
Functional estimation and change detection for
nonstationary time series∗

Fabian Mies
RWTH Aachen University

Abstract

Tests for structural breaks in time series should ideally be sensitive to breaks in
the parameter of interest, while being robust to nuisance changes. Statistical anal-
ysis thus needs to allow for some form of nonstationarity under the null hypothesis
of no change. In this paper, estimators for integrated parameters of locally sta-
tionary time series are constructed and a corresponding functional central limit
theorem is established, enabling change-point inference for a broad class of pa-
rameters under mild assumptions. The proposed framework covers all parameters
which may be expressed as nonlinear functions of moments, for example kurtosis,
autocorrelation, and coefficients in a linear regression model. To perform feasible
inference based on the derived limit distribution, a bootstrap variant is proposed
and its consistency is established. The methodology is illustrated by means of a
simulation study and by an application to high-frequency asset prices.

Keywords: gradual change; locally stationary process; p-variation; bootstrap
inference

1 Introduction

While statistical theory has historically been concerned with the study of data which is
identically distributed, or at least stationary, this temporal homogeneity is often violated
in practice. For example, economic time series are typically heteroscedastic, which is
especially prominent for returns of financial assets. Statistical inference which does not
account for nonstationarity may thus lead to wrong conclusions. However, the treat-
ment of nonstationary models poses methodological challenges. Specifying the temporal
variation nonparametrically, inference is often based on asymptotic methods, and it is
in general not clear how to define a suitable limit in a nonstationary setting. As a
remedy, Dahlhaus (1997) suggested to regard the time index as a fraction of the sample
size, which allows for infill asymptotics. This perspective leads to the concept of locally
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stationary time series, which has since been extended and generalized, see e.g. Wu and
Zhou (2011); Dahlhaus et al. (2019); Truquet (2019).

In this paper, we study a multivariate, locally stationary time series model given by
the causal representation

Xt,n = Gn( t
n
, εt) ∈ Rd, t = 1, . . . , n, (1)

where εt = (εt, εt−1, . . .) ∈ R∞ for iid random variables εi. For each fixed u ∈ [0, 1] and
n ∈ N, the sequence (Gn(u, εt))t∈Z is stationary. By letting the kernel depend on the
fraction t

n
, the model explicitly accounts for nonstationarity. We assume that the kernel

Gn converges to a limiting kernel G as n→∞ in Lq(P ), and that u 7→ Gn(u, εt) admits
some form of regularity. The nonlinear model (1) has been introduced by Zhou and
Wu (2009), and later been refined by Zhou (2013). In contrast to the existing studies,
the regularity assumptions imposed on the mapping u 7→ Gn(u, εt) in this paper are
much less restrictive, as we only require finiteness of some p-variation instead of Hölder
continuity; see the detailed discussion in Section 2.

A statistician might be interested in various properties of the time series Xt,n. We
denote the quantity of interest by a local parameter θu, u ∈ [0, 1], or θnu , which is a
functional of the law of G(u, εt), resp. Gn(u, εt). The estimator proposed in this paper
is applicable for any parameter of the form θnu = f(µnu), where µnu = EGn(u, εt), and f
is a sufficiently smooth function. Upon replacing Xt,n by Yt,n = h(Xt,n) for a function
h, we may also study parameters θnu = f(E[h(Gn(u, εt))]), i.e. any parameter which may
be expressed as a function of moments of Xt,n. This framework is rather general, and
contains for example the variance, kurtosis, and autocorrelations at fixed lag.

Depending on the application, different functionals of the temporal variation u 7→ θu
might be of interest, e.g. its temporal average

∫ 1

0
θu du as studied by Potiron and Myk-

land (2020), its maximum value supu∈[0,1] ‖θu‖, or its value θu0 at some u0 ∈ [0, 1]. For
instance, estimation of θu0 is studied by Cui et al. (2020), who estimate the autoco-
variance function of a locally stationary time series via polynomial smoothing, and by
Dahlhaus and Richter (2019). The latter example is a nonparametric problem, and thus
in general suffers from slow rates of convergence, depending on the regularity of u 7→ θu.
In this paper, we tackle the temporal variation by studying the integrated parameter

u 7→ Θ(u) =

∫ u

0

θv dv,

and we propose a corresponding estimator Mn(u) of Θ(u). The function Θ(u) contains
all information about the local parameter θu and is thus a nonparametric object as well.
However, from a statistical perspective, it is attractive to formulate hypotheses in terms
of Θ(u) since the latter may be estimated at a parametric rate

√
n, as demonstrated

by our functional central limit theorem presented in Section 3. We note that the idea
of recovering a

√
n rate of convergence via integration has also been employed in other

areas of nonparametric estimation, e.g. when performing inference for integrated squared
density derivatives in an iid setting (Hall and Marron, 1987; Bickel and Ritov, 1988),
for convolutions of nonparametrically specified densities (Schick and Wefelmeyer, 2004),
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and for quadratic integrals of derivatives of a regression function (Huang and Jianqing,
1999). The previous references consider estimation of a single integrated quantity, but
the functional estimation of a local parameter θv via its integral function u 7→ Θ(u) is also
common practice in high-frequency econometrics, when estimating integrated volatility
or integrated nonlinear functionals of volatility; see Jacod and Rosenbaum (2013), Aı̈t-
Sahalia and Jacod (2014), and the references therein. In the context of nonstationary
time series, this is applied, e.g., by Dahlhaus (2009), who considers linear functionals of
the time-varying spectral density.

A general method to estimate integrated parameters has been suggested by Potiron
and Mykland (2020). They construct block-wise estimators θ̂i,n and average them to
obtain an estimator of Θ(1). While this approach could be adapted to the functional
estimation of u 7→ Θ(u), the verification of their assumptions for the estimators θ̂i,n en-
tails additional analytical effort for each special case. In particular, they require strong
conditions on the bias of θ̂i,n, and present explicit debiasing procedures for specific ex-
amples. In contrast, our proposed estimator Mn(u) is based on a linearization procedure
around a nonparametric pilot estimator µ̂t,n, and may be regarded as a generic approach
for removing leading bias terms. We suggest a pilot estimator based on local smoothing,
but our results are deliberately formulated under much weaker conditions, requiring only
assumptions on the rate of convergence of µ̂t,n. Many modern approaches to filtering
and regression are based on statistical learning theory, which typically yields satisfactory
rates of convergence, but does not lend itself to statistical inference. Our linearized esti-
mator Mn(u) thus enables rigorous asymptotic inference based on these pilot estimates.
Details are presented in Section 3.

Our estimator is particularly useful to test for change-points in the local parameter.
Here, the null hypothesis is that the parameter θu is the same for all u ∈ [0, 1], which
may be formulated equivalently as

H0 : θu ≡ θ0 ⇔ H0 : Θ(u) ≡ uΘ(1). (2)

Analysis of this hypothesis of structural stability has a long history in statistics, see
Aue and Horváth (2013) for a recent review. Early studies were concerned with the
stability of the mean (Page, 1954, 1955). The methodology has since been extended,
and there exist procedures to test for, e.g., the stability of variances (Gao et al., 2019),
regression coefficients (Horváth, 1995), or autocovariances (Berkes et al., 2009; Killick
et al., 2013; Preuss et al., 2015). Our approach provides a unifying framework to study
these problems for parameters θu which may be written as a function of nonlinear mo-
ments. Besides the mentioned examples, this also includes novel change-point tests
which have not been studied previously, e.g. a test for the temporal stability of kurtosis.
The proposed change-point tests are robust against various model misspecifications, e.g.
nonstationarity and nuisance changes under the null hypothesis. In particular, our test
only monitors changes in the parameter θu = f(µu), but not in the parameter µu itself.
For example, our statistic is sensitive to changes in the variance, but robust to changes
in the unknown and time-varying mean value. The change-point tests based on our
estimator Mn(u) are discussed in greater detail in Section 4 below.
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There are parameters of interest which may not be expressed as a function of finitely
many moments, for example quantiles of the marginal distribution, or functionals of the
local spectral measure as considered by Dahlhaus (2009). A very general framework is
presented by Shao and Zhang (2010), where an arbitrary functional of the time series’
distribution is studied. The assumptions therein are formulated in terms of the influence
function corresponding to the statistical functional of interest. Their verification is far
from simple and basically amounts to proving claims very similar to the steps we take in
this article. In contrast, we believe that the conditions imposed in the present paper are
conveniently verified for a broad range of practical problems. The framework of Shao
and Zhang (2010) is also adopted by Dette and Gösmann (2020) and applied to the
monitoring of quantiles, as well as by Gösmann et al. (2021). Note that these authors
study the stationary case only, while we allow for nonstationarity. It might be of interest
to extend the methodology introduced in the present paper to more general functionals.
We leave this question for future work.

The outline of this paper is as follows. After defining the model in Section 2, we
describe the functional estimator Mn(u) in Section 3 and present our asymptotic results.,
we give the rigorous definition of our model and present the technical assumptions. The
application of our results to change-point problems is discussed in Section 4, and the
finite sample properties of our proposed procedure are assessed via simulations study in
Section 5. Our methodology is illustrated by an application to financial data in Section
6. Appendix A in the supplement contains additional remarks, and Appendix B contains
further examples and simulation results for change point testing. All technical proofs
are deferred to Appendix C.

Notation

For a function f : Rd → R, we denote Df(x) = (∂x1 , . . . , ∂xd)f(x) ∈ R1×d the first order
differential, and by D2f(x) ∈ Rd×d the Hessian matrix. For two sequences an, bn, we
write an � bn if an/bn → 0 as n → ∞. For x ∈ R, we denote (x)+ = max(x, 0). Weak
convergence of probability measures and random elements is denoted by⇒. For a vector
x ∈ Rd, the Euclidean norm is denoted by ‖x‖, and for a matrix A ∈ Rd×d, we denote
by ‖A‖ = ‖A‖op the operator norm, i.e. ‖A‖ = supx 6=0 ‖Ax‖/‖x‖. The spectral radius
of a matrix A is denoted as ρ(A) = max(|λ1|, . . . |λd|), where the λi are the complex
eigenvalues of A. The transpose of a matrix A is denoted by AT . For a random vector

X, we denote by ‖X‖Lq = (E‖X‖q)
1
q the Lq norm, for q ≥ 1. The notation ‖Gn‖p−var

is introduced in Section 2.

2 Model

Let Xt,n, t = 1, . . . , n be a triangular array of random variables which is causal in the
sense that Xt,n = Gn(t/n, εt) for a sequence of functions Gn : R × R∞ → Rd. Here, we
denote

εt = (εt, εt−1, . . .) ∈ R∞,
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where the εi are iid random variables. The functions Gn are assumed to be measurable,
where we endow the sequence space R∞ with the projection σ-Algebra, see (Billingsley,
1999, Example 1.2).

By using a sequence of functions Gn, we will be able to apply our results to investigate
the power of the proposed tests against local alternatives. Furthermore, letting the kernel
Gn depend on n allows us to account for potential discretization errors, see Example 1
below. We assume that the kernel Gn tends towards a limiting kernel G : R×R∞ → Rd,
in the sense that

sup
u∈[0,1]

‖Gn(u, ε0)−G(u, ε0)‖Lq → 0, n→∞, (A.1)

for some q > 2. Note that we do not require a rate of convergence in (A.1). Furthermore,
we require the function u 7→ Gn(u, ε0) ∈ Lq(P ) to satisfy some regularity conditions. A
very mild condition can be formulated in terms of p-variation for some p ≥ 1, defined as

‖Gn‖p−var = sup
0=u0<u1<...<um=1

m∈N

(
m∑
i=1

‖Gn(ui, εt)−Gn(ui−1, εt)‖pLq

) 1
p

.

The latter definition is independent of the chosen t, since εt ∼ ε0. The p-variation of
the limiting kernel is denoted analogously as ‖G‖p−var. We assume that

sup
n

sup
u∈[0,1]

‖Gn(u, ε0)‖Lq + sup
n
‖Gn‖p−var ≤ CG <∞, (A.2)

and p ≥ 1 will be further specified if necessary. Note that ‖Gn‖p−var ≤ ‖Gn‖r−var for
1 ≤ r ≤ p, hence assumption (A.2) is stronger for smaller p.

The assumption of finite p-variation is less restrictive than the piecewise-locally-
stationary (PLS) framework suggested by Zhou (2013), which amounts to requiring
piecewise Lipschitz continuity with finitely many breakpoints. The PLS framework has
been applied for change-point analysis by Dette and Wu (2019), Dette et al. (2019),
among others. In contrast, finite p-variation still allows for infinitely many discontinu-
ities of the mapping u 7→ Gn(u, ε0) ∈ Lq(P ). On the other hand, if the latter mapping
is Hölder continuous with exponent β, then ‖Gn‖p−var < ∞ for p ≥ 1

β
. Thus, assump-

tion (A.2) is more general than requiring Hölder continuity, and it combines classical
smoothness conditions as well as discontinuities in a single framework. The special case
of bounded 1-variation has been considered by Dahlhaus and Polonik (2009) for linear
processes. Our framework also contains the model of Dahlhaus et al. (2019) as a special
case, see Section A.1 in the supplement.

The third and last assumption imposed on the causal kernel is uniform ergodicity.
We employ the physical dependence measure introduced by Wu (2005). To define the
dependence measure, we introduce an iid copy ε∗i of the εi Denote for t ∈ Z, j ∈ Z≥0,

ε∗t,j = (εt, . . . , εt−j+1, ε
∗
t−j, ε

∗
t−j−1, . . .) ∈ R∞,

ε̃t,j = (εt, . . . , εt−j+1, ε
∗
t−j, εt−j−1, . . .) ∈ R∞.
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We assume that there exists a value ρ ∈ (0, 1) such that, for all j, n ∈ N, u ∈ [0, 1]

‖Gn(u, εt)−Gn(u, ε̃t,j)‖Lq ≤ CGρ
j. (A.3)

This implies that

‖Gn(u, εt)−Gn(u, ε∗t,j)‖Lq ≤
CG

1− ρ
ρj,

see Proposition C.1 in the appendix.
This set of assumptions suffices to establish a functional central limit theorem for the

partial sums of the Xt,n. An analogous limit theorem has been proven by Zhou (2013)
under the more restrictive PLS assumption.

Theorem 2.1. Let (A.1), (A.2), and (A.3) hold, for some q > 2. Suppose furthermore
that d = 1, and denote by

σ2(u) =
∞∑

h=−∞

Cov [G(u, εh), G(u, ε0)] ,

the local long-run-variance. Then, as n→∞,

1√
n

bnvc∑
t=1

[Xt,n − EXt,n]⇒ B

(∫ v

0

σ2(u) du

)
,

where B(v), v ≥ 0 is a standard Brownian motion. The weak convergence holds in the
Skorokhod space D[0, 1].

By virtue of the Cramer-Wold device, Theorem 2.1 can be extended to the multi-
variate case to yield weak convergence in the space (D[0, 1])d endowed with the product
topology. Note that this topology is different from the Skorokhod topology on the space
Dd[0, 1] of cadlag functions g : [0, 1]→ Rd, see (Jacod and Shiryaev, 2003, VI.1.23).

We conclude this section by giving an example of a process Xt,n which satisfies
assumptions (A.1)-(A.3), highlighting that the imposed conditions are rather weak.

Example 1. Consider the time-varying vector autoregressive (tvVAR) process in d
dimensions which satisfies

Xt,n = A( t
n
)
[
Xt−1,n − µ( t−1

n
)
]

+B( t
n
)εt + µ( t

n
),

X0,n =
∞∑
i=0

A(0)iB(0)ε−i + µ(0),

where εt is a sequence of iid, d-dimensional random vectors with finite moments of all
orders, µ : [0, 1] → Rd, and A,B : [0, 1] → Rd×d are matrix valued functions. Note
that higher-order autoregressive processes may also be studied in this framework by
stacking the lagged values of the process, effectively increasing the dimension d. For
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example, an autoregression of order two may be described in terms of the state vector
Yt,n = (Xt,n, Xt−1,n), taking values in R2d. Time-varying autoregressive models are
classical examples of locally-stationary time series. Early investigations of these models
include Subba Rao (1970) and Grenier (1983), and more recent contributions are due to
Moulines et al. (2005), Dahlhaus and Polonik (2009), and Giraud et al. (2015), among
others.

We extend A,B to the domain (−∞, 1] by setting A(u) = A(0) and B(u) = B(0) for
u < 0. The autoregressive process may be cast into our framework Xt,n = Gn( t

n
, εt) as

Gn(u, εt) =
∞∑
i=0

[
i∏

j=1

A
(
u− j−1

n

)]
B
(
u− i

n

)
εt−i + µ( t

n
).

This infinite sum is well-defined if we suppose that supu ‖B(u)‖, supu ‖A(u)‖ < ∞,
that the spectral radius ρ(A(u)) of A(u), u ∈ [0, 1], is at most ρ(A(u)) ≤ ρ0 < 1,
and that the function u 7→ A(u) admits some minimal regularity. In particular, if the
function u 7→ A(u) has bounded p-variation for some p ≥ 1, then ‖

∏i
j=1A

(
u− j−1

n

)
‖ ≤

Cρi for any ρ ∈ (ρ0, 1), see Lemma C.8 in the appendix. Hence, assumption (A.3)
is satisfied. Furthermore, if the functions µ, A, and B are left-continuous, we have
‖Gn(u, ε0) − G(u, ε0)‖Lq → 0 by dominated convergence for any q > 2, with limiting
kernel

G(u, εt) =
∞∑
i=0

A(u)iB(u)εt−i + µ(u).

