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LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL CONNECTIONS
ON THREE-DIMENSIONAL LORENTZIAN LIE GROUPS

TAO YU

ABSTRACT. In this paper, we classify Left-invariant Ricci collineations associated to canonical connections
and Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie groups.

1. INTRODUCTION

The concept of symmetry was firstly proposed by ancient Greek and since the earliest days of natural philosophy,
symmetry has furnished insight into the laws of physics and the nature of the cosmos. The two outstanding theoretical
achievements of the 20th century, relativity and quantum mechanics, involve notions of symmetry in a fundamental way,
being been studied in depth because of their interest from both a mathematical and a physical viewpoint.For example, they
simplify Einstein equations and provide a classification of the spacetimes according to the structure of the corresponding
Lie algebra,which contains Ricci and curvature collineations ,among others(see [3],[6],[7],[8],[9]).

In this article we shall continue to concentrate on Ricci collineations which is, Lgf{%l = 0. In [I0],Michael and Pantelis
had done two purposes, the first of which was to present a useful method, which reduced the computation of the Ricci
collineations and the Matter collineations of a given metric to the computation of Killing vectors ,the second of which was
to apply this method and determine all hypersurface orthogonal locally rotationally symmetric spacetime metrics, which
admit proper Matter collineations and proper Ricci collineations. In[I1], The mathematical concept of left-invariant Ricci
collineationsis proposed to denote that Ricci tensors has a value of zero with a left-invariant Ricci collineation £, having
the mathematical meaning of a differential homomorphism of preserving Ricci tensors. The purpose of [I] is to determine
all left-invariant Ricci collineations on three-dimensional Lie groups. Since the connection and Ricci tensor are built from
the metric tensor, it must inherit its symmetries where any homothetic vector field is a Ricci collineation. In [12],Wang
computed canonical connections and Kobayashi-Nomizu connections and their curvature on three-dimensional Lorentzian
Lie groups with a special product structure.

In this paper, our motivation is to classify all left-invariant Ricci collineations associated to acanonical connections and
Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie group. More precisely,the concept of Ricci collineation
was extended to canonical connection and Kobayashi-Nomizu connection on three-deimensional Lorentzian Lie group
equiped with a product structure. We classify all left-invariant Ricci collineations on seven different three-dimensional Lie
groups.

In section 2, we recall the definition of the canonical connection and the Kobayashi-Nomizu connection on three-
dimensional Lorentzian Lie group with a product structure and their corresponding symmetric tensors and the definition
of Ricci collineation with some remarks. In section 3, we classify all left-invariant Ricci collineations associated to canonical
connections and Kobayashi-Nomizu connections on three-dimensional unimodular Lorentzian Lie groups. In section 4,
we classify all left-invariant Ricci collineations associated to canonical connections and Kobayashi-Nomizu connections on
three-dimensional non-unimodular Lorentzian Lie groups.
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2. PRELIMINARIES

2.1 The symmetric tensors associated to cannonical connection and Kobayashi-Nomizu connection

In this section,we recall the definition of the canonical connection and the Kobayashi-Nomizu connection on three-
dimensional Lorentzian Lie group with a product structure and their corresponging symmetric tensors.
Let V be the Levi-Civita connection of GG; and R its curvature tensor, taken with the convention

R(X,Y)Z =VxVyZ —VyVxZ —VxyZ.

The Ricci tensor of (G4, g) is defined by
Ric(X,Y) = —g(R(X,e1)Y,e1) — g(R(X, e2)Y, e2) + g(R(X, e3)Y e3),
where {e1, ea,e3} is a pseudo-orthonormal basis, with ez timelike and the Ricci operator Ric is given by
Ric(X,Y) = g(Ric(X),Y).
A product structure J on G; was defined by
Jei =e1, Jeg = eq, Jeg = —eg,
then J2 = id and g(Jej, Je;) = glej, e;).
By [5], the canonical connection and the Kobayashi-Nomizu connection as follows:
V%Y =VxY — %(VXJ)JY,

1
VLY = V%Y — Z[(VYJ)JX — (Vv J)X].

Then their curvature was given by
RU(X,Y)Z =VXVYZ = VYV Z — Vix y12,
RYX,Y)Z =VxVyZ - V3V Z — Vix y 2.
The Ricci tensors of (G, g) associated to the canonical connection and the Kobayashi-Nomizu connection are defined by
Ric®(X,Y) = —g(R'(X, e1)Y, e1) = g(R*(X, 2)Y, €2) + g(R*(X, €)Y’ e3),
Ric'(X,Y) = —g(R'(X,e1)Y,e1) — g(R' (X, e2)Y, e2) + g(R' (X, e3)Y, €3).
The Ricci operators Ric? and Ric® is given by
Ric’(X,Y) = g(Ric’(X),Y), Ric'(X,Y) = g(Ric'(X),Y).

Let
Ric’(X,Y) + Ric’(Y, X)
2 3

Ric' (X,Y) 4 Ric (Y, X)
2 )

Ric (X,Y) = Ric (X,Y) =

and
Ric (X,Y) = g(Ric (X),Y), Ric (X,Y) = g(Ric (X),Y).

—0 —1
All the analysis so far tells us that Ric and Ric are symmetric tensors.

Considering some different three-dimensional Lorentzian Lie groups, we have specific classification about three-dimensional
Lorentzian Lie groups in [2] [4](see Theorem 2.1 and Theorem 2.2 in [I]). We shall denote the connected three-dimensional
unimodular Lie groups equipped with a left-invariant Lorentzian metric g by {G;}i=1,... 4 and having a corresponding Lie
algebra {g}i=1.... 4.

2.2 Three-dimensional unimodular Lorentzian Lie groups
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Theorem 2.1. Assume (G, g,J) was a three-dimensional unimodular Lorentzian Lie group,equipped with a left-invariant
Lorentzian metric g and a product structure J ,and had a Lie algebra g being one of the following:

g;:

le1, e2] = aer — Pes, [e1,e3] = —ae; — Pea, [e2,e3] = Ber + aea + ez, a #0.
gs:
le1, e2] = vea — Pes, [e1,e3] = —PBea — yes, [e2,e3] = aea, v # 0.
gs:
le1,e2] = —ves, [e1,e3] = e1 — fea, [e2,e3] = aer, aF# 0.
g4:
le1,e2] = —ea + (20 — Bles,n =1 or n = —1, [e1,e3] = —Pea +e3, [e2,e3] = aey, .

Next we shall denote the connected three-dimensional non-unimodular Lie groups equipped with a left-invariant
Lorentzian metric g by {G;}i=5,6,7 and having a corresponding Lie algebra {g};=567.

2.3 Three-dimensional non-unimodular Lorentzian Lie groups

Theorem 2.2. Assume (G,g,J) was a three-dimensional non-unimodular Lorentzian Lie group,equipped with a left-
inwvariant Lorentzian metric g and a product structure J ,and had a Lie algebra g being one of the following:
gs:
le1,e2] =0, [e1,e3] = aer + PBea, [ea,e3] = ve1 +dea, a+6 #0 ,ay+ 56 =0.
gs -
[61762] = eg + ﬁe?n [61763] = ye2 + 6637 [62763] = 07 a+ 4] 7& 0 , Y — 65 =0.
gr:
[e1, e2] = —aer — Bea — Pes, [e1,e3] = aer + Bea + Pes, [e2, e3] = ve1 + deg +de3, a+6 #0 ,ay = 0.

Definition 2.3. A unimodular Lorentzian Lie group of {G;}i=1,... 4 admits left-Ricci collineations if and only if it satisfies:
(2.1) LeRic =0,

fori=1,2 ,where { is a element of three-dimensional unimodular Lie group and & = A1e1 +Aaea+Azes ,and {e1,e2,e3} is
a pseudo-orthonormal basis with es timelike. Let

(2.2) LeRic (X, V) = £(Ric (X,Y) — Ric (/& X],Y) - Rie (X, [£, Y]),
and
(2.3) LeRic (X,Y) = £(Ric (X,Y) - Ric (& X],Y) - Rie (X, [§,Y]),

According to this definition,we have
Le, Ric (e1,e1) = e (Ric (e1,e1) — Ric ([e1, ea], ex) — Ric'(ex, [e1, e1]) = 0,
LEQR\iEZ(eg, 62) = 62(?&61(62, 62) — R\igz([ez, 62], 62) — R\igz(eg, [62, 62]) = O,

Le, Ric (es, e3) = es(Ric (es, e3) — Ric ([es, es], e3) — Ric (es, [es, es]) = 0,

—0 —1
in the following discussion,we will not mention the calculation of these six items (i = 1,2).owing to Ric and Ric are
symmetric tensors,we have

Lgﬁl(el, 62) = Lgﬁl(em 61), Lgﬁz(el, 63) = Lgﬁl(eg, 61),

Remark 2.4. Ve is spanned by Ricci collineations.



3. LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL CONNECTIONS AND KOBAYASHI-NOMIZU
CONNECTIONS ON THREE-DIMENSIONAL UNIMODULAR LORENTZIAN LIE GROUPS

3.1 Left-invariant Ricci collineation of Gy

In [I], we have for G1, there exists a pseudo-orthonormal basis {ej, ez, e3} with ez timelike such that the Lie algebra of
(1 satisfies

[61, 62] = ae; — es, [617 63] = —ae; — Pea, [62, 63] = fe1 + aex + aez, a# 0.
By (2.25) in [12], we have

Lemma 3.1. Ricci symmetric tensors of (G1,g,J) associated to canonical connection are given by

2, B2 ap
o[ & a (a + 7) 0 N el
(3.1) Ric | e | = 0 _ (az n %) _ es
€3 af o €3
T Pl 0

By (2.2) and (3.1), we have
Lemma 3.2. For Gy, the following equalities hold

—0 3 —0 1 —0
(3.2) L., Ric (e1,e2) = a(a? + Zﬂ2), L., Ric (e1,e3) = —a(a? + 5[32), L., Ric (eg,e2) = a4,
—0 5 1 —0 3 —0 3
Le, Ric (e2,e3) = —5(1042 + 552), Le,Ric (e3,e3) = 504257 Le,Ric (e1,e1) = —204(042 + 1[32)
—0 1 2 —0 2 1 2 =0 1 2 2
L, Ric (e1,e2) = —504 B, Le,Ric (e1,e3) = B(a” + 5[3 ) ,Le,Ric (e2,e3) = 50[(04 + 69,

—0 1 —0 1 —0 1
Le,Ric (e3,e3) = —04(042 + 552) ; LesRic (e1,e1) = 20‘(042 + 5[32)7 LesRic (er,e2) = 1042[3

—0 3 5 =0 2 2 o0 1 2, 1o
Le,Ric (e1,e3) = —Zoz B,Le,Ric (eg2,e2) = —a(a” + %) ,Le,Ric (ez,e3) = 504(04 + 5[3 ).

By (3.2) and definition 2.3, we have

If the unimodular Lorentzian Lie group (G1,g,J) admits left-invariant Ricci collineations associated to the canonical
—0
connection VY, then L¢Ric;; =0, fori=1,2,3 and j =1,2,3, so
—a(a? + 282X + ala? + $6%)A3 = 0,

a(a? + 382\ — 3a%BAs + 1a?BA3 =0,
—a(a® + 58%)A + B(a® + 3% h — §a®BA3 =0,
012[3)\1 — 01(042 + ﬂ2))\3 = O,

—B(2a® 4+ 1B%)A1 + 1a(a® + B2 + Sa(a® + $8%)A; =0,

3a2BA — afa? + 182X = 0.
By solving (3.3), we get

Theorem 3.3. the unimodular Lorentzian Lie group (G1,g,J) does not admit left-invariant Ricci collineations associated
to the canonical connection VO .
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Proof 3.4. We analyze each one of these factors by separate. Because o # 0, then we have

—(a® +38%)h + (a® + 38%)As = 0,

(a® + 2%\ — 3aBXs + JafAg = 0,

—a(a? + IB%)A1 + B(a? + 18%)A2 — 3a?BA3 =0,
aBi — (@ + B33 =0,

—B(2a? 4+ 18%)A + za(a® + ) — 3a(a® + 35%)As =0,

SapA — (a® + 38%)A2 = 0.
Now if =0, we have A\ = Ao = A3 =0. If B # 0, naturelly we have

_af _ 3ap
Az = a2+62)\1,)\2 =507 +ﬁ2/\1’

substitute these into Eq.(3.4) to get

(02 + 38720 + %) — (02 + 367 (0 + F*)]0 = 0,

[(40® 4 36%) (202 + B (? + %) — a?B%(4a® +58%)] A\ =0
Solving these, we have \y = Ay = A3 = 0,a8 # 0.
In summary, the unimodular Lorentzian Lie group (G1,g,J) does not admit left-invariant Ricci collineations associated

to the canonical connection VO .

By (2.23) in [12], we have

Lemma 3.5. Ricci symmetric tensors of (G1,g,J) associated to Kobayasha-Nomizu connection are given by

—1 €1 - (Of2 + ﬁ2) Oéﬁ OL_2ﬁ2 €1
(3.5) Ric ey | = af — (a2 + 62) -2 e

By (2.3) and (3.5), we have

Lemma 3.6. For Gy, the following equalities hold

1 1 1

__ 1 __ __
(3.6) Le, Ric (e1,e9) = a(a® + §ﬁ2), Le, Ric (e1,e3) = —a® , L, Ric (e2,e2) = —a?B,

—1 1 —1 —1 1
Le, Ric (ez,e3) = B(§a2 — ﬁ2) ,Le,Ric (es,e3) =0, Le,Ric (e1,e1) = —2a(a2 + 562)

. 1 _ —1 1
Le,Ric (e1,e5) = §a257 Le,Ric (e1,e3) = 8% ,Le,Ric (e2,e3) = §a3=

—1 —1 —1 1
Le,Ric (e3,e3) = a(ﬁ2 — a2) ,LegRic (e1,e1) = 203, L¢,Ric (e1,e2) = —§a2ﬁ

1 1

— —1 — 1
Le,Ric (e1,e3) = 0, Le,Ric (e2,e0) = —a® | Le,Ric (eg,e3) = §a(a2 - B%).

By (3.6) and definition 2.3, we have



If the unimodular Lorentzian Lie group (G1, g, J) admits left-invariant Ricci collineations associated to the Kobayasha-
Nomizu connection V!, then Lgf{%ij =0, fori=1,2,3and j=1,2,3, so

—2a(a® + $8%)A2 + 203X3 =0,

a(a? + 182)M + 3a%BAs — 20283 =0,
—a3M + B3N =0,

B + A3 =0,

B(2a? — B2)A + 303X + a(a? — B2)A3 =0,

a(B? —a?)Ay = 0.
By solving (3.7), we get

Theorem 3.7. the unimodular Lorentzian Lie group (G1,g,J) does not admit left-invariant Ricci collineations associated
to the Kobayashi-Nomizu connection V' .

Proof 3.8. We analyze each one of these factors by separate. Because o # 0, then we have

—(02 + L3\ + a2A3 = 0,
(a® + 38%)M — 3aBXs — FafAy =0,
—adX\ + 32X =0,

BAL 4+ aX3 =0,

B(3a? — A + 20X + 2a(a® — B33 =0,

(ﬁ2 — a2))\2 =0.
Now if B2 —a? =0, we have a = B or a+ 3 =0, .If o = B ,naturelly we have \| = Ay = —\s,substitute these into
Eq.(5.8), we get
1
—(20” + 552))\2 =0,
Solving these, we have A\ = Ay = A3 = 0.
If B? — a? #0,, then we have Ay = 0. Similarly we put this into Eq.(3.8) ,we have \g = A3 = 0.

In summary,the unimodular Lorentzian Lie group (G1,g,J) does not admit left-invariant Ricci collineations associated to
the Kobayashi-Nomizu connection V! .

3.2 Left-invariant Ricci collineation of G,

In [1], we have for Go, there exists a pseudo-orthonormal basis {ej, e2, e3} with ez timelike such that the Lie algebra of
G4 satisfies

le1,e2] = vea — Bes, [e1,e3] = —Pea — ves, [e2,e3] = aer, v # 0.

