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Abstract

Since the (B-deformed) Hurwitz Kontsevich model corresponds to the special
case of affine Yangian of gl(1). In this paper, we construct two general cases of
the g-deformed Hurwitz Kontsevich model. We find that the W-operators of these
two models can be represented by the generators ey, fx, 1 of the affine Yangian of
gl(1), and the eigenstates (the symmetric functions Y) and 3-Jack polynomials) can
be obtained from the 3D Young diagram representation of affine Yangian of gl(1).
Then we can see that the W-operators and eigenstates are symmetric about the
permutations of coordinate axes.

Keywords: Hurwitz-Kontsevich model, Affine Yangian, W operators, Jack polynomi-
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1 Introduction

The affine Yangian of gl(1) appears independently in the work of Maulik-Okounkov
[1] and Schiffmann-Vasserot [2] in connection with the AGT conjecture. The affine
Yangian of gl(1) is isomorphic to the universal enveloping algebra of Wiy [3]. They
can be obtained from the Miura transformation and Yang-Baxter equation[4]. The
Miura transformation shows that one can think of Wy-algebra as being a quantization
of the space of N-th order differential operators[5]. The specific free field embedding of
W in the Fock space of N free bosons depends on the ordering of the Boson fields, we
find this ordering corresponds to the ordering j = 1,2,--- , N of the slices of a 3D Young
diagram on the plane z = j[6]. The Yang-Baxter equation show that the R-matrix Rjo
satisfies[5), [7]

Ria(apd; + J1(2))(00; + J2(2)) = (a0, + J2(2)) (00 + J1(2))Ri2
where the OPE of Boson field J;(z) is

dij

Ji(2)Jj(w) ~ ma

The monodromy operator is T4 = Ra1R a2 - - - Ran. The Hamiltonian operator H equals
the vacuum expectation of T4 in the Bosonic Fock space F4. The eigenstates of H are
3-Jack polynomials[§].

3-Jack polynomials are symmetric functions defined on 3D Young diagrams [§]. In
special case h; = h,hy = —h~!, where hy, hy are parameters in the affine Yangian of
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gl(1), 3-Jack polynomials become Jack polynomials on 2D Young diagrams[8], and when
h = 1, Jack polynomials become Schur functions[9]. Jack polynomials are the eigenstates
of the Hurwitz operator Wy in the S-deformed Hurwitz-Kontsevich model[I0]. The (-
deformed Hurwitz-Kontsevich model, as the deformation of the Kontsevich model (the
eigenstates are Schur functions), describes the Hurwitz numbers and Hodge integrals
over the moduli space of complex curves [11| 12| [13]. W-representations give the dual
expressions for the partition functions through differentiation rather than integration
[11]. The W operators W,, n € Z can be represented by Bosons. The matrix models
are generated by the W-operators. The Hurwitz-Kontsevich model is a matrix
model[T]]

)
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where ¢ is an N x N matrix and the time variables p;, = Tre)*, which can be represented
by the exponent of Wy acting on the function e”t/ ¢ The Nx N complex matrix model
[14}, 15] and the Gaussian hermitian one-matrix model [I1], I5] are generated by eV-=/".1
for n = 1, 2 respectively. Similarly for the 5-deformed case.

In [I6], we find that the W operators in Hurwitz-Kontsevich model can be represented
by the generators ey, fi, ¥y of the affine Yangian of gl(1) in the special case hy = 1, hy =
-1

1 N
W0:6¢3+5¢27 E1:€1+N60, E—lz_fl_NfO' (1)

Then their representation space are the space of Schur functions. The W operators in
[B-deformed Hurwitz-Kontsevich model can be represented by the generators ey, fi,¥w
of the affine Yangian of gl(1) in the special case hy = h, hy = —h~!

Wo = 2v/Bus + 5(ON = 2 (1= B)a, i = e1 +/BNeo, B = —fi — VBNfo, (2)

where 3 = h™2. Then their representation space are the space of Jack polynomials.
Other W operators can be obtained from Wy, Fy, E_;.

Clearly, there should be a general Hurwitz-Kontsevich model which corresponds to
the affine Yangian of gl(1). In this paper, we construct two general cases of the Hurwitz-
Kontsevich model. One is called the symmetric deformed 2D Hurwitz-Kontsevich model,
the operators and the eigenstates are symmetric about z-axis and y-axis in coordinate
system xQy. The other one is called the symmetric deformed 3D Hurwitz-Kontsevich
model, the operators and the eigenstates are symmetric about z-axis, y-axis and z-
axis in coordinate system O — zyz. Since the §-deformed Hurwitz-Kontsevich model
describes the Hurwitz numbers and Hodge integrals over the moduli space of complex
curves, the symmetric deformed 2D /3D Hurwitz-Kontsevich model should describe the
Hurwitz numbers and Hodge integrals over a more general case.

