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Abstract

In this paper we provide a formalism, Sudoku logic, in which a so-
lution is logically deducible if for every cell of the grid we can provably

exclude all but a single option. We prove that the deductive system
of Sudoku logic is sound and complete, and as a consequence of that
we prove that a Sudoku puzzle has a unique solution if and only if it
has a deducible solution. Using the classification of fundamental Su-
doku transformations by Adler and Adler we then formalize the notion
of symmetry in Sudoku and provide a formal proof of Gurth’s Sym-
metrical Placement Theorem. In the concluding section of the paper
we present a Sudoku formula that captures the idea of a Sudoku grid
having a unique solution. It turns out that this formula is an axiom of
Sudoku logic, making it possible for us to offer to the Sudoku commu-
nity a resolution of the Uniqueness Controversy: if we accept Sudoku
logic as presented in this paper, there is no controversy! Uniqueness is
an axiom and, as any other axiom, may freely be used in any Sudoku
deduction.

1 Introduction

Sudoku is a logic game for one player where the goal is to fill the 9× 9 grid
with digits 1, 2, . . . , 9 so that in every row, every column and every 3 × 3
box each of the digits 1, 2, . . . , 9 appears exactly once.

Usually the initial setting contains some given digits, and the player is
expected to fill in the rest. What is the smallest number of given digits that
ensures a unique solution of a Sudoku puzzle? It had been conjectured that
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the answer is 17, and this was confirmed by an exhaustive computer search
in 2014 by McGuire, Tugemann and Civario [6].

Sudoku is traditionally treated by mathematicians as a combinatorial
topic. For example, Felgenhauer and Jarvis proved in [3] that there are

6 670 903 752 021 072 936 960 ≈ 6.67 · 1021

different fully filled Sudoku grids. Now, not all of them are essentially dif-

ferent : if we take a fully filled Sudoku grid and rotate it clockwise by 90◦

we end up with a new Sudoku grid, but the two can hardly be considered
“essentially different”. When it comes to counting essentially different Su-
doku grids, Russell and Jarvis proved in [8] that only 5 472 730 538 out of
6.67 · 1021 fully filled Sudoku grids are essentially different.1

Solving Sudoku puzzles by trial an error is considered unacceptable by
Sudoku puritans: instead we are interested in solutions that are logically

deducible from the initial setup. However, the notion of logical deducibility
in Sudoku has not been formally specified, so in this paper we intend to
rectify this injustice.

Unlike most mathematical treatments of Sudoku which approach the
problems from the combinatorial point of view (see e.g. [7]), in this paper
we focus on the notion of deducibility. The main contribution of this paper
is Sudoku logic, a formal deductive system in which a solution is logically
deducible if for every cell of the grid we can provably exclude all but a single
option. This point of view is a clear display of the general feeling that
Sudoku is a game of elimination.

The beginning of the paper is devoted to the exposition of Sudoku logic:
Section 2 contains a brief discussion of the general nature of formal deductive
systems, Section 3 defines the syntax, while Section 4 defines the semantics
of Sudoku logic.

The first nontrivial result of the paper appears in Section 5 where we
introduce the notion of deducibility. We prove there that the deductive
system of Sudoku logic is sound an complete (although the rather technical
proof of completeness is deferred until Appendix A), and as the immediate
consequence of soundness and completeness we prove that a Sudoku puzzle
has a unique solution if and only if it has a logically deducible solution.2 In

1We shall define precisely in Section 6 what does it mean for Sudoku grids to be
essentially different.

2Statements of the form if and only if are not typical for the spoken language, although
they are ubiquitous in formal mathematical texts; for example, this statement means that:
(1) if a Sudoku grid has a unique solution then this solution is logically deducible, and (2)
if a Sudoku grid has a logically deducible solution then it is the only solution.
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other words,

uniqueness = logical deducibility.

To demonstrate the strength of Sudoku logic, we devote the remaining
part of the paper to a precise formulation and the proof of Gurth’s Sym-
metrical Placement Theorem, which, informally, takes the following form:

Gurth’s Symmetrical Placement Theorem (informally).
If the initial setup of a Sudoku puzzle exhibits some kind of sym-
metry, and we know that the puzzle has a unique solution, then
the solution to the puzzle exhibits the same kind of symmetry.

But, what is a symmetry? To provide a precise answer, in Section 6 we
provide a brief discussion of the general nature of symmetry, and the rela-
tionship between a “symmetrical setup” and transformations that preserve
the setup. Starting from the classification of fundamental transformations
by Adler and Adler [1] we derive in Section 7 the notion of Sudoku trans-
formation which ina standard manner leads to the notion of automorphism
of a Sudoku grid. The notions of logical deducibility and Sudoku automor-
phism then make it possible for us to formally define and prove Gurth’s
Symmetrical Placement Theorem in Section 8.

We close the paper with Section 9 in which we tackle Uniqueness Con-
troversy in Sudoku. We present a formula of Sudoku logic which expresses
the fact that a Sudoku grid has a unique solution, and then show (rather
easily) that this is one of the axioms of Sudoku logic. Therefore,

if we accept Sudoku logic as presented in this paper, uniqueness
of the solution is just another axiom of the deductive system;
since axioms are always at our disposal in any formal deduc-
tion, it follows that there is nothing controversial in assuming
uniqueness while searching for a logically deducible solution for
a Sudoku grid!

This paper is written under the assumption that the reader is familiar
with basics of Sudoku, as well as with basics of mathematics at the level
of any standard discrete mathematics course for undergraduate computer
science students (see for example [5]). Most of the notions have been intro-
duced slowly and with ample motivation, except for Appendix A which is
intended for more mathematically inclined readers.
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2 Formal logic

Formal logic (or a formal deductive system) is a set of formal rules that
enables us, humans, to describe and talk competently about logical reason-
ing and logical deductions within a “universe”. Nowadays there are many
different formal logics, but for our purposes the simplest one, propositional
logic, will suffice.

The Sudoku logic that we now introduce is a very special propositional
logic. Just as a refresher, let us recall that in propositional logic statements
about the state of affairs in the “universe” are written using propositional

formulas which are formed from simple propositions (such as p, q, r, s, . . . ),
logical connectives (¬, ∧, ∨, ⇒ and ⇔) and parentheses like so:

(¬p ∨ q) ⇒ ((p ∧ s) ⇔ ¬(q ∨ s)).

(See [5] for a lot of motivation, and [4, Chapter 1] for a standard presentation
of the classical propositional logic.)

Sudoku logic is tailor-made to formally reason about a universe that, in
our case, is the classic Sudoku grid. A Sudoku grid is organized into nine
rows (r1, r2, . . . , r9), nine columns (c1, c2, . . . , c9), and nine boxes, Fig. 1.
A cell in row i and column j will be denoted by ricj . Cells rici, 1 6 i 6 9,
form the main diagonal of the grid, while cells ric10−i, 1 6 i 6 9, form the
auxiliary diagonal of the grid Fig. 1.

Simplest statements that we can make about the state of the affairs are
Sudoku propositions which take the following form:

ricj 6≈ d

meaning: in the grid, the cell in row i column j cannot possibly contain digit
d. Simple propositions then combine into formulas just like in the classical
propositional logic. For example:

(¬(r1c1 6≈ 1) ∧ ¬(r1c2 6≈ 3)) ⇒ (r1c3 6≈ 1 ∧ r1c3 6≈ 3).

1 3

c1 c2 c3

r1

The purpose of the following three sections is to define Sudoku logic
formally. Defining a formal logic (or a formal deductive system) goes in
three steps.
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c1 c2 c3 c4 c5 c6 c7 c8 c9

r1

r2

r3

r4

r5

r6

r7

r8

r9

box 1 box 2 box 3

box 4 box 5 box 6

box 7 box 8 box 9

r4c7

main diagonal

auxiliary diagonal

Figure 1: Sudoku notation

Step 1. We first have to define the syntax of the system, which tells us
what correctly formed strings of symbols look like. For example, we
will ensure that

((¬(r1c1 6≈ 1) ∧ ¬(r1c2 6≈ 3)) ⇒ (r1c3 6≈ 1 ∧ r1c3 6≈ 3))

is a correct string of symbols (don’t worry about the outer parentheses
for now, their presence simplifies formal reasoning, but we shall very
quickly relax the rigid rules imposed by the definition), and that

r1c1 ∨ ∧(r2c2 = 5) ⇒ (

is not. Then we ignore the incorrectly formed strings and call the
correct ones formulas.

Step 2. We then have to define the semantics of the system, which pro-
vides meaning to formulas (correctly formed strings). This is usually
straightforward, as we shall se below.

Step 3. Finally, we have to describe how deduction in the system works.
Formal deductive systems are required to be sound. Fortunately, the
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soundness of our Sudoku logic comes from the fact that it is a spe-
cial propositional logic, and propositional logic is known to be sound
(see [4] for details).

3 Sudoku logic: Syntax

The syntax of Sudoku logic is given by a pair of definitions below. We first
define Sudoku propositions, which are the basic building blocks of Sudoku
formulas. We can then combine them into more elaborate statements (Su-
doku formulas) using the classic logical connectives (and a lot of parentheses
to ensure the unique parsing of the formula).

Sudoku is often characterized as a game of elimination. We shall now
formally support this claim by choosing negative constraints as building
blocks of Sudoku formulas.

Definition 3.1. A Sudoku proposition is a string of symbols of the form

ricj 6≈ d,

where i, j and d can be any of the numbers 1, 2, . . . , 9.

Definition 3.2. A Sudoku formula is a string of symbols formed according
to the following rules:

• Sudoku propositions and the symbols ⊤ and ⊥ are Sudoku formulas;

• if α and β are Sudoku formulas, then so are the following strings of
symbols: ¬α, (α ∧ β), (α ∨ β), (α⇒ β) and (α ⇔ β);

• every Sudoku formula can be constructed by applying the above two
rules finitely many times.