By (2.44) in [12], we have
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Lemma 3.9. Ricci symmetric tensors of (Ga,g,J) associated to canonical connection are given by

2 ap
0 €1 N (FY + 7) 0 0 el
(3.9) Ric Zz = 0 - gvz + a—gﬂ) o5 ZQ
3 « 3
0 B a 0

By (2.2) and (3.9), we have
Lemma 3.10. For Ga, the following equalities hold

—0 —0 ——0 1
(3.10) Le,Ric (e1,e2) =0, L, Ric (e1,e3) =0 ,Le,Ric (e2,e2) = (2% + 8% + §a6),
—0 , 1 —0 1 —0
L, Ric (ez,e3) = =B(v* + §a6) ,Le,Ric (es,e3) = B(By — 5047), L., Ric (e1,e1) =0
—0 1 1 —0 1 3 1 —0
Le,Ric (e1,e0) = —y(y* + §ﬁ2 + Zaﬁ), Le,Ric (e1,e3) = 572@ + Ea) + §a2ﬁ ,Le,Ric (ea,e3) =0,
Le,Ric (e3,e3) =0 ,Le,Ric (e1,e1) =0, Le Ric (eq,e2) = 37 (B - 504) + §a6(ﬁ —a)

—0 1 1 —0 —0
Le,Ric (e1,e3) = 567(§a — B), LeRic (e2,e2) =0 ,Le,Ric (e2,e3) =0.

By (3.10) and definition 2.3, we have

If the unimodular Lorentzian Lie group (Ga,g,J) admits left-invariant Ricci collineations associated to the canonical
—0
connection VY, then L¢Ric;; =0, fori=1,23and j=1,2,3, so

Y(7* + 382 + 1aB) — [372(B — 50) + 30B8(8 — )] As =0,
[372(8 + 20) + $02B] Ao + LBv(2a — B)As =0,
(3.11) Y(29? + 82 4 3aB8)M = 0,

B(v*+ $aB)A =0,

B(By — 2ay)A =0.
By solving (3.11), we get

Theorem 3.11. the unimodular Lorentzian Lie group (Ga,g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if

(Na=p=0,A\ =X =0,Vre = (e3),

A B

(2)(1#0,ﬁ#0, C D ‘#O,VRC:<€2—%€3>.

Proof 3.12. We analyze each one of these factors by separate. Because v # 0, then we assume that
A=5(29*+ 8% + 30P),

B=7*(3a-p)+af(a-p),
(3.12)

C=72(8+3a) + a8,

D = By(a—p).



8

We get

‘ é g ‘ =4a'B? — 40’3 +120°B7° — 70’ B%4% + 908" — 4af®y® + dapyt + 45197 + 4574
A

If a =0, we have

p g ‘ = B7*(8% + 7).

Note that if beta # 0 ,a = 0, we have

g g '#O,then/\l—/\z—)\g—o.

Note that if beta =0 , then é g ‘ =0, and we have \y = Ao = 0.
If a #£ 0,8 =0, we have

Y32 + %oryQ/\3 =0,
(3.13) ay?Ag = 0,

A1 = 0.
Then we have A\ = Ao = A3 = 0.
Notice that when « # 0,5 # 0, we have A1 = 0, whenever « = 20 or a« # 20. If a £ 0,8 # 0,‘ é, g ‘ % 0,then Ay =
A3 = 0.
And if a £ 0,8 # o,‘ é g ‘ = 0,then A3 = — Sy

In summary,the unimodular Lorentzian Lie group (Ga,g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if
(1)0[ = [3 = 0,)\1 = /\2 = O,V]RC = <63>,

A B
(2)Q¢O,B¢O,‘ C D ‘#O,VRC—<82—%63>.
By (2.54) in [12], we have

Lemma 3.13. Ricci symmetric tensors of (Ga, g, J) associated to Kobayasha-Nomizu connection are given by

L[ e - (52 + ’72) 0 e1
(3.14) Ric | e | = 0 -(V*+aB) Y es
€3 0 & 0 €3

2

By (2.3) and (3.14),we have
Lemma 3.14. For G35, the following equalities hold
1 —1 —1 1
(3.15) Le,Ric (e1,e2) =0, Le,Ric (e1,e3) =0 ,Le, Ric (e, e2) = 2y(72 + iaﬁ),

1 —1 —1
Le, Ric (eg,e3) = —[3(72 + af) ,Le, Ric (es,e3) = —afy, Le,Ric (e1,e1) =0

1 1 —1 1 —1
(617 62) = _7(72 + 5‘16)7 LezRIC (617 63) = CY(B2 + 572) 7L62R1C (627 63) = 07

—1 —1 1
(es,e3) =0 ,Le,Ric (e1,e1) =0, Le Ric (eq,e2) = Wz(ﬁ — Ea)

L., Ric
—1
L, Ric

—1 1 —1 —1
Le,Ric (e1,e3) = iaﬁv, L¢,Ric (e2,e2) =0, L, Ric (e2,e3) = 0.

By (3.15) and definition 2.3, we have
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If the unimodular Lorentzian Lie group (Ga, g, J) is left-invariant Ricci collineations associated to Kobayashi-Nomizu
—1
connection V', then L¢Ric;; =0,i=1,2,3 and j = 1,2,3, so

Y(v2 4 3aB)A2 — ¥2(B — 3a)As = 0,
(B + 392 + FaByAs =0,
(3.16) (2 + 5aB)\ =0,

B(v? +aB)r =0,

afyi = 0.
By solving (3.16), we get

Theorem 3.15. the unimodular Lorentzian Lie group (Ga,g,J) is left-invariant Ricci collineations associated to the
Kobayashi-Nomizu connection V! if and only if
(1)& = B =X =\ = O,VRC =< ez >,

(2)a =M =0,8#0,Vre = (e2 + Fe3),

(3))\1 = 07 « # Ovﬂ # Oa A3 - _262:72 AQv o = 4ﬂ7VR(C = <€2 - 26;1712 €3>.

Proof 3.16. We analyze each one of these factors by separate. Because v # 0, then we have
(V2 4 3aB)A2 —Y(B — 3a)As =0,

a(f? + 37%) A + 3873 =0,

(’72 + %Oéﬁ)Al = 07

(3.17)
B+ af)h =0,

B(3a? — A + 20X + 2a(a?® — B33 =0,

aﬁ)\l =0.
Notice that compare the third equation with the third fifth equation, A1 must be equal to 0.
If a =0, we get yYAo — B3 = 0. At the same time,if 5 =0, then Ao = 0. And if 8 # 0, then A3 = %)\2.
If o # 0, we get
(27* + aB)r2 +v(a —2B)As = 0,
(3.18)
(28% +9%)A2 + ByAs = 0.
Now if B =0, then simply we have As = A3 = 0.
we assume that

A =29 +ap,

B =~(a-28),
(3.19)

C=26%+1+2

D = pr.
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We get
A B
AR DIEERS
Now if (o — 4B)(B% + %) # 0,equal to a # 483, we have Ay = A3 = 0. If (a — 4B)(8% + v2) = 0, equal to o = 43, we
have A3 = —25;—+72)\2.

In summary, the unimodular Lorentzian Lie group (Ga, g, J) is left-invariant Ricci collineations associated to the Kobayashi-
Nomizu connection V' if and only if
(1)& = B =X =)\ = O,VRC =< e3 >,

(2)@ =\ = Ovﬁ # OvvR(C = <62 + %63>,

2 2 2 2
(B =0,a#0,8# 0,3 = =22 0 = 48, Vic = (2 — 25 2es).

