ON A FAMILY OF 2-AUTOMATIC SEQUENCES DERIVED FROM ULTIMATELY PERIODIC SEQUENCES AND GENERATING ALGEBRAIC CONTINUED FRACTIONS IN $\mathbb{F}_2((1/t))$

(Suites 2-automatiques à colone vertébrale ultimement périodique)

by A. Lasjaunias

Warning:This note is not intended to be officially published. The matter exposed here grew from numerous exchanges during the past two months with Yining Hu (at a very and too large distance !). My aim is to report in a first draft, and in a very private and personal way, on a curious mathematical structure.

We consider a large family $\mathcal F$ of infinite sequences over a finite alphabet $A = \{a_1, a_2, ..., a_k\}$. This family includes a celebrated example of a 2-automatic sequence on the set $\{a, b\}$, called Period-doubling sequence, which has been studied in a previous article [1].

Each sequence s in $\mathcal F$ is built in the following way, from another sequence $\varepsilon = (\varepsilon_i)_{i \geq 0}$ over $\{a_1, a_2, ..., a_k\}$, this last one being ultimately periodic.

Starting from the empty word W_0 , we consider the sequence of words $(W_n)_{n\geq 0}$ such that for $n\geq 0$ we have $W_{n+1} = W_n, \varepsilon_n, W_n$ (note the coma is for concatenation and it will be omitted when it is suitable). Hence, we have $W_1 = \varepsilon_0, W_2 = \varepsilon_0, \varepsilon_1, \varepsilon_0$ etc...Observe by construction that W_{n+1} starts by W_n and therefore we may consider W_∞ the inductive limit of these words (i.e. the word begining by W_n for all $n \geq 0$). Note that, for all $n \geq 1$, W_n is a palindrome, centered in ε_n , of length $2^n - 1$.

This W_{∞} represents the sequence s, which we may denote by $s(\epsilon)$. Hence, we have :

 $\mathbf{s}(\varepsilon) = \varepsilon_0 \varepsilon_1 \varepsilon_0 \varepsilon_2 \varepsilon_0 \varepsilon_1 \varepsilon_0 \varepsilon_3 \varepsilon_0 \varepsilon_1 \varepsilon_0 \varepsilon_2 \varepsilon_0 \ldots$

In this family F, each sequence $s = (s_i)_{i\geq 0}$, over $\{a_1, a_2, ..., a_k\},\$ generates an infinite continued fraction α in $\mathbb{F}_2((1/t))$, denoted $CF(\mathbf{s})$, by replacing the letters a_i by non-constant polynomials in $\mathbb{F}_2[t]$ (this choice is arbitrary, hence there is a $CF(s)$ for each choice but it is considered as unique in the sequel). For basic information on continued fractions, particularly in power series fields, the reader is refered to [2]. Hence we will write :

$$
\alpha = CF(\mathbf{s}) = [s_0, s_1, ..., s_n, ...]
$$

where the s_i are the partial quotients in $\mathbb{F}_2[t]$. We recall that the sequence of convergents to α is denoted $(x_n/y_n)_{n\geq 1}$. For $n \geq 1$, we have $x_n/y_n =$ $[s_0, ..., s_{n-1}] = s_0 + 1/(s_1 + 1/....)$, hence $x_1 = s_0$, $y_1 = 1$ and $x_2 = s_0s_1 + 1$, $y_2 = s_1$ etc...

To be more precise about periodic sequences, we introduce the following definition.

Definition. Let $l \geq 0$ and $d \geq 1$ be two integers. An ultimately periodic sequence ε is called of type (l, d) if :

1) $l = 0$ and ε is purely periodic, with period of length d, this being denoted by $\varepsilon = (\varepsilon_0, \varepsilon_1, ..., \varepsilon_{d-1})^{\infty}$.

2) $l > 0$ and ε is ultimately periodic, with a prefix of length l and a period of length d, this being denoted by $\varepsilon = \varepsilon_0, \varepsilon_1, ..., \varepsilon_{l-1}, (\varepsilon_l, \varepsilon_{l+1}, ..., \varepsilon_{l+d-1})^{\infty}$. Here all the ε_i 's are in A (assuming that $k \geq l + d$ to allow different values to the terms of the sequence ε).