The first two items in this definition tell us how to build Sudoku formulas:
start from Sudoku propositions and symbols ⊤ and ⊥, and then either take
a formula we have already built and prefix it with ¬, or take two formulas
we have already built, connect them by ∧, ∨, ⇒ or ⇔ and put parentheses
around.

The last item is subtle: it tells us that every Sudoku formula is built this
way (that is, other strings of symbols are not Sudoku formulas), and that
every Sudoku formula is a finite string of symbols.

Sudoku formulas (as all the propositional formulas) are often cumber-
some. To make conveying ideas using this language easier we adopt several
standard conventions.
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Convention 1. We do not write outer parentheses in formulas. For exam-
ple, instead of

((¬(r1c1 6≈ 1) ∧ ¬(r1c2 6≈ 3)) ⇒ (r1c3 6≈ 1 ∧ r1c3 6≈ 3))

we shall write

(¬(r1c1 6≈ 1) ∧ ¬(r1c2 6≈ 3)) ⇒ (r1c3 6≈ 1 ∧ r1c3 6≈ 3).

Convention 2. Logical connectives ∧ and ∨ have higher precedence (they
bind more strongly) than ⇒ and ⇔, so the above formula can be
further simplified to:

¬(r1c1 6≈ 1) ∧ ¬(r1c2 6≈ 3) ⇒ (r1c3 6≈ 1 ∧ r1c3 6≈ 3).

Convention 3. We shall omit parentheses for long stretches of logical con-
nectives ∧ and, respectively, ∨. For example, instead of

(α1 ∧ (α2 ∧ (α3 ∧ α4))) and resp. ((β1 ∨ β2) ∨ (β3 ∨ β4))

we shall simply write

α1 ∧ α2 ∧ α3 ∧ α4 and resp. β1 ∨ β2 ∨ β3 ∨ β4.

Of course, we shall reintroduce the extra parenthesis whenever we need
to clarify an expression or increase readability. Let us now introduce two
new symbols that will be useful in expressing properties of Sudoku grids.

Definition 3.3. Let ricj ≡ d be a shorthand for:

ricj ≡ d :
∧

s 6=d

ricj 6≈ s.

In that case we say that the cell ricj is uniquely determined.

For example, r2c3 ≡ 7 is a shorthand for

r2c3 6≈ 1 ∧ r2c3 6≈ 2 ∧ r2c3 6≈ 3 ∧ r2c3 6≈ 4 ∧
r2c3 6≈ 5 ∧ r2c3 6≈ 6 ∧ r2c3 6≈ 8 ∧ r2c3 6≈ 9.

It turns out that the most efficient way to claim that the only possibility for
a cell ricj to be d in Sudoku logic is to assert that it cannot take any other

value!
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Definition 3.4. Let ricj ‖ rℓcm be a shorthand for:

ricj ‖ rℓcm :
∧

16d69

((ricj ≡ d⇒ rℓcm 6≈ d) ∧ (rℓcm ≡ d⇒ ricj 6≈ d)).

The formula ricj ‖ rℓcm conveys the message that whenever one of the
two cells is uniquely determined, the other cannot possibly take the same
value.

To see all this in action let us write down the three Sudoku axioms using
Sudoku formulas:

A1. in every row all the digits have to be distinct,

A2. in every column all the digits have to be distinct,

A3. in every box all the digits have to be distinct

The axiom A1 can be broken down into nine row conditions:

A1: R1 ∧R2 ∧ . . . ∧R9

where each row condition Ri asserts that in row i all the digits are distinct.
This can be written down compactly as

Ri :
∧

16j<m69

ricj ‖ ricm.

Analogously, the axiom A2 can be broken down into nine column conditions:

A2: C1 ∧ C2 ∧ . . . ∧ C9

where each column condition Cj asserts that in column j all the digits are
distinct. This can be written down compactly as

Cj :
∧

16i<ℓ69

ricj ‖ rℓcj .

The axiom A3 can also be broken down into nine box conditions:

A3: B1 ∧B2 ∧ . . . ∧B9

where each box condition Bn asserts that in box n all the digits are distinct.
This is not easy to write down compactly. As an example of what we are
dealing with, formulas R1, C2 and B3 are written down completely in Fig. 2.
Finally, let

Σax = {R1, R2, . . . , R9, C1, C2, . . . , C9, B1, B2, . . . , B9}

be the set of Sudoku formulas that captures the axioms of classic Sudoku.
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R1= (r1c1 ‖ r1c2) ∧ (r1c1 ‖ r1c3) ∧ (r1c1 ‖ r1c4) ∧ (r1c1 ‖ r1c5)
∧ (r1c1 ‖ r1c6) ∧ (r1c1 ‖ r1c7) ∧ (r1c1 ‖ r1c8) ∧ (r1c1 ‖ r1c9)
∧ (r1c2 ‖ r1c3) ∧ (r1c2 ‖ r1c4) ∧ (r1c2 ‖ r1c5) ∧ (r1c2 ‖ r1c6)
∧ (r1c2 ‖ r1c7) ∧ (r1c2 ‖ r1c8) ∧ (r1c2 ‖ r1c9) ∧ (r1c3 ‖ r1c4)
∧ (r1c3 ‖ r1c5) ∧ (r1c3 ‖ r1c6) ∧ (r1c3 ‖ r1c7) ∧ (r1c3 ‖ r1c8)
∧ (r1c3 ‖ r1c9) ∧ (r1c4 ‖ r1c5) ∧ (r1c4 ‖ r1c6) ∧ (r1c4 ‖ r1c7)
∧ (r1c4 ‖ r1c8) ∧ (r1c4 ‖ r1c9) ∧ (r1c5 ‖ r1c6) ∧ (r1c5 ‖ r1c7)
∧ (r1c5 ‖ r1c8) ∧ (r1c5 ‖ r1c9) ∧ (r1c6 ‖ r1c7) ∧ (r1c6 ‖ r1c8)
∧ (r1c6 ‖ r1c9) ∧ (r1c7 ‖ r1c8) ∧ (r1c7 ‖ r1c9) ∧ (r1c8 ‖ r1c9)

C2= (r1c2 ‖ r2c2) ∧ (r1c2 ‖ r3c2) ∧ (r1c2 ‖ r4c2) ∧ (r1c2 ‖ r5c2)
∧ (r1c2 ‖ r6c2) ∧ (r1c2 ‖ r7c2) ∧ (r1c2 ‖ r8c2) ∧ (r1c2 ‖ r9c2)
∧ (r2c2 ‖ r3c2) ∧ (r2c2 ‖ r4c2) ∧ (r2c2 ‖ r5c2) ∧ (r2c2 ‖ r6c2)
∧ (r2c2 ‖ r7c2) ∧ (r2c2 ‖ r8c2) ∧ (r2c2 ‖ r9c2) ∧ (r3c2 ‖ r4c2)
∧ (r3c2 ‖ r5c2) ∧ (r3c2 ‖ r6c2) ∧ (r3c2 ‖ r7c2) ∧ (r3c2 ‖ r8c2)
∧ (r3c2 ‖ r9c2) ∧ (r4c2 ‖ r5c2) ∧ (r4c2 ‖ r6c2) ∧ (r4c2 ‖ r7c2)
∧ (r4c2 ‖ r8c2) ∧ (r4c2 ‖ r9c2) ∧ (r5c2 ‖ r6c2) ∧ (r5c2 ‖ r7c2)
∧ (r5c2 ‖ r8c2) ∧ (r5c2 ‖ r9c2) ∧ (r6c2 ‖ r7c2) ∧ (r6c2 ‖ r8c2)
∧ (r6c2 ‖ r9c2) ∧ (r7c2 ‖ r8c2) ∧ (r7c2 ‖ r9c2) ∧ (r8c2 ‖ r9c2)

B3= (r1c7 ‖ r1c8) ∧ (r1c7 ‖ r1c9) ∧ (r1c7 ‖ r2c7) ∧ (r1c7 ‖ r2c8)
∧ (r1c7 ‖ r2c9) ∧ (r1c7 ‖ r3c7) ∧ (r1c7 ‖ r3c8) ∧ (r1c7 ‖ r3c9)
∧ (r1c8 ‖ r1c9) ∧ (r1c8 ‖ r2c7) ∧ (r1c8 ‖ r2c8) ∧ (r1c8 ‖ r2c9)
∧ (r1c8 ‖ r3c7) ∧ (r1c8 ‖ r3c8) ∧ (r1c8 ‖ r3c9) ∧ (r1c9 ‖ r2c7)
∧ (r1c9 ‖ r2c8) ∧ (r1c9 ‖ r2c9) ∧ (r1c9 ‖ r3c7) ∧ (r1c9 ‖ r3c8)
∧ (r1c9 ‖ r3c9) ∧ (r2c7 ‖ r2c8) ∧ (r2c7 ‖ r2c9) ∧ (r2c7 ‖ r3c7)
∧ (r2c7 ‖ r3c8) ∧ (r2c7 ‖ r3c9) ∧ (r2c8 ‖ r2c9) ∧ (r2c8 ‖ r3c7)
∧ (r2c8 ‖ r3c8) ∧ (r2c8 ‖ r3c9) ∧ (r2c9 ‖ r3c7) ∧ (r2c9 ‖ r3c8)
∧ (r2c9 ‖ r3c9) ∧ (r3c7 ‖ r3c8) ∧ (r3c7 ‖ r3c9) ∧ (r3c8 ‖ r3c9)

Figure 2: Formulas R1, C2 and B3
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4 Sudoku logic: Semantics

In any formal deductive system semantics provides a context in which for-
mulas of the system can be interpreted so that the validity of formulas can
be established. This is usually expressed as a relation |= between contexts
and formulas where

C |= α

means that the formula α is true in the context C. We read this as “α is
true in C”, or “α holds in C”, or “C is a model of α”, or “C satisfies α”.

In case of classic Sudoku contexts will given by (partially filled) Sudoku
grids, while formulas will be Sudoku formulas.