3.3 Left-invariant Ricci collineation of G35

By [1], we have for G3, there exists a pseudo-orthonormal basis {e1, e2, es} with es timelike such that the Lie algebra
of G5 satisfies

le1, e2] = ves, [e1,e3] = —Pea, [e2,e3] = aeq, .
By (2.64) in [12], we have

Lemma 3.17. Ricci symmetric tensors of (Gs, g, J) associated to canonical connection are given by

. e1 —vyas 0 0 el
(3.20) Ric es | = 0 —vas 0 e
es 0 0 0 e3
where
1 1 1
a; = Q(Q—ﬁ 7), @ §(Oé—ﬁ+7) §(Oé+ﬁ 20)

By (2.2) and (3.20), we have

Lemma 3.18. For Ga, the following equalities hold

—0 ——0
(3.21) L¢, Ric (e, ez LelRlc (e1,e3) =0 ,L¢, Ric (e2,e2) =0,

—0
—Byas ,L61R1c (es,e3) =0, Le,Ric (e1,e1) =0

0
0, Lelec (e1,e3) = ayas ,L,Ric (ez,e3) =0,

—0
Le, Ric (ez,es

—0
L, Ric (es,es3

(c1,e2) =
(cze3)
Legﬁo(elaez) )
(e3,e3) = 0, Le,Ric (e1,e1) = 0, Le,Ric (1, e0) = (8 — a)yas
(e1,e3) = )=

—0 ——0
Le,Ric (e1,e3) =0, LeSRIC (e2,e2) =0 ,Le,Ric (e2,e3) = 0.

By (3.21) and definition 2.3, we have
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If the unimodular Lorentzian Lie group (Gs,g,J) admits left-invariant Ricci collineations associated to the canonical
—0
connection VY, then L¢Ric;; =0,i=1,2,3 and j = 1,2,3, so

(ﬂ - 04)7@3/\3 = Oa
(322) ayazAa =0,

ﬁ’}/(]{g)\l = 07
By solving (3.22), we get

Theorem 3.19. the unimodular Lorentzian Lie group (Gs,g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if

(1)y =0,Vge = (e1, €2, €3),

(2)y #0,a=8=0,Vre = (e1, €2, €3),

(3)a=0,7#0,8#0,8=",Vrc = (e1,€2,€3),

(o =0,7#0,8+#0,8# 7, Vrc = (e2),

(5)y #0,a # 0,7 = a+ B, Vrc = (e1, €2, e3),

(6)y # 0,00 # 0,7 # o+ B, = B, Vee = (es).

Proof 3.20. We analyze each one of these factors by separate. Because ag = %(a + B8 — 1), then we have
(B —a)(a+ B —7)As =0,

(3.23) aya(a+f—7) =0,

ﬁ/y)‘l(a—’—ﬁ_/y):(h
If v =10, we get \1 € R, A2 € R, A3 € R.
If v # 0, we get

(B—a)As(a+p—7)=0,

(3.24) ada(a+f—7) =0,

BAi(a+B—7v)=0.
Now if « = 0,8 =0 ,then simply we have \; € R, A2 € R, A3 € R.
If a =0,8+# 0, we have

(B - 7))‘3 = 07

(B=7)A =0.
then if B —~ =0, simply having \1 € R, o € R, A3 € R and if § — v # 0, simply having Ao = A3 = 0.
Now if a # 0,, we have

(3.25)

(B—a)(a+B—7)As=0,
(3.26) (a+B—7) =0,

Bla+B—v)A =0.
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In this case, if v = a+ 5, we have \y € R, Ay € R, A3 € R and if v # a+ 3, we have Ao = 0. Furthermore if B # 0, # 3, we
get \1 = X3 =0, and if B # 0, = 8, we get Ay = 0 where if § =0, then we have A3 = 0.

In summary,the unimodular Lorentzian Lie group (Gs,g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if

(1)y =0, Vre = (e1, €2, €3),

(2)y#0,a =8 =0,Vrc = (e1, €2, €3),

(3)a = 077 7é Oaﬁ 7& 076 = ’77VRC = <€1,€2,€3>,

(4)0[ = 077 7£ Ovﬂ 7£ Oaﬂ 7£ FYaVRC = <62>a

(5)’7 7& 07a 7é 07’7 =a+ BuVRC = <61762763>7

(6)7 # 0,0Z 7£ 077 7£ OZ—FB,OL = /BaVRC = <€3>.

By (2.69) in [12], we have

Lemma 3.21. Ricci symmetric tensors of (Gs,g,J) associated to Kobayashi-Nomizu connection are given by

[ ea ~v(ay — a3) 0 0 e1
(3.27) Ric e | = 0 —v(az +a3) 0 €2
es3 0 0 0 e3

By (2.3) and (3.27), we have
Lemma 3.22. For G, the following equalities hold

1 —1 —1
(3.28) L¢, Ric (e1,e2) =0, Lg, Ric (e1,e3) =0 ,Lg, Ric (e2,e2) =0,

__ 1 —1
Le, Ric (e2,e3) = —B7y(az + as) ,Le, Ric (es,e3) =0, Le,Ric (e1,e1) =0

)

Le;iné e1,e2) =0, Le;ﬁizl (e1,e3) = ay(as —a1) ,Le;ﬁizl (e2,e3) =0,

Le,Ric (es,e3) =0 5L63/]~:{\iél (e1,e1) =0, L€3/]~:{\iél (e1,e2) = By(az + a3) + ay(a1 — as)
)

1
(
1
(

—1
(

1 —1 —1

L¢,Ric (e1,e3) =0, Le,Ric (e2,e2) =0, L Ric (e2,e3) = 0.

By (3.28) and definition 2.3, we get

If the unimodular Lorentzian Lie group (Gs, g, J) admits left-invariant Ricci collineations associated to the Kobayashi-
—1
Nomizu connection V!, then LeRic;; =0,i=1,2,3 and j = 1,2,3, so
[Bv(az + as) + ay(ar — as)]As = 0,

(3.29) ay(ag — a;)\2 =0,

By(az +az)\1 = 0.
By solving (3.29), we get

Theorem 3.23. the unimodular Lorentzian Lie group (Gs,g,J) is left-invariant Ricci collineations associated to the
Kobayashi-Nomizu connection V* if and only if ( easy to prove )

(]‘)OZ/BFY = 07VR(C = <617 €2, 83>,

(2)apy # 0, Vre = (e3).
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3.4 Left-invariant Ricci collineation of G4

By [1], we have for G4, there exists a pseudo-orthonormal basis {e1, ea, €3} with e3 timelike such that the Lie algebra
of G4 satisfies

[61,62] = —e2+ (277 - 5)63,77 =lorn=-1, [61763] = —fea +e3, [62,63] = ey .

By (2.81) in [12], we have

Lemma 3.24. Ricci symmetric tensors of (G4, g,J) associated to canonical connection are given by

o[ & [(2n — B)bs — 1] 0 0 €1
(3.30) Ric | e | = 0 (20— B)bs —1] Bt e
€3 0 % 0 €3

where

(0% (6% (0%
1 2+77 Bu 2 2 7,03 2+77

By (3.30) and (2.3)
Lemma 3.25. For G4, the following equalities hold

(331) Lelf{%O(el, 62) =0, Lelf{\igo(el, 63) =0 ,Lelﬁ\igo(eg, 62) = (2’[] — ﬁ)(b3 + B) — 2,
——0 —0 ——0
LelRiC (62, 63) = ﬂ[(27’] — ﬂ)bg — 1] ,LelRiC (63, 63) = ﬂ(bg — ﬂ), L82RiC (61, 61) =0
/\./0 1 /\./0 1 /\,/0
Le,Ric (e1,e2) = (bs + ﬂ)(gﬂ —n)+1, Le,Ric (e1,e3) = al(8 — 2n)bs + 1] + 5(5 —b3) ,Le,Ric (e2,e3) =0,
0

. —0 —0 1
L82RiC (63,63) =0 ,LBSRiC (61,61) = O, L63RiC (61,62) = (a — ﬂ)[(27’] — ﬂ)bg — 1] + 5(()3 — ﬂ) y

—0 1 —0 —=0
Le,Ric (e1,e3) = §ﬂ([3 —b3), Le,Ric (e2,e2) =0 ,Le,Ric (e2,e3) = 0.