In particular, condition (A.1) holds. Finally, Proposition C.9 in the appendix shows
that assumption (A.2) holds if ‖A‖p−var + ‖B‖p−var + ‖µ‖p−var < ∞. Moreover, in
the more regular case that µ, A, and B are β-Hölder continuous, the kernel Gn(u, ε0)
is also β-Hölder continuous in Lq(P ), uniformly in n, and thus the same holds for
u 7→ µnu = EGn(u, ε0). The latter property is required to apply Proposition 3.1 discussed
in the following section.

3 Estimating integrated parameters

For the locally stationary model introduced in Section 2, we denote the local moments
by

µnu = EGn(u, ε0) ∈ Rd, µu = lim
n→∞

µnu = EG(u, ε0) ∈ Rd, u ∈ [0, 1].

Inference for the function µnu resp. θnu = f(µnu) can be performed in various ways. For
example, one might assume a parametric form for the mapping u 7→ µnu. Here, we are
interested in testing nonparametric hypotheses imposed on the function µu. To this end,
instead of treating the moment function directly, we suggest to consider its integral. In
particular, for a nonlinear function f : Rd → R, we study the integrated quantity

Fn(u) =

∫ u

0

f(µnv ) dv, u ∈ [0, 1].
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Note that most hypotheses on θnu = f(µnu) may be reformulated in terms of Fn(u). In
Section 4, we will study change-point detection, where the null hypothesis H0 : f(µnu) ≡
f(µn0 ) for u ∈ [0, 1] is equivalent to the hypothesis H0 : Fn(u) ≡ uFn(1). It is also
possible to study the hypothesis H0 : f(µnu) ≡ 0, which is equivalent to H0 : Fn(u) ≡ 0.
Another appealing aspect of studying the integrated quantity Fn(u) instead of f(µnu) is
that the former may be estimated at a parametric rate

√
n, even in a nonparametric

framework, see our results below. Though this might be surprising at first sight, note
that a similar phenomenon occurs in the classical statistical setting of iid observations,
where the empirical distribution function is

√
n consistent, while nonparametric density

estimation only allows for slower, nonparametric rates of convergences.
A straightforward way to estimate Fn(u) is to consider the partial sum process

M̃n(u) =
1

n

bunc∑
t=τ

f(µ̂t,n), (3)

where µ̂t,n is a nonparametric estimator of µ t
n
, and τ = τn ≥ 1 may be introduced to

alleviate boundary issues. This approach has two shortcomings. First, its distributional
properties strongly depend on the specific estimator µ̂t,n. Thus, additional theoretical
effort is required when adapting corresponding inferential procedures to new situations.
Second, for nonlinear f , the estimator M̃n(u) may be bias-dominated, impeding statis-
tical inference.

In particular, a Taylor expansion yields

1

n

bunc∑
t=τ

[
f(µ̂t,n)− f(µ t

n
)
]

=
1

n

bunc∑
t=τ

Df(µ t
n
)(µ̂t,n − µ t

n
) +O

(
1

n

n∑
t=τ

‖µ̂t,n − µ t
n
‖2
)
. (4)

For most estimators µ̂t,n, the bias of this expression is not smaller than 1/
√
n. If one

considers, for example, a local average with bandwidth kn, and assumes u 7→ µu to
be Lipschitz continuous, then the bias of M̃n(u) is of order O( k

n
+ 1

k
), which is at best

O(1/
√
n). In a related situation, Jacod and Rosenbaum (2013) suggest to solve this

problem by undersmoothing, i.e. choosing kn �
√
n, and correcting the quadratic bias

term in (4) explicitly; see also (Potiron and Mykland, 2020, Section 4.2). However,
the latter quadratic bias term strongly depends on the specific estimator µ̂t,n, so that
the approach of Jacod and Rosenbaum (2013) may not be easily transfered to different
problems.

As a generic approach for asymptotically unbiased estimation of integrated function-
als, we propose the linearized partial sum estimator

Mn(u) =
1

n

bnuc∑
t=τ+L

[f(µ̂t−L,n) +Df(µ̂t−L,n)(Xt,n − µ̂t−L,n)] , u ∈ [0, 1]. (5)

for some initial offset τ = τn ≥ 1, lag L = Ln →∞, Ln � τn, to be specified later, and
assuming f to be sufficiently smooth. The pilot estimator µ̂t,n needs to satisfy minimal

8



high-level assumptions formulated below. Then, a Taylor expansion of f readily yields,
for some µ̃t,n between µ̂t−L,n and µnt/n,

Mn(u) =
1

n

bnuc∑
t=τn+Ln

f
(
µnt
n

)
+

1

n

bnuc∑
t=τn+Ln

(
µnt
n
− µ̂t−L,n

)T D2f (µ̃t,n)

2

(
µnt
n
− µ̂t−L,n

)

+
1

n

bnuc∑
t=τn+Ln

Df(µ̂t−L,n)
(
Xt,n − µnt

n

)
= I1n(u) + I2n(u) + I3n(u).

It can be shown that I1n(u)− Fn(u) converges to zero sufficiently fast. Moreover, if f is
sufficiently regular, and the estimator µ̂t,n is good enough, then

√
nI2n(u)→ 0, whereas√

nI3n(u) is asymptotically unbiased and tends towards a Gaussian process.
We require the function f to have bounded first and second derivatives in a neigh-

borhood of the path of µv. Formally, introduce the convex set M = conv{µu : u ∈
[0, 1]} ⊂ Rd, and its δ-neighborhood Mδ = {m ∈ Rd : ‖m− m̃‖ < δ for some m̃ ∈ M}.
We require that there exists a δ ∈ (0,∞] and a Cf <∞ such that

|f(x)|+ ‖Df(x)‖+ ‖D2f(x)‖ ≤ Cf , x ∈Mδ. (A.4)

By restricting the boundedness assumption to the setMδ, we may also consider functions
of the form f(x, y) = x/y, if y ≥ c > 0 on the setMδ. Without localization, (A.4) would
not hold for this choice of f .

Regarding the pilot estimator, we require that µ̂t,n is measurable w.r.t. the past
innovations εt, i.e. µ̂t,n is a (potentially nonlinear) filter. By additionally introducing
the lag L, the measurability condition on µ̂t,n serves to de-bias the term I3n(u). In
particular, as Ln → ∞, the random vectors Df(µ̂t−L,n) and Xt,n decouple by virtue of
(A.3). Furthermore, we require the estimator µ̂t,n to be consistent in the sense that

n∑
t=τn

‖µ̂t,n − µnt
n
‖2 = oP (

√
n), (A.5)

P (µ̂t,n ∈Mδ, t = τn, . . . , n) = 1 + o(1). (A.6)

The initial offset τn allows to circumvent boundary issues of the estimator µ̂t,n. The
assumptions (A.5) and (A.6) are rather mild. Property (A.6) requires some weak form
of uniform consistency of the estimator. If f is globally smooth, i.e. δ =∞, then (A.6)
is vacuous, and τn = 1 is a valid choice. Property (A.5) is a requirement on the rate of
convergence of µ̂t,n, in a form routinely studied in nonparametric statistics. The latter
assumption is discussed in detail in Section A.2 of the supplement. If we are willing to
impose some additional smoothness conditions, a suitable nonparametric estimator may
be obtained by local averaging. In particular, we define

µ̂NWt,n =
1

kn ∧ t

t∑
i=(t−kn)∨1

Xi,n,
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for a sequence kn →∞, kn � n. Note that µ̂NWt,n can be interpreted as a one-sided kernel
smoother of Nadaraya-Watson type.

Proposition 3.1. Let (A.3) hold for some q > 2, and choose kn � n
2
q , then µ̂NWt,n

satisfies (A.6) for any offset sequence τn → ∞. Suppose that for all n, we have µnu =
µn,1u +µn,2u , such that ‖µn,2u ‖p−var ≤ an for p ∈ [1, 2), and such that u 7→ µn,1u is β-Hölder
continuous with Hölder constant C, then

1

n

n∑
t=1

∥∥∥µ̂NWt,n − µnt
n

∥∥∥2 = OP

(
ankn
n

+

(
kn
n

)2β

+
log n

kn

)
.

In particular, µ̂NWt,n satisfies (A.5) if ankn �
√
n, and

√
n log(n) � kn � n

4β−1
4β . The

latter condition is feasible for any β > 1
2
.

By allowing the vanishing discontinuous part µn,2 in Proposition 3.1, we may account
for potential discretization errors.

For the local smoother µ̂NWt,n , as well as for any other estimator µ̂t,n satisfying our
assumptions (A.5) and (A.6), the functional estimator Mn(u) admits a central limit
theorem with parametric rate

√
n. Our main result may be formulated as follows.

Theorem 3.2. Suppose that (A.1), (A.2), (A.3), (A.4), (A.5), and (A.6) hold, and
let p ∈ [1, 4). Suppose that τn � n, and that Ln satisfies Ln � log(n)1+a for some

a ∈ (0, 1), and that Ln � n
1
p
− 1

4 , Ln � n
1
2p . Then, as n→∞,

√
n

Mn(u)− 1

n

bunc∑
t=τn+Ln

f(µnt
n
)

⇒ B

(∫ u

0

Df(µv)Σ(v)Df(µv)
T dv

)
= M(u),

Σ(v) =
∞∑

h=−∞

Cov (G(v, ε0), G(v, εh)) ∈ Rd×d,

where B denotes a standard Brownian motion. The weak convergence holds in the Sko-
rokhod space D[0, 1]. If p ∈ [1, 2), it also holds that

√
n

(
Mn(u)−

∫ u

τn+Ln
n
∧u
f(µnv ) dv

)
⇒M(u).

Just as in Theorem 2.1, the Cramer-Wold device may be used to extend Theorem
3.2 to the multivariate setting where f takes values in Rd∗ . The functional weak con-
vergence then holds in the product space (D[0, 1])d

∗
. If p < 2 and τn � n

1
2 , we may

alternatively choose
∫ u
0
f(µnv ) dv as centering term, such that

√
n[Mn(u)−

∫ u
0
f(µnv ) dv)]

has the asymptotic distribution given in Theorem 3.2.

Remark 1. The suitable choice of the lag parameter L depends on the strength of the
dependency of the time series. On the one hand, the bias term I2n grows polynomially

with L, i.e. I2n = OP (L
min(p,2)
n n−2/max(p,2)), see Lemma C.5 in the supplement. This
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suggests to choose the lag as small as possible. On the other hand, L needs to be large
enough such that Xt,n and µ̂t−L,n decouple, in order for I3n to be asymptotically unbiased.
In particular, in view of assumption A.3, we need to ensure that ρLn � 1/

√
n. To ensure

that both, I2n and the bias of I3n, are negligible, a conservative choice is Ln = c log(n)2

for some factor c. The sensitivity of our methodology with respect to L is assessed by
simulations in Section 5.

Remark 2. In contrast to Theorem 2.1, the central limit theorem of the linearized esti-
mator Mn(u) requires p < 4, i.e. the kernel Gn needs to be more regular. This restric-
tion is due to the bias incurred by the lag L. In particular, we can only ensure that
I2n = oP (1/

√
n) if p < 4, see Lemma C.5 in the supplement. On the other hand, the

criticality of p = 2 occurs because | 1
n

∑n
t=1 f(µnt

n

)−
∫ 1

0
f(µnu) du| = O(n−

1
p‖µn‖p−var), see

Lemma C.4 in the supplement. Note that both issues are not present in the linear case
of Theorem 2.1.

The integrand of the asymptotic variance of the limit process M(u) corresponds to
the long-run variance under the local, stationary model G(u, εt). In particular, a direct
application of the delta method shows that

√
n
[
f( 1

n

∑n
t=1G(u, εt))− f(µu)

]
⇒ N

(
0, Df(µu)

TΣ(u)Df(µu)
)
. (6)

If our model is indeed stationary, Theorem 3.2 shows thatMn(1) has the same asymptotic
distribution as (6). In this sense, accounting for the nonstationarity does not increase
the asymptotic variance.

To perform feasible inference based on Theorem 3.2, we need to handle the unknown
asymptotic variance process. A consistent estimator may be constructed via blocked
subsampling, similar to the suggestion of Carlstein (1986).

Theorem 3.3. Let the conditions of Theorem 3.2 hold for some q > 4, and p ∈ [1, 4).

Choose some bn →∞ such that bn � n
2

3max(p,2) , bn � n
q−4
2q+4 . Then, as n→∞,

Qn(u) =
1

n

bnuc−bn∑
t=τn+Ln

1

bn

[
Df(µ̂t−L,n)

bn∑
i=1

(Xt+i,n − µ̂t−L,n)

]2
P−→ Q(u) =

∫ u

0

Df(µv)Σ(v)Df(µv)
T dv.

The convergence holds uniformly in u ∈ [0, 1] since Qn is monotone.

Theorem 3.3 is a special case of the slightly more general Theorem C.7 in the ap-
pendix. Note that the upper bound on bn reduces to bn � n

1
3 if q ≥ 10.

The estimator Qn(u) may be used to perform inference based on Mn(u) via the
following multiplier bootstrap scheme, similar to Zhou (2013).

Theorem 3.4. Let the conditions of Theorem 3.3 hold for some q > 4. Let Yt ∼ N (0, 1)
be iid standard normal random variables, independent of the εi, and define the process

M̂n(u) =
1√
n

bnuc−bn∑
t=τn+Ln

Yt

[
1√
bn

bn∑
i=1

Df(µ̂t−L,n)(Xt+i,n − µ̂t−L,n)

]
, u ∈ [0, 1].

11



Then the conditional distribution of M̂n given Xn = (X1,n, . . . , Xn,n) converges weakly
in the Skorokhod space to M(u) in probability, where M(u) is the limit process from
Theorem 3.2.

It can also be shown that the bootstrap consistency of Theorem 3.4 holds under
weaker rate constraints on µ̂t,n, replacing the rate o(

√
n) by o(n1−κ) for some κ > 0.

However, a smaller value of κ requires stronger conditions on bn, see Theorem C.7 in the
appendix. The local smoother µ̂NWt,n is still consistent in the non-smooth case, where only
‖µ‖p−var <∞, although at a slower rate. Hence, the latter estimator may still be utilized
for consistent variance estimation. This is of particular interest for applications to
change-point tests, as described in the following section, where the bootstrap procedure
is still consistent under various alternative hypotheses.

4 Change-point detection

A major motivation to perform inference for the integrated parameter Fn(u) resp. F (u) =∫ u
0
f(µv) dv is that the estimator Mn(u) may be used to test for change-points. Our

framework lends itself to test the hypothesis

H0 : f(µnu) = f(µn0 ) for all u ∈ [0, 1] ↔ H1 : f(µnu) 6= f(µn0 ) for some u ∈ [0, 1]. (7)

To perform a test for this problem, a common approach is to formulate the CUSUM
statistic, which in our case reads as

T ∗n = sup
u∈[un,1]

|Tn(u)|, where Tn(u) = Mn(u)− u− un
1− un

Mn(1)

and un =
τn + Ln − 1

n
.

(8)

The main result Theorem 3.2 yields that Tn(u)
P−→ F (u) − uF (1) as n → ∞, which

is identically zero if the null hypothesis holds. In this case, Theorem 3.2 yields that

√
nTn(u)⇒M(u)− uM(1),
√
nT ∗n ⇒ T ∗ = sup

u∈[0,1]
|M(u)− uM(1)|,

where M(u) is the Gaussian limit process. The limit distribution T ∗ may be approxi-
mated via the bootstrap procedure outlined in Theorem 3.4, i.e. by sampling the random
variable T̂ ∗n = supu∈[0,1] |M̂n(u)− uM̂n(1)|, so that (T̂ ∗n |Xn) ⇒ T ∗ by virtue of Theorem
3.4. In particular, denote by tα the 1−α quantile of T ∗, and by tα,n the 1−α quantile of

(T̂ ∗n |Xn). In practice, the quantile tα,n may be approximated up to arbitrary precision by

sampling from the conditional distribution T̂ ∗n . The corresponding test procedure may
then be formulated as follows.

12



Proposition 4.1. Let the conditions of Theorem 3.4 hold, and denote by tα,n the 1− α
quantile of the conditional distribution T̂ ∗n |Xn. If the null hypothesis (7) holds, and if
Var(M(u0)) > 0 for some u0 ∈ (0, 1), then

lim
n→∞

P (T ∗n > tα,n) = α, n→∞.

Hence, rejecting H0 if the test statistic T ∗n exceeds the critical value tα,n leads to a test
with nominal size α ∈ (0, 1) asymptotically.

Although we focus on the uniform CUSUM test statistic, the functional central limit
theorem for the process Mn(u) also enables the consideration of alternative statistics,
e.g. the MOSUM statistic introduced by Bauer and Hackl (1978), see also Chu et al.

(1995), or the Cramér-von Mises statistic
∫ 1

0
Tn(u)2 du.

A desirable property of change-point tests is robustness against nuisance changes.
For the quantity f(µnu) to be non-constant, it is necessary that the local moment µnu
changes. It is thus tempting to instead test the null hypothesis H∗0 : µnu ≡ µn0 , which is
methodologically simpler to achieve. For example, the methods of Zhou (2013) and Vogt
and Dette (2015) are applicable to test for H∗0 . However, this approach bears the risk to
falsely detect a change although f(µnu) remains constant. For example, it might happen
that the variance of a time series is non-constant, while the autocorrelation structure
remains constant, as studied by Dette et al. (2019). Furthermore, Schmidt et al. (2020)
tests for homoscedasticity with a non-constant mean function. A related approach is
presented by Demetrescu and Wied (2018). By design, our test is only sensitive to
changes in the quantity f(µnu).

