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ON A FAMILY OF 2-AUTOMATIC SEQUENCES
DERIVED FROM ULTIMATELY PERIODIC SEQUENCES AND
GENERATING ALGEBRAIC CONTINUED FRACTIONS IN Fy((1/t))
(Suites 2-automatiques & colone vertébrale ultimement périodique)

by A. Lasjaunias

Warning:This note is not intended to be officially published. The matter
exposed here grew from numerous exchanges during the past two months
with Yining Hu (at a very and too large distance !). My aim is to report in a
first draft, and in a very private and personal way, on a curious mathematical
structure.

We consider a large family F of infinite sequences over a finite al-
phabet A = {ai,a2,...,a;}. This family includes a celebrated example of
a 2-automatic sequence on the set {a,b}, called Period-doubling sequence,
which has been studied in a previous article [1].

Each sequence s in F is built in the following way, from another
sequence € = (g;);>0 over {aj,as, ..., a}, this last one being ultimately pe-
riodic.

Starting from the empty word Wy, we consider the sequence of words
(Wp)n>0 such that for n > 0 we have W, 41 = Wy, e, W), (note the coma is
for concatenation and it will be omitted when it is suitable). Hence, we have
W1 = eg, Wa = €q,€1, €9 etc...Observe by construction that W, 1 starts by
W,, and therefore we may consider W, the inductive limit of these words
(i.e. the word begining by W), for all n > 0). Note that, for all n > 1, W,
is a palindrome, centered in €, of length 2" — 1.

This W4 represents the sequence s, which we may denote by s(&).
Hence, we have :

S(€) = €0E1€0€2E0E1E0E3E0E1E0E2E0- -

In this family F, each sequence s = (s;)i>0 , over {ai,as,...,ar},
generates an infinite continued fraction a in Fy((1/t)), denoted C'F(s), by
replacing the letters a; by non-constant polynomials in Fy[¢] (this choice is
arbitrary, hence there is a C'F'(s) for each choice but it is considered as unique
in the sequel). For basic information on continued fractions, particularly in
power series fields, the reader is refered to [2]. Hence we will write :
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= CF(8) = [80, 81, Sy -]

where the s; are the partial quotients in Fa[t]. We recall that the sequence
of convergents to « is denoted (z,/yn)n>1. For n > 1, we have z,/y, =
[0y Sn—1] = so+1/(s1 +1/....) , hence 1 = sp, y1 = 1 and x3 = sps1 + 1,
Yo = S1 ete...

To be more precise about periodic sequences, we introduce the fol-
lowing definition.

Definition. Let ! > 0 and d > 1 be two integers. An ultimately
periodic sequence € is called of type (I,d) if :
1)1 =0 and e is purely periodic, with period of length d, this being denoted
by e = (e0,€1, -y €d—1)°.
2) 1 > 0 and € is ultimately periodic, with a prefiz of length | and a period
of length d, this being denoted by € = €q,€1, ...,€1-1, (€1, €141 -y Elrd—1)°-
Here all the ¢;’s are in A (assuming that k > 1+ d to allow different values
to the terms of the sequence €).

Let us illustrate the construction of s(e) in two basic cases :
1) e =a,b,(c)* then

s(e) =a,b,a,c,a,b,a,c,.... = (abac)™
Note that here e is ultimately constant (of type (3,1)) and s(e) is pe-
riodic. Consequently a basic property on continued fractions shows that
a = CF(s(e)) is quadratic over Fa(t).
2) € = (a,b)* then

s(e) = abaaabababaaaba....

Here € is of type (0,2) and s(e) is the celebrated sequence mentionned above
and called Period-doubling. It has been proved that a = C'F(s(e)) satisfies
an algebraic equation of degree 4 with coefficients in Fa[t] (see [1]).

As it happens in these two simple cases, we are going to prove in the
following theorem that all sequences s(g) in F generate a continued fraction
a which is algebraic over Fao(t). During the proof, the algebraic equation
satisfied by a will appear explicitely.

