
ar
X

iv
:2

21
2.

00
94

4v
1

 [
m

at
h.

O
C

]
 2

 D
ec

 2
02

2

A 4/3 · OPT + 2/3 approximation for big two-bar

charts packing problem

Adil Erzin, Alexander Kononov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Georgii Melidi

Sorbonne University, CNRS, Laboratoire d’informatique de Paris 6, France

Stepan Nazarenko

Novosibirsk State University, Novosibirsk, Russia

Abstract

Two-Bar Charts Packing Problem is to pack n two-bar charts (2-BCs) in a

minimal number of unit-capacity bins. This problem generalizes the strongly

NP-hard Bin Packing Problem. We prove that the problem remains strongly

NP-hard even if each 2-BC has at least one bar higher than 1/2. Next we

consider the case when the first (or second) bar of each 2-BC is higher than 1/2

and show that the O(n2)-time greedy algorithm with preliminary lexicographic

ordering of 2-BCs constructs a packing of length at most OPT + 1, where

OPT is optimum. Eventually, this result allowed us to present an O(n2.5)-time

algorithm that constructs a packing of length at most 4/3 · OPT + 2/3 for the

NP-hard case when each 2-BC has at least one bar higher than 1/2.

Keywords: Bar Charts, Strip Packing, Approximation

1. Introduction

We consider the following resource-constrained scheduling problem. Given

a set of jobs with two no-wait unit-execution-time operations. Both operations

of the same job must be performed without delay. All jobs can run in parallel

but each operation requires for its processing certain fixed amount of a common

Preprint submitted to OR Letters December 5, 2022

http://arxiv.org/abs/2212.00944v1

renewable resource. This scheduling problem was recently introduced in [1, 2, 3,

4] and was formulated as a packing problem. Given a set of bar charts (2-BCs)

consisting of two bars and a fixed sequence of bins of unit capasity. Each bar

must be packed into a bin so that the bars of each 2-BC do not change their

order and they occupy adjacent bins. The goal is to minimize the number of10

used bins. We will use the term packing length to mean the number of used

bins. The problem is called the Two-Bar Charts Packing Problem (2-BCPP) for

the first time in [2] and in subsequent papers. It is a generalization of the Bin

Packing Problem (BPP) [5] and a relaxation of the Two-Dimensional Vector

Packing Problem (2-DVPP) [6, 7].

In the Bin Packing Problem (BPP), items with given sizes must be packed

in a minimal number of unit-capacity bins. BPP is a particular case of 2-BCPP

when each 2-BC consists of equal bars. The Bin Packing Problem is strongly

NP-hard and even the existence of a (3/2 − ε)-approximation algorithm for

the problem implies P=NP. In the 70s and 80s of the last century, greedy al-20

gorithms were proposed, such as First-Fit, Best-Fit, First-Fit Decreasing etc

[5, 8, 9, 10, 11, 12]. The main advantage of such algorithms is their low com-

plexity. Garey and Johnson [12] proposed the Modified First-Fit Decreasing

algorithm (MFFD) that has the best guaranteed accuracy among the known

greedy algorithms. As shown in [13], the packing length obtained by MFFD is

bounded by 71/60 ·OPT +1, where OPT is optimum. In their celebrated work,

de la Vega and Lueker [14] gave the first APTAS for the Bin Packing Problem.

They showed that for any fixed ε > 0, there exists a polynomial-time algorithm

with asymptotic worst-case ratio not exceeding 1+ε. The result was consistently

improved first by Karmarkar and Karp [15] and then by Hoberg and Rothvoss30

[16]. In the last paper mentioned above, the approximation ratio was improved

to OPT + O(logOPT). For a detailed survey we refer the interested reader to

[17, 18].