Another type of nuisance change might occur in the parameters which are not explic-
itly described by the local moment function µnu. For example, when testing for changes
in the mean of a heteroscedastic time series, the variance is a nuisance parameter not
contained in the vector µnu, but relevant for statistical inference, see Górecki et al. (2018)
and Pešta and Wendler (2020). We account for this type of nonstationarity by working
in a locally stationary framework which allows not only for heteroscedasticity, but also
for a varying dependency structure. This has also been suggested by Zhou (2013), who
designs a corresponding test for changes in the mean. The recent articles Vogt and Dette
(2015), Dette et al. (2019), and Cui et al. (2020), also employ a locally stationary model.

Test statistics for the change point problem usually need to be standardized by an
estimator of their asymptotic variance. However, variance estimators designed for the
stationary case might be inconsistent under the alternative, resulting in a loss of power,
see (Juhl and Xiao, 2009; Shao and Zhang, 2010) and the discussion therein. In contrast,
our bootstrap procedure is consistent under the alternative where f(µnu) is not constant
and potentially discontinuous, see Theorem 3.4 and the discussion thereafter. Moreover,
we may investigate the behavior of our test statistic under local alternatives at rate
1/
√
n.

Proposition 4.2. Suppose that the conditions of Theorem 3.2 hold, and assume fur-
thermore that µnu = µu + 1√

n
δu for some function u 7→ δu ∈ Rd, such that f(µu) = f(µ0)
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and ‖δ‖p−var <∞. Then

√
nT ∗n ⇒ sup

u∈[0,1]
|T (u) + ∆(u)|,

∆(u) =

∫ u

0

Df(µv)δv dv − u
∫ 1

0

Df(µv)δv dv,

where T (u) = M(u)− uM(1), and M(u) is the limit process from Theorem 3.2.

Note that under the local alternative of Proposition 4.2, the simple estimator µ̂NWt,n
still satisfies (A.5) and (A.6) if u 7→ µu is smooth, see Proposition 3.1. Hence, Theorem
3.4 is still applicable so that the bootstrap is consistent, and the CUSUM test with
bootstrapped critical values has non-trivial power against local alternatives in direction
δv, given that ∆(u) 6≡ 0. We also point out that the test has power not only against
abrupt changes, but also against changes which occur gradually in time.

The proposed procedure allows for a unified treatment of change-point tests for a wide
range of parameters of interest, as demonstrated by the examples below. Previously,
suitable test statistics have been constructed individually for these problems, while our
results show that they may be treated in a rather generic way.

4.1 Changes in autocorrelation

The dependency structure of time series is commonly described in terms of their au-
tocovariance function. It is thus natural to test the latter for structural stability, as
suggested by Berkes et al. (2009). They construct a CUSUM test based on the partial
sums which form the empirical autocovariance estimator at fixed lag, and derive limit
theorems under the assumption of stationarity. A method to detect changes without
fixing the lag is mentioned by (Steland, 2020, Example 3). The case of a nonparametric
mean function is investigated by Li and Zhao (2013), and multiple change-points are
studied by Preuss et al. (2015). The non-stationary case is investigated by Killick et al.
(2013), although without a rigorous analysis of the type I error.

Alternatively, in the same univariate setting, Dette et al. (2019) test whether the
autocorrelation Cor(Xt,n, Xt−h,n) remains constant, for some fixed h > 0. This problem
is more involved, since it requires standardization by the marginal variances, which are an
additional nuisance quantity. They allow the marginal variance to be non-constant and
estimate it non-parametrically, in order to standardize the observations. Furthermore,
Dette et al. (2019) study a nonlinear, locally stationary specification of the underlying
time series. Hence, they account for potential nonstationarity under the null hypothesis.

We may formulate the problem to test for constant autocorrelations in our general
framework. To this end, we set Yt,n = Gn( t

n
, εt) = (Xt,n, Xt−h,n, X

2
t,n, X

2
t−h,n, Xt,nXt−h,n)

for t = 1, . . . , n, assuming for simplicity that Xr,n = G̃n(0, εr) for r ≤ 0. Now set f :

R5 → R, x 7→ (x5 − x1x2)/
√

(x3 − x21)(x4 − x22), so that Cor(Xt,n, Xt−h,n) = f(EYt,n) =
f(µnt/n). Again, assumptions (A.1)-(A.3) are a direct consequence of the corresponding

properties of Xt,n. The function f is bounded on any compact set K ⊂ {x ∈ R5 :
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(x3− x21) > 0, (x4− x22) > 0}. Thus, if Var(Xt,n) > 2δ > 0, then (A.4) holds for δ > 0 as
well. We may thus constructMn(u) based on this time series Yt,n and function f to obtain
an estimator for the integrated autocorrelation Fn(u) =

∫ u
0

Cor(Gn(v, ε0), Gn(v, ε−h)) dv.
The corresponding CUSUM statistic satisfies (8).

The resulting CUSUM statistic is similar to the statistic suggested by Dette et al.
(2019). However, our framwork allows for many potential choices of µ̂t,n, while Dette
et al. (2019) only consider a special case. Moreover, our assumptions regarding the
regularity of Gn are weaker.

4.2 Further examples

The kurtosis of a random variable X is defined as Kurt(X) = E(X − EX)4/Var(X)2.
For a univariate time series Xt,n, let Yt,n = (Xt, X

2
t , X

3
t , X

4
t ). Then Kurt(Xt,n) can be

written as a function of E(Yt,n). In particular,

Kurt(Xt,n) = f(EYt,n) =
EX4

t,n − 4EXt,nEX3
t,n + 6(EX2

t,n)2 − 3(EXt,n)4

EX2
t,n − (EXt,n)2

If Var(Xt,n) > c > 0, then f satisfies (A.4) so that our results are applicable, and
the CUSUM statistic (8) in combination with the bootstrap procedure yields a feasible
change-point test. To the best of our knowledge, the proposed method is the first test
for structural stability of the marginal kurtosis.

In a similar way, we may consider the skewness Skew(X) = E(X − EX)3/Var(X)
3
2

of a random variable provided that the variance of X is bounded away from zero, or the
coefficient of variation CV(X) =

√
Var(X)/E(X) if the expectation of X is bounded

away from zero. A further example which may be cast in our framework are time-varying
autoregressive models, as presented in example 1, where the coefficients may be identi-
fied in terms of finitely many autocovariances by means of the Yule-Walker equations.
Our methodology could thus be used to test for changes in the second autoregressive
component of a univariate tvAR model.

In the supplement, we also discuss change point tests for the marginal variance
(Section B.1) and for the coefficients of a linear regression model (Section B.2).

5 Finite sample performance

To assess the finite sample performance of our proposed change-point test, we evalu-
ate its size and power properties via simulations. We consider the locally stationary
autoregressive process Xt,n given by

Xt,n = a( t
n
)Xt−1,n + σ( t

n
)ηt(

t
n
). (9)

The innovations ηt(
t
n
) are chosen as independent, zero-mean random variables having

a symmetrized Gamma distribution with shape parameter α( t
n
), standardized to unit
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Ln = dlog(n)2e Ln = d 12 log(n)2e Ln = d 15 log(n)2e Ln = d 1
10 log(n)2e DWZ

H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2

n = 100 0.26 0.19 0.28 0.04 0.03 0.05 0.04 0.03 0.04 0.05 0.04 0.04 0.50 0.54 0.49
500 0.02 0.03 0.02 0.02 0.13 0.03 0.04 0.37 0.05 0.05 0.49 0.07 0.18 0.67 0.22

1000 0.01 0.18 0.01 0.02 0.55 0.04 0.04 0.81 0.09 0.06 0.89 0.11 0.13 0.91 0.21
5000 0.02 1.00 0.20 0.04 1.00 0.33 0.07 1.00 0.42 0.08 1.00 0.46 0.07 1.00 0.47

10000 0.03 1.00 0.56 0.06 1.00 0.68 0.08 1.00 0.74 0.09 1.00 0.76 0.07 1.00 0.78

Table 1: Size and power of the bootstrap-based CUSUM test for constant autocorrela-
tion, with nominal level 10%. Reported values are based on 5000 independent samples
of the test statistic.

variance. We use

σ(u) = 0.5 + | sin(2πu)|, α(u) =

{
1, u ≤ 0.7,

2, u > 0.7,

and for a(u), either of the three functions

a0(u) = 0.2, a1(u) = 0.2 + u
2
, a2(u) = 0.2 + u

10
.

We want to test for stability of the lag-1 autocorrelation, which is equivalent to the
stability of the autoregressive coefficient a. To this end, we apply the change-point test
presented in Section 4.1 , in combination with the local estimator µ̂NWt,n .

As described in Remark 2, the lag parameter L should be chosen just big enough
such that the functional dependence measure at lag L is negligible. We choose Ln =
c log(n)2 and analyze the effect of the factor c below. Once Ln is specified, the smoothing
bandwidth k = kn may be determined via cross-validation, by minimizing the prediction
error

Λ(k) =
n−L∑
t=1

‖µ̂NW,kt,n −Xt+L,n‖2,

where µ̂NW,kt,n denotes the local average with bandwidth k. In our simulations, we consider
bandwidths from the interval k ∈ [n0.35, n0.75]. Then, a natural choice for the offset is
τn = kn. Finally, we choose the window size for the bootstrap procedure as bn = Ln.
Thus, Ln is the only parameter to be chosen manually. While a data-driven choice of
the lag parameter Ln is desirable, deriving a corresponding method is out of scope of
this article.

To find the critical value of the CUSUM test, for each individual sample, we resample
M = 103 independent realizations based on the bootstrap approximation of Theorem
3.4. Equivalently, we may use the bootstrap samples to compute an approximate p-
value for the CUSUM test statistic. When assessing the size of the CUSUM test, we set
a = a0, and for the power analysis, we set a = a1 respectively a = a2.

Table 1 presents the size and power of the proposed test in the presented example,
for various values of n and different choices Ln. The power values correspond to the
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Figure 1: Distribution of bootstrap-based p-values for the CUSUM test for constant
autocorrelation, under the null hypothesis, with lag parameter Ln = 1

10
log(n)2. The

p-values are computed based on M = 103 bootstrap samples, and the histograms are
based on 104 independent samples of the test statistic.

alternatives H1 based on a1, and H2 based on a2. We find that our test is rather
conservative, i.e. the type-I error is actually smaller than the nominal level, and this
conservativeness vanishes asymptotically as n increases. In particular, our test does not
falsely detect a structural break even though the nuisance parameter is non-constant.
On the other hand, the method consistently detects deviations from the null hypothesis,
as demonstrated by the increasing power against the alternative. Moreover, it is found
that the smallest lag value Ln = d 1

10
log(n)2e yields the best size approximation. Note

that the differences in power for various choices of Ln may be partially explained by the
different test sizes. For the latter choice of Ln, we also depict the distribution of the
simulated p-values in Figure 1. The p-values should ideally be uniformly distributed.
Indeed, for large sample size n, the accuracy of the p-values increases, in line with our
theoretical results.

For comparison, we also implement the change point test for constant lag-1 auto-
correlation proposed by Dette, Wu, and Zhou (Dette et al., 2019). The corresponding
size and power are also presented in Table 1, labeled as DWZ. In small samples, the
latter test achieves a higher power, which may be explained by a correspondingly higher
rate of false positives. For large sample sizes, the power is similar to our proposed test,
showing that our broadly applicable method is competitive against the specialized test
of Dette et al. (2019).

We also assess the quality of Mn(1) as an estimator of
∫ 1

0
ai(u) du, i = 0, 1, 2, in

comparison to the plug-in estimator M̃n(1). Table 2 presents the mean absolute errors
of both estimators, as well as their corresponding bias. Except for the smallest sample
size n = 100, the proposed linearized estimator performs better than the simple plug-in
estimator. In particular, the linearization greatly decreases the bias of the estimator.

We also assess the finite sample performance of a change point test for the coefficients
of a linear regression model. The simulation results are presented in Section B.3 of the
supplement.
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n = 100 n = 500 n = 1000 n = 5000 n = 10000

Mn M̃n Mn M̃n Mn M̃n Mn M̃n Mn M̃n

H0
error 0.172 0.120 0.053 0.058 0.031 0.039 0.012 0.018 0.008 0.013
bias 0.071 -0.114 0.022 -0.054 0.011 -0.036 -0.001 -0.016 -0.002 -0.012

H1
error 0.242 0.197 0.061 0.093 0.035 0.066 0.011 0.031 0.008 0.023
bias 0.163 -0.197 0.039 -0.093 0.020 -0.066 0.002 -0.031 -0.001 -0.023

H2
error 0.180 0.134 0.053 0.062 0.032 0.044 0.012 0.020 0.008 0.014
bias 0.084 -0.131 0.025 -0.060 0.012 -0.043 -0.000 -0.019 -0.002 -0.014

Table 2: Mean absolute error and bias of Mn(1) and M̃n(1) as estimators of
∫ u
0
ai(u) du,

i = 0, 1, 2, with Ln = 1
10

log(n)2 for the linearized estimator. All values are based on
5000 simulations.

6 Empirical illustration

To demonstrate the use of our results in practice, we study an application to high-
frequency financial data. In particular, we study the price pt of the german mid-cap
stock-index MDAX on April 4, 2016, from 9:00-15:30, at a sampling frequency of 1
second. The data is available as a free sample from the data shop of Deutsche Börse,
and part of the supplementary material of this article. We study the log-returns dt =
log(pt)− log(pt−1), t = 1, . . . , n, with sample size n = 23400.

While many models for asset prices imply uncorrelated returns, empirical research
suggests that autocorrelation may be non-zero, especially at high sampling frequencies
(Hansen and Lunde, 2006). This dependence structure is typically attributed to the
microstructure of the market, e.g. rounding effects or bid-ask rebounds. Recently, An-
dersen et al. (2019) studied the intraday returns of the NASDAQ100 stocks and found
evidence for autocorrelation which is not only non-zero, but also non-constant.

Using the framework laid out in Section 4.1 above, we may rigorously perform asymp-
totic inference for the local autocorrelation Cor(dt, dt−1). To this end, we use the lo-
cal estimator µ̂NWt,n and choose its bandwidth via cross-validation as in Section 5, with
Ln = dlog(n)2/10e.

The functional estimator Mn(u) of the lag-1 autocorrelation is depicted in Figure
2 (left). First, we observe that Mn(u) is roughly increasing, which indicates that the
lag-1 autocorrelation is positive on average. Indeed, the average lag-1 autocorrelation
is estimated as Mn(1) = 0.1314, with asymptotic standard deviation

√
Qn(1) = 0.0209.

Moreover, visual inspection of Mn(u) suggests that the slope is varying, which corre-
sponds to a non-constant autocorrelation. To test this hypothesis rigorously, we per-
form the CUSUM test suggested in Section 4. The right panel of Figure 2 shows the
CUSUM process Tn(u), and the critical thresholds for a significance level of 10% and
5%, respectively. The critical values are obtained using the bootstrap approximation of
Theorem 3.4, with 104 bootstrap samples. The bootstrap-based p-value of the CUSUM
test statistic is 0.167, based on 104 bootstrap samples. Note that the sample size n is
rather large, and the simulation results of Section 5 suggest that the bootstrap approx-
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Figure 2: Left: the estimator Mn(u) of the integrated autocorrelation. Right: the
corresponding CUSUM process T̄n(u). The critical thresholds are based on the bootstrap
approximation with 104 bootstrap samples.

Figure 3: Left: the estimator Mn(u) of the integrated autocorrelation fo the transformed
log returns d̃t. Right: the corresponding CUSUM process T̄n(u). The critical thresholds
are based on the bootstrap approximation with 104 bootstrap samples.

imation is satisfactory for this regime. Hence, we find that the variation of the lag-1
autocorrelation is not significant. That is, based on the bootstrapped CUSUM test, we
may not reject the null hypothesis of constant lag-1 autocorrelations for this particular
dataset at a significance level of 5%.

The visible discontinuities of the path of Mn(u) in Figure 2, suggest that the esti-
mator is influenced by few very large price changes dt. While our bootstrap procedure
automatically accounts for this, the resulting large variance decreases the power of the
change point test. To reduce the effect of the heavy tails of the log returns, we repeat
our analysis for the transformed increments d̃t = arctan(dt/γ). We choose γ = 10−4,
which corresponds to the average size of dt and leads to a unimodal distribution of trans-
formed returns (not depicted). The estimator Mn(u) of the lag-1 autocorrelation of the
transformed returns d̃t is depicted in Figure 3, as well as the corresponding CUSUM
process. The p-value of the CUSUM test is 0.027, hence the hypothesis of constant
lag-1 autocorrelation is rejected for the series d̃t at a significance level of 5%. Although
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the autocorrelations of dt and d̃t are not the same parameters, both may be interpreted
similarly in the present application. In particular, our findings support the claim of
Andersen et al. (2019) that the serial correlation of intraday log returns is non-constant
for the present data set. In contrast to Andersen et al. (2019), our change point test
does not assess whether the autocorrelation changes its sign.