Let us illustrate the construction of $s(\epsilon)$ in two basic cases : 1) $\varepsilon = a, b, (c)^\infty$ then

$$
\mathbf{s}(\varepsilon) = a, b, a, c, a, b, a, c, \dots = (abac)^{\infty}
$$

Note that here ε is ultimately constant (of type $(3,1)$) and $s(\varepsilon)$ is periodic. Consequently a basic property on continued fractions shows that $\alpha = CF(\mathbf{s}(\varepsilon))$ is quadratic over $\mathbb{F}_2(t)$.

2) $\varepsilon = (a, b)^\infty$ then

 $s(\epsilon) = abaaabababaabaaba....$

Here ε is of type $(0, 2)$ and $s(\varepsilon)$ is the celebrated sequence mentionned above and called Period-doubling. It has been proved that $\alpha = CF(\mathbf{s}(\epsilon))$ satisfies an algebraic equation of degree 4 with coefficients in $\mathbb{F}_2[t]$ (see [1]).

As it happens in these two simple cases, we are going to prove in the following theorem that all sequences $s(\varepsilon)$ in F generate a continued fraction α which is algebraic over $\mathbb{F}_2(t)$. During the proof, the algebraic equation satisfied by α will appear explicitely.

Let ε be a sequence of type (l, d) then we denote by $\mathbb{F}_2(\varepsilon)$ the subfield of $\mathbb{F}_2(t)$ generated by the vector $(\varepsilon_0, ..., \varepsilon_{l+d-1})$ whose $l+d$ coordinates belong to $\mathbb{F}_2[t]$.

Theorem. Let $l \geq 0$ and $d \geq 1$ be integers. Let ϵ be an ultimately periodic sequence of type (l, d) . Let $s(\epsilon)$ the sequence in $\mathbb{F}_2[t]$ and $\alpha =$

 $CF(\mathbf{s}(\varepsilon))$ the continued fraction in $\mathbb{F}_2((1/t))$, both be defined as above. Then there is a polynomial P in $\mathbb{F}_2(\varepsilon)[x]$ such that $\deg_x(P) = 2^d$ and $P(\alpha) = 0$. To be more precise, setting $\beta = 1/\alpha$, there are $d+1$ elements in $\mathbb{F}_2(\varepsilon)$, A and B_k for $0 \leq k \leq d-1$, such that

$$
\beta^{2^d} = A + \sum_{0 \le k \le d-1} B_k \beta^{2^k}.
$$

Note that the case $d = 1$ is trivial as we saw in case 1) above. Indeed, in that case ε is ultimately constant. Hence $s(\varepsilon) = W, \varepsilon_l, W, \varepsilon_l, ... = (W, \varepsilon_l)^{\infty}$ where W is a finite (or empty) word and therefore α is quadratic. In the sequel, we may assume that $d \geq 2$.

The proof of the Theorem lies on the existence of a particular subsequence of convergents to α . These particular convergents are linked to the structure of the word $s(\epsilon)$. Indeed, it is natural to consider the truncation of the continued fraction α containing the partial quotients from s_0 up to s_{2n-2} for $n \geq 1$, thus corresponding to the finite word W_n , of length $2^n - 1$, mentionned above. Hence, for $n \geq 1$, we set $u_n/v_n = [s_0, ..., s_{2ⁿ-2}]$. We have

$$
(u_1, v_1) = (s_0, 1)
$$
 and $(u_2, v_2) = (s_0s_1s_2 + s_0 + s_2, s_1s_2 + 1).$

The first step of the proof was introduced in our previous work concerning the particular case of the Period-doubling sequence. In [1,p. 4 Lemma 3.2.], using basic properties on continuants, we could prove that the pair (u_n, v_n) satisfies a simple recurrence relation.