The paper is organized as follows. In section [2| we recall the definition of affine
Yangian of gl(1) from Yang-Baxter equation, which is copied from section 2 of paper [16].
In section [3, we construct the symmetric deformed 2D Hurwitz-Kontsevich model, and
represent the W operators and eigenstates by the affine Yangian of gl(1). In section
we construct the symmetric deformed 3D Hurwitz-Kontsevich model, and also represent
the W operators and eigenstates by the affine Yangian of gl(1).

2 Affine Yangian of gl(1)

In this section, we review affine Yangian of gl(1) from the Yang-Baxter equation, which
is copied from section 2 of [16]. Introduce three complex numbers h1, ho, hg which satisfy
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hi+ hs + hs =0, and
09 = hiho+ hihs + hohs,

o3 = hihaohs.
Let Bosons a;j, satisfy
he
[im @jm] = =0 im0 tm. 0, (3)

where o = 1,2,3. Then the OPE of current J;(z) = Y, cz ajmz ™ " is

5.
T i) ~ — 22 (@)
We say J;(z) is of type 0. Remark that here h,, o = 1,2, 3 associate to coordinate axes
r-axis, y-axis, z-axis, our results are always symmetric about these three axes, then we
always choose 0 = 3 to express our results, which means that we choose z-axis as the
preferred one.
R-matrix satisfies the equation[5]

Ri2(0 + J1(2)) (0 + J2(2)) = (0 + J2(2)) (gD + J1(2))Ra2. (5)
where Ji(z) and Ja(2) are of type o and 7 respectively. Let
J_(2) = hyJ1(2) — hoJa(2) = Z alz’mz_m_l,
JEZ

where 1 and 2 in a2 5, correspond to that in Ji(z) and J2(z). When there is no ambiguity,
we omit them. The OPE of J_(z) is

J
J_(2)J-(w) ~ Pm (6)
with
hho(hr + he)
p=- :
03
Let © RO
R R
R=1+—+—75+-, (7)

From (), the expression of R can be obtained. One can find that of the first five
terms in [5]. We list the first two terms

RO = Y ajar. (5)

k>0
1
2 .
R? = 5( ,kz>0(a_j_kajak +a_ja_pajr + a_ja_pajay) + p%jajaj), (9)
7 J

here a; is a12,; defined above.
The R-matrix satisfies the Yang-baxter equation

R12R13R23 = Ra3R13R12. (10)

We consider N Fock spaces F; and one additional auxiliary space F4 as in paper [5].
Every current J;(z) for j = 1,2,--- , N is of type o which acts on Fj, and J4(2) is of
type 7 which acts on F4. The monodromy operator

Ta=RaiRaz - -Ran (11)
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satisfies

RapTaTs = TeTaRas, (12)
which means that T4 satisfies the Yang-Baxter equation again. Define

H = (0[aT4]|0)4, (13)

E= <0’ATAGA7_1‘O>A, (14)

F =(0laaa1Tal0)a4, (15)

Ho = <0|Aa,4,17j4a147_1|0>,4. (16)

The parameters in these currents are an;o. We change the parameters to u by the
relation

aA35,003 h: — he
— S - — = 1
hohy U — qj 9 ) ( 7)
For convenience, we let ¢; = 0, which means that the zero mode a;o = 0.
Define
e(u) = ' (H(u) " E(u), (18)
flw) = —h7 F(u)(H(w) ™, (19)

U(u) = hr'(Ho(u—he) = E(u—he)(H(u— he)) 7 Flu— he)))(H(u — hr))(20)

They generate affine Yangian of gl(1). Introduce the generating functions:

e(u):zqu, (u) = Z fjl’w =1+ 32 ]-‘rl (21)

§=0 §=0

The mode operators satisfy[17), 18]

[, %] = 0, (22)
[ej+3, €x] — 3[ejr2, eni1] + 3ejt1, enva] — [ej, €3]

+o2[ej1, €] — o2 [ej, eny1] — o3 {ej,er} =0, (23)
fie3s o] = 3 [ fiv2s fug1] + 3 [fivts fraal = [f5) frrs]