The Two-Dimensional Vector Packing Problem considers two attributes for

each item and bin. The problem is to pack all items into the minimal number

of bins, considering both attributes of the bin’s capacity limits. The Two-Bar

2

Charts Packing Problem is a relaxation of Two-Dimensional Vector Packing

Problem. Indeed, every feasible solution of 2-DVPP is a feasible solution of

2-BCPP. At the same time, the value of the objective functions differs exactly

by a factor of two. In turn, any solution of 2-BCPP can be transformed into40

a solution of 2-DVPP, so that the number of occupied bins will increase at

most by a factor of two. Thus, any ρ-approximation algorithm for 2-DVPP is

a 2ρ-approximation algorithm for 2-BCPP. From approximation point of view,

the Two-Dimensional Vector Packing Problem is harder than the Bin Packing

Problem. Woeginger [19] proved that there is no asymptotic polynomial time

approximation scheme unless P = NP . The best known algorithm yields a

(3/2+ ε)-approximate solution for any ε > 0 [20]. See [18] for a detailed review

of approximations algorithms for 2-DVPP.

The Bar Charts Packing problem was first formulated in [1] to optimize

investments in the development of oil and gas fields. Then the Two-Bar Charts50

Packing Problem was considered in [2, 3, 4, 21]. Erzin et al. [2] proposed a

linear time algorithm for the 2-BCPP that gives a packing of length of at most

2OPT +1, where OPT is the minimal packing length. A bar is called big if it is

higher than 1/2. A 2-BC is called big if at least one of its bars is big. A particular

case of the 2-BCPP where all 2-BCs are big was considered in [3, 21]. We denote

this problem by 2-BCPP>. An algorithm for finding a 3/2-approximation of

optimal packing length was given in [3]. This result was improved in [21] where a

16/11-approximation algorithm for 2-BCPP> was presented. In the same paper,

the authors proposed a 5/4-approximation algorithm if all the first (second) bars

are big.60

We note that despite the existence of approximate algorithms for various

variants of 2-BCPP with big bars, the question of their computational complex-

ity remains open. In the next section we will prove that 2-BCPP> is strongly

NP-hard. In Section 3 we consider a greedy heuristic presented in [3, 4] and show

that it finds a solution with a packing length at most OPT +1 for the case when

all the first (second) bars are big. Using this result we present 2/3(2OPT + 1)-

approximation algorithm for 2-BCPP> in Section 4.

3

We end this section with exact definition of 2-BCPP>. Given a set S of n

big 2-BCs and 2n bins numbered from 1 to 2n. For each two-bar chart i ∈ S

we denote the height of the first (left) and second (right) bar as ai and bi,70

respectively. We assume that max{ai, bi} >
1

2
for all i ∈ S. Let us denote by

[k, r] the set of integers {k, k + 1, . . . , r}.

Definition 1. Packing is a function p : S → [1, 2n − 1], which associates

with each 2-BC i ∈ S an integer p(i) corresponding to the bin number into

which its first bar falls. Let Bk = {i ∈ S|p(i) = k}. To avoid uncertainty we

set B0 = ∅. The packing is feasible if the sum of the bar’s heights that fall into

each bin does not exceed 1, i.e.,
∑

i∈Bk
ai +

∑
i∈Bk−1

bi ≤ 1 for all k ∈ [1, 2n].

As a result of a packing p, the first bar of 2-BC i falls into the bin p(i) and

the second bar falls into the bin p(i)+1. We will consider only feasible packings;

therefore, the word “feasible” will be omitted further.80

Definition 2. The packing length L(p) is the number of bins in which at

least one bar falls.

The problem 2-BCPP> is to pack the big 2-BCs into the minimal

number of bins.

2. NP-hardness of 2-BCPP>

In this section, we show that 2-BCPP> is strongly NP-hard. Our proof is

based on a reduction from Numerical 3-Dimensional Matching (SP16 in [22]).

Numerical 3-Dimensional Matching

Instance: Three disjoint sets of positive integers X = {x1, . . . , xr}, Y =

{y1, . . . , yr}, and Z = {z1, . . . , zr}, consisting of r elements each, and the integer90

b > 0.

Question: Can X
⋃
Y
⋃
Z be partioned into r disjoint sets A1, A2, . . . , Ar such

that each Ai, i = 1, . . . , r, contains one element from each of X, Y, and Z, and
∑

ej∈Ai
ej = b.

Theorem 1. The 2-BCPP> is strongly NP-hard.