Let € be a sequence of type ([, d) then we denote by Fa(g) the subfield
of Fy(t) generated by the vector (e, ..., £144—1) Whose [+d coordinates belong
to gy [t]

Theorem. Letl > 0 and d > 1 be integers. Let € be an ultimately
periodic sequence of type (I,d). Let s(e) the sequence in Falt] and a =



CF(s(e)) the continued fraction in Fo((1/t)), both be defined as above. Then
there is a polynomial P in Fo(e)[x] such that deg,(P) = 2¢ and P(a) = 0.
To be more precise, setting B = 1/a, there are d + 1 elements in Fy(e), A
and By for 0 < k <d—1, such that

P =a+ Y B

0<k<d—-1

Note that the case d = 1 is trivial as we saw in case 1) above. Indeed,
in that case € is ultimately constant. Hence s(e) = W, g, W, gy, ... = (W, ¢)™®
where W is a finite (or empty) word and therefore a is quadratic. In the
sequel, we may assume that d > 2.

The proof of the Theorem lies on the existence of a particular subse-
quence of convergents to a. These particular convergents are linked to the
structure of the word s(g). Indeed, it is natural to consider the truncation
of the continued fraction « containing the partial quotients from sy up to
son_o for n > 1, thus corresponding to the finite word W,,, of length 2" — 1,
mentionned above. Hence, for n > 1, we set u,/v, = [so,..., Son_a]. We
have

(ui,v1) = (sp,1) and (ug,v2) = (sps182 + So + s2,s152 + 1).

The first step of the proof was introduced in our previous work concerning
the particular case of the Period-doubling sequence. In [1,p. 4 Lemma 3.2.],
using basic properties on continuants, we could prove that the pair (uy,, vy, )
satisfies a simple recurrence relation.

Indeed, for n > 1, we have

(R) Upt1 = snu% and  vp41 = EpUpv, + 1,
with (uq,v1) = (g9,1). From (R) we get immediately
Un—}—l/un—}—l = Un/un + 1/un+1

and therefore we obtain

Up fUy, = Z 1/u; for n>1.
1<i<n

Let us consider 5 = 1/a. Then 8 = lim (v, /uy,) and consequently we have

ﬁzZl/un. eq(0)

n>1



From eq(0), we will show that § is algebraic in the following way. By
successive elevation to the power 2, for 0 < ¢ < d, we can define inductively
d + 1 sequences, (£(n,1))n>0, as follows:

e(n,0) =1 and e(n,i+1)=¢e(n,i)e,y; for 0<i<d—1.

Note that, for n > 0, we have €(n,1) = ¢,. Then we observe that, by
elevating eq(0) to the power 2, we get

52 = Z 1/“% = Z En/Unt1 = Z e(n, 1) /un+1. eq(1)

n>1 n>1 n>1

Moreover, by successive elevation to the power 2, starting from eq(0) and
introducing the sequences (£(n,1)),>0, we also get, for 0 < i <d,

B =3 e(ni)/unsi-  eqli)

n>1

Remark. For alll < i <d the sequence (¢(n,1))p>0 is ultimately periodic

of type (1,d).

Proof by induction. This is true for i = 1. If (e(n,i))p>0 is a periodic

sequence of type (l,d), then we have, for n > 1, e(n + d,i) = &(n,i) and

consequently e(n+d,i +1) = e(n+d,i)%epiqgri = e(n,1)?epnpi = (n,i + 1),
Now we introduce a partition of the set of positive integers into d + 1

subsets: first the finite set ' ={k | 1<k <l+d—1} and the d subsets

Eij={md+1i+j5 | m>1} for 0<j<d-1.

d—1
N =JEJF
=0

Linked to this partition, we introduce d elements, §; for 0 < j < d —1, in
Fa((1/t)), defined by

Bi=> 1/un. (B

nEEj

Combining eq(0) and (B), and defining zy € Fa(e) by > ;cp 1/ug, we can
write,

B =zy+ Z Zl/un:zo—{- Z Bj. Eq(0)