Indeed, for $n \geq 1$, we have

$$
(R) \t u_{n+1} = \varepsilon_n u_n^2 \quad \text{and} \quad v_{n+1} = \varepsilon_n u_n v_n + 1,
$$

with $(u_1, v_1) = (\varepsilon_0, 1)$. From (R) we get immediately

$$
v_{n+1}/u_{n+1} = v_n/u_n + 1/u_{n+1}
$$

and therefore we obtain

$$
v_n/u_n = \sum_{1 \le i \le n} 1/u_i \quad \text{ for } \quad n \ge 1.
$$

Let us consider $\beta = 1/\alpha$. Then $\beta = \lim_n (v_n/u_n)$ and consequently we have

$$
\beta = \sum_{n\geq 1} 1/u_n. \qquad eq(0)
$$

From $eq(0)$, we will show that β is algebraic in the following way. By successive elevation to the power 2, for $0 \leq i \leq d$, we can define inductively $d+1$ sequences, $(\varepsilon(n,i))_{n\geq0}$, as follows:

$$
\varepsilon(n,0) = 1
$$
 and $\varepsilon(n,i+1) = \varepsilon(n,i)^2 \varepsilon_{n+i}$ for $0 \le i \le d-1$.

Note that, for $n \geq 0$, we have $\varepsilon(n,1) = \varepsilon_n$. Then we observe that, by elevating $eq(0)$ to the power 2, we get

$$
\beta^2 = \sum_{n\geq 1} 1/u_n^2 = \sum_{n\geq 1} \varepsilon_n/u_{n+1} = \sum_{n\geq 1} \varepsilon(n,1)/u_{n+1}. \qquad eq(1)
$$

Moreover, by successive elevation to the power 2, starting from $eq(0)$ and introducing the sequences $(\varepsilon(n,i))_{n>0}$, we also get, for $0 \le i \le d$,

$$
\beta^{2^i} = \sum_{n\geq 1} \varepsilon(n,i)/u_{n+i}. \qquad eq(i)
$$

Remark. For all $1 \leq i \leq d$ the sequence $(\varepsilon(n, i))_{n \geq 0}$ is ultimately periodic of type (l, d) .

Proof by induction. This is true for $i = 1$. If $(\varepsilon(n, i))_{n>0}$ is a periodic sequence of type (l, d) , then we have, for $n \geq l$, $\varepsilon(n + d, i) = \varepsilon(n, i)$ and consequently $\varepsilon(n+d, i+1) = \varepsilon(n+d, i)^2 \varepsilon_{n+d+i} = \varepsilon(n, i)^2 \varepsilon_{n+i} = \varepsilon(n, i+1)$.

Now we introduce a partition of the set of positive integers into $d+1$ subsets: first the finite set $F = \{k \mid 1 \leq k \leq l+d-1\}$ and the d subsets

$$
E_j = \{ md + l + j \mid m \ge 1 \} \text{ for } 0 \le j \le d - 1.
$$

$$
\mathbb{N}^* = \bigcup_{j=0}^{d-1} E_j \bigcup F.
$$

Linked to this partition, we introduce d elements, β_j for $0 \le j \le d-1$, in $\mathbb{F}_2((1/t)),$ defined by

$$
\beta_j = \sum_{n \in E_j} 1/u_n. \qquad (B)
$$

Combining eq(0) and (B), and defining $z_0 \in \mathbb{F}_2(\varepsilon)$ by $\sum_{k \in F} 1/u_k$, we can write,

$$
\beta = z_0 + \sum_{0 \le j \le d-1} \sum_{n \in E_j} 1/u_n = z_0 + \sum_{0 \le j \le d-1} \beta_j.
$$
 Eq(0)

Using the above remark, concerning the periodicity of the sequences $(\varepsilon(n, i))_{n>0}$, for $0 \leq j \leq d-1$ and for $1 \leq i \leq d$, we can write,

$$
\varepsilon(d+l+j-i,i)\beta_j = \sum_{m\geq 1} \varepsilon(md+l+j-i,i)/u_{md+l+j}
$$

$$
\varepsilon(d+l+j-i,i)\beta_j = \sum_{n+i\in E_j} \varepsilon(n,i)/u_{n+i}.
$$

Consequently, we observe that there exists $z_i \in \mathbb{F}_2(\varepsilon)$, a finite sum of the first terms in the series appearing in eq(i), such that, for $1 \leq i \leq d$, eq(i) becomes the following equality

$$
\beta^{2^i} = z_i + \sum_{0 \le j \le d-1} \varepsilon (d + l + j - i, i)\beta_j.
$$
 Eq(i)

(Note that these quantities z_i have a different form depending on the triplet (l, d, i) . See the three examples below.)