Definition 4.1. A grid is a 9× 9 matrix

A = [Aij ]9×9 =





























A11 A12 A13 A14 A15 A16 A17 A18 A19

A21 A22 A23 A24 A25 A26 A27 A28 A29

A31 A32 A33 A34 A35 A36 A37 A38 A39

A41 A42 A43 A44 A45 A46 A47 A48 A49

A51 A52 A53 A54 A55 A56 A57 A58 A59

A61 A62 A63 A64 A65 A66 A67 A68 A69

A71 A72 A73 A74 A75 A76 A77 A78 A79

A81 A82 A83 A84 A85 A86 A87 A88 A89

A91 A92 A93 A94 A95 A96 A97 A98 A99





























where each Aij is a nonempty subset of the set {1, 2, . . . , 9}.
We say that the cell ricj in A is uniquely determined if |Aij | = 1. Oth-

erwise it is not uniquely determined.
If every cell in A is uniquely determined then A will be referred to as a

full grid.

The idea in this definition is that each Aij represents the set of possible
digits the cell ricj can take. Note that our definition requires that there is at
least one possibility for every cell. Note also that a grid is not necessarily a
Sudoku grid (because in the definition we do not forbid repetitions of digits
in rows, columns and boxes, for example).

Definition 4.2. If A = [Aij ]9×9 is a grid and ϕ is a Sudoku formula, then
we define A |= ϕ inductively as follows:

• A |= ⊤ is always true; A |= ⊥ is never true;

• A |= ricj 6≈ d if and only if d /∈ Aij;
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• A |= ¬α if and only if it is not the case that A |= α;

• A |= α ∧ β if and only if A |= α and A |= β;

• A |= α ∨ β if and only if A |= α or A |= β, or both;

• A |= α⇒ β if and only if A |= β assuming A |= α;

• A |= α⇔ β if and only if A |= α⇒ β and A |= β ⇒ α.

Definition 4.3. If A is a grid and Φ is a set of Sudoku formulas, then
A |= Φ means that A |= ϕ for every ϕ ∈ Φ. We take by definition that
A |= ∅ for every grid A.

The idea behind the fact that every grid models the empty set of Sudoku
formulas is simple: since the empty set of formulas imposes no restrictions
on the structure of the grid, it is satisfied by every grid.

Definition 4.4. A grid A is a Sudoku grid if A |= Σax.

As a consequence of the definition of ‖ we have that in a Sudoku grid
not all the cells are required to be uniquely determined, but the unique
values that appear in the same row (column and box, respectively) have to
be distinct, and they cannot appear as possible values for cells that are not
uniquely determined. To see why this is so, let A be the following Sudoku
grid:

1 3

c1 c2 c3

r1

c4 c5 c6 c7 c8 c9

r2 7

5

3 1

2 4
6 8

2 4
6 8

2 4
6 8

2 4
6 8

2 4
6 85 9 5 9

7 9 7 92 4 2 6 6 8

Some cells in this grid are uniquely determined (for example, A12 = {3})
and others are not (for example, A14 = {2, 4}). Let us show that A |= R1.
It is obvious that A |= r1c1 ‖ r1c2 because |A11| = |A12| = 1 and the unique
values in A11 and A12 are not equal. To see that A |= r1c1 ‖ r1c3 note that
the cell r1c1 is uniquely determined and the digit in r1c1 does not appear
among the possible values for r1c3. Finally, A |= r1c3 ‖ r1c4 as none of the
two cells is uniquely determined. These three ideas suffice to prove that the
remaining 33 Sudoku propositions that are listed in R1 are also satisfied.

Definition 4.5. Let Φ be a set of Sudoku formulas. Then

|= Φ

means that S |= Φ for every full Sudoku grid S.
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Let us now specify what a solution to a Sudoku puzzle is.

Definition 4.6. Let A = [Aij ]9×9 and B = [Bij ]9×9 be grids. We say that
B is compatible with A if Bij ⊆ Aij for all 1 6 i, j 6 9.

Definition 4.7. Let A = [Aij ]9×9 and S = [Sij ]9×9 be grids. We say that
S is a solution for A if S is a full grid compatible with A.

Definition 4.8. Let Φ and Ψ be two sets of Sudoku propositions (that is,
formulas of the form ricj 6≈ d). Then

Φ |= Ψ

means that for every Sudoku grid A, if A |= Φ then S |= Ψ for every full
Sudoku grid S which is a solution of A. We say that the formulas in Ψ are
semantic consequences of Φ.

Convention. Instead of Φ |= {α} we simply write Φ |= α, and instead
of {α} |= Ψ we simply write α |= Φ. Also, instead of {α1, . . . , αn} |=
{β1, . . . , βm} we simply write α1, . . . , αn |= β1, . . . , βm.

Note that the above definition overloads the symbol |=, and this is stan-
dard in logic. However, there is no danger of confusion: there is a clear
distinction between the statement of the form

grid |= set of arbitrary Sudoku formulas,

the statement of the form

|= set of arbitrary Sudoku formulas,

and the statement of the form

set of Sudoku propositions |= set of Sudoku propositions.

Definition 4.9. For a Sudoku grid A = [Aij ]9×9 let Prop(A) denote the set
of all the Sudoku propositions valid in A:

Prop(A) =
{

ricj 6≈ d : 1 6 i, j, d 6 9 and d /∈ Aij}.

In particular, if the cell ricj is uniquely determined and Aij = {d} then
for all s 6= d we have that ricj 6≈ s ∈ Prop(A). If, on the other hand, the
cell ricj is not uniquely determined, the fact that A is a Sudoku grid (that
is, A |= Σax) implies the following:
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• if there is an m 6= j such that Aim = {d} then ricj 6≈ d ∈ Prop(A);

• if there is an ℓ 6= i such that Aℓj = {d} then ricj 6≈ d ∈ Prop(A);

• if there is a pair (ℓ,m) 6= (i, j) such that ricj and rℓcm are in the same
box and Aℓm = {d} then ricj 6≈ d ∈ Prop(A).

Lemma 4.10. Let A and S be Sudoku grids and assume that S is compat-
ible with A. Then:

(a) Prop(A) ⊆ Prop(S).
(b) S |= Prop(A).
(c) If A |= ricj ≡ d then S |= ricj ≡ d.

Proof. (a) Let A = [Aij ]9×9 and S = [Sij ]9×9. Take any formula ricj 6≈
d ∈ Prop(A). Then d /∈ Aij by the definition of Prop(A). Since S is a
solution for A we also know that Sij ⊆ Aij. Therefore, d /∈ Sij and thus
ricj 6≈ d ∈ Prop(S).

(b) and (c) follow immediately from (a) and Definition 4.2.

As a demonstration of the theory developed so far, we propose a series
of exercises which validate the X-wing rule. Let Xr(i, j,m, d) denote the
following set of Sudoku propositions:

Xr(i, j,m, d) = {rics 6≈ d : s 6= j,m}

which claims that in row i the digit d can occur in none but two cells, ricj
and ricm. Analogously, let Xc(j, i, ℓ, d) denote the following set of Sudoku
propositions:

Xc(j, i, ℓ, d) = {rtcj 6≈ d : t 6= i, ℓ}

which encodes an analogous claim for columns. Then the X-wing rule for
rows is the following claim:

X-wing rule for rows. Fix 1 6 i, j, ℓ,m, d 6 9 so that i 6= ℓ
and j 6= m. Then

Xr(i, j,m, d) ∪Xr(ℓ, j,m, d) |= Xc(j, i, ℓ, d) ∪Xc(m, i, ℓ, d).

Exercise 4.11. Prove the X-wing rule for rows. In other words, prove the
following: if A is a Sudoku grid such that A |= Xr(i, j,m, d) ∪Xr(ℓ, j,m, d)
and if S is a Sudoku grid which is a solution of A then S |= Xc(j, i, ℓ, d) ∪
Xc(m, i, ℓ, d).

Exercise 4.12. Formulate and prove the X-wing rule for columns.

Exercise 4.13. Formulate and prove the jellyfish rule for rows and columns.

13



5 Deducibility

A deduction is a highly formalized procedure of establishing that a particular
piece of information must be a logical consequence of certain assumptions.
In every deduction we start from universally accepted truths called axioms,
and then starting from a set of premisses we then produce a sequence of
intermediate statements that lead to a conclusion. Along the way, we obtain
new statements from those that appear prior to it in the deduction using
some prescribed rules of deduction.

Usually there are two kinds of axioms: logical axioms and domain-
specific axioms. Logical axioms are universally true across mathematics.
They govern our reasoning and ensure that in every part of mathematics we
use the same rigorous procedures, so that conclusions we make in euclidean
geometry are as reliable as conclusions we make in number theory.

Using logical axioms only nothing can be said about euclidean geometry,
say. What is a straight line? What is a point? In what ways can a straight
line and a point interact? None of this is encoded in logical axioms. The
choice of domain-specific axioms tells us what is the mathematical theory we
are working in. Their principal task is to introduce the fundamental objects
of the theory (such as points and lines) and their defining properties (such
as: for every pair of distinct points there is precisely one line that passes
through both of them).

Finally, problem-specific premisses are the assumptions about a partic-
ular configuration for which we are trying to infer new properties.

For example, in the proof of the Pythagorean Theorem:

Pythagorean Theorem. In every right-angled triangle, the
square of the length of one side of the triangle equals the sum of
squares of lengths of the other two sides.

the logical axioms are the axioms of mathematical logic (these are usu-
ally taught at schools and universities as “proof strategies” or “proof tech-
niques”). The domain-specific axioms are the axioms of euclidean geometry.
This is not specified explicitly in the statement of the theorem, but anyone
can safely infer that from the historical context. Finally, problem-specific
assumptions are that we are given a triangle in which one of the angles is
right.

The logical axioms of Sudoku logic are all Sudoku formulas that are
derived from tautologies. A tautology is a universally true propositional
formula, such as

(¬q ⇒ ¬p) ⇒ (p ⇒ q) and p⇒ (q ⇒ p ∧ q).