+o2 [fi+1, il = o2 [fj, fera] + o3 {5, fe} = 0, (24)
lejs [kl = itk (25)
[Vjt3: ex] — 3[Wj42, ep1] + 3 [Yjt1, enta] — [¥), exs]

+02 [Vj+1, €x] — 02 [¥), epy1] — o3 {hj, ex} =0, (26)
[Wjt3: fi] = 3[Yjt2s fr1] + 3541, frra] — [¥), frrs]

+02 [Vj11, fi] — o2 [V, fura] + o3 {y, fr} =0, (27)

The affine Yangian Y of gl(1) is the associative algebra with generators e;, f; and
Yj, 7 =0,1,... satisfying the above relations[7, 9] and boundary conditions

[Yo, €j] = 0, [th1, e5] = 0, [12, €] = 2ey, (28)
[dJOafj] :07 [wlaf]] :07 [w27f]] :_2f]) (29)
and a generalization of Serre relations
SYI(j, s, ja) (€515 [€)2r €55+1]] = 0, (30)
SYm(j, jy js) Lins (a5 fia41l] = 0, (31)

where Sym is the complete symmetrization over all indicated indices which include 6
terms.



The affine yangian ) has a representation on the 3D Young diagrams. In order to
describe the representation, as in our paper [20], we use the following notations. For a
3D Young diagram 7, the notation O € 7 means that this box is not in 7 and can be
added to m. Here “can be added” means that when this box is added, it is still a 3D
Young diagram. The notation O € 7~ means that this box is in 7 and can be removed
from w. Here “can be removed” means that when this box is removed, it is still a 3D
Young diagram. For a box O, we let

ha = h1yo + hoxo + hazo, (32)

where (zo,yo, 20) is the coordinate of box O in coordinate system O — xyz. Here we
use the order yo, o, zo to match that in paper [7].
Following [7, [19], introduce

o) = LI (33)
and
0= (T ey .
For a 3D Young diagram 7, define () by
(1) = tho(u) 161 o(u— ho). (35)
The representation of affine Yangian on 3D Young diagrams is given by
Yl = belw)lm), (36)
e(w)|r) = D§+ wh + o), (37)
fm = ¥ H2E=Dp g 39

where |7) means the state characterized by the 3D Young diagram 7 and the coefficients

Er—»n+0)=-Fr+0->m7)= \/013 resy—ho Yr(w). (39)

Equations and mean generators ej, f;j acting on the 3D Young diagram 7 by

ejlm) = Y hE(r - m+0)|r+0), (40)
filmy = Y WiF(r -7 —0)r-0). (41)

The orthogonality of 3D Young diagrams is (7|n’) = d, . In the following, we treat
E(r — 7+ O)|r + O) as one element, still denoted by |7 + O). Then (r|m) does not
equal 1, but it can be calculated by

(r+ Ojr 4+ 0) = E*(n — 7+ 0)(x|x) and (0[0) = 1. (42)

The result above means that the symmetric functions associated to 3D Young diagrams
are related to the growth processes of 3D Young diagrams. A 3D Young diagram with
two different growth processes are linearly related. Remark that the orthogonality
become that of Jack polynomials calculated in [21] in the special case hy = h, hy = —h~L.
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For the use in the following, we calculate the action of ¢ on 3D Young diagram |r)

n () u+ 031 11 (u—ho+hi)(u—hao+ h)(u—ho + h3)

u S (u—hg — h1)(u—ho — ha)(u — ho — h3)
o3 203  6hpos 4
= 1+ )511(1+U‘°’+ T o)
then we obtain
pi|m) =0, volm) = 2lx|[7), ¥slw) =D (6ho + 24ho3)|m), (43)
Der

where |7| is the box number of 7. Other ¢y |7) can also be calculated this way, we only
list this three since we will use them to describe the Hurwitz-Kontsevich model.

3 The symmetric deformed 2D Hurwitz-Kontsevich model

We associate the complex numbers hy, hg, hs to y-axis, x-axis, z-axis respectively. In
this section, we consider 3D Young diagrams which have one layer in z-axis direction
and treat them as 2D Young diagrams. We want our results are symmetric about z-axis
and y-axis, which means that the results are symmetric about h; and he.