We also analyze the variance, mean, and kurtosis of dt and d̃t as outlined in Sections
B.1 and 4.2. For dt, the CUSUM tests for constant variance, mean, and kurtosis yield
the p-values 0.081, 0.020, and 0.285, respectively. For d̃t, the respective p-values are
0.000, 0.0484, and 0.000, respectively. In combination with our statistical results on the
autocorrelation, this provides strong evidence for nonstationarity of d̃t and dt.

Many models for asset returns at very high frequencies describe the observed price
as the sum of two latent components: the fundamental price p∗t , and the so-called mi-
crostructure noise ηt, such that pt = p∗t +ηt. The fundamental price is typically modeled
as a semimartingale, and inference for this component needs to account for the mi-
crostructure effects, see e.g. Jacod et al. (2009). The microstructure noise is typically
assumed to be independent, or dependent but stationary (Hansen and Lunde, 2006;
Aı̈t-Sahalia et al., 2011). Nonstationary dependent noise is considered by Jacod et al.
(2017), but such that the autocorrelation of the microstructure is constant. The ap-
proach we pursue in the present paper does not distinguish between the fundamental
price and the microstructure effects. Nevertheless, our empirical findings may motivate
the investigation of microstructure models which allow for a nonstationary dependence
structure.
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A Further remarks

A.1 Alternative definition of local stationarity

The model described in Section 2 may also be compared to the definition of locally-
stationary processes introduced by Dahlhaus et al. (2019). They require that for each
u ∈ [0, 1], there exists a stationary process Xt(u) such that

(i) ‖Xt,n −Xt(
t
n
)‖Lq ≤ Cn−α, and

(ii) ‖Xt(u)−Xt(v)‖Lq ≤ C|u− v|α, for some C > 0 and α ∈ (0, 1].

If the time series Xt,n and Xt(u), u ∈ [0, 1], are εt-measurable, we may represent them as
Xt(u) = G(u, εt), and Xt,n = Gn( t

n
, εt), for kernels G and Gn which are measurable w.r.t.

εt. Without loss of generality, we may suppose that u 7→ Gn(u, ε) is a left-continuous,
piecewise constant mapping with finitely many break points at t/n, for t = 1, . . . , n.
Then

‖Gn‖p−var =

(
n∑
t=2

‖Gn( t
n
, εt)−Gn( t−1

n
, ε0)‖pLq

) 1
p

≤ 2

(
n∑
t=1

‖Gn( t
n
, ε0)−G( t

n
, ε0)‖pLq

) 1
p

+ ‖G‖p−var.

Conditions (i) and (ii) imply that ‖Gn‖p−var is bounded for any p ≥ 1
α

. Hence, provided
that the time series is εt measurable, our framework contains the model of Dahlhaus
et al. (2019) as a special case. For instance, we may describe temporally varying auto-
regressive processes, as described in Example 1.

A.2 Rates of convergence of the pilot estimator µ̂nt

Property (A.5) is a requirement on the rate of convergence of µ̂t,n, in a form routinely
studied in nonparametric statistics, see e.g. (van de Geer, 2010, Ch. 9). The achievable
rate of convergence in nonparametric regression depends in particular on the smoothness
of the function u 7→ µnu. In our model, the only regularity assumption on µnu is (A.2),
which implies that ‖µn‖p−var < ∞. Thus, empirical process theory suggests an achiev-

able rate of convergence of O(n
p

2+p ) for p ∈ [1, 2). This rate can be derived by combining
general results for least squares regression with subgaussian errors (van de Geer, 2010,
Thm. 9.1) with entropy bounds for the class of functions of bounded p-variation (Giné
and Nickl, 2016, Cor. 3.7.50). Note that this rate is in line with the requirement (A.5)
if p ∈ [1, 2). Furthermore, we point out that this rate of convergence matches the rate
under the assumption of Hölder continuity with exponent β = 1

p
. While the Hölder-

continuous case may be treated via local smoothing, the generic approach to achieve
this rate of convergence under the assumption of finite p-variation is via empirical risk
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minimization, which in particular uses the whole sample. However, we additionally re-
quire that µ̂t,n is εt-measurable, rendering this approach infeasible. While it might be
possible to construct a suitable online estimator which achieves the desired rate of con-
vergence for functions of bounded p-variation, this is out of the scope of this article. See
for example Baby and Wang (2019) and Raj et al. (2020) for the case p = 1 based on
iid observations.

Another alternative is to formulate a parametric estimator of µnu, which will typically
satisfy (A.5) with the stronger rate

∑n
t=1 ‖µ̂t,n − µnt/n‖2 = OP (1). For example, this

approach is feasible if µnu is piecewise constant with a single breakpoint. However, in
order to apply a parametric estimator, additional assumptions need to be imposed on
the underlying time series. If these parametric assumptions do not hold, any inference
based on the corresponding asymptotic results will be flawed. This encourages the use
of nonparametric estimators for the local moment function µnu.

B More examples of change point problems

B.1 Changes in variance

For a univariate time series Xt,n, various researches have designed tests for constancy
of the variances Var(Xt,n), starting with the investigation of asset returns by Hsu et al.
(1974) and the corresponding methodology of Wichern et al. (1976). A test based on
cumulative sums of squared observations has been suggested by Inclán and Tiao (1994),
and Chen and Gupta (1997) suggest an alternative procedure based on the Schwarz
information criterion. The approach of Inclán and Tiao (1994) has been generalized by
Lee and Park (2001) to dependent processes, and by Aue et al. (2009) to the multivariate
case. A common shortfall of many procedures is that they require constancy of the mean
E(Xt,n), which is a nuisance parameter in the present situation. More recent work studies
the case of non-constant mean by using a suitable nonparametric estimator thereof, see
Gao et al. (2019) and Schmidt et al. (2020). Note that the latter references still require
stationarity of all remaining nuisance quantities, such as autocorrelations and higher
order moments.

An alternative test for homoscedasticity can be formulated using our results. Based
on the univariate time series Xt,n = G̃n( t

n
, εt), we define the vector valued time series

Yt,n = Gn( t
n
, εt) = (Xt,n, X

2
t,n) with mean µnu = EGn(u, ε0). Then Var(Xt,n) = EX2

t,n −
(EXt,n)2 = f(µnt/n), for f : R2 → R, f(a, b) = b− a2. It is straight-forward to check that

if G̃n satisfies assumptions (A.1)-(A.3) for q > 8, then Gn satisfies the assumptions for
q
2
> 4. Moreover, f and all its derivatives are bounded on compacts, such that (A.4)

holds if µu = limn→∞ µ
n
u is bounded. Thus, the asymptotic result (8) holds and yields a

test for the hypothesis H0 : Var(Xt,n) ≡ const, allowing for non-stationary mean under
very mild regularity conditions on dependency structure of Xt,n.
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B.2 Changes in regression coefficients

Suppose we observe a univariate time series Zt,n and a d-dimensional vector time series
Xt,n, such that Zt,n = βTt,nXt,n + ηt,n. The noise values ηt,n satisfy E(ηt,n) = 0 and
Cov(Xt,n, ηt,n) = 0. We want to test whether βt,n is constant, or varies with t. This
problem has been studied, among others, by Horváth (1995), Horváth et al. (2004),
and Aue et al. (2008) for uncorrelated innovations ηt,n. Correlated regression errors
are treated, for example, by Robbins et al. (2016). In this setting, the hypothesis
H0 : βt,n ≡ β1,n may be formulated in the form (7), since

βt,n = Cov(Xt,n)−1 Cov(Xt,n, Zt,n),

where Cov(Xt,n) ∈ Rd×d and Cov(Xt,n, Zt,n) ∈ Rd×1. Thus, βt,n = f(EYt,n), for

Yt,n = (Xt,n, Zt,n, Xt,nX
T
t,n, Xt,nZt,n) ∈ R2d+1+d2 ,

where the matrix Xt,nX
T
t,n is interpreted as a d2-dimensional vector. Assumptions (A.1)-

(A.3) are a direct consequence of the corresponding properties of Xt,n and ηt,n. Moreover,
f satisfies (A.4) if we ensure that the smallest eigenvalue of Cov(Xt,n) admits a uniform
lower bound.

Note that βt,n is a d-dimensional parameter. It is straight-forward to extend the
CUSUM statistic T ∗n to the multivariate setting, e.g. by replacing the absolute value by
an arbitrary vector norm. Alternatively, one might test for changes in a single coordinate
of βt,n.

B.3 Further simulation results

To further assess the finite sample performance of our proposed procedure, we study the
regression model

Zt,n = β( t
n
)TWt,n +Xt,n,

for regression coefficients β(u) ∈ R2, and noise process Xt,n as in equation (9) of the
article, using σ(u) and α(u) as specified, and autoregression coefficient a(u) = a1(u).
The cofactors Wt,n ∼ N (0,Σ( t

n
)) are independent, bivariate normal random vectors,

independent of Xt,n, with covariance matrix

Σ(u) = A(u)TA(u), for A(u) =

(
1 2 + | sin(2πu)|
0 1

)2

.

Here, we want to test for structural stability of the first regression coefficient β(u)1, and
we apply the CUSUM test as outlined in Section B.2. For our simulations, we employ
the model with regression coefficients β(u) = β0(u) ≡ (1, 2)T as null hypothesis, and
β(u) = β1(u) = (1 + u, 2 + u2)T , β2(u) = (1 + u

3
, 2 + u2

3
) as alternatives, i.e. a gradual

change.
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Figure 4: Distribution of bootstrap-based p-values for the CUSUM test for a constant
regression coefficient, under the null hypothesis, with lag parameter Ln = 1

10
log(n)2.

The p-values are computed based on M = 103 bootstrap samples, and the histograms
are based on 5000 independent samples of the test statistic.

Ln = dlog(n)2e Ln = d 12 log(n)2e Ln = d 15 log(n)2e Ln = d 1
10 log(n)2e

H0 H1 H2 H0 H1 H2 H0 H1 H2 H0 H1 H2

n = 100 0.16 0.14 0.15 0.08 0.06 0.08 0.03 0.03 0.03 0.03 0.03 0.03
500 0.01 0.02 0.01 0.01 0.06 0.01 0.02 0.16 0.03 0.04 0.21 0.04

1000 0.01 0.10 0.01 0.02 0.28 0.04 0.04 0.41 0.07 0.04 0.45 0.09
5000 0.03 0.96 0.20 0.05 0.99 0.28 0.06 0.99 0.33 0.07 0.99 0.35

10000 0.05 1.00 0.46 0.06 1.00 0.53 0.07 1.00 0.58 0.08 1.00 0.58

Table 3: Size and power of the bootstrap-based CUSUM test for a constant regression
coefficient, with nominal level 10%. Reported values are based on 5000 independent
samples of the test statistic.

The distribution of the bootstrap-based p-values under null hypothesis is depicted in
Figure 4. Values of the test’s size and power are presented in Table 3, for different choices
of the lag parameter Ln. Just as for the autocorrelation, we find that our proposed test
for the regression coefficient is conservative, and that the size approximation is better
for smaller Ln. As the sample size increases, the distribution of the p-values approaches
the desired uniform distribution, and the size of the test tends towards the nominal
level. This demonstrates the robustness of our test against non-stationary nuisance
parameters. Furthermore, the CUSUM test consistently detects the nonstationarity of
the regression coefficient as the sample size increases.

C Technical proofs

C.1 Equivalence of the physical dependence measure

Proposition C.1. Let εt, ε
∗
t,j, ε̃t,j, be as in Section 2. Let G : R∞ → Rd be a measurable

function, where we endow R∞ with the σ-Algebra generated by all finite projections. If
‖G(ε0)‖Lq <∞ for some q ≥ 1, then

∥∥G(ε0)−G(ε∗0,j)
∥∥
Lq
≤

∞∑
s=0

‖G(ε0)−G(ε̃0,j+s)‖Lq .
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Proof of Proposition C.1. Consider the martingale Gt = E(G(ε0)|ε0, . . . , ε−t+1). Since
‖G(ε0)‖Lq <∞, the martingale convergence theorem guarantees that that ‖Gt−G(ε0)‖Lq →
0 as t → ∞. Now note that Gt − G(ε0)

d
= Gt − G(ε∗0,t), such that we also obtain

‖Gt − G(ε∗0,t)‖Lq → 0 as t → ∞ and thus ‖G(ε∗0,t) − G(ε0)‖Lq → 0 as t → ∞. Hence,
for any t ∈ N, and any j ∈ N,

‖G(ε0)−G(ε∗0,j)‖Lq ≤ ‖G(ε0)−G(ε∗0,j+t)‖Lq +
t∑

s=1

‖G(ε∗0,j+s)−G(ε∗0,j+s−1)‖Lq .

But ‖G(ε∗0,j+s) − G(ε∗0,j+s−1)‖Lq = ‖G(ε0) − G(ε̃0,j+s−1)‖Lq . Thus, letting t → ∞, we
find that

‖G(ε0)−G(ε∗0,j)‖Lq ≤
∞∑
s=0

‖G(ε0)−G(ε̃0,j+s)‖Lq .

Applying Proposition (C.1) under assumption (A.3), we find that

‖G(εt)−G(ε∗t,j)‖Lq ≤
∞∑
s=j

CGρ
j ≤ CG

1− ρ
ρj.

C.2 Asymptotics of partial sums

Proof of Theorem 2.1. We exploit the geometric decay of the dependence measure (A.3)
to employ a coupling construction. To this end, we split the n observations into m =
mn � n blocks of length L̃ = L̃n = bn/mc and let m→∞. Furthermore, let r = rn �
L̃n with rn →∞ be a smaller block length. It turns out that the rates L̃n = dnεe, rn =
dnε/2e are appropriate, for some 0 < ε < min(1

2
− 1

q
, 1
p
). We decompose

Sn(u) =
1√
n

bnuc∑
t=1

Xt,n − EXt,n

=
1√
n

bumc∑
j=1

jL̃∑
t=(j−1)L̃+r

[Xt,n − EXt,n] +
1√
n

bumc∑
j=1

(j−1)L̃+r−1∑
t=(j−1)L̃+1

[Xt,n − EXt,n]

+
1√
n

bnuc∑
t=L̃bumc+1

[Xt,n − EXt,n]

=
1√
n

bumc∑
j=1

Yj,n +
1√
n

bumc∑
j=1

Ỹj,n +Rn(u). (10)
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Consider the remainder termRn(u). By assumptions (A.1) and (A.2), we have ‖Xt,n‖Lq ≤
2CG for all n, t. The union bound and Markov’s inequality yield, for any a > 0,

P

(
sup
u∈[0,1]

|Rn(u)| > a

)
≤

n∑
k=L̃+1

P

 1√
n

k∑
t=k−L̃

|Xt,n − EXt,n| > a


≤ n√

n
q

(2CGL̃)q

aq
.

Since q > 2, this term tends to zero for our choice of L̃, since L̃ = L̃n = nε for ε < 1
2
− 1

q
.

In (10), the random variables Yj,n, j = 1, . . . ,m, may be replaced by independent
copies Y ∗j,n as follows. For each j = 1, . . . ,m, let ε̃jt be an independent copy of the
εt, t ∈ Z. Then

Yj,n =

jL̃∑
t=(j−1)L̃+r

[
Gn( t

n
, εt, εt−1, . . .)− EXt,n

]

=

jL̃∑
t=(j−1)L̃+r

[
Gn( t

n
, εt, . . . , ε(j−1)L̃+1, ε̃

j

(j−1)L̃, ε̃
j

(j−1)L̃−1 . . .)− EXt,n

]
+ δj,n

= Y ∗j,n + δj,n,

for a random variable δj,n with ‖δj,n‖Lq ≤ CGL̃
∑∞

k=r ρ
k ≤ C L̃ρr, by virtue of (A.3).

Note that the Y ∗j,n are independent and satisfy Y ∗j,n ∼ Yj,n, for j = 1, . . . ,m. Analogously,

we may construct independent copies Ỹ ∗j,n of Ỹj,n, j = 1, . . . ,m, such that ‖Ỹj,n−Ỹ ∗j,n‖Lq =

‖δ̃j,n‖Lq ≤ C L̃ρr. Hence,

Sn(u) =
1√
n

bumc∑
j=1

Y ∗j,n +
1√
n

bumc∑
j=1

Ỹ ∗j,n + R̃n(u) +Rn(u).