14



A Sudoku formula derived from a tautology is any formula that we can
obtain from a tautology by replacing letters with arbitrary Sudoku proposi-
tions. For example, the following two Sudoku axioms are examples of logical
Sudoku axioms derived from the above two tautologies:

(¬(r1c2 6≈ 4) ⇒ ¬(r1c3 6≈ 7)) ⇒ (r1c3 6≈ 7 ⇒ r1c2 6≈ 4)

and r1c2 6≈ 4 ⇒ (r1c2 6≈ 5 ⇒ r1c2 6≈ 4 ∧ r1c2 6≈ 5).

A Sudoku axiom is a Sudoku formula which holds in every full Sudoku
grid. Since tautologies are universally true, every Sudoku formula derived
from a tautology is also a Sudoku axiom.

Let ∆ax denote the set of all Sudoku axioms. The set ∆ax contains Σax

and much more. For example, each of the formulas

¬(ricj 6≈ d) ⇔ ricj ≡ d,

where 1 6 i, j, d 6 9, is also a Sudoku axiom since it is true in every full
Sudoku grid. Note that there are Sudoku grids where such a formula fails,
but they all hold in every full Sudoku grid.

In Sudoku logic we use only one deduction rule – modus ponens:

α α⇒ β

β

This depiction means that if we can logically deduce α and if we can logically
deduce α⇒ β, then we have the license to logically deduce β.

Definition 5.1. Let Φ be a set of Sudoku formulas and let α be a Sudoku
formula. We say that α is logically deducible from Φ and write Φ ⊢ α if we
can write down a sequence

ϕ1, ϕ2, . . . , ϕn (5.1)

of formulas such that ϕn = α and for every 1 6 i 6 n:

• ϕi is a Sudoku axiom (that is, ϕi ∈ ∆ax), or

• ϕi is a premise (or assumption; that is, ϕi ∈ Φ), or

• there exist 1 6 p, q < i such that ϕi can be deduced from ϕp and ϕq

using modus ponens (in other words, ϕq is ϕp ⇒ ϕi).

In that case Φ is the set of premisses, α is the consequence or conclusion,
and the sequence (5.1) is the proof of α from the premisses in Φ.

If Φ = ∅ is the empty set of premisses, instead of ∅ ⊢ α we shall simply
write ⊢ α. This means that α is a Sudoku theorem because it follows only
from the Sudoku axioms. As usual, we write ⊢ Φ if ⊢ α for all α ∈ Φ.

15



A deduction system (axioms together with deduction rules) makes sense
if it is sound. This means that everything we logically deduce within the
system must be true “in reality”. We shall now prove that the deduction
system of Sudoku logic is sound.

Lemma 5.2. Let S be a full Sudoku grid, let Φ be a set of Sudoku formulas
and let α be a Sudoku formula. If S |= Φ and Φ ⊢ α then S |= α.

Proof. Assume that S |= Φ and Φ ⊢ α. Then there is a proof

ϕ1, ϕ2, . . . , ϕn

of α. We shall prove that S |= α using induction on n – the length of the
proof.

If n = 1 then α is a Sudoku axiom or α ∈ Φ. In any case, S |= α.
Assume that the statement is true for every formula ϕ whose proof is

shorter than n and let
ϕ1, ϕ2, . . . , ϕn

be the shortest proof of α = ϕn. If α is an axiom or α ∈ Φ then obviously
S |= α. Assume, therefore, that there exist 1 6 p, q < n such that ϕi can be
deduced from ϕp and ϕq using modus ponens. Then, without loss of gener-
ality, we may also assume that ϕq is ϕp ⇒ ϕn. Since p, q < n the induction
hypothesis yields that S |= ϕp and S |= ϕp ⇒ ϕn. By Definition 4.2 the
statement S |= ϕp ⇒ ϕn means that we can conclude S |= ϕn provided
we know that S |= ϕp holds, which we do! Therefore, S |= ϕn, that is,
S |= α.

Theorem 5.3 (Soundness). Let Φ and Ψ be two sets of Sudoku proposi-
tions. If Φ ⊢ Ψ then Φ |= Ψ.

Proof. Let A be a Sudoku grid such that A |= Φ and let S be a solution
of A. Take any α ∈ Ψ. Then S |= Prop(A) by Lemma 4.10 (b). Since
A |= Φ is another way of saying that Φ ⊆ Prop(A) it follows that S |= Φ.
Now, S |= Φ and Φ ⊢ α gives us that S |= α by the lemma above. This
holds for every α ∈ Ψ, so S |= Ψ.

Completeness of a deductive system is a complementary requirement
which ensures that everything which is “semantically justifiable” can also
be logically deduced. More precisely:

Theorem 5.4 (Completeness). Let Φ and Ψ be two sets of Sudoku propo-
sitions. If Φ |= Ψ then Φ ⊢ Ψ.
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Proof. See Appendix A.

Corollary 5.5. Let Φ and Ψ be two sets of Sudoku propositions. Then
Φ ⊢ Ψ if and only if Φ |= Ψ.

Our set of Sudoku axioms is very large. For purely aesthetic reasons we
are interested in a smaller set of axioms from which every Sudoku axiom
cam be deduced. We pose this as an open problem.

Problem 5.6. Find a reasonable set of Sudoku axioms Ax ⊆ ∆ax such that
every other Sudoku axiom can be logically deduced from Ax.

Now that we have set up the logical system and precisely defined the de-
duction process in Sudoku logic, we can rigorously define logically deducible
solutions of Sudoku grids and prove the first main result of the paper: if a
grid has a logically deducible solution, then this must be the unique solu-
tion of the grid; conversely, if a grid has a unique solution, then this solution
must be logically deducible. So, uniqueness and deducibility are the same
thing!

Definition 5.7. Let A and B be Sudoku grids. We say that B is logically

deducible from A if Prop(A) ⊢ Prop(B).
In particular, if S is a solution of A such that Prop(A) ⊢ Prop(S) we

say that S is a logically deducible solution of A.

Let us now show that if a Sudoku grid has a logically deducible solution,
then this is the unique solution.

Theorem 5.8 (Deducibility implies uniqueness). Let A and S be Sudoku
grids. If S is a logically deducible solution of A then it is the only solution
of A.

Proof. Let S be a Sudoku grid which is a logically deducible solution of A
and assume that there is a Sudoku grid S ′ 6= S which is another solution of
A. Because S ′ 6= S we can find i and j such that Sij 6= S′

ij. Let Sij = {d}
and S′

ij = {e} where d 6= e. Then:

ricj 6≈ e ∈ Prop(S). (5.2)

Since S ′ is a solution of A we have that

S ′ |= Prop(A)
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by Lemma 4.10 (b). On the other hand, S is a logically deducible solution
of A so, by definition,

Prop(A) ⊢ Prop(S).

Since our deductive system is sound (Theorem 5.3), it follows that

S ′ |= Prop(S).

This and (5.2) imply
S ′ |= ricj 6≈ e

which means that e /∈ S′
ij. Contradiction.

Corollary 5.9. If a Sudoku grid A has several distinct solutions, none of
them is logically deducible.

Under the assumption that the deductive system is complete (which we
do not know at the moment) we can prove the converse of Theorem 5.8: if
a Sudoku grid has a unique solution, then this solution must be logically
deducible. We start with a lemma.

Lemma 5.10. Let A and B be Sudoku grids. If B |= Prop(A) and if L is a
solution of B then L is a solution of A.

Proof. Let A = [Aij ]9×9, B = [Bij ]9×9 and L = [Lij]9×9 be Sudoku grids
such that B |= Prop(A) and L is a solution of B. So, L is a full grid and
L is compatible with B. To complete the proof it suffices to show that B is
compatible with A. To this end, assume that d /∈ Aij for some 1 6 i, j, d 6 9.
Then ricj 6≈ d ∈ Prop(A), so the assumption that B |= Prop(A) implies that
B |= ricj 6≈ d. Therefore, d /∈ Bij . We have thus shown that Aij 6⊆ Bij ,
which completes the proof.

Theorem 5.11 (Uniqueness implies deducibility). If a Sudoku grid A has
a unique solution, then this is a logically deducible solution of A.

Proof. Let S be a Sudoku grid which is the unique solution of A. Let us
first show that Prop(A) |= Prop(S). Let B be any Sudoku grid and let
B |= Prop(A). Also, let L be a solution of B. Then by Lemma 5.10 we get
that L is a solution of A. But S is the unique solution of A, so it must be
the case that L = S. Therefore, L |= Prop(S) trivially. This completes the
proof that Prop(A) |= Prop(S). Theorem 5.4 then ensures that Prop(A) ⊢
Prop(S), and thus S is a logically deducible solution of A.

Corollary 5.12 (Uniqueness = deducibility). A Sudoku grid has a unique
solution if and only if it has a logically deducible solution.
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6 What is a symmetry?

It is an intrinsic quality of humanity to be able to observe and admire
symmetry. Highly symmetric patterns have always attracted attention not
only of artists, but also of architects and scientists. For example, the abstract
understanding of symmetries in physics started with Einstein who observed
in the early 1900’s that the symmetries of physical laws are the primary
features of nature. Invariance under abstract symmetries has played a crucial
role in physics ever since.

Mathematics as an abstract theory of structures has a way of under-
standing and analyzing symmetry which, as many great ideas, stems from
geometry. From the point of view of Euclidean geometry a plane figure is
symmetric if there are nontrivial rigid motions that map the figure onto it-
self. For example, the circle is the most symmetric of all (it has infinitely
many symmetries), while a square has only 8 symmetries – 4 rotations about
the center (0◦, 90◦, 180◦ and 270◦) and 4 reflections about the horizontal
axis, the vertical axis and the two diagonals:

α
90◦

The triangle in the figure above is the least symmetric – the only rigid motion
that maps it onto itself is the identity (which, actually, moves nothing – it
is a trivial symmetry).

This geometric intuition easily transposes to other, less geometric situ-
ations such as Sudoku grids. Let us start thinking about the geometry of
Sudoku grids by identifying Sudoku transformations, that is, transforma-
tions that turn a Sudoku grid into another Sudoku grid.