Let 9 = —1/h1hy and p = (p1, p2, - -+ ) with p,, being power sum, we have (7|7) =0
(defined in ) unless 3D Young diagram 7 has one layer in z-axis direction, and N =1
in . The eigenstates of Hamiltonian H are symmetric functions which we denoted
by Y)(p) in [6]. For 2D Young diagrams (n), the symmetric functions Y,y = Y(,,)(p) are
determined by

ha/h n_ o (_qyn1Pnh2 p
Z%( 1) Yo = exp(3 (1) (44)

Define the symmetric operator }Af(n) by

ha/hq ) ~ > 1 adg_leo ha
Yi2" =exp(y (—1)" " ——-2"). (45)
;( n (n) ; n!  hf
The Pieri formula Y{,,)Y) is defined by
Y Ya =Y, - Ya. (46)

Note that the actions of the generators ey, fi, ¥ of affine Yangian of gl(1) are the same

with that in (36)-(38).
From and , we can obtain all the expressions of Y. For example, from ,
we get

YD = P1, (47)
1 h2 2
Yo = M 48
1 1
Yoo = (2p3 — 3hapips + hap?). (49)

2hy — ho h1 — hs
From 1} we know YoYn = Y+ YB, then

Yo = _ .
H™ by — P2 hy— w1
6




Note that the symmetric functions are symmetric about z-axis and y-axis (h; and hg),
which means that Y) becomes Yy, when h; and hsy exchange hy <> hg, where )\ is the
conjugate of A. For example, the expressions of Y7 and YB exchange when h; and ho

exchange.
Since Y) corresponds to 3D Young diagram 7 with property , then Y), is depen-

dent on the box growth of A. Denote H- obtained from o by adding one box by thth,
while denote (2 obtained from H by adding one box by th2h1, then we know that

hohy

Generally, we have
YaiBya(p) = ¢(ha —hp)Yarars(p), (51)

where A or B denotes a box.
From , we know

YooY =Y, Y YooY =Y Yr
ol o4O+ thm’ o¥g th2h1+ @,

then we have

1 1
¥ = 2ps — 2(h1 + ha)pipa + 2hahapl),
EF%IhQ ho — 2h1 hy —-h2( P3 (h 2)P1P2 1hapy)
1 1
i - 2p3 — 2(h1 + h 2h1 hon’
B]hghl h1—2h2h2—h1(p3 (1+ 2)p1p2+ 1 2p1)7
1 1

(2p3 — 3hapip2 + hip?).

Y =
@ 2h9 — hy hg — hy

Others can be obtained this way.
The power sum operators can be represented by the generators e of affine Yangian,

. 1 n—1_ 1
where
N—_——
Let .
adyB = [--[[B,A], - A], 4],
———
we have that 1 .

~n—1
In order to calculate (py,pn), we calculate the bracket [ad?o fi,adg” eg]. When n =1,
[fo, e0] = —1o, we have

(p1,p1) = %o, and (p7",py") = mlyYy", (54)
for any m =1,2,3,--- . Generally,
fady, ' fr,ad2 eo) = [[adg, 1, fil, [er, ad?; 2]
= —[lfr.ler,ad? 2eq]] ady, 1] — [[ler. ad? el ady, fr, i, 1]
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~n—2
the second term equal zero, the first term equals n(n — 1)[ad;cl0 f1,ad? e, then we

have
n

n—1

(pmpn> = <pn—17pn—1>7

which means

The conditions in the equation above show that the symmetric functions satisfy
<Y)\,Yﬂ> = 6)‘7NE2(¢ -S0—-... > )\)

We take an example to explain the notations. Let A = p =[],

Y, V) = - - " hi(hy — hy)
< [T E]:]> <h1 — h2p2 hl — hgpl, hl — h2P2 hl — h2p1> hl(hl — hZ)’
and
2
E%(¢ — 0 — (D) = B3¢ — 0)EX(0 — [0) = g,
hi(h1 — hs)
that is,
(Y, Y1) = B*(¢ — 0 — ).
From the property > we have
= =3 Vi {pIYa{p). (56)

—~ (YA, Y2)
Note that the summation of the right hand side is over all Young diagrams, we know
that there are many box growth processes of A, in the summation we only choose one of
them. Then

—hihopr/etN _ pi/etNyo _ 1 Y — o tNS, Vi (5
6 ) 2wy e = o) 60

The symmetric deformed 2D Hurwitz-Kontsevich model is generated by

tcy

N € _
Zo{p} = etWoept/voc™ — Z me{pk =€ tN5k,1}YA{P} (58)
)\ )
with

cx =Y (ho+1oV/BN),

gei

where hg is defined in with zo = 1 and ¢ is a deformation parameter, and the
operator W equals

1 & o 0 9
Wy = = Z <klpk+z — hihao(k + Dprpi )
2 ot Opi. Opy Ok -+1
1 & 0
g 2o B) (k= 1) 200/ BNk - (59)

ol
—_

The symmetric functions Y){p} will be recalled below. The parameter 3 equals 1/hq, or
—hg, or their multiplications, such as, \/—ha/h;. We will see that the value of 8 does
not affect the eigenstates of Wj.