Now, let us introduce the following square matrix of order d :

$$
M(d) = (m_{i,j})_{0 \le i,j \le d-1} \quad \text{where} \quad m_{i,j} = \varepsilon(d+l+j-i,i).
$$

Introducing two column vectors B and C , we observe that the d equations $Eq(i)$, for $0 \leq i \leq d-1$, can be summed up introducing the following linear system (S) : $M(d).B = C$, where

$$
B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{d-1} \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} \beta + z_0 \\ \beta^2 + z_1 \\ \vdots \\ \beta^{2^{d-1}} + z_{d-1} \end{bmatrix}.
$$

We introduce the determinant, $\Delta(d)$, of the matrix $M(d)$ and also the determinant $\Delta(j, d)$ obtained from $\Delta(d)$ by replacing the column vector of rank j by the column vector C . Hence, applying Cramer's rule for solving the linear system (S) , we get

$$
\beta_j = \Delta(j, d) / \Delta(d) \quad \text{for} \quad 0 \le j \le d - 1.
$$

Finally, reporting these values for β_j in $Eq(d)$, we obtain

$$
\beta^{2^d} = z_d + \left(\sum_{0 \le j \le d-1} \varepsilon(l+j,d) \Delta(j,d) \right) / \Delta(d). \quad Eq(*)
$$

We observe that $\Delta(d)$ belongs to $\mathbb{F}_2(\varepsilon)$. While, $\Delta(j, d)$ belongs to $\mathbb{F}_2(\varepsilon)[\beta]$. Indeed, developping the determinant $\Delta(j, d)$ along the column of rank j, we get $\Delta(j, d) = c_j + \sum_{0 \le k \le d-1} b_{k,j} \beta^{2^k}$. Consequently $Eq(*)$ can be witten as expected (with coefficients in $\mathbb{F}_2(\varepsilon)$) :

$$
\beta^{2^d} = A + \sum_{0 \le k \le d-1} B_k \beta^{2^k}. \qquad Eq(**)
$$

So the proof of the theorem is complete.

We present, here below, three examples. In order to avoid unnecessary complications with the subscripts, we use (a, b, c) for the letters $(\varepsilon_0, \varepsilon_1, \varepsilon_2).$

Example 1: Type (0,2). Period-Doubling sequence . Let us consider the case 2, mentioned above, where

$$
\varepsilon = (a, b)^{\infty}
$$
 and $\beta = 1/CF(\mathbf{s}(\varepsilon)).$

We have $(\varepsilon_0, \varepsilon_1, \varepsilon_2) = (a, b, a)$ and $(z_0, z_1, z_2) = (1/a, 0, 1)$.

$$
\Delta(2) = \begin{vmatrix} 1 & 1 \\ \varepsilon_1 & \varepsilon_2 \end{vmatrix} = a + b,
$$

$$
\Delta(0,2) = \begin{vmatrix} \beta + z_0 & 1 \\ \beta^2 + z_1 & \varepsilon_2 \end{vmatrix} \text{ and } \Delta(1,2) = \begin{vmatrix} 1 & \beta + z_0 \\ \varepsilon_1 & \beta^2 + z_1 \end{vmatrix}.
$$

Hence we get

$$
\Delta(0,2) = \beta^2 + a\beta + 1
$$
 and $\Delta(1,2) = \beta^2 + b\beta + b/a$.

Since $\varepsilon(0, 2) = \varepsilon_0^2 \varepsilon_1 = a^2 b$ and $\varepsilon(1, 2) = \varepsilon_1^2 \varepsilon_2 = b^2 a$, $Eq(*)$ becomes

$$
(a+b)\beta^4 = a+b + (\beta^2 + a\beta + 1)a^2b + (\beta^2 + b\beta + b/a)b^2a.
$$

From this, we get (as expected, see $[1, p 2, Th 1.1]$):

$$
\beta^4 = 1 + b(a+b) + ab(a+b)\beta + ab\beta^2.
$$
 Eq(**)

Example 2: Type $(1,2)$. Here we have :

$$
\varepsilon = a, (b, c)^{\infty}
$$
 and $\beta = 1/CF(\mathbf{s}(\varepsilon)).$