0<j<d—1neE, 0<j<d—1



Using the above remark, concerning the periodicity of the sequences (e(n,7))n>0,
for 0 < j<d-—1andfor1<i<d, wecan write ,

ed+1+j—i,0)8; =Y elmd+1+j—i,i)/tmariti
m>1

ed+1+j5—1,1)8; = Z e(n, 1) /un+i-
n—l—iEEj

Consequently, we observe that there exists z; € Fa(e), a finite sum of the
first terms in the series appearing in eq(7), such that, for 1 < i < d, eq(7)
becomes the following equality

B =+ Z e(d+1+j—1,1)8;. Eq(i)
0<j<d—1

(Note that these quantities z; have a different form depending on the triplet
(I,d,7). See the three examples below.)

Now, let us introduce the following square matrix of order d :
M(d) = (mij)o<ij<d—1 where my; =¢e(d+1+j—1,1).

Introducing two column vectors B and C, we observe that the d equations
Eq(i), for 0 <1i < d—1, can be summed up introducing the following linear
system (S): M(d).B=C , where

Bo B+ 20
b1 B2+ 2
B= . and C = :
Ba—1 ﬂzd% + 24—-1

We introduce the determinant, A(d), of the matrix M(d) and also
the determinant A(j,d) obtained from A(d) by replacing the column vector
of rank j by the column vector C'. Hence, applying Cramer’s rule for solving
the linear system (.5), we get

B = A(j,d)/A(d) for 0<j<d-—1.

Finally, reporting these values for 3; in Eq(d), we obtain

B =zg+( Y ell+5.d)AGd)/A). Eq(+)

0<j<d—-1



We observe that A(d) belongs to Fa(e). While, A(j, d) belongs to Fa(e)[5].
Indeed, developping the determinant A(j, d) along the column of rank j, we
get A(j,d) = ¢j + D g<p<d1 bk,jﬁyc. Consequently Fq(*) can be witten as
expected ( with coefficients in Fa(€)) :

B =A+ > BT Bq(x)
0<k<d—1
So the proof of the theorem is complete.

We present, here below, three examples. In order to avoid unnec-
essary complications with the subscripts, we use (a,b,c) for the letters
(€0,€1,€2).

Example 1: Type (0,2). Period-Doubling sequence . Let us consider the
case 2, mentioned above, where

e =(a,b)* and [ =1/CF(s(e)).

We have (g9,e1,¢2) = (a,b,a) and (29, 21, 22) = (1/a,0,1).

A2 =1 Hoag,
1 &2
. B+z 1 . 1 B+=z
A(0,2) = B4z e and A(1,2) = e Bl

Hence we get
A0,2) =82 +af+1 and A(1,2) =p>+b3+b/a.
Since £(0,2) = 31 = a?b and £(1,2) = e2e9 = b%a, Eq(*) becomes
(a+0)8* =a+b+ (62 +aB +1)a®b + (B> + bB + b/a)b?a.
From this, we get (as expected, see [1, p 2, Th 1.1] ) :

Br=1+ba+0b)+abla+b)B+abB®  Eq(*x)

Example 2: Type (1,2). Here we have :
e=a,(b,c)* and S =1/CF(s(e)).
We have (g9,¢€1,€2,¢3) = (a,b,c,b) and (29, 21, 22) = (1/a + 1/ba®,1/a?,0).

1 1
€2 €3

=b+c




B+ 2 1
B2+ 21 e3

1 + 2
A0,2) = and A(1,2):82 §2+Z°1

Hence we get
A0,2) =24+ bf+b/a and A(1,2) = B2+ B+ 1/a® + ¢/a + ¢/ba®.
We have £(1,2) = e2e9 and £(2,2) = e3e3. Consequently, Eq(x) becomes
(b+ )" = (B2 + b8+ b/a)b’c + (B + cB +1/a® + c/a+ c/ba®)?b.
From this, we get :
Bt =bc(b+c)/a+ P/a® +be(b+c)B +bcB?.  Eq(xx)

(Note that changing ¢ into a, we have € = a, (b,¢)* = a, (b,a)>® = (a,b)>
and we regain the previous example and the same algebraic equation for g
as above.)