Note that when hy = h, ho = —h ™!, the symmetric deformed 2D Hurwitz-Kontsevich
model become the B-deformed Hurwitz-Kontsevich model in [10} [16] different by +/f.
When h = 1, the symmetric deformed 2D Hurwitz-Kontsevich model become the
Hurwitz-Kontsevich model.

We define the operator

= [Wo,p1] = Z Pt~ + Yo/ BNp1. (60)
Then acting on Y),
EiYa= ) (ho+1oy/BN)Yaio0. (61)
Dex+

The operator W_; is defined to be W_; = [Wy, E1]. Acting on symmetric functions
Y/\7

WYy =Y (ho +10v/BN)*Yayo. (62)

Oext

We define a series of operators

W_, = adjy ' By, n>2. (63)

1
(n—1)!

When hy = h, ho = —h~!, /B = h™!, operator W_5 gives the W-operator in the
W -representations of f-deformed Gaussian hermitian matrix model [22]. Similarly to
[10], the partition function hierarchy with W-representations is given by

Z o {py=eV/"1 n>1. (64)

When h; = h, hg = —h~!, /B = h™!, it becomes the partition function hierarchy in
eq.(48) in [10], and specially when n = 1 and n = 2, Z_,, {p} give the S-deformed rectan-
gular complex (with N; = N3) and Gaussian hermitian matrix models [22] respectively.
These results show that the operators and the symmetric functions in this paper are
the generalization of that in [I0], and have the property that they are symmetric about
z-axis and y-axis. The annihilation operators £_; and W,, can be defined similarly.

In the following of this section, we use the generators of affine Yangian of gl(1) to
represent the symmetric deformed 2D Hurwitz-Kontsevich model.

In Yang-Baxter equation , since N = 1, we denote the Bosons a1 ,,, by by,, which
satisfy

wnahn]=:¢bn5n+m4)Z'—hjﬁ2n5n+mp‘ (65)
Their actions on symmetric functions Y) are
b_p = DPn, by = _h11h2n8]87n’ (66)
for n > 0, and
b, = ! ad™ teq, b, = L fo- (67)
(n—1)! < (n—1)1"" N



The generators of affine Yangian can be represented by Boson b,,. We list some of

them [6].

(G}
(G

s

and

0, (68)
)
—2h1hs Zb_jbj =2 Zm@, (69)
7>0 7>0
3133 > (b_j_rbsbr + b jb_gbjk) + 303 Y jb_jbj — o3 ¥ b_jbj, (70)
J:k>0 j>0 3>0
eo =0b_1, e1 = —hihs Zb—j—lbj7 (71)
7>0

From the relations and , we have

[V3, ex] = 6expr1 + 2003k, [V3, fi] = —6frkr1 — 20003 fi. (72)

From these results, we describe the symmetric deformed 2D Hurwitz-Kontsevich model
by using the generators of affine Yangian. The operator Wy can be expressed by

From ,

then

Wo = é% + %(%\/BN - %%03)%- (73)

WYYy = 2[A[Va, Yy = Y (6ho + 2403)Ya,
e

WoY, = Z(h[\ + ¢0\/BN)Y,\,

which matches .
The operator

OeA
1 1 1
By = [Wo,pm] = [g?ﬁs + §(¢0\/BN - 3%03)@02760]
= 1 +1oy/BNey, (74)

we can check that the action of Fq on Y, matches that of e; on Y),. Then all the
operators W_,, can be represented by ey.
The annihilation operator

Then the operator

1 0 1 1 1
E_y = [Wy, @37?1] = [61/13 + 5(1/10\/51\7 - §¢003)¢27f0]
= —fi —v%oVBN fo. (75)
Wi = Wy, E_4],
(_1)n n—
W = 1)!adWllE,l, n>2,

can be represented by the annihilation operators fj of affine Yangian of gl(1).
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4 The symmetric deformed 3D Hurwitz-Kontsevich model

In this section, the symmetric deformed 3D Hurwitz-Kontsevich model will be con-
structed. We will see the symmetric deformed 3D Hurwitz-Kontsevich model (the op-
erators and the eigenstates) are symmetric about x-axis, y-axis and z-axis. This model
corresponds to the general case of Yang-Baxter equation . The number N in mon-
odromy matrix (11)) means that the 3D Young diagrams have at most N layers in z-axis
direction. The Yang-Baxter equation cut a 3D Young diagram into a series of 2D
Young diagrams by plane z = j for j = 1,2,--- , N. Then z-axis is a preferred one.