After reflecting a Sudoku grid about one of the four possible axes (the
horizontal axis, the vertical axis and the two diagonals) or rotating it clock-
wise about its central cell by one of the four possible angles (0◦, 90◦, 180◦

or 270◦) we again end up with a Sudoku grid. The distribution of givens in
the new Sudoku grid may differ from the distribution in the original grid,
but what we get is again a Sudoku grid, Fig. 3.
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Figure 3: A 90◦-rotation of a Sudoku grid

4 8
6 8
3 2 1 9 4 7

1 2
8 5 7

3 4
7 4 1

5 2
8 7 3 9

swap columns

3 and 7

4 8
6 8
3 2 194 7

12
8 5 7

34
7 41

5 2
8 7 3 9

Figure 4: Violating a box condition

Note that the 0◦-rotation is the identity (nothing has changed), and that
clockwise 90◦-rotation is the same as counterclockwise 270◦-rotation. This
is why there is no need to discuss counterclockwise rotations.

The four rotations and the four reflections of a Sudoku grid will be
referred to as the geometric transformations.

Another way to transform a Sudoku grid into a Sudoku grid is to per-
mute its rows or columns. Now, we have to be careful here: while every per-
mutation of rows and columns preserves row and column conditions, some
permutations may violate box conditions. For example, after swapping the
columns 3 and 7 in the Sudoku grid in Fig. 4 we end up with a grid which
is no longer a Sudoku because the box condition is violated in box 7.

Therefore, only those permutations of rows and columns which do not vi-
olate box conditions can be allowed. Such permutations of rows and columns
will be referred to as shuffles and will be defined formally below.

Finally, if we systematically replace digits in a Sudoku grid by other
digits taking care that each digit is always replaced by the same digit and
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relabelling

9 4
3 4
7 1 5 6 9 2

5 1
4 8 2

7 9
2 9 5

8 1
4 2 7 6

( 1 2 3 4 5 6 7 8 9
5 1 7 9 8 3 2 4 6 )

Figure 5: Relabelling

that different digits are replaced by different digits, we will end up with
another Sudoku grid. Such transformations will be referred to as relabellings.

More succinctly, each relabelling reduces to applying a fixed permutation
of digits to each digit in a Sudoku grid. For example, Fig. 5 illustrates the
relabelling of a Sudoku grid by applying the permutation

(

1 2 3 4 5 6 7 8 9
5 1 7 9 8 3 2 4 6

)

.

The concise notation above conveys the information that each 1 in the grid
should be changed to 5, each 2 should be changed to 1 and so on.

7 Sudoku transformations

As we shall see, defining relabellings and shuffles formally is easy. In contrast
to that, defining geometric Sudoku transformations can be challenging. To
save time and space in both defining and formally reasoning about them,
we shall define geometric transformations as chains of reflections.

It is quite usual in many daily activities to take an object and apply to
it a sequence of transformations. In modern mathematics a transformation
is modelled by a function between two sets of objects, and then a sequence
of transformations

A
f

−→ B
g

−→ C

is usually denoted by g ◦ f . Here’s why. When this chain of transformations
acts on an element x ∈ A we usually write:

g(f(x))
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because we first apply f to x to obtain f(x), and then apply g to f(x).
Thus:

(g ◦ f)(x) = g(f(x)).

The identity transformation id is the Sudoku transformation that changes
nothing. It has the property that id(A) = A for every grid A. We also say
that id is the trivial Sudoku transformation. A Sudoku transformation θ is
nontrivial if θ 6= id.

We shall now define geometric Sudoku transformations as chains of two
kinds of reflections.

Definition 7.1. Let A = [Aij ]9×9 and B = [Bij ]9×9 be Sudoku grids.

• The reflection about the main diagonal is a Sudoku transformation δ
such that δ(A) = B just in case Bij = Aji, for all 1 6 i, j 6 9.

• The reflection about the horizontal axis is a Sudoku transformation χ
such that χ(A) = B just in case Bij = A10−i,j , for all 1 6 i, j 6 9.

Definition 7.2. This is the list of geometric Sudoku transformations:

• the identity transformation id;

• the reflections δ and χ defined above;

• the reflection about the vertical axis χ = δ ◦ χ ◦ δ;

• the reflection about the auxiliary diagonal δ = χ ◦ δ ◦ χ;

• the clockwise 90◦-rotation ρ1 = δ ◦ χ;

• the clockwise 180◦-rotation ρ2 = ρ1 ◦ ρ1; and

• the clockwise 270◦-rotation ρ3 = ρ1 ◦ ρ1 ◦ ρ1.

Recall that only well-behaved row and column permutations preserve the
quality of being a Sudoku grid. To isolate those from the bad ones we shall
introduce a few auxiliary notions. Let

Π =
{

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}
}

be a fundamental partition of the index set {1, 2, . . . , 9}. The elements of Π
will be referred to as blocks of Π. So, {4, 5, 6} is a block of Π, while {1, 3, 5}
is not. A bijection f : {1, 2, . . . , 9} → {1, 2, . . . , 9} respects Π if the following
holds:

• if i and j belong to the same block of Π, then so do f(i) and f(j); and

• if i and j belong to different blocks of Π, then so do f(i) and f(j).
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The idea behind this is that a row/column permutation transforms a Sudoku
grid into a Sudoku grid just in case the way it operates on row/column
indices respects Π. This is how we distinguish well-behaved row/column
permutations. Let us now define the remaining Sudoku transformations.

Definition 7.3. Let A = [Aij ]9×9 and B = [Bij ]9×9 be Sudoku grids and
let f : {1, 2, . . . , 9} → {1, 2, . . . , 9} be a bijection which respects Π.

• The f -shuffle of rows is a Sudoku transformation σf such that σf (A) =
B just in case Bij = Af(i) j , for all 1 6 i, j 6 9.

• The f -shuffle of columns is a Sudoku transformation τf such that
τf (A) = B just in case Bij = Ai f(j), for all 1 6 i, j 6 9.

• The f -relabelling is a Sudoku transformation λf such that λf (A) = B
just in case Bij = {f(d) : d ∈ Aij}, for all 1 6 i, j 6 9.

Definition 7.4. An elementary Sudoku transformation is any of the trans-
formations listed in Definitions 7.2 and 7.3.

Clearly, a sequence of elementary Sudoku transformations (such as rotate-
shuffle-relabel) is again a Sudoku transformation. But, is that all? Is
there any other way to transform a Sudoku grid that might have eluded
our scrutiny? This question was addressed by Adler and Adler in [1] and
the answer is that there are no other meaningful Sudoku transformations.

Adler and Adler start by analyzing full Sudoku grids. To facilitate the
presentation of their main result, let us introduce several new notions. By
a Sudoku board we mean the set of pairs

N = {(i, j) : 1 6 i, j 6 9}.

These are the indices of cells in a Sudoku grid. Sudoku transformations are
then introduced in terms of partitions of N with the following intuition. Let
N1 ⊆ N be the set of all the cells that contain the same Sudoku digit, not
necessarily 1; let N2 ⊆ N be the set of all the cells that contain the same
Sudoku digit different from the one that determines N1 (again, this digit
is not required to be 2); and so on until we form N1, N2, . . . , N9. Let us
stress again that the cells in each Ni have to contain the same digit, but
the cells in Ni are not required to contain the digit i, 1 6 i 6 9. Then
{N1, N2, . . . , N9} is a partition of N , each block Ni has size 9 and each Ni

intersects each row, column and box of the grid exactly once.
Following [1] we shall, therefore, say that a partition {M1,M2, . . . ,M9}

of N is valid if
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• each Mi has size 9, 1 6 i 6 9;

• each Mi intersects each row, column and box of the grid exactly once,
1 6 i 6 9.

Definition 7.5. [1] A fundamental transformation is every bijection

f : N → N

which takes valid partitions to valid partitions. More precisely, for every
valid partition {M1,M2, . . . ,M9} ofN we have that {f(M1), f(M2), . . . , f(M9)}
is also a valid partition of N (here, f(M) = {f(x) : x ∈M}).

Note that fundamental transformations operate on full Sudoku grids!

Theorem 7.6 (The characterization of fundamental transformations [1]).
Every fundamental transformation is of the form θ1 ◦ θ2 ◦ . . . ◦ θn where each
θi is an elementary Sudoku transformation.

This theorem justifies the following expansion of the notion of funda-
mental transformation to all Sudoku grids, including those that are not
necessarily full.

Definition 7.7. A transformation of a Sudoku grid, or a Sudoku transfor-

mation for short, is any chain θ1 ◦ θ2 ◦ . . . ◦ θn of elementary Sudoku trans-
formations. A cell transformation is any chain θ1 ◦ θ2 ◦ . . . ◦ θn of geometric
transformations and shuffles.

We can now address the issue of essentially different grids from the intro-
duction: we say that two Sudoku grids are essentially different if no Sudoku
transformation takes one of them onto the other.

Theorem 7.8 (Normal form). Every Sudoku transformation can be written
as ξ ◦ λ where ξ is a cell transformation and λ is a relabelling.

Proof. Exercise 7.13.

In most cases when a nontrivial Sudoku transformation is applied to
a Sudoku grid A the outcome will differ from A. However, those Sudoku
transformations that leave a Sudoku grid unchanged are of particular inter-
est: these are the symmetries of the grid! In the combinatorial context such
as Sudoku symmetries are often referred to as automorphisms.

Definition 7.9. Let A be a Sudoku grid and θ a Sudoku transformation.
We say that θ is an automorphism of A if θ(A) = A. A Sudoku grid A is
symmetric if θ(A) = A for some nontrivial automorphism θ.
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Figure 6: A full Sudoku grid invariant for: (a) a combination of shuffles; (b)
a combination of a rotation and a relabelling

Example 7.1. Fig. 6 (a) is an example of a full Sudoku grid with a nontrivial
automorphism τf ◦ σf where

f =

(

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3

)

,

while Fig. 6 (b) is an example of a full Sudoku grid with a nontrivial auto-
morphism ρ2 ◦ λg where g(i) = 10− i.