4

1

1/2

a) b)

/ 2ix b

2

i rb y

b

-
+

1/4b

2
/ 2i rz b

-

1
1
4b

-

1

ia

ib

ja
jb

ia

ib

ja

jb

Figure 1: a) Illustration for the proof of Theorem 1; b) Illustration for the proof of Theorem

3.

Proof. Let {x1, . . . , xr}, {y1, . . . , yr}, {z1, . . . , zr} and the integer b > 0

be an arbitrary instance I of the Numerical 3-Dimensional Matching problem.

Without loss of generality we assume that
∑r

i=1
(xi+yi+zi) = rb. We construct

an instance I ′ of 2-BCPP> with 3r 2-BCs as follows:

• Red 2-BCs i, 1 ≤ i ≤ r, ai = 1, bi =
xi

2b
,100

• Yellow 2-BCs i, r + 1 ≤ i ≤ 2r, ai =
b+y(i−r)

2b
, bi =

1

4b
,

• Green 2-BCs i, 2r + 1 ≤ i ≤ 3r, ai =
z(i−2r)

2b
, bi = 1− 1

4b
.

We note that ai >
1

2
for 1 ≤ i ≤ 2r and bi >

1

2
for 2r + 1 ≤ i ≤ 3r. Thus, we

definitely get an instance of 2-BCPP>. We claim that the answer to instance I

is affirmative if and only if there is a feasible solution of instance I ′ which uses

at most 3r bins.

First, let the required partition exist and xi + yj + zk = b for some i, j, k.

Then the three 2-BCs i, r+ j, and 2r+k can be packed into three bins as shown

in Figure 1a. Hence, there is a feasible solution of instance I ′ which uses at

most 3r bins.110

Next, let p be a packing such that L(p) ≤ 3r. Since all 2-BCs are big each

bin contains at most three bars. Indeed, let some bin contain more than three

bars. No more than one big bar can be placed in each bin. Therefore, all other

5

bars in the bin should be small. But then either the left or right bin contains

two big bars. We got a contradiction with the feasibility of packing.

Since ai = 1 for every 1 ≤ i ≤ r, r bins should be occupied by exactly one

bar, namely, the left bar of the red 2-BC. Therefore, of the remaining 2r bins, r

bins contain exactly 3 bars in each bin, and r bins contain exactly 2 bars in each

bin. Since bi = 1− 1

4b
for every 2r + 1 ≤ i ≤ 3r, and mini=1,...,r{xi, yi, zi} ≥ 1,

the right bar of green 2-BC can be placed in the same bin only with the right

bar of yellow 2-BC. Such pairs will take up another r of bins. Hence, the right

bars of the red 2-BC, the left bars of the yellow 2-BC and the left bars of the

green 2-BC should be distributed in the remaining r bins of three each. We

have
r∑

i=1

bi +

2r∑

i=r+1

ai +

3r∑

i=2r+1

ai =

r∑

i=1

b+ xi + yi + zi
2b

= r.

Therefore, the remaining 3r bars with total size of r are located in r unit-

capacity bins. It is possible if and only if the instance I of Numerical 3-

Dimensional Matching has the required partition. �

3. Linearly ordered packing

In this section, we consider the particular case of the 2-BCPP, in which we120

will impose an additional restriction on the set of feasible solution. We say that

a packing p is linearly ordered if for any two 2-BCs x, y ∈ S we have p(x) 6= p(y).

We note that with a linearly ordered packing, each bin contains no more than

two bars. In this section, we present a greedy algorithm that finds an almost

optimal linearly ordered packing. At the end of the section, as a consequence,

we will get an approximation with an absolute error bound for the 2-BCPP>

problem when the first bar of each 2-BC is big.

Let p : S → [1, 2n − 1], be a linearly ordered packing and x, y ∈ S such

that p(x) = i and p(y) = i + 1 for some i ∈ [1, 2n − 2]. We refer to x as the

left neighbour of y and to y as the right neighbour of x, respectively, and we130

write r(x) = y, i.e., r(x) denotes the right neighbour of x. We call the maximal

6

sequence of 2-BCs, in which each 2-BC except the first one has a left neighbour,

a chain. Let λ(p) be a number of chains in the packing p, then L(p) = n+λ(p).