By (3.31) and definition 2.3, we have

If the unimodular Lorentzian Lie group (G4, g, J) admits left-invariant Ricci collineations associated to the canonical
—0
connection VY, then L¢Ric;; =0, fori=1,2,3 and j =1,2,3, so

[(b5 + B)(38 —n) + 1] A+ {(a = B) [(20 — B)bs — 1] + 5(bs — B)} A3 =0,
{al(8 = 2m)bs + 1] + 5(8 — b3)} X2 + 38(8 — b3) A3 = 0,

(3.32) [(2n = B)(bs + B) — 2]\ =0,

B[(2n = B)bs — 1] A1 =0,

B(bs — B)A1 = 0.
By solving (3.32), we get

Theorem 3.26. the unimodular Lorentzian Lie group (G4, g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if

DB=0,n=1,a=0, 2= A3 =0,Vre = {(e1),
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(2)8=0,n=1,(a+2)(a+ 1) =0,A\ = Ay =0, Vgc = (e3),
3)8=0,n=—-1,a=0, 2 = A3 =0, Vge = (e1),
4)8=0,n=—1,(a=2)(a—1)=0,A\ = A =0, Vgc = (e3),
B)B#0,m=1,a=0,8=1,Vrc = (€1, €2, €3),

(6)5 # 0577: 1,0& = 25[3 = 27VR(C - <€3>5

A B
(7)ﬁ#07n:17a+27§267‘ C D ‘:O,VRC:<€2_%€3>,

(8)5 # 0577 = —1,CY = Ovﬂ = _1;VRC = <61,€2,63>,

(g)ﬁ 7& 0777 = —1,(1 = _276 = _27VRC = <€3>,

A B
(05 £ 0.0 =~La=2220] & P | =0Vee = (e2 - Fea)

Proof 3.27. We analyze each one of these factors by separate. Because b = %OZ + B, if B =0, then we have
(2nbs —2)A1 = 0,
(3.33) (=bsn + 1)A2 + (2ambs + 1b3) A3 = 0,
(—2ambs + a — %bg))\z =0.
Now if n =1, we have
a1 =0,
(3.34) —2X+(a® + Fa+3)As =0,
(a? + 2a+ $)A = 0.
Furthermore if o= 0, then we get Ao = A3 = 0. If a # 0 and (o +2)(a+ 1) # 0, we get Ay = Ay = A3 =0. If a # 0 and

(a+2)(a+ 1) =0, we get Ay = Ao = 0.
Although we assume n = —1, we still have

(3.35) I+ (—a? + Ja— 1A =0,

Furthermore if o = 0, then we get Ao = A3 = 0. If a # 0 and (v — 2)(ov — 3) # 0, we get Ay = Ao = A3 = 0. If a # 0 and
(a—2)(a— 1) =0, we get Ay = X2 = 0.
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If B 0, then we have

(b3 +B)(58 —n) + 1] Ao + {(a = B) [(2n — B)bs — 1] + 5(bs — B)} A3 = 0,

{al(8 = 2m)bs + 1] + 5(8 — b3)} X2 + 38(8 — b3) A3 = 0,

(3.36) [(2n = B)(bs + B) — 2] A1 =0,

[(2n — B)bs — 1] A1 = 0,

(bs — B)A1 =0.

Now if n = 1, we have

[($+1+8)GB- D+ +{@=-B)[2-8)(§+1) - 1] +3(5+1-8)Is =0,
{alB=2)(5 + D+ 1U+3(B-5 - DI+ 388 -5 —1)As =0,

(3.37) [(2-8)(§ +1+8)-2] M\ =0,

[(2-B)(5+1) -1] =0,

(24+1-B)\ =0.

We notice that if o +2 = 28, Eq.(3.37) would reduce to
(B=1X2+(2-8)(B—1)*3 =0,

(3.38) (B-1)* 2 =0,

(B—=1A =0.

So when 8 =1, then Ay = 0, 2 € R)A3 € R. When 8 # 1,8 # 2, then \y = Mo = A3 = 0. When 8 # 1,8 = 2, then
AM=X=0,)3 € R.
But if a + 2 # 28, then we have A\ = 0.

We assume that

A=[(+1+B)(EB-1)+1],

B={(a=-p)[2-/(5+1)-1]+3(5+1-5)},

(3.39)
C={a(B-2)(§+1)+1+3(B~-5 -1},
D=18(8—%-1)
We get
A B 492 4 4 303 302 3 3 2 23 202
(3.40) c D =4a°B% — 165 + 16a” — 4a°B° + 32a° 3 — 68a° B + 40a” — 16a°5° + 73a° 3% —
98028 + 41a? — 2008 + 60a8? — 60a8 + 20a + 4% — 163% + 2432 — 165 + 4
Next if

(3.41) ’ g‘
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we get A\ = —%)\2.
We continue to assume that n =1, we have

[(§+1-B)GA+ D)+ 1 e+ {(a=B)[(-2-B)(5 —1) 1] +3(§ —1-B)}As =0,
{aB+2E+D -1+ 3B-5+ DI +38B8 -5 +1)ks =0,
(3.42) [(=2=8)(5 —1+B)—2] M =0,

[(=2=8)(5 1) =1\ =0,

(g —1-=B)A =0.
We notice that if « =2+ 28, Eq.(3.42) would reduce to
(B+1)2X2 = (2+B)(B—1)*X3 =0,

(3.43) (B+1)*A2 =0,

(B+ 1A =0.

So when B = —1,then A\ =0, 2 € R,A\3 € R. When 8 # —1,8# —2, then Ay = Ao = A3 = 0. Whenf8 # —1,5 = —2, then
AM=X=0,)3 € R.

But if o+ 2 # 203, then we have A1 = 0.

We assume that

A=[(§-1+BEB+1)+1],

B={(a=p)[(-2-B)(5 -1 -1 +3(5 -1-8)},

(3.44)

C={a[(B+2)(§ -1 +1+35(8-5+1)},

D=3B86-5+1)
We get
(3.45) } é g } = 4062 + 16028 + 16a* — 4035 — 3203 5% — 6808 — 400> + 160233 + 7302 5%+

98023 4 4102 — 2003% — 60032 — 6003 — 20a + 48 + 168° + 2452 + 166 + 4
Next if
A B

(3.46) ’ P ’ =0,
we get A\ = —%)\2.

By (2.89) in [12], we have

Lemma 3.28. Ricci symmetric tensors of (Ga,g,J) associated to Kobayashi-Nomizu connection are given by

N [+ (8= 20)(bs — b)) 0 0 .
(3.47) Ric es | = 0 —[14 (8 —2n)(bs + b3)] b1+ﬁ;a7b3 e |

es 0 a+bs ;bl —B 0

By (3.47) and (2.3), we have
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Lemma 3.29. For G4, the following equalities hold

1 —1 —1
(3.48) L¢, Ric (e1,e2) =0, Le, Ric (e1,e3) =0 ,Le, Ric (e2,e2) = =2 — a8 — 27),

1 —1 —1
(e2,e3) = —B[1 + a(B — 2n)] , L, Ric (es,e3) = af, Le,Ric (e1,e1) =0

L., Ric
—1 1 —1 1 —1

Le,Ric (e1,e2) =1+ §a(6 —2n), Le,Ric (e1,e3) = 04[5 + B(8 — 21)] ,L,Ric (e2,e3) =0,
1 —1 —1

L¢,Ric (es,e3) =0 ,L¢,Ric (e1,e1) =0, Le,Ric (e1,e2) =8 — %

—1 1 —1 —1
L., Ric (e1,e3) = —§aﬁ, Le,Ric (ez,e2) =0, L Ric (e2,e3) = 0.

By (3.48) and definition 2.3, we have

If the unimodular Lorentzian Lie group (Gy, g, J) admits left-invariant Ricci collineations associated to the Kobayashi-

Nomizu connection V!, then Lgf{%; =0,1=1,2,3and 5 =1,2,3, so

14+ 3a(B—2n)] A2+ (B — $)As =0,
1 1 _

o [§+B(8 —2m)] A2 — JapAs =0,

(3.49) [~2—a(B —2n)] M\ =0,

B+ a8 —2n)] A =0,

aﬁ)\l =0.
By (3.49), we get

Theorem 3.30. the unimodular Lorentzian Lie group (G4, g,J) admits left-invariant Ricci collineations associated to
Kobayashi-Nomizu connection V' if and only if
(1)04 = [3 = /\1 = /\2 = O,VR(C = <63>,

(2)a=A1=0,8#0,Vgc = (2 — %63>,

(3)a # 0,8 = 0,0 =1, Vge = (e1),

(4)a £ 0,8 # 0,7 =1,a = 45, Vac = (es + L5048 e),
B)a#£0,8£0,n=1,a=2,8=1, 2 = =3, Vrc = (€2 — e3),
(6)a £0,8# 0,n=—1,a =45, Vrc = (es + HE2+8 ),

(7)0[ # Ovﬂ# 0777: —1,@2 _25[3 = _17)\2 = >\37VR(C = <62—|—63>,

Proof 3.31. We analyze each one of these factors by separate and because by = 5 +n — f,b3 = 5 +n, if « = 0, then
Eq.(3.49) would reduce to

A2 + BAs =0,
(3.50)
A =0,
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Furthermore if 5 = 0, then we have A1 = Ay =0, and if B # 0, then we have A3 = —%/\2.