We have $(\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3) = (a, b, c, b)$ and $(z_0, z_1, z_2) = (1/a + 1/ba^2, 1/a^2, 0)$.

$$
\Delta(2) = \begin{vmatrix} 1 & 1 \\ \varepsilon_2 & \varepsilon_3 \end{vmatrix} = b + c
$$

$$
\Delta(0,2) = \begin{vmatrix} \beta + z_0 & 1 \\ \beta^2 + z_1 & \varepsilon_3 \end{vmatrix} \quad \text{and} \quad \Delta(1,2) = \begin{vmatrix} 1 & \beta + z_0 \\ \varepsilon_2 & \beta^2 + z_1 \end{vmatrix}.
$$

Hence we get

$$
\Delta(0,2) = \beta^2 + b\beta + b/a
$$
 and $\Delta(1,2) = \beta^2 + c\beta + 1/a^2 + c/a + c/ba^2$.

We have $\varepsilon(1,2) = \varepsilon_1^2 \varepsilon_2$ and $\varepsilon(2,2) = \varepsilon_2^2 \varepsilon_3$. Consequently, $Eq(*)$ becomes

$$
(b + c)\beta^{4} = (\beta^{2} + b\beta + b/a)b^{2}c + (\beta^{2} + c\beta + 1/a^{2} + c/a + c/ba^{2})c^{2}b.
$$

From this, we get :

$$
\beta^4 = bc(b+c)/a + c^2/a^2 + bc(b+c)\beta + bc\beta^2.
$$
 Eq(**)

(Note that changing c into a, we have $\varepsilon = a,(b,c)^\infty = a,(b,a)^\infty = (a,b)^\infty$ and we regain the previous example and the same algebraic equation for β as above.)

Example 3: Type $(0,3)$. Here we have :

$$
\varepsilon = (a, b, c)^{\infty}
$$
 and $\beta = 1/CF(\mathbf{s}(\varepsilon)).$

We have $(\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4) = (a, b, c, a, b)$ and

$$
(z_0, z_1, z_2, z_3) = (1/a + 1/ba^2, 1/a^2, 0, 1).
$$

$$
\Delta(3) = \begin{vmatrix} 1 & 1 & 1 \ \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \\ \varepsilon_1^2 \varepsilon_2 & \varepsilon_2^2 \varepsilon_3 & \varepsilon_3^2 \varepsilon_4 \end{vmatrix} = ba^2(a+c) + ac^2(b+c) + cb^2(a+b)
$$

$$
\Delta(0,3) = \begin{vmatrix} \beta + z_0 & 1 & 1 \\ \beta^2 + z_1 & a & b \\ \beta^4 + z_2 & c^2 a & a^2 b \end{vmatrix} = (a+b)\beta^4 + (a^2b + ac^2)\beta^2 + ab(a^2 + c^2)\beta + \delta_0
$$

$$
\Delta(1,3) = \begin{vmatrix} 1 & \beta + z_0 & 1 \\ c & \beta^2 + z_1 & b \\ b^2c & \beta^4 + z_2 & a^2b \end{vmatrix} = (a+b)\beta^4 + (a^2b + ac^2)\beta^2 + ab(a^2 + c^2)\beta + \delta_1
$$

$$
\Delta(2,3) = \begin{vmatrix} 1 & 1 & \beta + z_0 \\ c & a & \beta^2 + z_1 \\ b^2c & c^2a & \beta^4 + z_2 \end{vmatrix} = (a+c)\beta^4 + (ac^2 + b^2c)\beta^2 + ac(c^2 + b^2)\beta + \delta_2
$$

together with

$$
\delta_0 = ab(a^2 + c^2)z_0 + (a^2b + c^2a)z_1 + (a+b)z_2
$$

\n
$$
\delta_1 = cb(a^2 + b^2) + (a^2b + b^2c)z_1 + (a+b)z_2
$$

\n
$$
\delta_2 = ac(c^2 + b^2) + (c^2a + b^2c)z_1 + (b+c)z_2.
$$

Here, $Eq(*)$ becomes

$$
\beta^8 = z_3 + \left(\sum_{0 \le j \le 2} \varepsilon(j, 3) \Delta(j, 3)\right) / \Delta(3)
$$

and we also have

$$
\varepsilon(0,3) = a^4b^2c
$$
, $\varepsilon(1,3) = b^4c^2a$ and $\varepsilon(2,3) = c^4a^2b$.