The remainder term R̃n(u) satisfies

‖ sup
u∈[0,1]

R̃n(u)‖Lq ≤
1√
n

m∑
j=1

(
‖δj,n‖Lq + ‖δ̃j,n‖Lq

)
≤ C

L̃m√
n
ρr,

which is asymptotically negligible since r = rn = nε/2 and ε > 0, and L̃nmn ≤ n.
We now establish a central limit theorem for the term S∗n(u) = 1√

n

∑bumc
j=1 Y ∗j,n. This

result will also apply to the term 1√
n

∑m
j=1 Ỹ

∗
j,n with a different rate of convergence, and

we will be able to conclude that the latter is negligible. To this end, consider

Var(Y ∗j,n) =

jL̃∑
t,s=(j−1)L̃+r

Cov
[
Gn( t

n
, εt), Gn( s

n
, εs)

]
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=

jL̃∑
t,s=(j−1)L̃+r

Cov
[
Gn( t

n
, εt), Gn( t

n
, εs)

]
+ gs,tn ,

for some |gs,tn | ≤ C‖Gn( t
n
, εs) − Gn( s

n
, εs)‖L2 , using the L2(P ) boundedness of G. Fur-

thermore, condition (A.3) implies that |Cov
[
Gn( t

n
, εt), Gn( t

n
, εs)

]
| ≤ Cρ|t−s|. Hence, it

can be checked that

jL̃∑
s,t=(j−1)L̃+r

Cov
[
Gn( t

n
, εt), Gn( t

n
, εs)

]

= δ̄j,n +

jL̃∑
t=(j−1)L̃+r

∞∑
s=−∞

Cov
[
Gn( t

n
, εt), Gn( t

n
, εs)

]

= O(1) +

jL̃∑
t=(j−1)L̃+r

σ2
n( t

n
)

for some |δ̄j,n| ≤ C, and σn(u) =
∑∞

h=−∞Cov(Gn(u, εh), Gn(u, ε0). Thus, for any u ∈
[0, 1],

bumc∑
j=1

Var

(
Y ∗j,n√
n

)
=

1

n

bumc∑
j=1

δ̄j,n +
1

n

bumc∑
j=1

jL̃∑
t=(j−1)L̃+r

σ2
n( t

n
) +

1

n

bumc∑
j=1

jL̃∑
t,s=(j−1)L̃+1

gs,t

= V 1
n (u) + V 2

n (u) + V 3
n (u). (11)

The term V 1
n (u) tends to zero uniformly in u because the δ̄j,n are bounded, and mn � n.

The third term may be bounded as

sup
u∈[0,1]

|V 3
n (u)| ≤ 1

n

m∑
j=1

jL̃∑
t,s=(j−1)L̃+1

C‖Gn( t
n
, ε0)−Gn( s

n
, ε0)‖L2

≤ C

n

n∑
t=1

sup
s=1,...,n,|s−t|≤L̃

‖Gn( t
n
, ε0)−Gn( s

n
, ε0)‖Lq

≤ L̃C

n

n∑
t=1

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖Lq

≤ L̃C

n
n1− 1

p

(
n∑
t=1

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖pLq

) 1
p

≤ L̃nCn
− 1
p‖Gn‖p−var,

which tends to zero since ‖Gn‖p−var ≤ CG by assumption, and L̃nn
− 1
p → 0.
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To treat the term V 2
n (u), we show that ‖σ2‖p−var < ∞. First, we find that for

u, v ∈ [0, 1] and any h ∈ Z,

|Cov(Gn(u, εh), Gn(u, ε0))− Cov(Gn(v, εh), Gn(v, ε0))|
≤ |Cov(Gn(u, εh), Gn(u, ε0)−Gn(v, ε0))|+ |Cov(Gn(u, εh)−Gn(v, εh), Gn(v, ε0))|
= |Cov(Gn(u, εh), Gn(u, ε0)−Gn(v, ε0))|+ |Cov(Gn(v, ε−h), Gn(u, ε0)−Gn(v, ε0))| .

Both summands may be treated identically using (A.3). In particular, assuming w.l.o.g.
h ≥ 0,

|Cov(Gn(u, εh), Gn(u, ε0)−Gn(v, ε0))|
=
∣∣Cov(Gn(u, ε∗h,h), Gn(u, ε0)−Gn(v, ε0))

∣∣
+
∣∣Cov(Gn(u, εh)−Gn(u, ε∗h,h), Gn(u, ε0)−Gn(v, ε0))

∣∣
≤ 0 + Cρ|h|‖Gn(u)−Gn(v)‖L2 .

Hence,

|σ2
n(u)− σ2

n(v)| ≤
∞∑

h=−∞

|Cov(Gn(u, εh), Gn(u, ε0))− Cov(Gn(v, εh), Gn(v, ε0))|

≤
∞∑

h=−∞

Cρ|h|‖Gn(u)−Gn(v)‖L2

≤ C‖Gn(u)−Gn(v)‖L2 , (12)

which implies that ‖σ2
n‖p−var ≤ C‖Gn‖p−var ≤ C ·CG. Moreover, we have that σ2

n(u)→
σ2(u), because the same argument as above yields

|σ2
n(u)− σ2(u)| ≤

∞∑
h=−∞

Cρ|h|‖Gn(u, ε0)−G(u, ε0)‖L2 → 0. (13)

Hence, we find that u 7→ σ2
n(u) is bounded and of bounded p-variation, uniformly in n.

The same holds for σ2(u). This suffices to establish convergence of the Riemann sum
V 2
n (u) in (11), since

sup
u∈[0,1]

∣∣∣∣V 2
n (u)−

∫ u

0

σ2
n(v) dv

∣∣∣∣
= sup

u∈[0,1]

∣∣∣∣∣∣ 1n
bumc∑
j=1

jL̃∑
t=(j−1)L̃+r

σ2
n( t

n
)−

∫ u

0

σ2
n(v) dv

∣∣∣∣∣∣
= sup

u∈[0,1]

∣∣∣∣∣∣ 1n
bunc∑
t=1

σ2
n( t

n
)−

∫ bunc
n

0

σ2
n(v) dv

∣∣∣∣∣∣+O
(mr
n

)
+O

(
L̃

n

)

28



= sup
u∈[0,1]

∣∣∣∣∣∣
bunc∑
t=1

∫ t
n

t−1
n

[σ2
n( t

n
)− σ2

n(v)] dv

∣∣∣∣∣∣+O
(mr
n

)
+O

(
L̃

n

)
+O

(
1

n

)

≤ 1

n

n∑
t=1

sup
t−1
n
≤v<w≤ t

n

|σ2
n(v)− σ2

n(w)|+O
(mr
n

)
+O

(
L̃

n

)

≤ n−
1
p‖σ2

n‖p−var +O
(mr
n

)
+O

(
L̃

n

)
.

By our choice of L̃ and r, in particular r/L̃ � mr
n
→ 0, the latter term tends to

zero. Moreover,
∫ u
0
σ2
n(v) dv →

∫ u
0
σ2(v) dv uniformly in u by the dominated convergence

theorem. We have thus shown that

Var

 1√
n

bumc∑
j=1

Y ∗j,n

 =

∫ u

0

σ2(v) dv + o(1),

uniformly in u. On the other hand, following the same steps, we can show that

Var

 1√
n

bumc∑
j=1

Ỹj,n

 = o(1) +
1

n

bumc∑
j=1

(j−1)L̃+r−1∑
t=(j−1)L̃+1

σ2
n( t

n
) = o(1) +O

(mr
n

)
,

which tends to zero by our choice of m, r. Doob’s inequality thus yields that

sup
u∈[0,1]

1√
n

bumc∑
j=1

Ỹj,n → 0,

in probability, as n→∞. Hence, Sn(u) = 1√
n

∑bumc
j=1 Y ∗j,n + o(1), uniformly in u.

To establish a central limit theorem, we verify Lyapunov’s condition. By our as-
sumptions on Gn, in particular convergence and bounded p-variation in Lq(P ), we know
that ‖Gn(u)‖Lq ≤ C for some constant C, uniformly in n and u. Hence,

m∑
j=1

∥∥Y ∗j,n/√n∥∥qLq ≤ m∑
j=1

(CL̃)q

n
q
2

= O(L̃q−1/nq/2−1) = O(L̃n
2−q
2q−2 )

1
q−1 , (14)

since mL̃/n → 1. This term tends to zero since L̃nn
2−q
2q−2 ≤ L̃nn

1
2
− 1
q → 0 by our choice

of L̃n. Thus, the functional central limit theorem is applicable, see e.g. (Jacod and
Shiryaev, 2003, Thm. VIII.3.33). We obtain

1√
n

bumc∑
j=1

Y ∗j,n ⇒ B∫ u
0 σ2(v) dv.
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C.3 Properties of the local smoother µ̂NW
t,n

Proposition 3.1 is a consequence of the following two Lemmas.

Lemma C.2. Let (A.3) hold for some q > 2. Let τn →∞ and choose k = kn such that

kn � n
2
q . Then, as n→∞,

sup
t=τn,...,n

∥∥∥∥∥∥µ̂NWt,n − 1

k ∧ t

t∑
i=(t−k)∨1

µni
n

∥∥∥∥∥∥ P−→ 0.

Proof of Lemma C.2. The union bound and Markov’s inequality yield, for any a > 0,

P

 sup
t=τn,...,n

∥∥∥∥∥∥µ̂NWt,n − 1

k ∧ t

t∑
i=(t−k)∨1

µni
n

∥∥∥∥∥∥ > a


= P

 sup
t=τn,...,n

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥ > a


≤ a−q

n∑
t=τn

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥
q

Lq

. (15)

To bound the latter Lq norm, we apply Theorem 1 of Liu et al. (2013). The latter
result is formulated for stationary time series of the type Xt = G(εt). However, the
stationarity is only strictly required for the last equation of the proof therein, where we
may replace ‖X1‖Lq by sq = supn supu∈[0,1] ‖Gn(u, ε0)‖Lq , which is bounded by virtue of
(A.3) for j = 0. At all other occasions in the proof of Liu et al. (2013), only the quantity
θj,q = ‖G(ε0)−G(ε̃0,j)‖Lq is relevant, which may be replaced in our nonstationary setting
by

θ∗j,q = sup
n

sup
u∈[0,1]

‖Gn(u, ε0)−Gn(u, ε̃0,j)‖Lq , q ≥ 2.

By assumption (A.3), we have θ∗j,q ≤ Cρj. Hence, for our case, the bound of Liu et al.
(2013) reads as follows: For all k and all 1 ≤ s < t ≤ n such that t− s = k,∥∥∥∥∥

t∑
i=s

[Xi,n − EXi,n]

∥∥∥∥∥
Lq

≤ k1/2

[
87 q

log q

k∑
j=1

θ∗j,2 + 3(q − 1)1/2
∞∑

j=k+1

θ∗j,q +
29 q

log q
s2

]

+ k1/q

[
87 q(q − 1)1/2

log q

k∑
j=1

j1/2−1/qθ∗j,q +
29 q

log q
sq

]
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≤ k1/2

(
sq +

∞∑
j=1

θ∗j,q

)(
87 q

log q
+ 3(q − 1)1/2 +

58 q

log q
+

87 q(q − 1)1/2

log q

)
≤ Ck1/2,

for a factor C which does not depend on k nor n. For the latter two inequalities, we
used that θ∗j,2 ≤ θ∗j,q and s2 ≤ sq for q ≥ 2, and the geometric decay of θ∗j,q. Thus,

n∑
t=τn

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥
q

Lq

≤ C

n∑
t=τn

(k ∧ t)−q/2

≤ C
(
nk−q/2 + τ 1−q/2n

)
.

This term tends to zero if q > 2. We hence obtain the uniform convergence via the union
bound (15).

Lemma C.3. Let (A.3) hold for some q ≥ 2. Suppose that u 7→ µnu is β-Hölder contin-
uous with Hölder constant C independent of n. Then

1

n

n∑
t=1

∥∥∥µ̂NWt,n − µnt
n

∥∥∥2 = OP

((
k

n

)2β

+
log n

k

)
.

If, instead of Hölder continuity, we assume that ‖µn‖p−var < C <∞ for some p ∈ [1, 2),
then

1

n

n∑
t=1

∥∥∥µ̂NWt,n − µnt
n

∥∥∥2 = OP
(
k

n
+

log n

k

)
.

Furthermore, if µnu = µn,1u + µn,2u such that u 7→ µn,1u is β-Hölder continuous with Hölder
constant C independent of n, and ‖µn,2‖p−var ≤ an, then

1

n

n∑
t=1

∥∥∥µ̂NWt,n − µnt
n

∥∥∥2 = OP

(
ank

n
+

(
k

n

)2β

+
log n

k

)
.

Proof of Lemma C.3. Assume without loss of generality that the Xi,n are scalar, i.e.
d = 1. Otherwise, we may treat each component individually. We have

1

n

n∑
t=1

E‖µ̂NWt,n − µnt
n
‖2 ≤ 2

n

n∑
t=1

E

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥
2

+
2

n

n∑
t=1

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[
µni
n
− µnt

n

]∥∥∥∥∥∥
2

.

(16)
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The Hölder continuity of µnu yields

1

n

n∑
t=1

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[
µni
n
− µnt

n

]∥∥∥∥∥∥
2

≤ C

(
k

n

)2β

.

Alternatively, if we only assume ‖µn‖p−var <∞,

1

n

n∑
t=1

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[
µni
n
− µnt

n

]∥∥∥∥∥∥
2

≤ 1

n

n∑
t=1

sup
s∈[ t−kn ∨0,t]

‖µnt/n − µns‖2

≤ 1

n
(2‖µ‖∞)2−p

n∑
t=1

sup
s∈[ t−kn ∨0,t]

‖µnt/n − µns‖p

≤ k

n
(2‖µn‖∞)2−p‖µn‖pp−var

Note that ‖µn‖∞ ≤ |µn0 | + ‖µn‖p−var, which is bounded. The third case is obtained by
a combination of the two previous bounds.

Regarding the first term in (16), note that (A.3) implies |Cov(Gn(u, εi), Gn(v, εj))| ≤
Cρ|i−j|, for any u, v ∈ [0, 1] and any n. Hence,

E

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥
2

= Var

 1

k ∧ t

t∑
i=(t−k)∨1

Gn( i
n
, εi)


=

1

(k ∧ t)2
t∑

i,j=(t−k)∨1

Cov
(
Gn( i

n
, εi), Gn( j

n
, εj)

)
≤ 1

k ∧ t

∞∑
j=1

Cρj.

Therefore,

1

n

n∑
t=1

E

∥∥∥∥∥∥ 1

k ∧ t

t∑
i=(t−k)∨1

[Xi,n − EXi,n]

∥∥∥∥∥∥
2

≤ C

n

n∑
t=1

1

k ∧ t

≤ C

k
+
C

n

k∑
t=1

1

t

≤ C

k
+
C log k

n
≤ 2C log n

k
,

completing the proof.
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Of course, Lemma C.2 and Lemma C.3 also hold with µnu replaced by its limit µu if
we use the samples Xt = G( t

n
, εt) instead of Xt,n = Gn( t

n
, εt).

Proof of Proposition 3.1. Clearly, Lemma C.3 implies that (A.5) holds. Regarding (A.6),
note that supu∈[0,1] |µnu − µu| → 0 by virtue of (A.1). Thus, for any δ > 0, we have that
1
k∧t
∑t

i=(t−k)∨1 µ
n
i
n

∈Mδ/2 for n sufficiently large. Together with Lemma C.2, this implies

(A.6).

C.4 Functional central limit theorem for Mn(u)

Recall the decomposition Mn(u) = I1n(u) + I2n(u) + I3n(u), where

I1n(u) =
1

n

bnuc∑
t=τn+Ln

f
(
µnt
n

)
,

I2n(u) =
1

n

bnuc∑
t=τn+Ln

(
µnt
n
− µ̂t−L,n

)T D2f (µ̃t,n)

2

(
µnt
n
− µ̂t−L,n

)
,

I3n(u) =
1

n

bnuc∑
t=τn+Ln

Df(µ̂t−L,n)
(
Xt,n − µnt

n

)
.

The first term I1n(u) is a discretized version of the integral
∫ u
0
f(µnv ) dv, and its con-

vergence depends on the regularity of the function u 7→ µnu. Assumption (A.2) implies
‖µn‖p−var < CG, which may be used to treat the term I1n(u) as follows.

Lemma C.4. For any function u 7→ gu ∈ Rd, it holds that

sup
u∈[0,1]

∥∥∥∥∥∥ 1

n

bunc∑
t=1

g t
n
−
∫ bunc

n

0

gv dv

∥∥∥∥∥∥ ≤ n−
1
p‖g‖p−var.

Furthermore, if (A.1) and (A.2) hold for p ≥ 1, then there exists N > 0 such that
for all n ≥ N ,

sup
u∈[0,1]

∣∣∣∣∣I1n(u)−
∫ u

τn+Ln
n

f(µnv ) dv

∣∣∣∣∣ ≤ Cf‖µn‖p−varn−
1
p , (17)

sup
u∈[0,1]

∣∣∣∣I1n(u)−
∫ u

0

f(µnv ) dv

∣∣∣∣ ≤ Cf‖µn‖p−varn−
1
p + Cf

τn + Ln
n

. (18)

Proof of Lemma C.4. It holds that∥∥∥∥∥∥ 1

n

bunc∑
t=1

g t
n
−
∫ bunc

n

0

gv dv

∥∥∥∥∥∥ ≤
∫ 1

0

∥∥∥gv − g dvne
n

∥∥∥ dv ≤ 1

n

n∑
t=1

sup
v∈[ t−1

n
, t
n
]

∥∥∥gv − g t
n

∥∥∥
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≤ n1− 1
p

n

(
n∑
t=1

sup
v∈[ t−1

n
, t
n
]

∥∥∥gv − g t
n

∥∥∥p) 1
p

≤ n−
1
p‖g‖p−var.

Regarding the term I1n(u), note that µnu ∈ Mδ for all u ∈ [0, 1], and n large enough.
Then the mean value theorem and the boundedness of Df onMδ yield |f(µnu)−f(µnv )| ≤
Cf‖µnu − µnv‖ for any u, v ∈ [0, 1], such that ‖f(µn)‖p−var ≤ Cf‖µn‖p−var. Thus, for n
large enough and for any u such that bnuc > τn + Ln,∣∣∣∣∣I1n(u)−

∫ bnuc
n

τn+Ln
n

f(µnv ) dv

∣∣∣∣∣ ≤ Cfn
− 1
p‖µn‖p−var.