But if a # 0,8 =0, we get
(=2 4+ 2am) 1 =0,

(3.51) (1—am)Az — 2ads =0,

A2 =0.
as long as an = 1, then A\; € R, Vre = (e1), otherwise Ve is empty set.
Considering a # 0, 8 # 0, then naturely A1 = 0, and when n = 1, we have
[1+3a(B—2)] X2+ (B—%)As =0,
(3.52)
[L4+ B8 —2)] hs — 182 = 0,

We assume that

A= [1—!—204([3—2)],
B= ﬁ - %7

(3.53)
C=[4+5-2).
D= 15

We get

(3.54) & b |=Ga-me-v?

If B =1, we have (1 — 2a)(A2 + A3) = 0, 50 A2 + A3 equals to 0 with v = 2.
If a = 4B, we have (1+26% — 45) — A3 = 0, s0 \g = 2L — o®=$au8))
Now if n = —1, we have

[1+ia(B+2)] X+ (8- %)\ =0,
(3.55)
[3+B(B+2)] X2 — 38X =0,

We assume that

A
B = ﬁ - %7
(3.56)
C=[3+BB+2)],
D=-13
We get
(3.57) ‘ A B ‘zéa—ﬁ)(mlf

If B=—1, we have(l + ) (A2 — A3) = 0, s0 A2 + A3 equals to 0 with o = —2.
If a = 483, we have(l + 282 +48) — B3 = 0, s0 A3 = 1+25;+45)\2 = 0‘2"’280?‘%)\3.

In summary,the unimodular Lorentzian Lie group (Ga,g,J) admits left-invariant Ricci collineations

Kobayashi-Nomizu connection V! if and only if

(1)04 ==X =X=0,Vpc = <€3>7

associated to
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(2)a =M =0,8#0,Vrc = (e2 — 5e3),

3)a#£0,8=0,an=1,Vgc = (e1),

(4)a £ 0,8 # 0,7 =1,a = 45, Vac = (es + L5048 e),

B)a#£0,8£0,n=1,a=2,8=1, 2 = =3, Vrc = (e2 — e3),

(6)a £0,8# 0,n=—1,a =45, Vrc = (es + H52+8ey),

(7)0[ # Ovﬂ# 0,n=-la= =2,8=—1,A = A3, Vgc = <62—|—63>,

4. LEFT-INVARIANT RICCI COLLINEATIONS ASSOCIATED TO CANONICAL CONNECTIONS AND KOBAYASHI-NOMIZU
CONNECTIONS ON THREE-DIMENSIONAL NON-UNIMODULAR LORENTZIAN LIE GROUPS

4.1 Left-invariant Ricci collineation of G5

By [1], we have for G5, there exists a pseudo-orthonormal basis {e1, ea, €3} with e3 timelike such that the Lie algebra
of G5 satisfies

le1,e2] = 0, [e1,e3] = aer + Bea, [ea, e3] = yer +dez,a+0 # 0,y + 55 =0, .

By (3.5) in [12], we have

Lemma 4.1. Ricci symmetric tensors of (Gs,g,J) associated to canonical connection are given by

—0 €1 0 0 O €1
(4.1) Ric ea |=10 0 0 e
€3 0 0 O €3

—0
Lemma 4.2. For G5, the following equalities hold L¢Ric (i,j) =0, for i =1,2,3 and j =1,2,3.

If the unimodular Lorentzian Lie group (G5, g, J) admits left-invariant Ricci collineations associated to the canonical

—0
connection VY, then LeRic;; =0,i=1,2,3 and j = 1,2, 3, so there are no constraint conditions for Gs.
Naturelly, we get

Theorem 4.3. the unimodular Lorentzian Lie group (Gs,g,J) admits definitely left-invariant Ricci collineations associ-
ated to the canonical connection VO .

By [12], we have

Lemma 4.4. Ricci symmetric tensors of (Gs,g,J) associated to Kobayashi-Nomizu connection are given by

—1 €1 0 0 O €1
(4.2) Ric e2 | =100 0 €2
€3 0 0 O €3
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—1
Lemma 4.5. For Gs, the following equalities hold L¢Ric (i,7) =0,i=1,2,3 and j = 1,2,3.

If the unimodular Lorentzian Lie group (G5, g,J) admits left-invariant Ricci collineations associated to Kobayashi-

—1
Nomizu connection V!, then L¢Ric;; = 0,i=1,2,3 and j = 1,2, 3, so there are no constraint conditions for Gs.
Naturelly, we get

Theorem 4.6. the unimodular Lorentzian Lie group (Gs,g,J) admits definitely left-invariant Ricci collineations associ-
ated to Kobayashi-Nomizu connection V! .

4.2 Left-invariant Ricci collineation of Gg

By [1], we have for Gg, there exists a pseudo-orthonormal basis {e1, es, €3} with e3 timelike such that the Lie algebra
of Gg satisfies

[61762] = e +Be3a [61763] = ez +563, [62563] = 0,0[+ d # 0,0[’Y - Ba =0.

By (3.18) in [12], we have

Lemma 4.7. Ricci symmetric tensors of (Gg,g,J) associated to canonical connection are given by

__o [ € %ﬂ(ﬂ -v)—a? 0 0 el
(4.3) Ric | e | = 0 BB =) —a®  flya—36(8-7) e
es 0 s[=va+ 3608 = )] 0 €3

By (4.3) and (2.2)

Lemma 4.8. For Gg, the following equalities hold

—0 —0 ——0 1
(44) LelRiC (617 62) = 07 LelRiC (617 63) =0 7L61Ric (627 62) = 20(3 + CYB’Y - ﬁ(ﬁ - 7)(04 + 56)7
0

0

__ 1 1 — 1
LR ea,e0) = gs(Ba+)+ 30— )(a0 + 8+ 1), LT (easea) = [ + 500 ).

0 —0 1 1 1
Le,Ric (e1,e1) =0 ,Le,Ric (e1,e2) = —a® - iaﬁw + §ﬁ(6 —)(a+ 56),

—0 1 1 | —0
L82Ric (61563) = ga —ay + 56([3 - FY) aLezRiC (62763) = 07

——0 —0 —0
Le,Ric (e3,e3) =0 ,Le,Ric (e1,e1) =0, L, Ric

1 1 1
(e1,02) = —a®y = 5078 + 5(8 =) (87 + 50%)
=0 1 1
Le,Ric (e1,e3) = 57|~ + 55(5 — )

=0 =0
, LesRic (e2,e2) =0 ,Le Ric (eg,e3) =0.

By (4.4) and definition 2.3, we have

If the unimodular Lorentzian Lie group (G, g, J) is left-invariant Ricci collineations associated to the canonical con-
—0
nection V°, then LeRic;; =0,i=1,2,3 and j = 1,2,3, so
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[~a® = JaBy + 3B(8 = )(a + §0)] Ae + [~a?y = §ard + §(8 — 7)(B7 + 35%)] As =0,
sa[—ay+35(B—N] A+ 37 [+ 35(B—7)] As =0,

[20° + By — B(B —7)(a+ 36)] A =0,
[

Lay(3a+68) + L(y = B)(ad + 6% + B7)] A1 = 0,

v ey + 30(y — B)] A =0.
By solving (4.5), we get

Theorem 4.9. the unimodular Lorentzian Lie group (Ge, g, J) is left-invariant Ricci collineations associated to the canon-
ical connection VO if and only if

(1)y = 0,a(2a% — B2) = 0, Vge = (e1, €2, €3),

(2)y = 0,(20% — 5) #0,, Ve = (e3),

B)y#0,a=5=0,0#0, A1 = A3 =0,Vrc = (e2),
4)y#0,0#0,a+B=0,7+5=0,0 #0,\; =0, 3 = FXo, Vrc = (e2 + Fe3),

By #0,a#0,a=p,7y=109,0 # 0, \1 = 0,A\3 = =5, Vrc = (e2 — Fe3).