Exercise 7.10. (a) Prove that θ ◦ θ = id whenever θ is a reflection.
(b) Prove that δ = δ ◦ χ ◦ δ ◦ χ ◦ δ.
(c) Prove that ρ2 ◦ ρ2 = id.
(d) Prove that ρ3 = χ ◦ δ.
(e) Let γ1, γ2, . . . , γn be arbitrary geometric transformations. Prove

that γ1 ◦ γ2 ◦ . . . ◦ γn is again a geometric transformation.

Exercise 7.11. Prove that χ is a shuffle of rows and χ is a shuffle of columns.
Write down the corresponding bijections and check that they respect Π.

Exercise 7.12. Prove that ξ ◦ λ = λ ◦ ξ for every cell transformation ξ and
every relabelling λ.

Exercise 7.13. Prove Theorem 7.8.

Exercise 7.14. (a) Prove that id is an automorphism of every Sudoku grid.
(b) Prove: if θ1 and θ2 are automorphisms of a Sudoku grid A then θ1◦θ2

is also an automorphism of A.
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8 Gurth’s Symmetrical Placement

We have now reached the point where we can formulate and prove Gurth’s
Symmetrical Placement Theorem.

Recall that cell transformations actually move cells, so for a cell trans-
formation ξ we shall write ξ(ricj) = rℓcm to indicate that the cell ricj in
the original grid is moved to the cell rℓcm. For example, δ(r1c2) = r2c1
and ρ1(r1c2) = r2c9. Note that δ(rici) = rici for all 1 6 i 6 9 and
ρ1(r5c5) = ρ2(r5c5) = ρ3(r5c5) = r5c5.

Lemma 8.1. (a) A Sudoku transformation takes a full Sudoku grid to a
full Sudoku grid.

(b) Let A and S be Sudoku grids and θ a Sudoku transformation. If S
is a solution of A then θ(S) is a solution of θ(A).

Proof. Exercise 8.10.

Theorem 8.2 (Gurth’s Symmetrical Placement). Let A and S be Sudoku
grids. If θ is an automorphism of A and S is a unique solution of A then θ
is an automorphism of S.

Proof. Assume that S is a unique solution of A and that θ is an automor-
phism of A. Then θ(A) = A. Since S is a solution of A, Lemma 8.1 (b)
gives us that θ(S) is then a solution of θ(A) = A. So, both S and θ(S) are
solutions of A. However, S is a unique solution of A, so θ(S) = S, and θ is
an automorphism of S.

As an immediate corollary of Theorem 5.8 we now have:

Corollary 8.3 (Gurth’s Symmetrical Placement – Deducible version). Let
A and S be Sudoku grids. If θ is an automorphism of A and S is a logically
deducible solution of A then θ is an automorphism of S.

Example 8.1. Let us now demonstrate Gurth’s Symmetrical Placement
in action. In the Cracking the Cryptic’s video “The Video They Said We
Should NEVER Release”3 at some point (timestamp 25:48) Simon reaches
the position in Fig. 7 (with pencilmarks irrelevant for the discussion omitted;
also it is safe to ignore the blue line along the auxiliary diagonal).

Assume that the puzzle has a unique solution and let us show that r9c9
cannot be 9. Suppose, to the contrary, that r9c9 contains the digit 9. Then

θ = δ ◦ λf where f =

(

1 2 3 4 5 6 7 8 9
1 2 3 5 4 7 6 9 8

)

3https://www.youtube.com/watch?v=iiQ9MXrfb7A
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Figure 7: Application of Gurth’s Symmetrical Placement Theorem to elim-
inate 9 from r9c9

is an automorphism of the grid with 9 filled in r9c9. Gurth’s Symmetrical
Placement Theorem then ensures that θ is an automorphism of the solution
of the puzzle. Now, look at the cell r6c4 whose only options are 8 or 9.
Since δ takes r6c4 to itself and θ is an automorphism of the solution of the
puzzle, it follows that λf (8) = 8 in case r6c4 contains 8 in the solved puzzle,
or λf (9) = 9 in case r6c4 contains 9 in the solved puzzle. But this is not
possible because λf (8) = 9 and λf (9) = 8. Contradiction! Therefore, r9c9
cannot be 9.

Let us now prove a simple corollary of Gurth’s Symmetrical Placement
Theorem.

Lemma 8.4. Let S be a full Sudoku grid and let θ be an automorphism of
S. If θ is a geometric transformation then θ = id.

Proof. Assume that θ is a geometric transformation. Then it is easy to see
that θ takes every cell in box 5 to some cell in box 5 (Exercise 8.11). Since
θ makes no relabellings (by definition) it follows that θ takes every cell in
box 5 to itself, and the only geometric transformation that fixes all the cells
in box 5 is the identity. Therefore, θ = id.
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A geometric automorphism of a Sudoku grid is any geometric transfor-
mation which is at an automorphism of the grid.

Theorem 8.5. Assume that a Sudoku grid A has a deducible (or, equiva-
lently, unique) solution. Then id is the only geometric automorphism of A.

Proof. Let S be a deducible solution of A and let θ be a geometric auto-
morphism of A. Theorem 8.2 then tells us that θ is an automorphism of S,
so Lemma 8.4 ensures that θ = id.

Finally, let us weaken Gurth’s Symmetrical Placement Theorem and thus
justify the practice of “reasoning by symmetry”. Namely, if a conclusion can
be reached using the information contained in some part of the grid, then
the “symmetrical” conclusion follows immediately if we are given “symmet-
rical” information in the “symmetrical” part of the grid. In order to make
this feeling precise, we have to be able to apply Sudoku transformations to
Sudoku formulas. Note that this weaker result does not assume uniqueness

of the solution!

Let θ be a Sudoku transformation. By Theorem 7.8 there is a cell trans-
formation ξ and a relabelling λ such that θ = ξ ◦λ. We have referred to this
decomposition as the normal form of the Sudoku transformation.

Definition 8.6. Let θ = ξ ◦ λ be a Sudoku transformation in its normal
form, where ξ is a cell transformation and λ is a relabelling. Then for a
Sudoku formula ϕ we define θ(ϕ) as follows:

• θ(⊤) = ⊤ and θ(⊥) = ⊥;

• if ϕ = ricj 6≈ d then θ(ϕ) = ξ(ricj) 6≈ λ(d);

• if ϕ = ¬α then θ(ϕ) = ¬θ(α);

• if ϕ = α ⋆ β, where ⋆ is one of the connectives ∧, ∨, ⇒, ⇔ then
θ(ϕ) = θ(α) ⋆ θ(β).

For a set of Sudoku formulas Φ let θ(Φ) = {θ(ϕ) : ϕ ∈ Φ}.

Lemma 8.7. Let A be a Sudoku grid, α a Sudoku formula and θ a Sudoku
transformation. Then

(a) A |= α if and only if θ(A) |= θ(α);
(b) θ(Prop(A)) = Prop(θ(A)).

Proof. Exercise 8.13.

Lemma 8.8. If α is a Sudoku axiom and θ is a Sudoku transformation then
θ(α) is also a Sudoku axiom.
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Proof. We have to show that θ(α) holds in every full Sudoku grid. So,
let S be a full Sudoku grid and let θ−1 be the inverse of θ. Then θ−1(S)
is a full Sudoku grid (Lemma 8.10), so θ−1(S) |= α because α is a Sudoku
axiom. But then Lemma 8.7 yields that θ(θ−1(S)) |= θ(α), that is, S |= θ(α)
because θ ◦ θ−1 = id.

Theorem 8.9 (“Symmetric reasoning”). Let Φ be a set of Sudoku formulas,
α a Sudoku formula and θ a Sudoku transformation. If Φ ⊢ α then θ(Φ) ⊢
θ(α).

Proof. Assume that Φ ⊢ α. Then there is a proof in Sudoku logic

ϕ1, ϕ2, . . . , ϕn

of α = ϕn from premisses in Φ. Let us show that

θ(ϕ1), θ(ϕ2), . . . , θ(ϕn) (8.1)

is a proof of θ(α) from premisses in θ(Φ). Clearly, θ(ϕn) = θ(α) because
ϕn = α, so the main job here is to prove that (8.1) is actually a proof. And
this is straightforward:

• if ϕi is a Sudoku axiom, then θ(ϕi) is also a Sudoku axiom by Lemma 8.8;

• if ϕi ∈ Φ is a premise then θ(ϕi) ∈ θ(Φ) trivially;

• if ϕi is obtained by modus ponens from ϕp and ϕq for some p, q < i
then without loss of generality we can assume that ϕq is of the form
ϕp ⇒ ϕi, so

θ(ϕq) = θ(ϕp ⇒ ϕi) = (θ(ϕp) ⇒ θ(ϕi))

by Definition 8.6, whence follows that θ(ϕi) can be obtained by modus
ponens from θ(ϕp) and θ(ϕq).

This completes the proof.

Exercise 8.10. Prove Lemma 8.1.

Exercise 8.11. Prove that every geometric transformation takes every cell
in box 5 to some cell in box 5.

Exercise 8.12. Prove that the following Sudoku grid does not have a de-
ducible solution:
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(Hint: Use Theorem 8.5.)

Exercise 8.13. Prove Lemma 8.7. (Hint: the implication from left to right
in (a) is a direct consequence of Definition 8.6; the implication from right
to left in (a) follows from the former implication using the trick with θ−1 as
in the proof of Lemma 8.8; (b) follows from (a) straightforwardly.)

9 Concluding remarks

In this paper we have proposed a formal system of Sudoku logic that is sound
and complete, and is strong enough to support formal proofs of nontrivial
Sudoku theorems such as the Gurth’s Symmetrical Placement Theorem, or
the Corollary 5.12 which claims that a Sudoku grid has a unique solution if
and only if it has a deducible solution.