Moreover, since f(µnv ) is bounded,∣∣∣∣∣
∫ τn+Ln

n

0

f(µnv ) dv

∣∣∣∣∣ ≤ Cf
τn + Ln

n
,

∣∣∣∣∣
∫ u

bnuc
n

f(µnv ) dv

∣∣∣∣∣ ≤ Cf
n
→ 0,

completing the proof.

In particular, for (τn + Ln)� n
1
2 and p < 2, we find that

sup
u∈[0,1]

∣∣∣∣I1n(u)−
∫ u

0

f(µnv ) dv

∣∣∣∣ = o(1/
√
n).

The term I2n(u) may be treated directly by our assumptions on the nonparametric
estimator µ̂t,n, and using additionally the regularity of u 7→ µnu.

Lemma C.5. Let (A.1), (A.2), (A.4), (A.5), and (A.6) hold, for some p ≥ 1. Then

sup
u∈[0,1]

|I2n(u)| = oP (1/
√
n) +OP (Lmin(p,2)

n n−
2

max(p,2) ).

In particular, supu∈[0,1] |I2n(u)| = oP (1/
√
n) if Ln � n

1
p
− 1

4 for p ≥ 2, and Ln � n
1
2p for

p ∈ [1, 2).

Proof of Lemma C.5. Assumption (A.1) implies that for n sufficiently large, µnu ∈ Mδ

for all u ∈ [0, 1]. Moreover, µ̂t−L,n ∈Mδ for all t ≥ τn +Ln, with probability tending to
one. Since Mδ is convex, we find that µ̃t,n ∈ Mδ for all t ≥ τn + Ln, with probability
tending to one. On this event, it holds that

|I2n(u)| ≤ 2Cf
n

bnuc∑
t=τn+Ln

‖µ̂t−L,n − µnt−L
n

‖2 + ‖µnt−L
n

− µnt
n
‖2

≤ oP (1/
√
n) +

2CfCG
n

bnuc∑
t=τn+Ln

‖µnt−L
n

− µnt
n
‖2.
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Moreover, if p < 2, boundedness of ‖µnt ‖ yields

1

n

n∑
t=τn+Ln

‖µnt−L
n

− µnt
n
‖2 ≤ C

n

n∑
t=τn+Ln

‖µnt−L
n

− µnt
n
‖p

≤ C

n

n∑
t=τn+Ln

(
Ln∑
i=1

‖µnt−i+1
n
− µnt−i

n
‖

)p

≤ C

n

n∑
t=τn+Ln

Lp−1n

Ln∑
i=1

‖µnt−i+1
n
− µnt−i

n
‖p

≤ Lpn
n

n∑
t=1

‖µnt
n
− µnt−1

n
‖p = Lpnn

−1‖µn‖pp−var.

If p > 2, we may apply Hölder’s inequality to obtain

1

n

n∑
t=τn+Ln

‖µnt−L
n

− µnt
n
‖2 ≤ 1

n
n1− 2

p

(
n∑

t=τn+Ln

‖µnt−L
n

− µnt
n
‖p
) 2

p

=

(
1

n

n∑
t=τn+Ln

‖µnt−L
n

− µnt
n
‖p
) 2

p

≤ L2
nn
− 2
p‖µn‖2p−var.

This yields the claimed upper bound.

The last term I3n(u) admits a functional central limit theorem with scaling factor√
n, as shown in the following Lemma. Its proof follows the same ideas as the proof

of Theorem 2.1, but additional care is needed when treating the random but consistent
factor Df(µ̂t,n) ≈ Df(µnt/n).

Lemma C.6. Suppose that (A.1), (A.2), (A.3), (A.4), (A.5), and (A.6) hold for some

p ≥ 1. Suppose that Ln satisfies Ln � log(n)1+a for some a ∈ (0, 1), and that Ln � n
1
p .

Then, as n→∞,

√
nI3n(u)⇒ B

(∫ u

0

Df(µv)Σ(v)Df(µv)
T dv

)
,

Σ(v) =
∞∑

h=−∞

Cov (G(v, ε0), G(v, εh)) ∈ Rd×d,

where B denotes a standard Brownian motion. The weak convergence holds in the Sko-
rokhod space D[0, 1].

Proof of Lemma C.6. As in the proof of Theorem 2.1, we split the sum into blocks of
size L̃ = L̃n = bnε ∧ Ln

2
c, and r = rn = bL̃1−ε

n c, for some arbitrarily small ε ∈ (0, 1) to be

chosen in the sequel. We assume n to be sufficiently large such that 1 ≤ rn < L̃n ≤ Ln
2

.

Denote by m = mn = bn/L̃nc the number of blocks.
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Step (i): As a first step, we match the upper and lower limits of the sum I3n(u) with
the block size L = Ln. Define

Ī3n(u) =
1

n

bumcL̃∑
t=d τn+Ln

L̃
eL̃+1

Df(µ̂t−L,n)
(
Xt,n − µnt

n

)
.

By virtue of Lemma C.2 and (A.4), ‖Df(µ̂t,n)‖ ≤ Cf for all t, with probability tending
to one, such that

∣∣I3n(u)− Ī3n(u)
∣∣ = OP

(
2L̃nCf
n

sup
t=1,...,n

|Xt,n − EXt,n|

)
.

Since ‖Xt,n‖Lq ≤ C < ∞, the union bound and Markov’s inequality yield the upper

bound supt=1,...,n |Xt,n − EXt,n| = OP (n
1
q ). Using L̃n ≤ nε, we obtain

sup
u∈[0,1]

∣∣I3n(u)− Ī3n(u)
∣∣ = OP

(
nε+

1
q
−1
)
.

Since q > 2, we may choose ε > 0 sufficiently small such that the latter term is of order
oP (1/

√
n).

Step (ii): Next, we introduce χt,n = 1(µ̂t,n ∈Mδ), and

Yj,n =

jL̃∑
t=(j−1)L̃+r+1

χt−L,nDf(µ̂t−L,n)(Xt,n − EXt,n),

Ỹj,n =

(j−1)L̃+r∑
t=(j−1)L̃+1

χt−L,nDf(µ̂t−L,n)(Xt,n − EXt,n),

Ĩ3n(u) =
1

n

bumc∑
j=d τn+Ln

L̃
e+1

(Yj,n + Ỹj,n).

By virtue of assumption (A.6), we have supu∈[0,1] |Ī3n(u)− Ĩ3n(u)| → 0 in probability. Now,

for each j, let ε
(j)
i , i ∈ Z be an independent copy of the εi, and define

Y ∗j,n =

jL̃∑
t=(j−1)L̃+r+1

χt−L,nDf(µ̂t−L,n)
[
Gn

(
t
n
, εt, . . . , ε(j−1)L̃+1, ε

(j)

(j−1)L̃, . . .
)
− EXt,n

]

=

jL̃∑
t=(j−1)L̃+r+1

χt−L,nDf(µ̂t−L,n)Zj
t,n,

Ỹ ∗j,n =

(j−1)L̃+r∑
t=(j−1)L̃+1

χt−L,nDf(µ̂t−L,n)
[
Gn

(
t
n
, εt, . . . , ε(j−1)L̃+1−r, ε

(j)

(j−1)L̃−r, . . .
)
− EXt,n

]
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=

(j−1)L̃+r∑
t=(j−1)L̃+1

χt−L,nDf(µ̂t−L,n)Z̃j
t,n.

This construction yields that the Y ∗j,n and the Ỹ ∗j,n are martingale differences, since µ̂t−L,n
is measurable w.r.t. εt−L, and since L̃n + rn < Ln. It also holds that Z̃j

t,n ∼ Zj
t,n ∼

(Xt,n − EXt,n). Moreover, by virtue of (A.3), it holds that ‖Y ∗j,n − Yj,n‖Lq ≤ C L̃ρr and

‖Ỹ ∗j,n − Ỹj,n‖Lq ≤ C rρr ≤ C L̃nρ
r. Now define the martingales

J1
n(u) =

1

n

bumc∑
j=d τn+Ln

L̃
e+1

Y ∗j,n,

J2
n(u) =

1

n

bumc∑
j=d τn+Ln

L̃
e+1

Ỹ ∗j,n,

and note that∥∥∥∥∥ sup
u∈[0,1]

∣∣∣Ĩ3n(u)− J1
n(u)− J2

n(u)
∣∣∣∥∥∥∥∥
Lq

≤ C

n

mn∑
j=1

L̃nρ
rn ≤ Cρrn = o(

√
n),

since L̃nmn ≤ n, and rn � log(n)(1+a)(1−ε) � log(n)1+
a
2 , upon choosing ε sufficiently

small.
Step (iii): Define the two sequences of filtrations F1

k,n = σ(εi, ε
(j)
i : j ≤ k, i ≤ kL̃n),

and F2
k,n = σ(εi, ε

(j)
i : j ≤ k, i ≤ kL̃n − rn). Then J1

n(k/m) is an F1
k,n martingale, and

J2
n(k/m) is a F2

k,n martingale. The predictable quadratic variation of
√
nJ1

n is given by

〈
√
nJ1

n(u)〉 =
1

n

bumc∑
j=d τn+Ln

L̃
e+1

E
[(
Y ∗j,n
)2 |F1

j−1,n

]

=
1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

χt−L,nχs−L,nDf(µ̂t−L,n) Cov(Zj
t,n, Z

j
s,n)Df(µ̂s−L,n)T .

We observe that∣∣∣Df(µ̂t−L,n) Cov(Zj
t,n, Z

j
s,n)Df(µ̂s−L,n)T −Df(µnt

n
) Cov(Zj

t,n, Z
j
s,n)Df(µns

n
)T
∣∣∣χt−L,nχs−L,n

≤
∣∣∣∣Df(µ̂t−L,n) Cov(Zj

t,n, Z
j
s,n)
[
Df(µ̂s−L,n)−Df(µns

n
)
]T ∣∣∣∣χt−L,nχs−L,n

+
∣∣∣[Df(µ̂t−L,n)−Df(µnt

n
)
]

Cov(Zj
t,n, Z

j
s,n)Df(µ̂s−L,n)T

∣∣∣χt−L,nχs−L,n
≤ Cρ|t−s|

[∥∥∥Df(µ̂t−L,n)−Df(µnt
n
)
∥∥∥+

∥∥∥Df(µ̂s−L,n)−Df(µns
n
)
∥∥∥]χt−L,nχs−L,n
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≤ Cρ|t−s|
[∥∥∥µ̂t−L,n − µnt

n

∥∥∥+
∥∥∥µ̂s−L,n − µns

n

∥∥∥] ,
where the last inequalities are a consequence of (A.3), and the boundedness of Df and
D2f on Mδ. Moreover,

1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

ρ|t−s|
[∥∥∥µ̂t−L,n − µnt

n

∥∥∥+
∥∥∥µ̂s−L,n − µns

n

∥∥∥]

=
2

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

ρ|t−s|
∥∥∥µ̂t−L,n − µnt

n

∥∥∥
≤ C

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
t=(j−1)L̃+r+1

∥∥∥µ̂t−L,n − µnt
n

∥∥∥
≤ C

n

n∑
t=τn

∥∥∥µ̂t−L,n − µnt
n

∥∥∥
≤ C√

n

√√√√ n∑
t=τn

∥∥∥µ̂t−L,n − µnt
n

∥∥∥2. (19)

In the proof of Lemma C.5, we have shown that 1
n

∑n
t=τn

∥∥∥µ̂t−L,n − µnt
n

∥∥∥2 = op(1/
√
n) +

OP (L
min(p,2)
n n−

2
max(p,2) ), which tends to zero because Ln � n

1
p by assumption. Hence,

(19) tends to zero as n→∞, and we thus obtain

〈
√
nJ1

n(u)〉 = oP (1) +

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

Df(µnt
n
) Cov(Zj

t,n, Z
j
s,n)Df(µns

n
)T (20)

where the oP (1) term vanishes uniformly in u ∈ [0, 1]. Note that we may omit the
indicators χt−L,n asymptotically by virtue of assumption (A.6). Analogously, we obtain

〈
√
nJ2

n(u)〉 = oP (1) +
1

n

bumc∑
j=d τn+Ln

L̃
e+1

(j−1)L̃+r∑
s,t=(j−1)L̃+1

Df(µnt
n
) Cov(Zj

t,n, Z
j
s,n)Df(µns

n
)T .

Step (iv): We further simplify the asymptotic expression for 〈
√
nJ1

n(u)〉. In (20), we
want to replace µns

n
by µnt

n

. Observe that∣∣∣∣∣∣∣
1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

Df(µnt
n
) Cov(Zj

t,n, Z
j
s,n)
[
Df(µns

n
)−Df(µnt

n
)
]T ∣∣∣∣∣∣∣
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≤ C

n

n∑
t=1

t+L̃∑
s=t−L̃

ρ|s−t|
∥∥∥Df(µns

n
)−Df(µnt

n
)
∥∥∥

≤ C

n

n∑
t=1

max
|s−t|≤L̃

∥∥∥µns
n
− µnt

n

∥∥∥
≤ CL̃n

n

n∑
t=2

∥∥∥µnt
n
− µnt−1

n

∥∥∥
≤ CL̃nn

− 1
p

(
n∑
t=2

∥∥∥µnt
n
− µnt−1

n

∥∥∥p) 1
p

≤ CL̃nn
− 1
p‖µn‖p−var.

By (A.2), and since L̃n � nε the latter term is of order O(nε−
1
p ) = o(1) if ε is small

enough. Hence,

〈
√
nJ1

n(u)〉

= oP (1) +
1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
s,t=(j−1)L̃+r+1

Df(µnt
n
) Cov(Zj

t,n, Z
j
s,n)Df(µnt

n
)T

= oP (1) +
1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
t=(j−1)L̃+r+1

Df(µnt
n
)

 jL̃∑
s=(j−1)L̃+r+1

Cov(Zj
t,n, Z

j
s,n)

Df(µnt
n
)T .

(21)

The covariance term may be simplified as follows. Define

Σn(u) =
∞∑

h=−∞

Cov(Gn(u, εh), Gn(u, ε0)) ∈ Rd×d, u ∈ [0, 1].

Note that (A.3) implies that ‖Cov(Gn(u, εh), Gn(u, ε0))‖ ≤ Cρ|h| for some constant C,
where ‖ · ‖ denotes an arbitrary matrix norm. In particular, Σn(u) is well defined since
the series is finite.

Now, for any t ≥ (τn + Ln), let δt,n = sup|s−t|≤L̃ ‖Gn( t
n
, ε0) − Gn( s

n
, ε0)‖Lq . Since

q > 2, we find that for (j − 1)L̃+ 1 ≤ t ≤ jL̃,∥∥∥∥∥∥
jL̃∑

t=(j−1)L̃+r+1

Σn( t
n
)−

jL̃∑
s=(j−1)L̃+r+1

Cov(Zj
t,n, Z

j
s,n)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
jL̃∑

t=(j−1)L̃+r+1

Σn( t
n
)−

jL̃∑
s=(j−1)L̃+r+1

Cov(Gn( t
n
, εt−s), Gn( s

n
, ε0))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
jL̃∑

t=(j−1)L̃+r+1

Σn( t
n
)−

jL̃∑
s=(j−1)L̃+r+1

Cov(Gn( t
n
, εt−s), Gn( t

n
, ε0))

∥∥∥∥∥∥+

jL̃∑
t=(j−1)L̃+r+1

CL̃δt,n
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=

∥∥∥∥∥∥∥∥∥
jL̃∑

t=(j−1)L̃+r+1

∑
[s≤(j−1)L̃+r]
∨ [s>jL̃]

Cov(Gn( t
n
, εt−s), Gn( t

n
, ε0))

∥∥∥∥∥∥∥∥∥+ C

jL̃∑
t=(j−1)L̃+r+1

L̃δt,n

≤
jL̃∑

t=(j−1)L̃+r+1

∑
[s≤(j−1)L̃+r]
∨ [s>jL̃]

Cρ|t−s| + C

jL̃∑
t=(j−1)L̃+r+1

L̃δt,n

≤ C

jL̃∑
t=(j−1)L̃+r+1

[ρ|t−(j−1)L̃| + ρ|t−jL̃|] + C

jL̃∑
t=(j−1)L̃+r+1

L̃δt,n

≤ C + C

jL̃∑
t=(j−1)L̃+r+1

L̃δt,n.

Therefore, ∥∥∥∥∥∥∥〈
√
nJ1

n(u)〉 − 1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
t=(j−1)L̃+r+1

Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T

∥∥∥∥∥∥∥
≤ oP (1) + C

L̃n
n

n∑
t=τn+Ln

δt,n + C
mn

n

≤ oP (1) + C
L̃2
n

n

n∑
t=τn+Ln

‖µnt
n
− µnt−1

n
‖+ C

mn

n

≤ oP (1) + CL̃2
nn
− 1
p‖µn‖p−var + C

mn

n
.

The latter term tends to zero upon choosing ε small enough, since L̃n = O(nε). Note
also that mn/n→ 0. Finally, since rn � L̃n, we have shown that

〈
√
nJ1

n(u)〉 = oP (1) +
1

n

bumc∑
j=d τn+Ln

L̃
e+1

jL̃∑
t=(j−1)L̃+r+1

Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T

= oP (1) +
1

n

bunc∑
t=1

Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T , (22)

where the last step holds because τn + Ln � n and due to the boundedness of Df(µnu)
and Σn(u), which is in turn implied by (A.3) and (A.2) for q > 2. Note also that the
oP (1) term in (22) vanishes uniformly in u ∈ [0, 1].