The number N shows N

hihg
in this section. The power sum variables associated to the 2D Young diagram on the
plane z = j are denoted by p;,, which satisfy

Py = —

(76)

(Djn,Piim) = 05,i0nmnio. (77)

Then the 3-Jack polynomials recalled in Appendix satisfy

(Jpydt) = Op B2 — 0 — -+ = 7). (78)

From Yang-Baxter equation , the generators of affine Yangian of gl(1) can be
represented by the Bosons a;,, defined in with o = 3. By replacing a;,, by its
representation

1
j—m = Djms jm = —@mapj’m, m >0 (79)
we list some of them [6]
P = 0, (80)
Yy = QZZ’W’M (81)

j=1k>0

0 0 0
:3§ S (jkp e+ K)pi i
3 2 1jk>03 p’Hkawapk 1ha(j + E)pijp 7k8pi,j+k)

_6h3zzkp“7 — (- 4N+6]—3hgzzkp]k

i1 <tz k>0 j=1k>0

—3h322kp]k

i=1k>0

81?],

and

N
e = sz, (83)

e1r = ZZPJ k+17- (84)

7=1k>0

Introduce the variables P, j,n =1,2,--- and j = 1,2,--- ,n. From [23], the variables
P, j are one to one correspondence with 3D Young diagrams. Then 3-Jack polynomials

11



should be polynomials of variables P, ;. Let

Pip = piat+peat--+pNa,
Po1 = piat+peat--+pn2,
N hihy N
1ho
P2’2 = —hihs leil + T(ij’l 2:1 — 2] + 1 h3pj 2.
= = ]:
Then 3-Jack polynomials in equations (109110111} become
- 1 B
Jg = () O o) (g ' (1 + hohstoo) Py + (14 hahgtho)hiPay + Pa2),
- 1 B
Jg = (i — ) (s — Tra) (1o (1 + hihsto) PLy + (1 + hihstbo)haPay + Pa2),
- 1 B
Jg = (hs — 1) (hs — o) (¥ (1 + hahatho) PLy + (1 + hihatpo)hs Poy + Po).

We can see that 3-Jack polynomials are symmetric about z-axis, y-axis and z-axis after
changing the variables {p;.} to {P, ;}.
The general relations between P, ; and pj, can be obtained from

1
ad™ leg (85)

T

and the orthogonality (P, j, Pr,) = 0 unless n = m, j =1i. Then we have

P, P

' .5 P,
Z TSR =3 TP} Pug}. (36)
—~ (Jx, J>
From the formula above, we obtain
. L o
evoctt = ——J AP, = 0101 JAP, i} 87
Z(JJ> {Pn; ,195,1 }Ir{ P} (87)

The symmetric deformed 3D Hurwitz-Kontsevich model is generated by

P
ZO{p} = StWO . ewoe’SM7 (88)
where
1L &
i ZEk;I Ok Opi (h+ Dpik l’lapi,lﬁ-l)
(b +ha) Y Y Kk
11 <t2 k>0 2,k
1 L X )
5222 (- ha) —2N+2J—1>+2woﬁN)kpj,k%' (89)
.77

7j=1k=1

We can see that when N = 1, the symmetric deformed 3D Hurwitz-Kontsevich model
becomes the symmetric deformed 2D Hurwitz-Kontsevich model, which corresponds to
that the 3D Young diagrams which have one layer in z-axis direction become 2D Young
diagrams.