We adopt the greedy algorithm GALO presented in [2, 4] for this particular

case. Algorithm GALO works as follows. Sort all 2-BCs lexicographically in

non-increasing order of bar’s height. Starting from the first bin, repeat the

following procedure until all 2-BCs are packed. Place first 2-BC from the list

(if any) that can be packed into the current bin. Remove this 2-BC from the

list and move to the next bin.

Algorithm GALO performs at most 2n− 1 iterations. At each iteration, the140

search for a suitable 2-BC requires no more than O(n) time. Thus, the running

time of algorithm GALO is O(n2).

Denote the packing constructed by algorithm GALO as pg.

Theorem 2. Let p∗ be an optimal linearly ordered packing, then L(pg) ≤ L(p∗)+

1.

Proof. After the first step of algorithm GALO, all 2-BCs are ordered lex-

icographically in a non-increasing manner. For two 2-BCs: x and y, we will

write x← y if bx + ay ≤ 1.

Let i(x) = min{y ∈ S | x ← y}, x ∈ S. If for some x ∈ S there is no any

2-BC y ∈ S such that bx+ ay ≤ 1, then set (for definiteness) i(x) = n+1. Note150

that for any x, y ∈ S such that y ≥ i(x) we have x← y.

We call x in the packing an unfortunate 2-BC if it does not have a right

neighbour. Let us number the chains in the packing pg in the order of their

appearance in pg, and refer to the i-th chain as Ci. It is clear that the last

2-BC in each chain is unfortunate 2-BC. We will prove that all but one of the

unfortunate 2-BCs in the packing pg can be put into one-to-one correspondence

with the unfortunate 2-BCs in the optimal packing p∗.

Let x1 ∈ C1 be the first unfortunate 2-BC in the packing pg.

1. If i(x1) = n + 1, then none of 2-BC can be the right neighbour of x1.

Therefore, x1 also does not have a right neighbour in the optimal packing160

p∗.

7

2. Let i(x1) ≤ n. Then all 2-BCs in the packing pg from i(x1) up to n belong

to C1. Denote the set of their left neighbours by U1. Let

i(U1) = min{i(y) | y ∈ U1}.

Note that i(U1) ≤ i(x1).

2.0 If i(x1) = 1, then U1 ≡ S and, consequently, all 2-BCs except x1 have

a right neighbour. Since there should be at least one unfortunate

2-BC (one chain) in the optimal packing, the resulting solution is

optimal.

Let i(x1) > 1.

2.1 If i(U1) = i(x1), then there is at least one 2-BC in U1∪{x1} which in

p∗ does not have a 1-union on the right. Indeed, we have |U1 ∪ {x1}| >

|{i(x1), . . . , n}| and at least one 2-BC from the set U1 ∪{x1} will not170

get a right neighbour. Choose such an arbitrary unfortunate 2-BC

x′

1 ∈ U1 ∪ {x1} in p∗ and put it in accordance with x1.

2.2 Let i(U1) < i(x1). Choose such z ∈ S that i(z) = i(U1). Since

i(z) < i(x1) and r(z) ≥ i(x1), all 2-BCs from i(z) to i(x1) − 1 are

packed before z and belong to C1. We set

U1 = U1 ∪ {u ∈ S | u← y, i(z) ≤ y ≤ i(x1)− 1}.

Repeating the above reasoning for z, we again find ourselves in one of

the three cases described above. In case 2.0, the solution is optimal.

In case 2.1, in the optimal packing p∗, there is an unfortunate 2-BC

in the set U1 ∪ {z}, which corresponds to x1. If we are in case 2.2,

we will find a new element z′ such that i(z′) < i(z) and r(z′) ≥ i(z)

and repeat our reasoning. Each time in case 2.2, the value of i(U1)

decreases, and, eventually, at some iteration, we get into case 2.0 or

2.1.180

Suppose we have matched k− 1 unfortunate 2-BCs in the packing pg with

unfortunate 2-BCs in p∗. By construction, all these 2-BCs belong to the

set Uk−1 ∪ {x1, x2, . . . , xk−1}.