Proof 4.10. We analyze each one of these factors by separate ,if v # 0,0 = 0, we have
3B0(B =72 + (B =) (By + 57%)As = 0,6(8 = 1)As =0,

(4.6) BO(B—v)A =0,(8—7)(By+~v*)A =0,

6([3_7)A1 :O,a’y—ﬂ520,a+55£0
Notice that 6 # 0 for a4+ 6 # 0 and furthermore B =0 for ay — 86 =0 ,s0 Eq.(4.6) would reduce to
(By +37%)As =0,

(4.7) 5yAs = 0,

ﬁ’}/)\l =0.
Naturelly we get A1 = A3 =0, A2 € R.
If v #0,a # 0, we have 3 # 0,8 # 0, [ay + 26(y — B)] # 0, otherwise ay — 36 # 0.
Naturelly we have \y = 0 and we assume that

A=-a—Ltapy+ 1808 —7)(a+19),

B = —a%y— Iayd + 3(B —7)(By + 362),
(4.8)

We get

(19) & b= ptaraes - =



22

solving
ary — ﬁa = Oa

(4.10) ab - By =0,

we get a+ B =0,7+0=0, 3 =F 2 or a=3,7=0,A3=—F\a.
If v = 0, we naturely have 86 = 0, then we get

(2a3 —af?)A1 =0

(4.11) (2a® —aB?)Aa =0

When a(2a? — %) = 0, we get \; € R, X2 € R, \3 € R and when a(2a? — %) # 0, we get A\y = Ay = 0, A3 € R.

In summary,the unimodular Lorentzian Lie group (Gs, g, J) is left-invariant Ricci collineations associated to the canonical
connection V° if and only if

(1)y =0,a(20® = 3%) = 0, Vec = (e1, 2, €3),

(2)7 = 07 01(2042 - BQ) 3& Oa 7VR(C = <€3>5

(B)y#0,a=5=0,6 #0,\ = A3 =0, Vrc = (e2),

(4)7 # 0,0[#0,0[—Fﬂ = 0774—5: 0753& OaAl = 07)\3 = %AQ;VRC = <62 + %63>7

(B)y #0,a#0,a=f,7=109,0 #0,\; =0, 3 = —F X2, Vrc = (e2 — e3).

y (3.23) in [12], we have

Lemma 4.11. Ricci symmetric tensors of (Ge, g, J) associated to Kobayashi-Nomizu connection are given by

o €e1 —(012 + ﬂ’}/) 0 0 e1
(4.12) Ric er | = 0 —a? 0 €2
€3 0 0 0 €3

By(4.12) and (2.3), we have

Lemma 4.12. For Gg, the following equalities hold

1 —1 —1
(4.13) L¢,Ric (e1,e2) =0, L, Ric (61,63) =0,L,Ric (62,62) =2a°,

Lelf{\ig €2, €3 a?y, LelRIC (63,63) =0, Lelec (el,el) 0,

Le2RiC (61, 63) =0 Le2RiC (62, 63) = O,

—1
Le,Ric (es,es 0 LegRlc (e1,e1) =0, LegRlc (e1,e2) = —a?y,

(e1,€2) =
(2, €3)

—1
LezRiC (617 62)
(3, €3)
LGSR\igl (e1,e3) =0, LeSRlc (e2,e2) =0 LeSRlc (e2,e3) = 0.

By (4.13) and definition 2.3, we have
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If the unimodular Lorentzian Lie group (G, g,J) admits left-invariant Ricci collineations associated to Kobayashi-

Nomizu connection V!, then Lgf{%; =0, fori=1,2,3and j=1,2,3, so
addg +a?yl3 =0,
(4.14) 203\ =0,
042”y)\1 =0.

By solving (4.14), we get

Theorem 4.13. the unimodular Lorentzian Lie group (Gs,g,J) admits left-invariant Ricci collineations associated to
Kobayshi-Nomizu connection V' if and only if

()a = B=0,0 #0,Vgc = (e1, €2, €3),

(2)a # 0, X2 = =L A3, Vre = (—2ea + e3).

Proof 4.14. We analyze each one of these factors by separate. If a =0, we have 6 #0,8 =0 fora+ 9§ # 0,y — 56 =
0, and naturely \1 € R, s € R, A3 € R.
And if a # 0, we get

Oé)\g + ’7)\3 = 07
(4.15)
AL =0.

So Ay = —g/\g,VR(c = <—%€2 + €3>.

4.3 Left-invariant Ricci collineation of G,

By [1], we have for G, there exists a pseudo-orthonormal basis {e1, ea, €3} with e3 timelike such that the Lie algebra
of G7 satisfies

le1, e2] = —aer — Bea — Pes, [e1, e3] = aer + Bea + Pes, [e2,e3] = ver + dea + des, a+ 06 #0, ay = 0.

By (3.34) in [12], we have

Lemma 4.15. Ricci symmetric tensors of (G7,g,J) associated to canonical connection are given by

o[ & —(a? + 5 0 1o+ %) el
(4.16) Ric | e | = 0 —(a? + ZTV) —La®+21) s
es ~Lva+ ) 12+5) 0 es

By (4.16) and (2.2),we have

Lemma 4.16. For Gz, the following equalities hold
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(4.17) Le,Ric' (ex, 02) = —a® — 1957, Le,Ric (e1,e3) = 0® + 1607
L Ric' (62, 02) = ~B(0? + 7). L, Ric (e2,¢5) = la? + 3 57),
Lelﬁizo(eg, es) = —B(a® + %[37), Le;ffizo(el, e1) =203 + %[357
Le;ﬁizo(el,ez) = %[3(042 + %ﬂfy),Le2§iE0(el,eg) = %7(52 — B + 35(72 —a?)

Ric) 1 1 =0 1 1

Le,Ric (eg,€e3) = 55(042 + 5[37),L62R1c (e3,€3) = 5(572 a4l 5[37)

Le,Ric (e1,e1) = —2a° — 5[35%L63R1c (e1,e2) = —(y+ 5ﬂ>(a2 + 557) _ 1527
Ric Looo 1 =0 5 1

LesRic (e1,e3) = 5[3(04 + 557),L83Rlc (e2,62) = —6(a® + 5[37)
=0 1 1 1

LesRic (e2,e3) = —1572 + 55(042 + 5[37).

By (4.17) and definition 2.3, we have

If the unimodular Lorentzian Lie group (G7,g,J) admits left-invariant Ricci collineations associated to the canonical
—0
connection V?, then L¢Ric;; = 0,i=1,2,3 and j = 1,2,3, so
(203 + 1867) (A2 — A3) = 0,
(—=a® = 186 + 38(a” + 367 + [~(v + 38)(0® + 387) — 16°7] A3 = 0,
(08 + 3567 + [19(52 = 57) + 3B(+* — a*)] o + 15(0? + 389)hs =0,
(4.18)
B(a® + 367 +d(a® + 387)As =0,

B(a? + 387 + 20(a® + 387 A2 + [—3072 + 26(a® + 187)] As =0,

—B(a® + 367\ + (577 — a® = 387)A2 = 0.