From

WOjﬂ{Pn,j} = Cﬂjﬂ{Pn,j} (90)
12



with

cr =Y (ha +toy/BN), (91)

Oer

where hp is defined in and 19 = —N/hiha, the partition function Zp{p} equals
Zo{p} = Z J {Pnj = 0n10j1e” MY T (P, }. (92)

Define the creation operator

N oo
= Wo,p1] = Z Z kp;, kg — + Yo/ BN ij 1- (93)

j=1k=1
Acting on 3-Jack polynomials,
EyJe =Y (ho +thoy/BN)Jrsio. (94)
Oernt
Define the creation operator
W_1 = Wy, B4, (95)

its action on 3-Jack polynomials can be obtained from the actions of Wy and E; on
3-Jack polynomials

W_idy = WoEL — ExWy)Jyx

= Z(hD_FQpO\/BN) Z (hD/+¢o\/BN)J~7H_D

Oent O/en+4-0

— Y (ha+%0V/BN) Y (hor +vo/BN) Jrio

Oent O'em

= Z hm'f'wO\[N Jrio. (96)

Oent

We define a series of operators

W, = adjy ! E1, n>2. (97)

1
(n—1)!
Their actions on 3-Jack polynomials are determined by the actions of W_; and E; on
3-Jack polynomials.

We introduce the partition function hierarchy with W-representations

Z  py=eV"/"1, n>1. (98)

From the discussion in the last section, we know that when n = 1 and n = 2, the
partition function Z_,{p} is the generalization of the S-deformed rectangular complex
(with N; = N3) and Gaussian hermitian matrix models [22] respectively to the three
dimensional case.

We construct the annihilation operator

_ 0 1
E_y = W, _%8?1,1] = Wb, RZ

99
> o (99)
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and B
Wi = W, E_1], (100)

then we introduce a series of the annihilation operators

~1
W, = (=D" adjy 'E_1, n>2. (101)

(-1
From the results above, we see that the symmetric deformed 3D Hurwitz-Kontsevich
model (the operators and the eigenstates) is symmetric about z-axis and y-axis, but
not symmetric about x-axis and z-axis, or y-axis and z-axis. In the following, we show
that the symmetric deformed 3D Hurwitz-Kontsevich model can be represented by affine
Yangian of gl(1), then we will see that this model is symmetric about z-axis, y-axis and
z-axis.

From and , we have
W = ,% + = %f N - *7!1003)7#) (102)

Acting on 3-Jack polynomials,

Wodr = *¢3JA + 5 wofN - *¢003)¢2JA = > (ho +oV/BN)Jy, (103)

Oer

which matches that in .
The creation operator

El = [W()vpl] [ Y3+ - (%\/BN - %¢003)w2, 60] =e1 + ¢0\/BN€0. (104)

From the representation of affine Yangian of gl(1) on 3D Young diagrams, the action of
F4 on 3-Jack polynomials is

EyJr = (e1 +tovV/BNeo)J = > (ho + toy/BN)Jria. (105)

Oent

The creation operator

W_1 = [ 1/13+ 1#0\[1\7—*1/1003)%7614—%\[1\760
= €2+2¢0\fN€1+¢05N €o, (106)

then W_,,, n > 1 can be represented by the generators ey of affine Yangian of gl(1).
The annihilation operator

By = [gs + 5 (6ov/BN — oo, ol = —fi ~dov/BNfo. (107)

Then W, n > 1 can be represented by the generators fj of affine Yangian of gl(1).

Appendix: 3-Jack polynomials

3-Jack polynomials are eigenstates of the Hamiltonian H defined in section 3-Jack
polynomials are the generalization of the symmetric functions Y) to the three dimen-
sional case, which are also the generalization of Jack polynomials. Following the name
and the notations we defined in paper [§], we denote 3-Jack polynomials by Jx, where

14



7 is a 3D Young diagram. When N in monodromy matrix equals 1, 3-Jack poly-
nomials become Yy, and when N = 1 and hy = h,hy = —h~!,a = 1/8 = h?, 3-Jack
polynomials become Jack polynomials Jy. Jack polynomials Jy are defined in [21], which
equal Jy (defined in book [9]) multiplied by a constant.

We recall the expressions of 3-Jack polynomials for some of 3D Young diagrams]g].