Analogously, we may show that

〈
√
nJ2

n(u)〉 = oP (1) +
1

n

bumc∑
j=d τn+Ln

L̃
e+1

(j−1)L̃+r∑
t=(j−1)L̃+1

Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T −→ 0,
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using again the boundedness, and the fact that rn � L̃n such that the number of

summands is asymptotically negligible. This implies that supu∈[0,1] |J2
n(u)| P−→ 0 by the

Burkholder-Davis-Gundy inequality for martingales.
Observe that the function u 7→ Σn(u) has bounded p-variation, see (12). More-

over, u 7→ Df(µnu) has bounded p-variation by assumptions (A.2) and (A.4). Since
both ‖Σn(u)‖ and ‖Df(µnu)‖ are bounded, we find that u 7→ Df(µnu)TΣn(u)Df(µnu) has
bounded p-variation. Thus, as in Lemma C.4,∣∣∣∣∣∣ 1n

bunc∑
t=1

Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T −

∫ u

0

Df(µnv )Σn(v)Df(µnv )T dv

∣∣∣∣∣∣ = O(n−
1
p ).

Assumption (A.1) implies that µnu → µu and Σn(u)→ Σ(u) uniformly in u ∈ [0, 1]. The
latter uniform convergence holds because Cov(Gn(u, ε0), Gn(u, εh))→ Cov(G(u, ε0), G(u, εh))
uniformly in u, and supu∈[0,1] ‖Cov(Gn(u, ε0), Gn(u, εh))‖ ≤ Cρ|h| by virtue of (A.3).
Hence,

sup
u∈[0,1]

∣∣∣∣〈√nJ1
n(u)〉 −

∫ u

0

Df(µv)Σ(v)Df(µv)
T dv

∣∣∣∣ = oP (1).

Step (v): Having at hand the limit of 〈
√
nJ1

n(u)〉, a functional central limit theorem

for
√
nJ1

n(u) holds if we can verify Lyapunov’s condition. We have, for any 2 < δ < q,

m∑
j=d τn+Ln

L̃
e+1

E
[
‖Y ∗j,n/

√
n‖δ |F1

j−1,n
]

= n−
δ
2

m∑
j=d τn+Ln

L̃
e+1

E


∥∥∥∥∥∥

jL̃∑
t=(j−1)L̃+r+1

χt−L,nDf(µ̂t−L,n)Zj
t,n

∥∥∥∥∥∥
δ ∣∣∣∣∣F1

j−1,n


≤ Cδ

fn
− δ

2

m∑
j=d τn+Ln

L̃
e+1

E


 jL̃∑
t=(j−1)L̃+r+1

∥∥Zj
t,n

∥∥δ ∣∣∣∣∣F1
j−1,n


≤ Cδ

fn
− δ

2 L̃δ−1n

m∑
j=d τn+Ln

L̃
e+1

jL̃∑
t=(j−1)L̃+r+1

E
∥∥Zj

t,n

∥∥δ
≤ Cδ

fn
− δ

2 L̃δ−1n

n∑
t=1

E
∥∥Gn( t

n
, ε0)

∥∥δ
= O

(
n1− δ

2 L̃δ−1n

)
,

where we used that ‖Gn(u, ε0)‖Lq is uniformly bounded. By choosing ε sufficiently small,

and using L̃n ≤ nε, the latter term tends to zero. Hence, the functional central limit
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theorem for martingales, e.g. (Jacod and Shiryaev, 2003, Thm. VIII.3.33), yields

√
nJ1

n(u)⇒ B

(∫ u

0

Df(µs)Σ(s)Df(µs)
T ds

)
.

In the previous steps, we have established that supu∈[0,1] |I3n(u)−J1
n(u)| = oP (

√
n), which

yields the desired result.

Theorem 3.2 is now a direct consequence of Lemmas C.4, C.5, and C.6.

C.5 Bootstrap inference

Theorem 3.3 is a special case of the following more general theorem about consistent
estimation of the limiting variance. In contrast to the central limit theorem for Mn(u),
here, we only require the weaker assumption

n∑
t=τn

‖µ̂t,n − µnt
n
‖2 = o(n1−κ), (C.5*)

for some κ ∈ (0, 1
2
].

Theorem C.7. Let the conditions of Theorem 3.2 hold for some q > 4, replacing (A.5)
by (C.5*). Choose some bn →∞ such that

bn � n
2
3

1
max(p,2) , bn � n

κq−2
q+2 .

Then, as n→∞,

Qn(u) =
1

n

bnuc−bn∑
t=τn+Ln

1

bn

[
Df(µ̂t−L,n)

bn∑
i=1

(Xt+i,n − µ̂t−L,n)

]2
P−→ Q(u) =

∫ u

0

Df(µv)Σ(v)Df(µv)
T dv.

The convergence holds uniformly in u ∈ [0, 1] since Qn is monotone.

Proof of Theorem C.7. Step (i): As a first step, we are concerned with the estimators
µ̂t−L,n. We decompose

bn∑
i=1

Df(µ̂t−L,n)(Xt+i,n − µ̂t−L,n)

=
bn∑
i=1

{
Df(µnt

n
)
[
Gn( t

n
, εt+i)− µnt,n

]
+
[
Df(µ̂t−L,n)−Df(µnt

n
)
] [
Gn( t

n
, εt+i)− µnt

n

]
+Df(µ̂t−L,n)

[
Gn( t+i

n
, εt+i)−Gn( t

n
, εt+i)

]
+Df(µ̂t−L,n)

[
µnt
n
− µ̂t−L,n

]}
.
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With probability tending to one, it holds that µ̂t−L,n ∈ Mδ for all t = τn + Ln, . . . , n
by virtue of (A.6). On this event, we may exploit the regularity and boundedness of f
such that ∣∣∣∣∣

bn∑
i=1

Df(µ̂t−L,n)(Xt+i,n − µ̂t−L,n)−
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]∣∣∣∣∣
≤ C

bn∑
i=1

Zt,i,n‖µ̂t−L,n − µnt
n
‖+ ‖Gn( t+i

n
, εt+i)−Gn( t

n
, εt+i)‖ =: ∆t,n,

for Zt,i,n = ‖Gn( t
n
, εt+i)− µnt

n

‖+ 1. Now, via the inequality |a2 − b2| ≤ |a− b||a+ b|, we

obtain∣∣∣∣∣ 1n
bnuc−bn∑
t=τn+Ln

1

bn

[
bn∑
i=1

Df(µ̂t−L,n)(Xt+i,n − µ̂t−L,n)

]2

− 1

n

bnuc−bn∑
t=τn+Ln

1

bn

[
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]]2 ∣∣∣∣∣
≤ 1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆t,n

[
∆t,n +

∣∣∣∣∣
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]∣∣∣∣∣
]

≤ 1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n +

√√√√ 1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n

√√√√ 1

n

bnuc−bn∑
t=τn+Ln

1

bn

[
bn∑
i=1

Df(µnt
n

)
[
Gn( t

n
, εt+i)− µnt,n

]]2
.

It thus suffices to show that

1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n

P−→ 0, (23)

and

1

n

bnuc−bn∑
t=τn+Ln

1

bn

[
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]]2 P−→
∫ u

0

Df(µv)
TΣ(v)Df(µv) dv. (24)

Step (ii): Regarding the term (23), we find that

1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n

≤ C

n

1

bn

bnuc−bn∑
t=τn+Ln


[

bn∑
i=1

Zt,i,n‖µ̂t−L,n − µnt
n
‖

]2
+

[
bn∑
i=1

‖Gn( t+i
n
, εt+i)−Gn( t

n
, εt+i)‖

]2
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≤ C

n

bnuc−bn∑
t=τn+Ln

{
‖µ̂t−L,n − µnt

n
‖2

bn∑
i=1

|Zt,i,n|2 +
bn∑
i=1

‖Gn( t+i
n
, εt+i)−Gn( t

n
, εt+i)‖2

}

≤ C

n

bnuc−bn∑
t=τn+Ln

‖µ̂t−L,n − µntn‖2bn max
i=1,...,bn

|Zt,i,n|2 +
bn∑
i=1

[
i∑

j=1

‖Gn( t+j
n
, εt+i)−Gn( t+j−1

n
, εt+i)‖

]2
≤ Cbn

n
max

t=τn+Ln,...,n
i=1,...,bn

|Zt,i,n|2
bnuc−bn∑
t=τn+Ln

‖µ̂t−L,n − µnt
n
‖2

+
Cbn
n

bnuc−bn∑
t=τn+Ln

bn∑
i,j=1

‖Gn( t+j
n
, εt+i)−Gn( t+j−1

n
, εt+i)‖2.

(25)

The second term may be bounded by noting that, for p ≤ 2,

bn
n

bnuc−bn∑
t=τn+Ln

bn∑
i,j=1

E‖Gn( t+j
n
, εt+i)−Gn( t+j−1

n
, εt+i)‖2

≤ b3n
n

bnuc∑
t=τn+Ln

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖2L2

≤ b3n
n

n∑
t=1

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖pLq ≤ b3n

n
‖Gn‖pp−var.

In the second inequality, we used that q > 2, p < 2, and that ‖Gn(u, ε0)‖Lq is uniformly
bounded due to (A.2). If p > 2, we find that

n∑
t=1

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖2Lq ≤ n1− 2

p

(
n∑
t=1

‖Gn( t
n
, ε0)−Gn( t−1

n
, ε0)‖pLq

) 2
p

≤ n1− 2
p‖Gn‖2p−var,

such that the second term in (25) is of order O(b3nn
− 2

max(p,2) ).
Concerning the first term in (25), we note that

max
t=τn+Ln,...,n

|Zt,i,n| ≤ |Z1,i,n|+
n∑
t=2

|Zt,i,n − Zt−1,i,n|,∥∥∥∥ max
t=τn+Ln,...,n

|Zt,i,n|
∥∥∥∥
Lq

≤ 1 + 2‖Gn( 1
n
, εt+i)‖Lq + 2

n∑
t=2

‖G( t
n
, εt+i)−G( t−1

n
, εt+i)‖Lq

≤ 1 + 2CG + n1− 1
p‖Gn‖p−var

≤ 2n1− 1
pCG + 1.
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Since q > 2, this yields∥∥∥∥ max
t=τn+Ln,...,n

|Zt,i,n|2
∥∥∥∥
L q

2

=

∥∥∥∥ max
t=τn+Ln,...,n

|Zt,i,n|
∥∥∥∥2
Lq

≤ C n2− 2
p ,

for some finite C. An alternative upper bound, which is sharper for p > 2, is given by∥∥∥∥ max
t=τn+Ln,...,n

|Zt,i,n|2
∥∥∥∥
L q

2

≤
n∑
t=1

‖Zt,i,n‖2Lq ≤ Cn,

such that ∥∥∥∥ max
t=τn+Ln,...,n

|Zt,i,n|2
∥∥∥∥
L q

2

≤ Cn2− 2
min(p,2) .

Thus, the union bound and Markov’s inequality yield that

max
i=1,...,bn

max
t=1,...,n

|Zt,i,n|2 = OP (|n2− 2
min(p,2) bn|

2
q ).

Furthermore, as in the proof of Lemma C.5,

bnuc−bn∑
t=τn+Ln

‖µ̂t−L,n − µnt
n
‖2 ≤ oP (n1−κ) +OP (Lmin(p,2)

n n1− 2
max(2,p) ).

Plugging this into (25), we have thus shown that

1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n =

bn
n
OP (|n2− 2

min(p,2) bn|
2
q )
[
oP (n1−κ) +OP (Lmin(p,2)

n n1− 2
max(p,2) )

]
+OP

(
b3nn

− 2
max(p,2)

)
For p ≤ 2, this bound reduces to

1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n = OP

(
n

4
q
(1− 1

p
)−κb

1+ 2
q

n

)
+OP

(
n

4
q
(1− 1

p
)−κb

1+ 2
q

n nκ−1Lpn

)
+OP

(
b3nn

−1)
≤ OP

(
n

2
q
−κb

1+ 2
q

n

)
+OP

(
n

2
q
−κb

1+ 2
q

n nκ−1Lpn

)
+OP

(
b3nn

−1) ,
which tends to zero by the assumptions bn � n−

1
3 , bn � n

κq−2
q+2 , and Ln � n

1
2p . For

p > 2, we find that

1

n

1

bn

bnuc−bn∑
t=τn+Ln

∆2
t,n = OP

(
n

2
q
−κb

1+ 2
q

n

)
+OP

(
n

2
q
−κb

1+ 2
q

n nκ−1L2
n

)
+OP

(
b3nn

− 2
p

)
,

which also tends to zero as n→∞.
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Step (iii): It remains to study the term (24). Introduce the random variables

ζt,n =
1

bn

[
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]]2
,

such that we are led to study the term 1
n

∑bnuc−bn
t=τn+Ln

ζt,n. To bound the covariances of
the ζt,n, we write ζt,n = ζt,n(εt+bn), such that (A.3) may be exploited. Let b ≥ 0 be an
integer, and recall that

ε∗t+bn,b+bn = (εt+bn , . . . , εt−b+1, ε
∗
t−b, . . .) ∈ R∞,

ε∗t+i,b+i = (εt+i, . . . , εt−b+1, ε
∗
t−b, . . .) ∈ R∞,

where the ε∗j are an independent copy of the εj. Then

‖ζt,n(εt+bn)− ζt,n(ε∗t+bn,b+bn)‖L2

=
1

bn

∥∥∥∥∥∥
[

bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]]2
−

[
bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, ε∗t+i,b+i)− µnt,n

]]2∥∥∥∥∥∥
L2

≤ C

bn

∥∥∥∥∥
bn∑
i=1

∥∥Gn( t
n
, εt+i)−Gn( t

n
, ε∗t+i,b+i)

∥∥ bn∑
j=1

[∥∥Gn( t
n
, εt+j)

∥∥+
∥∥Gn( t

n
, ε∗t+j,b+j)

∥∥]∥∥∥∥∥
L2

via the inequality |x2 − y2| ≤ |x− y||x+ y|,

≤ C

bn

bn∑
i=1

∥∥Gn( t
n
, εt+i)−Gn( t

n
, ε∗t+i,b+i)

∥∥
L4

∥∥∥∥∥
bn∑
j=1

∥∥Gn( t
n
, εt+j)

∥∥+
∥∥Gn( t

n
, ε∗t+i,b+i)

∥∥∥∥∥∥∥
L4

by Hölder’s inequality,

≤ C

bn

bn∑
i=1

∥∥Gn( t
n
, εt+i)−Gn( t

n
, ε∗t+i,b+i)

∥∥
Lq

bn∑
j=1

[∥∥Gn( t
n
, εt+j)

∥∥
Lq

+
∥∥Gn( t

n
, ε∗t+j,b+j)

∥∥
Lq

]
≤ Cbnρ

b.

In the last step, we used q > 4, the boundedness of ‖Gn(u, ε0)‖Lq due to (A.2), and the
ergodicity (A.3).

Moreover, it holds that

‖ζt,n‖L2 =

∥∥∥∥∥ 1√
bn

bn∑
i=1

Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]∥∥∥∥∥
2

L4

≤ 1

bn

[
bn∑
i=1

∥∥∥Df(µnt
n
)
[
Gn( t

n
, εt+i)− µnt,n

]∥∥∥
L4

]2
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≤ Cbn,

because ‖Gn( t
n
, ε0)‖L4 is bounded by virtue of (A.2), and Df(µnt/n) is bounded by virtue

of (A.4).
Now consider s, t such that s < t. If |s − t| > bn, then ζs,n is independent of

ε∗t+bn,|s−t|+bn , such that

|Cov(ζt,n, ζs,n)| =
∣∣Cov

(
ζt,n(εt+bn)− ζt,n(ε∗t+bn,|s−t|+bn), ζs,n

)∣∣
≤ ‖ζt,n(εt+bn)− ζt,n(ε∗t+bn,|s−t|+bn)‖L2‖ζs,n‖L2

≤ Cb2nρ
|s−t|.

These findings may be summarized as

|Cov(ζt,n, ζs,n)| ≤ Cb2nρ
(|s−t|−bn)∨0. (26)

In particular,

Var

 1

n

bnuc−bn∑
t=τn+Ln

ζt,n

 =
1

n2

bnuc−bn∑
t=τn+Ln

Cov(ζt,n, ζs,n)

≤ Cb2n
n2

n∑
s,t=1

ρ(|s−t|−bn)∨0

≤ Cb2n
n2

n∑
t=1

[
bn +

2

1− ρ

]
= O

(
b3n
n

)
,

which tends to zero by assumption. Thus, 1
n

∑bnuc−bn
t=τn+Ln

[ζt,n − Eζt,n]
P−→ 0 as n→∞.