Example 3: Type (0,3). Here we have :
e =(a,b,c)>* and B =1/CF(s(e)).
We have (g9,¢1,€2,€3,€4) = (a,b,¢,a,b) and
(20,21, 22, 23) = (1/a + 1/ba%,1/a?,0,1).

1 1 1
AB)=|e2 e &4 |=ba*(a+c)+act(b+c)+ch*(a+b)
E%Eg E%Eg E§€4

6-+-Zo 1 1
AW0,3)=|2+2z1 a b |=(a+b)B*+(a®b+ac?)B*+ab(a®+P)B+d
B4 2 *a a®b

1 B4+=2 1
AL3)=|c BP+z b |=(a+b)p*+(a*b+ac®)B3? +ab(a® + )+,
ble B4z a®b

1 1 B+ 2
A2,3)=|c a B+z|=(a+c)B 4 (a® +b%c)B* +ac(® +b*)B + 6,
b2c c2a ﬁ4 + 29




together with
o = ab(a® + c*)zp + (a®b + 2a)z + (a + D)z

61 = cb(a® + %) + (a®b + b%c)z, + (a + b)z

by = ac(c? + b?) + (a +b%c)z1 + (b + ¢)z.
Here, Fq(*) becomes

B =2+ () 2(j,3)A(5,3))/A(3)
0<5<2
and we also have
£(0,3) = a’b?c, £(1,3) =b'c’a and £(2,3) = c'a®b.

Finally combining these values and the four values for the determinants
given above, from Fq(x), we get the desired outcome :

B=A+ Y B Bq(x)

0<k<2

At last, remarkably enough, we can check that the four coefficients in this
last equation do not only belong to Fo(g) but are indeed elements in F|t]
and we have

A = aPb’c+ a?b?c? + ab®c? + b + ab® + abet + abe + ab®c + abc® + 1
By = a*b2¢ + 0> + 203 + ab P + a*b’SE + a®bet
By = a’b’c + a’b*? + ab®? + a®bc?

and
By = a®be + ab*c + abc?.

An important and last point need to be discussed. Indeed, the reader
will probably ask the following question : are the sequences, belonging to
the family F, 2-automatic as it is indicated in the title of this note ?
There are different ways to characterize automatic sequences. A direct way
is to consider the letters of the infinite world as elements in a finite field F,
of characteristic p. If a power series v in Fy((1/t)) is algebraic over Fy(t),
then the sequence of its coefficients is p-automatic (Christol’s theorem).

Concerning the sequences s(e) described above, in the general case
the automaticity will result from a conjecture. First we assume that the



[ + d elements defining the sequence are in a finite field I, of characteristic
2 with ¢ = 2° > [ + d, and consequently we may consider the power series
v € Fy((1/t)) associated to this sequence. Beginning by the trivial case
d = 1, we have observed that s(e) is utimately periodic and therefore p-
automatic for all p. Note that the power series v, associated to it, is rational
and consequently it satisfies a polynomial of degree 1 over F,(t). We make
the following conjecture :

Conjecture. Letl > 0 and d > 2 be integers. Let € be an ultimately
periodic sequence of type (I,d). Let s(€) = (sp)n>0 be the sequence defined
above. Then there exists a finite field F, of characteristic 2, containing | +d
elements identified with the terms of this sequence so that we may consider
Y =D s05nt" in Fy((1/t)) and there is a polynomial P in Fy(t)[x] such
that deg,(P) = 2%~ and P(y) = 0.

In the simpler case (I,d) = (0,2) and € = (a,b)>, already considered
several times above, the resulting sequence s(g) (called Period-doubling)
is well known to be 2-automatic. More precisely, the above conjecture is
true. Indeed, if we identify the pair (a,b) with the pair (0,1) in Fy then
v =350t ™ € Fo((1/t)) satisfies v% + ty = t2/(t* + 1).
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