8

3. Let xk ∈ Ck be the kth unfortunate 2-BC (which has no right neighbour

in the packing pg). Let

rk = min{i | i /∈ C1 ∪ · · · ∪ Ck−1}.

Algorithm GALO starts a new chain with rk. Note that all 2-BCs with

numbers greater than or equal to i(Uk−1) and less than rk have already

been used in the previous chains.

3.0 If i(xk) ≤ rk, then all 2-BCs from rk + 1 to n either belong to the

first k − 1 chains, or have a left neighbour in the chain Ck. But,

as noted above, all 2-BCs with numbers less than rk are also used

in the previous chains. Therefore, the chain Ck is the last one in190

the packing pg. Hence, in pg, for all unfortunate 2-BCs except xk, a

one-to-one correspondence with unfortunate 2-BCs in the packing p∗

is found, so L(pg) ≤ L(p∗) + 1.

Let i(xk) > rk.

Set Uk as follows. If i(Uk−1) ≤ i(xk), then Uk = Uk−1. Let i(Uk−1) >

i(xk). In this case, all 2-BCs in the packing pg from i(xk) to n have the

left neighbours. Denote this set by Uk. Let

i(Uk) = min{i(y) | y ∈ Uk}.

Note that i(Uk) ≤ i(xk).

3.1 If i(Uk) = i(xk), then there is at least one 2-BC in Uk ∪ {xk} which

in p∗ does not have a right neighbour, not matching the previously

selected {x′

1, . . . , x
′

k−1}. Similarly to the case 2.1, we select such an

arbitrary 2-BC x′

k and put it in correspondence with xk.

3.2 Let i(Uk) < i(xk). Choose such 2-BC z that i(z) = i(Uk). Since

i(z) < i(xk), all 2-BCs from i(z) to i(xk) − 1 are already packed

before z. We set

Uk = Uk ∪ {u ∈ S | u← y, i(z) ≤ y ≤ i(xk)− 1}.

9

Repeating the reasoning for the 2-BC z, we again fall into one of the200

three cases described above. Each time when we go back to case 3.2,

the value of i(Uk) decreases, and, eventually, at some iteration, we

get into case either 3.0 or 3.1.

Thus, at the kth step, we either find a new correspondence between

the unfortunate 2-BCs in the packings pg and p∗, or observe that the

chain under consideration is the last one in pg and there is one-to-

one correspondence with unfortunate 2-BCs in the optimal packing

p∗ for all unfortunate 2-BCs in pg, except xk. Hence, we finally get

the statement of the theorem. �

Let S be a set of n 2-BCs such that aj > 1

2
for all j ∈ [1, n]. Since for any210

2-BCs x, y ∈ S we have ax+ay > 1, any feasible packing of S is linearly ordered.

So, Theorem 2 implies the following result.

Corollary 1. If the first bar of each 2-BC is big, then L(pg) ≤ OPT +1, where

OPT is the length of optimal packing.

4. A 4/3 · OPT + 2/3 approximation for 2-BCPP>

In this section, we consider the case when all 2-BCs are big (at least one bar

of each 2-BC is big). Let p : S → [1, 2n − 1], be a packing of S. We say that

two 2-BCs i, j ∈ S form a pair if p(i) = p(j). We note that there are no pairs of

2-BCs in a linearly ordered packing.

First, we present an algorithm that finds a packing in which there is the220

maximum possible number of pairs. Algorithm Matching builds a graph G =

(V,E) in which the vertices are the images of the 2-BCs. The edge (i, j) ∈ E if

both 2-BCs i and j can be packed in the two consecutive bins, i.e., if ai+aj ≤ 1

and bi + bj ≤ 1. After that the algorithm finds a maximal matching M in G

[23]. This matching determines the packing pm as follows. Each pair of 2-BCs

i and j such that (i, j) ∈ M is packed in the two consecutive bins. Each of

the remaining 2-BCs is assigned to the bins in any way. The running time of

10

Algorithm Matching is evidently dominated by finding a maximal matching and

can be estimated by O(n2.5) time [23].