Step (iv): The expected value of ζt,n may be computed as

Eζt,n

= Df(µnt
n
)

[
1

bn

bn∑
i,j=1

Cov
(
Gn( t

n
, εi), Gn( t

n
, εj)

)]
Df(µnt

n
)T

= Df(µnt
n
)

[
1

bn

bn∑
i=1

∞∑
j=−∞

Cov
(
Gn( t

n
, εi), Gn( t

n
, εj)

)]
Df(µnt

n
)T +O

(
1

bn

bn∑
i=1

[ρi + ρbn−i]

)

= Df(µnt
n
)

[
∞∑

h=−∞

Cov
(
Gn( t

n
, εh), Gn( t

n
, ε0)

)]
Df(µnt

n
)T +O( 1

bn
)

= Df(µnt
n
)Σn( t

n
)Df(µnt

n
)T +O( 1

bn
),

using the geometric ergodicity (A.3) in the second step. Note that the remainder term
is of order 1/bN , uniformly in t and n, because ‖Df(µnt

n

)‖ ≤ Cf for all t, and n large

enough.
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Just as in the proof of Lemma C.6, step (iv) therein, we find that∣∣∣∣∣∣ 1n
bnuc−bn∑
t=τn+Ln

Eζt,n −
∫ u

0

Df(µnv )Σn(v)Df(µnv )T dv

∣∣∣∣∣∣→ 0,

as n→∞. Moreover, since ‖Gn( t
n
, ε0)−G( t

n
, ε0)‖L2 → 0 as n→∞, uniformly in t, the

dominated convergence theorem yields that∥∥∥∥∥Σ( t
n
)−

∞∑
h=−∞

Cov
(
Gn( t

n
, εh), Gn( t

n
, ε0)

)∥∥∥∥∥→ 0,

uniformly in t. Furthermore, ‖Df(µnt/n)−Df(µt/n)‖ → 0 uniformly in t, such that

1

n

bnuc−bn∑
t=τn+Ln

Eζt,n =

∫ u

0

Df(µnv )Σn(v)Df(µnv )T dv + o(1)

=

∫ u

0

Df(µv)Σ(v)Df(µv)
T dv + o(1).

Together with the variance bound derived in step (iii), this establishes (24) and thus
completes the proof.

Theorem 3.3 is a consequence of Theorem C.7 for κ = 1
2
. Regarding the bootstrap

consistency, Theorem 3.4, note that Qn(u) is precisely the variance process of M̂n(u).

Proof of Theorem 3.4. Conditionally on Xn, M̂n(u) is a zero mean Gaussian process

with independent increments, and variance function Var(M̂n(u)|Xn) = Qn(u) for Qn as

in Theorem C.7. It may hence be represented as M̂n(u) = B(Qn(u)) for a standard Brow-
nian motion B which is independent of X. The uniform convergence of Qn(u)→ Q(u) =∫ u
0
Df(µv)Σ(v)Df(µv)

T dv thus yields supu∈[0,1] |B(Qn(u))−B(Q(u))| P−→ 0. This yields

weak convergence of M̂n(u) in probability. That is, for any probability metric d which

metricizes weak convergence on the Skorokhod space, we have d(L(M),L(M̂n|Xn))
P−→ 0,

where L(M) denotes the measure induced by the random element M .

C.6 Properties of the tvVAR example

To show existence of the tvVAR process of Example 1, we want to show that ‖
∏i

j=1A(u−
j−1
n

)‖ ≤ Cρi, where ‖ · ‖ denotes the Euclidean operator norm. If ‖A(u)‖ ≤ ρ for all
u ∈ [0, 1], this conclusion is obvious. However, the latter condition is too restrictive for
many applications. For example, consider the univariate autoregressive process of order
m given by Xt,n =

∑m
j=1 aj(

t
n
)Xt−j,n + εt. This process may be represented as a tvVAR
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process with state vector Yt,n = (Xt,n, . . . , Xt−m+1,n), and autoregressive matrix

A(u) =


a1(u) a2(u) a3(u) . . . am(u)

1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . 0 1 0

 ∈ Rm×m. (27)

A typical condition for the stability of Xt,n is that the autoregressive polynomial 1 −∑m
j=1 aj(u)zj has no (complex) roots of absolute value smaller than 1

ρ0
> 1, see e.g.

(Giraud et al., 2015, Sec. 3.1.3). Equivalently, the spectral radius of A(u) is bounded
by ρ0 < 1. On the other hand, we have ‖A(u)‖ ≥ 1 for all u ∈ [0, 1], irrespective of the
coefficients aj(u).

In view of the previous example, we do not restrict the Euclidean operator norm to
be smaller than one. Instead, we impose an upper bound on the spectral radius of the
matrices A(u), i.e. ρ(A(u)) ≤ ρ0 < 1. This comes at the price of requiring additional
regularity of the mapping u 7→ A(u).

Lemma C.8. Let Ai ∈ Rd×d, i ∈ N, be a sequence of matrices such that ‖Ai‖ ≤ A∗ <∞,
and supi∈N ρ(Ai) = ρ0 < 1. Assume furthermore that for some p ≥ 1,

‖A‖p−var =

(
sup

1≤i1<i2<...

∞∑
k=1

‖Aik+1
− Aik‖p

) 1
p

≤ A∗ <∞.

Then for any ρ > ρ0, there exists a K = K(ρ, ρ0, A
∗) such that∥∥∥∥∥

t∏
i=s+1

Ai

∥∥∥∥∥ ≤ Kρt−s, 0 ≤ s < t.

Proof of Lemma C.8. We proceed as in the proof of (Giraud et al., 2015, Lemma 8). For
any s, t ∈ N0, s ≤ t, we have

t∏
i=s+1

Ai = At−ss+1 +
t∑

k=s+1

A
(k−1)−s
s+1 (Ak − As+1)

t∏
i=k+1

Ai,∥∥∥∥∥
t∏

i=s+1

Ai

∥∥∥∥∥ ≤ ∥∥At−ss+1

∥∥+ (t− s)(A∗)t−s−1 max
s+1≤k≤t

‖Ak − As+1‖. (28)

Here, we employ the convention
∏v

i=uAi = I if u > v, i.e. the empty product is the
identity matrix.

Now choose some ρ1 ∈ (ρ0, ρ). By virtue of (Moulines et al., 2005, Lemma 12),
there exists a universal C = C(ρ0, ρ1, A

∗) such that ‖At−ss+1‖ ≤ Cρt−s1 . We choose l =
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l(ρ0, ρ1, A
∗) ∈ N such that Cρl1 ≤

ρl

2
, and let ε = ρl

2l(A∗)l−1 . Split the product into blocks
of length l, i.e. we write

t∏
i=s+1

Ai =

b t−sl c∏
j=1

 s+jl∏
i=s+(j−1)l+1

Ai

 t∏
i=s+b t−s

l
cl+1

Ai

 ,
∥∥∥∥∥

t∏
i=s

Ai

∥∥∥∥∥ ≤
b t−sl c∏

j=1

∥∥∥∥∥∥
s+jl∏

i=s+(j−1)l+1

Ai

∥∥∥∥∥∥
 (A∗)l.

Using (28), we may further bound

δj =

∥∥∥∥∥∥
s+jl∏

i=s+(j−1)l+1

Ai

∥∥∥∥∥∥ ≤
{
ρl, maxs+(j−1)l+1≤k≤s+jl ‖Ak − As+(j−1)l+1‖ < ε,

(A∗)l, otherwise.

There are at most κ = d (A
∗)p

εp
e indices j such that δj > ρl, because

∞∑
j=1

1

(
max

s+(j−1)l+1≤k≤s+jl
‖Ak − As+(j−1)l+1‖ ≥ ε

)

≤ ε−p
∞∑
j=1

[
max

s+(j−1)l+1≤k≤s+jl
‖Ak − As+(j−1)l+1‖p

]
≤ ε−p‖A‖pp−var ≤ κ.

In particular,

b t−s
l
c∏

j=1

∥∥∥∥∥∥
s+jl∏

i=s+(j−1)l+1

Ai

∥∥∥∥∥∥ ≤ ρlb
t−s
l
cρ−lκ(A∗)lκ,

∥∥∥∥∥
t∏

i=s+1

Ai

∥∥∥∥∥ ≤ ρt−sρ−l(κ+1)(A∗)l(κ+1) = ρt−sK,

for some K = K(ρ, ρ0, A
∗).

In the literature, results similar to Lemma C.8 have been established to show exis-
tence of the tvVAR model. The existing results are formulated for matrices Ai = A(t− i

p
)

for some function u 7→ A(u). In particular, (Moulines et al., 2005, Proposition 13)
requires u 7→ A(u) to be Hölder continuous, and Lemma 8 of Giraud et al. (2015) re-
places Hölder continuity by some arbitrarily weak uniform continuity. Proposition 2.4
of Dahlhaus and Polonik (2009) requires u 7→ A(u) to be of bounded variation. The
bounded p-variation imposed in Lemma C.8 is weaker than the assumptions of Moulines
et al. (2005) and Dahlhaus and Polonik (2009). Compared to Giraud et al. (2015), we
allow for discontinuities. On the other hand, Giraud et al. only require uniform continu-
ity, without further restrictions on the modulus of continuity, which also includes some
irregular continuous cases where ‖A‖p−var =∞ for all p ≥ 1.
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Proposition C.9. Let Gn(u, εt) as in Example 1, with supu ‖A(u)‖ <∞ and supu ‖B(u)‖ <
∞, and suppose that the matrices A(u) have spectral radius ρ(A(u)) ≤ ρ0 < 1 for all
u ∈ [0, 1].

1. If ‖A‖p−var < ∞, ‖B‖p−var < ∞, and ‖µ‖p−var < ∞ for some p ≥ 1, then there
exists some C = C(A,B, µ) such that ‖Gn‖p−var + supu∈[0,1] ‖Gn(u, ε0)‖Lq ≤ C for
all n.

2. If u 7→ A(u), u 7→ B(u), and u 7→ µ(u) are β-Hölder continuous in the Euclidean
operator norm ‖ · ‖, then there exists CH = CH(A,B, µ) < ∞ such that for all
n ∈ N, the mapping u 7→ Gn(u, εt) is β-Hölder continuous in Lq(P ) with Hölder
constant CH .

Proof of Proposition C.9. Note that E‖ε0‖q < ∞ by assumption. In the sequel, the
factor C = C(A,B, µ) may vary from line to line. For any u ∈ [0, 1], we have

‖Gn(u, ε0)‖Lq ≤ C

∞∑
i=0

∥∥∥∥∥
i∏

j=1

A(u− j−1
n

)

∥∥∥∥∥ ∥∥B(u− i
n
)
∥∥+ ‖µ(u)‖

≤ C

∞∑
i=0

ρi + ‖µ(0)‖+ ‖µ‖p−var ≤ C(A,B, µ).

In the last step, we used Lemma C.8 for some ρ ∈ (ρ0, 1). In the Hölder continuous case,
Lemma C.8 is applicable because β-Hölder continuity implies finite 1

β
-variation. In the

case of finite p-variation, Lemma C.8 is directly applicable.
We now consider the regularity of u 7→ Gn(u, ε0). For any u, v ∈ [0, 1], we have

‖Gn(u, ε0)−Gn(v, ε0)‖Lq

≤ C
∞∑
i=0

∥∥∥∥∥
[

i∏
j=1

A
(
u− j−1

n

)]
B
(
u− i

n

)
−

[
i∏

j=1

A
(
v − j−1

n

)]
B
(
v − i

n

)∥∥∥∥∥+ ‖µ(u)− µ(v)‖

≤ C
∞∑
i=0

∥∥∥∥∥
i∏

j=1

A
(
u− j−1

n

)∥∥∥∥∥ ∥∥B (u− i
n

)
−B

(
v − i

n

)∥∥+ ‖µ(u)− µ(v)‖

+ C
∞∑
i=0

i∑
k=1

[∥∥∥∥∥
k−1∏
j=1

A
(
u− j−1

n

)∥∥∥∥∥
∥∥∥∥∥

i∏
j=k+1

A
(
v − j−1

n

)∥∥∥∥∥
]

·
∥∥A(u− k−1

n
)− A(v − k−1

n
)
∥∥∥∥B (v − i

n

)∥∥
≤ C

∞∑
i=0

ρi
∥∥B (u− i

n

)
−B

(
v − i

n

)∥∥+ C
∞∑
i=0

i∑
k=1

ρi−1
∥∥A(u− k−1

n
)− A(v − k−1

n
)
∥∥

+ ‖µ(u)− µ(v)‖. (29)

Now if µ, A, and B are β-Hölder continuous with Hölder constants Cµ, CA, and CB,
we find that

‖Gn(u, ε0)−Gn(v, ε0)‖Lq
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≤ C
∞∑
i=0

ρi|u− v|βCB + C

∞∑
i=0

i∑
k=1

ρi−1|u− v|βCA + Cµ|u− v|β

≤ |u− v|β(Cµ + CA + CB)C

[
1 +

∞∑
i=0

ρi +
∞∑
i=0

i ρi−1

]
,

and the latter series are finite since ρ < 1.
Alternatively, we may treat the case of finite p-variation. Let u0 < u1 < . . . < um.

Applying the Minkowski inequality to (29), we find obtain[
m∑
l=1

‖Gn(ul, ε0)−Gn(ul−1, ε0)‖pLq

] 1
p

≤ C

∞∑
i=0

ρi

[
m∑
l=1

∥∥B (ul − i
n

)
−B

(
ul−1 − i

n

)∥∥p] 1
p

+ C

∞∑
i=0

i∑
k=1

ρi−1

[
m∑
l=1

∥∥A(ul − k−1
n

)− A(ul−1 − k−1
n

)
∥∥p] 1

p

+ ‖µ‖p−var

≤ C
∞∑
i=0

ρi ‖B‖p−var + C
∞∑
i=0

i∑
k=1

ρi−1 ‖A‖p−var + ‖µ‖p−var

≤ C(‖B‖p−var + ‖A‖p−var + ‖µ‖p−var).
Since C = C(A,B, µ), this completes the proof.

C.7 Properties of the CUSUM test

Proof of Proposition 4.1. By virtue of a result of Lifshits (1983), see the Corollary on
p. 606 therein, we find that the distribution of T ∗ is absolutely continuous, apart from a
potential atom at 0. Since Var(M(u0)) > 0 for some u0 ∈ (0, 1), the variance structure
of the process M(u) yields that Var(M(u0) − u0M(1)) > 0. Due to the Gaussianity
of M(u), it holds that P (|M(u0) − u0M(1)| = 0) = 0, such that P (T ∗ = 0) = 0.
Hence, the cumulative distribution function H(x) = P (T ∗ ≤ x) is continuous. Denote

furthermore by Hn(x) = P (T̂n|Xn) the (random) distribution function of the bootstrap
approximation. We have to show that E [H(H−1n (1− α))] → 1 − α as n → ∞, where
H−1 denotes the quantile function corresponding to a cumulative distribution function
H : R→ [0, 1].

Suppose to the contrary that E [H(H−1n (1− α))] 6→ 1−α, then for some ε > 0, there
exists a subsequence nk → ∞ as k → ∞ such that |E

[
H(H−1nk (1− α))

]
− (1− α)| > ε.

Since Hnk ⇒ H in probability, there exists a further subsequence, also denoted by nk,
such that Hnk ⇒ H almost surely as k → ∞. This implies that H−1nk (p) → H−1(p), for
all p ∈ [0, 1] where H−1(p) is continuous (Van der Vaart, 1998, Lemma 21.2). Since H−1

is left-continuous and has at most countably many discontinuities, we find that

H−1(1− α) ≤ lim inf
k→∞

H−1nk (1− α) ≤ lim sup
k→∞

H−1nk (1− α) ≤ H−1((1− α)+),
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where H−1(p+) = limq↓pH
−1(q) denotes the right-hand limit. Since F is continuous, we

have H(H−1(1− α)) = H(H−1((1− α)+)) = 1− α, such that H(H−1nk (1− α))→ 1− α
almost surely. Via the dominated convergence theorem, we obtain E

[
H(H−1nk (1− α))

]
→

(1− α), completing the proof by contradiction.

Proof of Proposition 4.2. It holds that

Tn(u) =

[
Mn(u)− (u− un)+

1− un
Mn(1)

]
+

1

n

 bunc∑
t=τn+Ln

f(µnt
n
)− (u− un)+

1− un

n∑
t=τn+Ln

f(µnt
n
)


=
[
Mn(u)− (u−un)+

1−un Mn(1)
]

+ ∆n(u).

By virtue of Theorem 3.2,
√
n[Mn(u)− (u−un)+

1−un Mn(1)]⇒M(u). Moreover,

∆n(u) =
1

n

 bunc∑
t=τn+Ln

f(µnt
n
)−

( bunc
n
− un)+

1− un

n∑
t=τn+Ln

f(µnt
n
)

+O( 1
n
)

=
1

n

bunc∑
t=τn+Ln

[
f(µnt

n
)− 1

n+ 1− τn − Ln

n∑
s=τn+Ln

f(µns
n
)

]
+O( 1

n
).

Now use that f(µnu) = f(µu) + 1√
n
Df(µu)δu +O(1/n), uniformly in u ∈ [0, 1] by virtue

of the boundedness of f . Since f(µu) = f(µ0) for all u ∈ [0, 1], we obtain

∆n(u) =
1√
n

1

n

bunc∑
t=τn+Ln

[
Df(µ t

n
)δ t

n
− 1

n+ 1− τn − Ln

n∑
s=τn+Ln

Df(µ s
n
)δ s

n

]
+O( 1

n
),

√
n∆n(u) = o(1) +

1

n

bunc∑
t=1

Df(µ t
n
)δ t

n
− u

n

n∑
t=1

Df(µ t
n
)δ t

n

= o(1) + ∆(u).

In the last step, we use Lemma C.4 and the fact that ‖u 7→ Df(µu)δu‖p−var <∞. More-
over, the convergence

√
n∆n(u) → ∆(u) holds uniformly in u ∈ [0, 1]. This establishes

the convergence of T ∗n .
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