenskaya’s inequality

For completeness, we provide a proof of Ladyzhenskaya’s inequality, valid on the
torus in 2D.

‖φ‖L4(Ω) ≤ |φ|
1

2

(
1
L |φ|+ ‖φ‖

) 1

2 (A.1)

Proof. Let φ ∈ C([0, L];R) be periodic (i.e. φ(L) = φ(0) and φ can be extended to
R via the relation φ(x+ nL) := φ(x) ∀x ∈ [0, L], n ∈ N). Denote the mean of φ by

φ = 1
L

∫ L

0
φ(x)dx. Then by the Mean Value Theorem, there is a point x0 ∈ [0, L]

such that φ(x0) = φ.
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For any x ∈ [0, L], we have

1

2
φ2(x) =

1

2
φ

2
+

∫ x

x0

φ(z)φ′(z)dz ≤ 1

2
φ

2
+

∫ x

x0

|φ(z)||φ′(z)|dz,

and by periodicity,

1

2
φ2(x) =

1

2
φ

2 −
∫ x0+L

x

φ(z)φ′(z)dz ≤ 1

2
φ

2
+

∫ x0+L

x

|φ(z)||φ′(z)|dz,

so

φ2(x) ≤ φ2
+

∫ x0+L

x0

|φ(z)||φ′(z)|dz = φ
2
+

∫ L

0

|φ(z)||φ′(z)|dz.

This easily extends to vector valued φ ∈ C([0, L];R2) :

|φ(x)|2 = φ2
1(x)+φ

2
2(x) ≤ φ1

2
+

∫ L

0

|φ1(z)||φ′
1(z)|dz+φ2

2
+

∫ L

0

|φ2(z)||φ′
2(z)|dz,

which we can simplify by applying (2.14),

φ1
2
+ φ2

2
=

(
1

L

∫ L

0

φ1(x)dx

)2

+

(
1

L

∫ L

0

φ2(x)dx

)2

≤ 1

L

∫ L

0

φ2
1(x)dx +

1

L

∫ L

0

φ2
2(x)dx =

1

L

∫ L

0

|φ(x)|2dx

and Cauchy-Schwarz,

|φ1(z)||φ′
1(z)|+ |φ2(z)||φ′

2(z)| =
[
|φ1(z)|
|φ2(z)|

]
·
[
|φ′

1(z)|
|φ′

2(z)|

]
≤ |φ(z)||φ′(z)|

to obtain

|φ(x)|2 ≤ 1

L

∫ L

0

|φ(z)|2dz +
∫ L

0

|φ(z)||φ′(z)|dz.

Now, if φ ∈ C(Ω;R2), using the estimates for a one-dimensional domain, for any
(x, y) ∈ Ω, we have

|φ(x, y)|4 = |φ(x, y)|2|φ(x, y)|2

≤
(

1

L

∫ L

0

|φ(z, y)|2dz +
∫ L

0

|φ(z, y)||∂1φ(z, y)|dz
)

(
1

L

∫ L

0

|φ(x, z)|2dz +
∫ L

0

|φ(x, z)||∂2φ(x, z)|dz
)
,
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so

‖φ‖4L4(Ω) =

∫ L

0

∫ L

0

|φ(x, y)|4 dx dy

≤
∫ L

0

(
1

L

∫ L

0

|φ(z, y)|2dz +
∫ L

0

|φ(z, y)||∂1φ(z, y)|dz
)
dy

∫ L

0

(
1

L

∫ L

0

|φ(x, z)|2dz +
∫ L

0

|φ(x, z)||∂2φ(x, z)|dz
)
dx

≤
(
1

L
|φ|2 + |φ||∂1φ|

)(
1

L
|φ|2 + |φ||∂2φ|

)

≤
(
1

L
|φ|2 + |φ|‖φ‖

)(
1

L
|φ|2 + |φ|‖φ‖

)
,

where the second to last line follows from the Cauchy-Schwarz inequality. �
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