Finally combining these values and the four values for the determinants given above, from $Eq(*)$, we get the desired outcome:

$$
\beta^8 = A + \sum_{0 \le k \le 2} B_k \beta^{2^k}. \qquad Eq(**)
$$

At last, remarkably enough, we can check that the four coefficients in this last equation do not only belong to $\mathbb{F}_2(\varepsilon)$ but are indeed elements in $F_2[t]$ and we have

$$
A = a^{3}b^{2}c + a^{2}b^{2}c^{2} + ab^{3}c^{2} + b^{4}c^{2} + ab^{2}c^{3} + abc^{4} + a^{2}bc + ab^{2}c + abc^{2} + c^{4} + 1
$$

$$
B_{0} = a^{4}b2c + a^{3}b^{2}c^{2} + a^{2}b^{3}c^{2} + ab^{4}c^{2} + a^{2}b^{2}c^{3} + a^{2}bc^{4}
$$

$$
B_{1} = a^{3}b^{2}c + a^{2}b^{2}c^{2} + ab^{3}c^{2} + a^{2}bc^{3}
$$

and

$$
B_2 = a^2bc + ab^2c + abc^2.
$$

An important and last point need to be discussed. Indeed, the reader will probably ask the following question : are the sequences, belonging to the family \mathcal{F} , 2-automatic as it is indicated in the title of this note? There are different ways to characterize automatic sequences. A direct way is to consider the letters of the infinite world as elements in a finite field \mathbb{F}_q of characteristic p. If a power series γ in $\mathbb{F}_q((1/t))$ is algebraic over $\mathbb{F}_q(t)$, then the sequence of its coefficients is p-automatic (Christol's theorem).

Concerning the sequences $s(\epsilon)$ described above, in the general case the automaticity will result from a conjecture. First we assume that the $l + d$ elements defining the sequence are in a finite field \mathbb{F}_q of characteristic 2 with $q = 2^s \geq l + d$, and consequently we may consider the power series $\gamma \in \mathbb{F}_q((1/t))$ associated to this sequence. Beginning by the trivial case $d = 1$, we have observed that $s(\varepsilon)$ is utimately periodic and therefore pautomatic for all p. Note that the power series γ , associated to it, is rational and consequently it satisfies a polynomial of degree 1 over $\mathbb{F}_q(t)$. We make the following conjecture :

Conjecture. Let $l > 0$ and $d > 2$ be integers. Let ϵ be an ultimately periodic sequence of type (l, d) . Let $s(\epsilon) = (s_n)_{n \geq 0}$ be the sequence defined above. Then there exists a finite field \mathbb{F}_q of characteristic 2, containing $l + d$ elements identified with the terms of this sequence so that we may consider $\gamma = \sum_{n\geq 0} s_n t^{-n}$ in $\mathbb{F}_q((1/t))$ and there is a polynomial P in $\mathbb{F}_q(t)[x]$ such that $\deg_x^{-}(P) = 2^{d-1}$ and $P(\gamma) = 0$.

In the simpler case $(l, d) = (0, 2)$ and $\varepsilon = (a, b)^\infty$, already considered several times above, the resulting sequence $s(\epsilon)$ (called Period-doubling) is well known to be 2-automatic. More precisely, the above conjecture is true. Indeed, if we identify the pair (a, b) with the pair $(0, 1)$ in \mathbb{F}_2 then $\gamma = \sum_{n\geq 0} s_n t^{-n} \in \mathbb{F}_2((1/t))$ satisfies $\gamma^2 + t\gamma = t^2/(t^2 + 1)$.

References

- [1] Y. Hu and A. Lasjaunias. Period-doubling continued fractions are algebraic in characteristic 2. [arXiv:2204.01068,](http://arxiv.org/abs/2204.01068) 3 Apr 2022. (to appear in Annales de l'Institut Fourier)
- [2] A. Lasjaunias. Continued fractions. [arXiv:1711.11276,](http://arxiv.org/abs/1711.11276) 30 Nov 2017.

September 2022.