We shall now demonstrate that this system is so strong that it can even
resolve the Uniqueness Controversy. The Uniqueness Controversy revolves
around a delicate question:

Uniqueness Controversy: While searching for a deducible
solution of a Sudoku, is one allowed to assume that the puzzle is
uniquely solvable?

There are solving techniques that rely on the assumption that the puzzle is
uniquely solvable, and in some cases using such techniques can significantly
shorten the solving time. On the other hand, many Sudoku puritans believe
that assuming uniqueness is unjustified unless we are explicitly told by the
constructor of the puzzle that it has a unique solution. Others, again, believe
that all logical deductions which assume that a puzzle has a unique solution
can be found by other means.

The system of Sudoku logic presented in this paper resolves the unique-
ness assumption issue decisively: once you are set off to find a logically de-

ducible solution of a Sudoku puzzle using Sudoku logic, you can safely (and
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with no trepidation of heart) assume that the solution is unique. Namely,
the uniqueness assumption is not an additional assumption, but an axiom

of the Sudoku logic! Let us demonstrate this fact.
Let us write ricj ≈ d as a shorthand for:

ricj ≈ d : ¬(ricj 6≈ d).

The meaning of ricj ≈ d is that “the cell ricj could take value d”.
For every full Sudoku grid S = [Sij ]9×9 where Sij = {dij}, 1 6 i, j 6 9,

let εS be the following formula:

εS :
∧

16i,j69

ricj ≈ dij .

If A is a Sudoku grid, then A |= εS means “S could be a solution of A”.
Now, consider the following formula:

Uniq :
∧

S′ 6=S′′

¬(εS′ ∧ εS′′),

where the outer (big) conjunction ranges over all pairs of distinct full Sudoku
grids S ′ and S ′′. The formula Uniq encodes uniqueness – it tells us that for
every pair of distinct full Sudoku grids S ′ and S ′′, it is not the case that
both S ′ and S ′′ could be solutions.

Theorem 9.1. Uniq is an axiom of the deductive system of Sudoku logic,
that is, Uniq ∈ ∆ax.

Proof. Note that S |= Uniq holds for every full Sudoku grid S, and recall
that ∆ax is the set of all Sudoku formulas that hold in every full Sudoku
grid.

Therefore, if we accept the Sudoku logic as presented in this paper,
Uniq is an axiom of the deductive system. Since axioms are always at
our disposal in any formal deduction, there is nothing controversial in
assuming uniqueness while searching for a logically deducible solution for a
Sudoku grid!

Problem 9.2. For the philosophically inclined reader the last conclusion is
just a portal to new levels of controversy:

• Is this logical system too strong?
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• Is it true that for every deduction in Sudoku logic where Uniq is used,
there is another deduction of the same fact which does not use Uniq

(“Uniq-elimination”)?

• Is there a logical system for Sudoku which is sound and complete, and
yet Uniqueness cannot be logically deduced within the system?

Appendix

A Completeness of Sudoku logic

This entire section is devoted to proving Theorem 5.4 which establishes
the completeness of Sudoku logic. Since Sudoku logic is a straightforward
modification of propositional logic, it comes as no surprise that the proof
of completeness of Sudoku logic is a straightforward modification the com-
pleteness proof of propositional logic (see, for example, [2]). Let us now
start developing the necessary machinery.

Theorem A.1 (Semantic Deduction). Let Φ be a set of Sudoku proposi-
tions and let α and β be Sudoku propositions. Then Φ |= α⇒ β if and only
if Φ ∪ {α} |= β.

Proof. Assume that Φ ∪ {α} |= β. To show that Φ |= α⇒ β take a Sudoku
grid A such that A |= Φ and let S be a solution of A. By Lemma 4.10 we
then have that S |= Φ. To show that S |= α⇒ β let us assume that S |= α.
Then S |= Φ∪{α}, so Φ∪{α} |= β gives us that S |= β. The other direction
is straightforward.

Lemma A.2. If α is an arbitrary Sudoku formula and ϕ is a Sudoku axiom,
then α⇒ ϕ is also a Sudoku axiom.

Proof. Let S be an arbitrary full Sudoku grid. Then S |= ϕ because ϕ is
a Sudoku axiom. But then S |= α ⇒ ϕ: since the consequent ϕ is true in
S, the implication α ⇒ ϕ will be true in S regardless of the status of the
antecedent α.

Theorem A.3 (Syntactic Deduction). Let Φ be a set of Sudoku formulas
and let α and β be some Sudoku formulas. Then Φ ⊢ α ⇒ β if and only if
Φ ∪ {α} ⊢ β.

Proof. (⇒) Assume that Φ ⊢ α⇒ β. Then there is a proof

ϕ1, . . . , ϕn−1, α⇒ β
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where the premisses we need for the proof are taken from Φ. But then

ϕ1, . . . , ϕn−1, α⇒ β, α, β

is a proof of β from the premisses Φ ∪ {α}. Note that in the last step we
have applied modus ponens to the previous two formulas.

(⇐) Assume that Φ ∪ {α} ⊢ β and let

ϕ1, . . . , ϕn

be a proof of ϕn = β from the premisses in Φ ∪ {α}. Let us show then that

α⇒ ϕ1, . . . , α⇒ ϕn

is a proof from the premisses in Φ. Since ϕn = β this will show that
Φ ⊢ α⇒ β. We proceed by induction.

For i = 1 we have that ϕ1 is and axiom, belongs to Φ or equals α. If
ϕ1 ∈ ∆ax then then α ⇒ ϕ1 ∈ Dax by Lemma A.2, so Φ ⊢ α ⇒ ϕ1. If
ϕ1 ∈ Φ then the following is a proof from the premisses in Φ:

ϕ1, ϕ1 ⇒ (α⇒ ϕ1), α⇒ ϕ1.

Namely, the first formula belongs to Φ, the second one is a tautology and
hence an axiom, and the third is obtained by modus ponens. Finally, if
ϕ1 = α then Φ ⊢ α⇒ α because α⇒ α is a tautology, and hence a Sudoku
axiom.

Assume, now, that Φ ⊢ α⇒ ϕq for all q < i, and let us take a look at ϕi.
If ϕi is and axiom, belongs to Φ or equals α then Φ ⊢ ϕi ⇒ α as in the base
case i = 1. If this is not the case, then ϕi is obtained by modus ponens from
some ϕp and ϕq = ϕp ⇒ ϕi where p, q < i. By the induction hypothesis we
have that Φ ⊢ α⇒ ϕp and Φ ⊢ α⇒ ϕq. But then we have that

1. Φ⊢α⇒ ϕp [induction hypothesis]
2. Φ⊢α⇒ (ϕp ⇒ ϕi) [ind. hyp. and ϕq = ϕp ⇒ ϕi]
3. ⊢ (α⇒ (ϕp ⇒ ϕi)) ⇒ ((α⇒ ϕp) ⇒ (α⇒ ϕi))
4. Φ⊢ (α⇒ ϕp) ⇒ (α⇒ ϕi) [modus ponens 2, 3]
5. Φ⊢α⇒ ϕi [modus ponens 1, 4]

Note that the formula in step 3. is a tautology, and hence a Sudoku axiom.
This completes the proof of the Syntactic Deduction Theorem.

Definition A.4. A set Φ of Sudoku formulas is complete if for every Sudoku
formula α we have that Φ ⊢ α or Φ ⊢ ¬α.
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A set Φ of Sudoku formulas is inconsistent if there is a Sudoku formula
α such that Φ ⊢ α and Φ ⊢ ¬α; and Φ is consistent if it is not inconsistent.

A set Φ of Sudoku formulas is a Sudoku theory if it is deductively closed,
that is, if Φ ⊢ α then α ∈ Φ for every Sudoku formula α.

The theory of a full Sudoku grid S is the set Th(S) of all Sudoku formulas
ϕ such that S |= ϕ.

Lemma A.5. For every full Sudoku grid S we have that Th(S) is a complete
and consistent Sudoku theory.

Proof. Let S be a full Sudoku grid. Lemma 5.2 ensures that Th(S) is de-
ductively closed and hence a theory. It is also easy to see that Th(S) is a
complete and consistent set of Sudoku formulas because we have a model in
which we can check validity. Namely, for every Sudoku formula α we have
that either S |= α or not S |= α.

Lemma A.6. Let Φ be a set of Sudoku formulas and α a Sudoku formula.
(a) Φ is consistent if and only if every finite subset of Φ is consistent.
(b) Φ is inconsistent if and only if Φ ⊢ α for every Sudoku formula α.
(c) Φ 0 α if and only if Φ ∪ {¬α} is consistent.

Proof. (a) If there is a finite subset of Φ which is inconsistent, then Φ is also
inconsistent. Conversely, if Φ is inconsistent then, by definition, there is a
Sudoku formula α such that Φ ⊢ α and Φ ⊢ ¬α. This means that there are
proofs

ϕ1, ϕ2, . . . , ϕn and ψ1, ψ2, . . . , ψm

of ϕn = α and ψm = ¬α from the premisses in Φ. Then it is easy to see that

Ψ = Φ ∩ {ϕ1, ϕ2, . . . , ϕn, ψ1, ψ2, . . . , ψm}

is a finite inconsistent subset of Φ.
(b) If Φ ⊢ α for every Sudoku formula α, then Φ ⊢ β and Φ ⊢ ¬β for some

fixed β, so Φ is inconsistent by definition. Conversely, if Φ is inconsistent
then by definition there is a formula β such that Φ ⊢ β and Φ ⊢ ¬β. Let α
be an arbitrary Sudoku formula. Then

1. Φ⊢β [by assumption]
2. Φ⊢¬β [by assumption]
3. ⊢¬β ⇒ (β ⇒ α) [tautology]
4. Φ⊢β ⇒ α [modus ponens 2, 3]
5. Φ⊢α [modus ponens 1, 4]
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(c) If Φ ⊢ α then Φ ∪ {¬α} is inconsistent because we then have Φ ∪
{¬α} ⊢ α and Φ ∪ {¬α} ⊢ ¬α. Conversely, if Φ ∪ {¬α} is inconsistent then
by (b) we have that Φ∪{¬α} ⊢ α. Syntactic Deduction Theorem then gives
us that Φ ⊢ ¬α⇒ α. Then:

1. Φ⊢¬α⇒ α [Syntactic Deduction Theorem]
2. ⊢α⇒ α
3. ⊢ (¬α⇒ α) ⇒ ((α⇒ α) ⇒ α)
4. Φ⊢ (α⇒ α) ⇒ α [modus ponens 1, 3]
5. Φ⊢α [modus ponens 2, 4]

Note that the formulas in steps 2 and 3 are tautologies, and hence Sudoku
axioms. This completes the proof.