By solving (4.18), we get

Theorem 4.17. the unimodular Lorentzian Lie group (G7,g,J) admits left-invariant Ricci collineations associated to the
canonical connection V° if and only if

(Dar=0,0# 0,7 #0,8=0,A = A3 =0, Vgc = (e1),
(2)a = 0,6 # 0,7 =0, Vrc = (e1, €2, €3),

(B)a#0,7y=06=0, A1 =0, 2 = A3, Vrc = (e2 + e3).
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Proof 4.18. We analyze each one of these factors by separate. If o =0, we have § # 0, for a + 3§ # 0,y =0, and
By(de = As) = 0,

BoYAL — B2y e + [B7(27 + ) 4+ 6%9] A3 = 0,

BoYAL + [7(8% — B%) + 2879%] A2 + B%yA3 =0,

(4.19)
B2yA1 + ByoAs = 0,

26291 + ByoAe + (Byd — 67%)As = 0,

B2y + (879 — 07%)A2 = 0.
Obviously \1 € R, A2 € R, A3 € R with v =0, and when B # 0, we have Ay = A\3. Then we have

BOAL + (6% 4+ 2B7)A2 =0,
(4.20) B2 + B6A2 = 0,

B2\ + (86 — 6v) 2 = 0.

Soweget)q:)\zzz\gz().
when v # 0, Eq.(4.19)would easily reduce to

B()\Q - )‘3) = 07

BoX — B*As + [B(2v + B) + 6% A3 =0,
BoA + (0% = B% +267)da + X3 = 0,
(4.21)
B2A + BoA3 =0,

2[‘32/\1 + 55/\2 + (ﬂ(g - 5’}/)/\3 = 0,

B2\ + (B3 — 67)e = 0.

simplify this equation, we still get Ao = A3 =0, \; € R with 8 = 0.
If o # 0, then we have v = 0. And we get

043(>\2 - /\3) = 0,
(422) 043>\1 + %042[3()\3 - /\2) = 0,

B+ 06Xy = 0.

Because o # 0, s0 we get Ao = A3. Put Ay = A3 into a3y + %(/\3 — A2) = 0, we have A1 = 0. So another equation would
reduce to 0o = 0, and then 6 = 0.

By (3.42) in [12], we have

Lemma 4.19. Ricci symmetric tensors of (Gr7,g,J) associated to Kobayashi-Nomizu connection are given by

[ & —a? (B8 — ap) —B(a+9) e
(4.23) Ric e2 | = 3(B6—aB) —(a*+B2+8y) —3(By+ad+26%) e2 |.
es Bla+6)  5(By+ad+26%) 0
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By (4.23) and (2.3),we have

Lemma 4.20. For G7, the following equalities hold

— 1 — 1
(4.24) LelRicl(el,eg) =-a’+ 562(35 + a), LelRicl(el, e3) = o’ — §ﬁ2(35 + ),

—1 2 2 2 =1 3 2 1 2
LelRlc (62762) 26(2(16—304 _26 _6’7—’_26 )7L61Rlc (62763) 26(5(1 + 5(164—6 +B’7)7

1(637 63) = —ﬁ(20¢2 + 3ad + ﬁ/y + 252)7L62f{\igl(617 61) = 2(12 - ﬁ2(35 + CY),

L., Ric
Rt 1 2 2 2 e 2 Do 1
Le,Ric (e1,e2) = 5[3(304 +20% 4 By — 226 — 26%), L, Ric (e1,e3) = —B(a” + 55 + 26 + 5[37),

Lo,Ric (es,e3) = 6(a® + 3% — 62 — %aa),Le;}ﬁEl (e3,e3) = —6(3B7 + ab + 262),

1

— —~1 1
Le,Ric (e1,e1) = —2a® + 8%(35 + a), Le,Ric (e, e2) = 55(552 —3a% — 232 — By + 3a9),

1

Le,Ric (eq,e3) = %[3(2@2 4306 + By + 26%), Lo, Ric. (ea, 2) = 6(282 + a6 — 202 — 282),

1

Le;ffiz (ea,€3) = %5(3[37 + ad + 26%).

By (4.24) and definition 2.3, we have
If the unimodular Lorentzian Lie group (G7, g, J) is left-invariant Ricci collineations associated to the Kobayashi-Nomizu

connection V!, then Lgf{\igij =0,1=1,2,3and j =1,2,3, so

202 — B2(30 + )] Az + [—20% + B2(30 + )] A3 =0,

[—a® + 3B82(30 + )] A1 + 38(3a® + 282 4 By — 206 — 26%) X2 + $8(56% — 3a? — 282 — By + 3ad)As =0,
[0 = 38236 + )] A1 — B(a® + 36% + 206 + 387) A2 + 58(20% + 3ad + By + 26%) A3 = 0,

12 B(206 — 32 — 282 — By + 262) M1 + 6(252 + ab — 202 — 282)\g = 0,

B(3a? + Fad + B2+ By + 8(a? + 5% — 62 — Lay) A + 26(3B7 + ad + 26%) A3 = 0,

B(2a2 4 3ad + By + 262) A1 + 5(3By + ad 4 26%) A2 = 0.

By solving (4.25), we get

Theorem 4.21. the unimodular Lorentzian Lie group (Gr,g,J) is left-invariant Ricci collineations associated to the
Kobayashi-Nomizu connection V' if and only if

(Wa=0,6#0,8%0,7=0,X =3 =—2\,Vpc = (e1 — Les — Zey),

(2)a=0,0#0,8=0, 2 = A3 =0,Vgc = (e1),

(3)a#0,7=0,6 =0,A\1 =0, 2 = A3, Vrc = (e2 + €3).
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Proof 4.22. We analyze each one of these factors by separate,because vy = 0, and if « = 0, we have § # 0 for
a+ 90 #0, and Eq.(4.25) would reduce to
ﬂz()\2 - )\3) = Oa

38260 + 182828y — 26%) Ao + B(36% — B2 — L1By)A; =0,
w26) 38201 + B(56% + L1B7)A2 — B(387 + 62)As = 0,

4.26
B(=282 — By +26%)A1 + (262 — 28%)\3 =0,

B(B% + B7)A + 6(82 — 6%) A2 + 6(387 + 6%) A3 = 0,

B(By + 28%)A1 + 6(38y + 25%) A2 = 0.
If B # 0, we have Ay = A3. Put Ao = A3 into Fq.(4.26), we get
{ BA\ 4+ X3 =0,

’7)\1 =0.
So~v=0, —%)\1 = Ao = A3, otherwise v # 0, A1 = Ao = A3 = 0.
If 8 =0, then we get

(4.27)

53 X3 =0,
(4.28) 53Xy =0,
53 (A3 — M) = 0.

So we have Ay = A3 = 0, Ve = (e1).

If « #0,v =0, we get

[2a% — B%(30 + )] (A2 — A3) =0,

[—2a? + B2(36 + )] A1 + B(3a? 4+ 28% — 2a0 — 6%) A2 + B(56% — 362 — 282 + 3ad) A3 =0,
(4.29) [—202 + B2(36 + a)| A1 + B(20% 4 4ad + 502) X2 — (202 + 3ad + 26%)Ag = 0,

B(3a? + Fabd + BHA1 + 6(a? + B2 — 6% — Sad)da + 6(3a0 + 6%) A3 =0,

B(202 4+ 3ad + 252)A\1 + d(ad + 262) A = 0.
If 202 — B%(36 + ) # 0, then we have Ay = 3. Put Ay = A3 into other equations, we get
[—202 + B2(36 4+ a)] A1 + B(36 + 3ad) A3 =0,

(4.30) B(502 + Fad + BH)A1 4+ 0(a? + ) A3 =0,

B(2a2 4 3ad + 26%)\1 + §(ad + 25%) A3 = 0.
When § = 0, so 2a2 — 32 # 0. Put this into other equations, Eq.(4.30)would reduce to Ay = 0, so Vpc = (ez + e3).
When § # 0, we get Ay = Ao = A3 = 0.
If 202 — B%(36 + o) = 0, B # 0, otherwise o = 0 in error.
Furthermore if § = 0, we get 2a® — 32 = 0, \g. Put these into Eq.(4.30) , we get Ay = \3.
If 6 # 0, then we have 6 = % We assume that
ai1 = 0,a12 = —(a? + 352 +2ad),a13 = a® + %0«5 + 52

(431) a1 = ga2 + %045 + BQ, ag9 = 5(042 + [32 - 52 — %O&(S), ag3 = 5(%0&5 + 52)

a3l = B(2a% + 3ad + 262%), aza = 6(ad + 26%),az3 = 0.
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We get

ai1 a1z a3

(4.32) az  az az | #0,

asz1 az2 ass

So we have \1 = Ao = A3 = 0.
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