Ja

Jem

P11+ -+ DN, (108)

) N N

(—ha(hy —hs) Y pii+ > (h — (2N = 2i + 1)hg)pia
(h1 = ha)(h1 = hs) i=1 i=1
+2hohs Y piy1Pisa); (109)
11 <12

) N N

(e )iy iy Pa(h2 = h) D pEa + > (h = (2N =20+ Dha)pia
L A i=1 i=1
+2h1h3 Z Dir 1Pis1), (110)
11 <12

) N-1

(ia i) (a gy 2 2o (N = Dhapi +2haha 3 pivapip), - (111)
=1 11 <ig
1 N
h3(6h% + 5hihy + h3 H
i = Toa) (s — ) (2l — o) @y — o) P21 Bk 1) D,
N
—3ho(2h1 + ha) Z —j) +3)h1 + (2(N — j) + 1)h2)pj1pj2
J=1

N
42> (BN —j+ 1)(N — j +2)hT + (6(N — j)* + 12(N — j) + 5)h1ho
j=1
+(B(N = j)(N —j + 1) + 1)h3)pjs — 3h3ha(2hn + ho) Y (071ps1 + piapi)

1<j
+3hohs Y ((2N = 2j + 2)h1 + (2N — 2 + 1)ho)pi1pj.2
1<j
+3hohs ¥ ((2N = 2i+ 4)hy + (2N — 2i + 1)ho)pi 2pja
1<j
+6h3h3 Y pji Py D) (112)
J1<j2<7J3
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J =
Iﬁhlv@

J —
%hl,hg

i

E ho,hg

N
1 2 2 3
2hyho(2h3 + Shiha 4 2h3) Y p?
(s — T2) (b — ) (ks — 2 (g — g (1112 (2HT - Shiha + 2hy ; a1
N
+2h3 Y (2N = 2§+ 2)hF + (TN = 7j + 5)huhg + (2N — 2 + 2)h3)p;1pje
j—l
+2Z )24+ 5(N —j) +2)h% + (6(N — 5)? + 10(N — j) 4 5)hihy

+(3(N — §)2 4+ 5(N = 4) + 2)h3)pj + 8hahoh3 > (pipj1 + piapis)

1<J
+2h3 Y (2N = 2§+ 2)hF + (AN — 45 + Dhahg + (2N — 2 + 2)h3)pi1p;.2
1<J
+4h3 Y (N =i+ Vpigpjn +12hbohi > pjipjpjs) (113)
1<j J1<j2<7s

=

1
(h1 — ho)(hy — h3)(hs — 2h1)(hs — ho)

(2hohs(3hy + 2h2) > (N = j)pjip;2

j=1
N
~2h3 Y (BN = ) (N = j + D1 + (N = j)BN = 3j + 1)h2)pj3
j=1
—2h1h3(3h1 +2h2) > (p71pj1 + Pinpis)
1<j
+2hy Y (33 = 2(N — j — Dhihy — (2N — 2j)h3)pi.1pse
1<J
—2h3 Y (2N = 2i + 1)y + (2N — 2i)h2)p; 2pja
1<J
+12h1 hah? Z Djr,~1Pj2,~1Pjs,—1) (114)
J1<j2<ja
1 N
2h1h3(3hg + 2hy) — J)pjapiz2
(s — ) (s — ) (g — Zha) g — o) 150 le n
N
—2h3 Y (B(N = §)(N = j + Dha + (N — j)(3N — 35 + 1)h1)p;
j=1
—2hoh3 (3hy + 2h1) > (7 1ps1 + Piapy)
1<j
+2h1 Y (3h3 — 2(N — j — 1)hihy — (2N — 25)h)pip;e2
1<J
—2h7 Y (2N — 2i + 1)hg + (2N — 2i)h1)pi 2pj1
1<j
+12h1h3h% Z pjl,lpjg,lpjs,l) (115)
J1<j2<j3
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N
- 1
lg = (hT(6h5 + 5h1hy + hi) ;p}j '

(ha — h1)(he — h3)(2ha — h1)(2ha — hg3)

—2h1(2hg + hy) Z + Dhg 4+ (2(N — j) + 1)h1)pj1pj2
7j=1
+2Z N =G+ 1N =j+2)h3 + (6(N = j)* +12(N = j) + 5)hih

+(3(N — )N = j+1) + 1)h7)p;3 — 3hihs(2ha + h1) > _ (9} 1pj1 + piapis)

1<j
+3h1hg > ((2N =25 + 2)ho + (2N — 25 + 1)h1)pi1p;.2
1<J
+3h1hs Z((QN — 21+ 4)h2 + (2N — 27+ 1)h1)pi72pj71
i<j
+6h%h§ Z Pj1,1Pj2,1Pjs,1) (116)
J1<j2<7J3
1 N
Jg = 6h2) (N —j)(N —j—1)p;
—6h1h2h3 Z(N — j)pi,lpj,Z — 6h1h2h3 Z(N — 17— 1)pi,2pj,1
i<j 1<J
+6hThS > PP aPss)- (117)
J1<742<J3
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