Lemma A.7. If α is a Sudoku formula such that 0 α then there is a com-
plete and consistent Sudoku theory Φ such that α /∈ Φ.

Proof. The set of all Sudoku formulas is countably infinite, so we can arrange
them all in an infinite sequence

β0, β1, β2, . . .

Let us now construct a sequence of sets Φ0,Φ1,Φ2, . . . as follows. Put

Φ0 = {¬α}

and, assuming that Φn has been constructed, define Φn+1 like this:

Φn+1 =

{

Φn ∪ {βn}, if Φn ∪ {βn} is consistent,

Φn, otherwise.

Finally, put Φ =
⋃

i>0Φi. Let us show that Φ is a complete and consistent
Sudoku theory such that α /∈ Φ.

The consistency of Φ0 follows from Lemma A.6 (c) (just put Φ = ∅

there). For all other i the consistency of Φi follows by construction. So,
each Φi is consistent. Now, if Φ is inconsistent then by Lemma A.6 (a)
there is a finite subset Ψ of Φ which is inconsistent. Since Ψ is finite, there
is some n such that Φ ⊆ Φn. So, Φn is inconsistent by another application
of Lemma A.6 (a). Contradiction. This proves consistency of Φ.

To show that Φ is complete, take any Sudoku formula α. If Φ ⊢ α we
are done. If, however, Φ 0 α then by Lemma A.6 (c) we have that Φ∪{¬α}
is consistent. Let ¬α be the formula βj in our enumeration from the very
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beginning of the proof. Then it must be the case that Φj ∪ {βj} is also
consistent, so ¬α = βj ∈ Φj+1 ⊆ Φ and thus Φ ⊢ ¬α.

The same idea applies to show that Φ is a theory. Namely, we know that
Φ is consistent, so if Φ ⊢ α then Φ ∪ {α} is also consistent. Then the same
argument as above ensures that α ∈ Φ. This completes the proof.

Lemma A.8. A set Φ of Sudoku formulas is a complete and consistent
Sudoku theory if and only if Φ = Th(S) for some full Sudoku grid S.

Proof. If Φ = Th(S) for some full Sudoku grid S then Φ is clearly a complete
and consistent Sudoku theory since we have a models S in which we can
check validity of formulas.

Conversely, assume that Φ is a complete and consistent Sudoku theory.
Let us construct a full Sudoku grid S such that Φ = Th(S). We proceed in
several steps. Recall that ricj ≈ d is a shorthand for

ricj ≈ d : ¬(ricj 6≈ d).

Step 1. Let us show that for each i, j ∈ {1, 2, . . . , 9} there is a unique
d ∈ {1, 2, . . . , 9} such that Φ ⊢ ricj ≈ d.

Proof. Fix an i and j and let us first show that such a d exists. Suppose,
to the contrary, that Φ 0 ricj ≈ 1, Φ 0 ricj ≈ 2, . . . , Φ 0 ricj ≈ 9. Then the
completeness of Φ implies that Φ ⊢ ricj 6≈ 1, Φ ⊢ ricj 6≈ 2, . . . , Φ ⊢ ricj 6≈ 9,
so

Φ ⊢ ricj 6≈ 1 ∧ ricj 6≈ 2 ∧ . . . ∧ ricj 6≈ 9.

On the other hand,

Φ ⊢ ricj ≈ 1 ∨ ricj ≈ 2 ∨ . . . ∨ ricj ≈ 9,

because this is a Sudoku axiom. Therefore, we have found a formula α such
that Φ ⊢ α and Φ ⊢ ¬α, which contradicts the consistency of Φ. This proves
the existence part of the claim.

The uniqueness part follows by similar reasoning. Suppose, to the con-
trary, that Φ ⊢ ricj ≈ d and Φ ⊢ ricj ≈ e where e 6= d. Then

Φ ⊢ ricj ≈ d ∧ ricj ≈ e.

On the other hand, the fact that e 6= d implies that

Φ ⊢ ¬(ricj ≈ d ∧ ricj ≈ e)
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is a Sudoku axiom, and we again get the contradiction with the consistency
of Φ. This completes Step 1.

Step 2. Let S = [{dij}]9×9 be a grid where, for each i, j ∈ {1, 2, . . . , 9},
we take dij to be the unique digit such that Φ ⊢ ricj ≈ dij whose existence
is established in Step 1. Let us show that S is a full Sudoku grid.

Proof. This grid is clearly full (every cell has only one assigned value).
Assume that S is not a Sudoku grid. Then there exists a row, a column or
a box in which some value is repeated. Without loss of generality, assume
that there exist cells ricj and ricm such that j 6= m but dij = dim. Let d be
this common value. Then, by the construction,

Φ ⊢ ricj ≈ d ∧ ricm ≈ d.

On the other hand, the fact that j 6= m implies that

Φ ⊢ ¬(ricj ≈ d ∧ ricm ≈ d)

is a Sudoku axiom, and we get the contradiction with the consistency of Φ.
This completes Step 2.

Step 3. Φ = Th(S).
Proof. Take any Sudoku formula α and let us show using induction on

the number of logical connectives in α that

α ∈ Th(S) if and only if α ∈ Φ.

Assume, first, that α has no logical connectives. Then α is a Sudoku propo-
sition, that is, a statement of the form ricj 6≈ d for some 1 6 i, j, d 6 9.
If α ∈ Th(S) then S |= ricj 6≈ d. Suppose that that α /∈ Φ. Then Φ 0 α
because Φ is deductively closed, so Φ ⊢ ¬α because Φ is complete. In other
words, Φ ⊢ ricj ≈ d. By construction of S (Step 1) we then have that
S |= ricj ≈ d. Contradiction.

On the other hand, if α /∈ Th(S) then it is not the case that S |= α, so
S |= ricj ≈ d. By construction of S (Step 1) we then have that Φ ⊢ ricj ≈ d,
whence Φ 0 ricj 6≈ d because Φ is consistent. Therefore, α /∈ Φ.

Assume now that the statement

β ∈ Th(S) if and only if β ∈ Φ (A.1)

holds for every formula β with less logical connectives than α.
If α = ¬β then S |= α means that S |= ¬β, so it is not the case that

S |= β, or, equivalently, β /∈ Th(S). Since β has less logical connectives than
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α, the induction hypothesis (A.1) then yields that β /∈ Φ, so α = ¬β ∈ Φ
because Φ is a complete theory. The other implication (α ∈ Φ implies
αinTh(S)) follows by similar reasoning.

If α = β ∧ γ then S |= α means that S |= β ∧ γ. So, we have that S |= β
and S |= γ. Since both β and γ have less logical connectives than α, the
induction hypothesis (A.1) then yields that β ∈ Φ and γ ∈ Φ. Therefore,
Φ ⊢ β and Φ ⊢ γ because Φ is deductively closed, and then it easily follows
that Φ ⊢ β ∧ γ. Another application of the fact that Φ is deductively closed
yields that α = β ∧ γ ∈ Φ. The other implication (α ∈ Φ implies αinTh(S))
follows by similar reasoning.

There is no need to consider other possibilities for α because of the
tautologies

|= (β ∨ γ) ⇔ ¬(¬β ∧ ¬γ),

|= (β ⇒ γ) ⇔ (¬β ∨ γ) and

|= (β ⇔ γ) ⇔ (β ⇒ γ) ∧ (γ ⇒ β).

This completes the proof of Step 3 and the lemma.

Theorem A.9 (Completeness of axiomatization). Let α be a Sudoku for-
mula. Then: ⊢ α if and only if |= α.

Proof. Assume that ⊢ α. This means that there is a proof such that each
formula in it is a Sudoku axiom or can be obtained by modus ponens. An
easy induction on the length of the proof then ensures that for every full
Sudoku grid S we have that S |= α. This shows that |= α.

Assume, now, that 0 α. Then by Lemma A.7 there is a complete and
consistent Sudoku theory Φ such that α /∈ Φ. By Lemma A.8 there is a full
Sudoku grid S such that Φ = Th(S). Since α /∈ Φ, it follows that it is not
the case that S |= α, so, by definition, 6|= α.

We are finally ready to prove Theorem 5.4.

Theorem (Completeness of Sudoku logic, Theorem 5.4). Let Φ and Ψ be
two sets of Sudoku propositions. If Φ |= Ψ then Φ ⊢ Ψ.

Proof. Clearly, it suffices to show that Φ |= α implies Φ ⊢ α, for every
set Φ of Sudoku propositions and every Sudoku proposition α. Note, first,
that Φ is a finite set as there are only finitely many Sudoku propositions
(actually, one can form exactly 93 distinct Sudoku propositions). So, let
Φ = {ϕ1, ϕ2, . . . , ϕn} and assume that

{ϕ1, ϕ2, . . . , ϕn} |= α.
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Then several applications of the Semantic Deduction Theorem yield

|= ϕ1 ⇒ (ϕ2 ⇒ (. . . (ϕn ⇒ α))).

By Theorem A.9 we then get

⊢ ϕ1 ⇒ (ϕ2 ⇒ (. . . (ϕn ⇒ α))),

and the Syntactic Deduction Theorem then yields

{ϕ1, ϕ2, . . . , ϕn} ⊢ α.

Therefore, Φ ⊢ α.
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