Now we are ready to present an approximation algorithm for 2-BCPP>.230

Algorithm 1 Algorithm App

1: Find a linearly ordered packing pg by algorithm GALO

2: Find a packing pm by Algorithm Matching

3: Take the best of two solutions, say pa.

Theorem 3. If all 2-BCs are big, then Algorithm App finds a packing of length

at most 4/3 · OPT + 2/3 in O(n2.5) time, where OPT is the length of optimal

packing. This performance guarantee is tight.

Proof. Let p∗ be an optimal packing, i.e. OPT = L(p∗). Since any two big

bars cannot occupy the same bin, we have OPT ≥ n. Denote by k2 the number

of pairs of 2-BCs in p∗. Each pair consists of two 2-BCs and occupies two bins.

Then the number of remaining 2-BCs is equal to n− 2k2
.
= k1.

Let µ be the number of pairs obtained by Algorithm Matching. Then,

L(pm) ≤ 2µ + 2k1. Since Algorithm Matching finds a packing with the max-

imum possible number of pairs, we have µ ≥ k2. Thus, L(p
m) ≤ 2n − 2µ =240

2k1 + 4k2 − 2µ ≤ 2k1 + 2k2 = k1 + n ≤ OPT + k1.

Let i, j ∈ S be a pair in p∗. Without lost of generality, we assume that ai >
1

2

and bj >
1

2
. Then, aj + bi ≤ 1. We will push the two bins p(i) and p(i)+1 apart

and place the left bar of j and right bar of i in a new bin between them. We

get a new feasible packing, the length of which will increase by 1 (Figure 1b).

Having done this for all pairs in p∗ we get a linearly ordered packing with a

packing length OPT + k2. Then Theorem 2 implies L(pg) ≤ OPT + k2 + 1.

Finally, we get

L(pa) ≤ OPT +min{k1, k2 + 1} ≤ OPT +
k1
3

+
2(k2 + 1)

3

= OPT +
n

3
+

2

3
≤

4

3
OPT +

2

3
.

11

1

1

2

2
3

3
4

4

1

1
2

2
3

3
4

4

c)

2
2

3

3

4 4
1

1

1

1

2

2

3

3

4
4

a) b)

d)

Figure 2: a) Lexicographically ordered set of 2-BCs; b) Optimal packing; c) Packing pg built

by GALO; d) Packing pm built by Matching.

Fig. 2 shows that the performance guarantee obtained is tight. In this

example, the optimal packing length is 4, while the length of packings pg and

pm is 6. Then L(pa) = 4

3
OPT + 2

3
= 6.250

Time complexity of the algorithm GALO is O(n2). Maximal matching can

be found with O(n2.5) time complexity [23]. �

5. Conclusion

For the problem 2-BCPP> of packing big two-bar charts (the height of at

least one bar is more than 1/2) in a minimal number of unit-capacity bins:

(i) we prove that it is strongly NP-hard;

(ii) for the case when the first (second) bar of each 2-BC is big, we prove that

algorithm GALO yields a packing of length at most OPT + 1 in O(n2) time;

(iii) we propose an algorithm which finds a packing for 2-BCPP> of length no

more than 4/3 · OPT + 2/3 in O(n2.5) time.260

Acknowledgement. The study was carried out within the framework of the state

contract of the Sobolev Institute of Mathematics (project FWNF-2022-0019).

12

References

[1] A. Erzin, R. Plotnikov, A. Korobkin, G. Melidi, S. Nazarenko, Op-

timal investment in the development of oil and gas field, Commu-

nications in Computer and Information Science 1275 (2020) 336–349.

doi:10.1007/978-3-030-58657-7_27.

[2] A. Erzin, G. Melidi, S. Nazarenko, R. Plotnikov, Two-bar charts

packing problem, Optimization Letters 15 (6) (2021) 1955–1971.

doi:10.1007/s11590-020-01657-1.270

[3] A. Erzin, G. Melidi, S. Nazarenko, R. Plotnikov, A 3/2-approximation for

big two-bar charts packing, J. of Combinatorial Optimization 42 (2021)

71–84. doi:10.1007/s10878-021-00741-1.

[4] A. Erzin, G. Melidi, S. Nazarenko, R. Plotnikov, A posteriori anal-

ysis of the algorithms for two-bar charts packing problem, Commu-

nications in Computer and Information Science 1514 (2021) 201–216.

doi:10.1007/978-3-030-92711-0_14.

[5] D. Johnson, Near-optimal bin packing algorithms, Massachusetts Institute

of Technology. PhD thesis (1973).

[6] D. J. A. Y. M.R. Garey, R.L. Graham, Resource constrained scheduling as280

generalized bin packing, J. Combin. Theory Ser. A (1976) 257–298.

[7] H. Kellerer, V. Kotov, An approximation algorithm with absolute worst-

case performance ratio 2 for two-dimensional vector packing, Operations

Research Letters 31 (1) (2003) 35–41.

[8] B. Baker, A new proof for the first-fit decreasing bin-packing algorithm, J.

Algorithms 6 (1985) 49–70.

[9] M. Yue, A simple proof of the inequality ffd(l) ≤ 11/9 opt(l) + 1, ∀l, for

the ffd bin-packing algorithm, Acta Mathematicae Applicatae Sinica 7 (4)

(1991) 321–331.

13

https://doi.org/10.1007/978-3-030-58657-7_27
https://doi.org/10.1007/s11590-020-01657-1
https://doi.org/10.1007/s10878-021-00741-1
https://doi.org/10.1007/978-3-030-92711-0_14

[10] R. Li, M. Yue, The proof of ffd(l) ≤ 11/9 opt(l) + 7/9, Chinese Science290

Bulletin 42 (15) (1997) 1262–1265.

[11] G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is

ffd(i) ≤ 11/9 opt(i)+6/9, Lecture Notes in Computer Sciences 4614 (2007)

1–11.

[12] D. Johnson, M. Garey, A 71/60 theorem for bin packing, J. of Complexity

1 (1) (1985) 65–106.

[13] M. Yue, L. Zhang, A simple proof of the inequality mffd(l) ≤

71/60 opt(l)+1, ∀l, for the mffd bin-packing algorithm, Acta Mathematicae

Applicatae Sinica 11 (3) (1995) 318–330.

[14] W. de la Vega, G. Lueker, Bin packing can be solved within 1+epsilon in300

linear time, Combinatorica 1 (4) (1981) 349–355.

[15] N. Karmarkar, R. M. Karp, An efficient approximation scheme for the one-

dimensional bin-packing problem, FOCS (1982) 312–320.

[16] R. Hoberg, T. Rothvoss, A logarithmic additive integrality gap for bin pack-

ing, Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA) (2017) 2616–2625.

[17] E. G. Coffman-Jr, J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin pack-

ing approximation algorithms: Survey and classification, In Handbook of

Combinatorial Optimization (2013) 455–531.

[18] H. Christensen, A. Khanb, S. Pokutta, P. Tetali, Approximation and online310

algorithms for multidimensional bin packing: A survey, Computer Science

Review 24 (2017) 63–79.

[19] G. Woeginger, There is no asymptotic ptas for two-dimensional vector pack-

ing, Information Processing Letters 64 (6) (1997) 293–297.

14

[20] N. Bansal, M. Eliás, A. Khan, Improved approximation for vector bin pack-

ing, Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA) (2016) 1561–1579.

[21] A. Erzin, V. Shenmaier, An improved approximation for pscking big two-

bar charts, Journal of Mathematical Sciences 267 (4) (2022) 465–473.

doi:10.1007/s10958-022-06151-w.320

[22] M. Garey, D. Johnson, Computers and Intractability; A Guide to the The-

ory of NP-Completeness, Vol. 21, 1979.

[23] Y. Xie, An o(n2.5) algorithm: For maximum matchings in general graphs,

J. of Applied Mathematics and Physics 6 (2018) 1773–1782.

15

https://doi.org/10.1007/s10958-022-06151-w

	1 Introduction
	2 NP-hardness of 2-BCPP>
	3 Linearly ordered packing
	4 A 4/3OPT+2/3 approximation for 2-BCPP>
	5 Conclusion

