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Abstract: Sylvester-type matrix equations have applications in areas including

control theory, neural networks, and image processing. In this paper, we establish

the necessary and sufficient conditions for the system of Sylvester-type quater-

nion matrix equations to be consistent and derive an expression of its general

solution (when it is solvable). As an application, we investigate the necessary

and sufficient conditions for quaternion matrix equations to be consistent and

derive a formula for its general solution involving η-Hermicity. As a special case,

we also present the necessary and sufficient conditions for the system of two-

sided Sylvester-type quaternion matrix equations to have a solution and derive

a formula for its general solution (when it is solvable). Finally, we present an

algorithm and an example to illustrate the main results of this paper.
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1. Introduction

Throughout this paper, The field of real numbers is denoted by R. Hm×n represents the space

of all m× n matrices over H,

H = {v0 + v1i+ v2j+ v3k|i
2 = j2 = k2 = ijk = −1, v0, v1, v2, v3 ∈ R}.

Here, the rank of A is denoted by r(A), while I and 0 represent an identity matrix and a zero

matrix of appropriate sizes, respectively. Term A∗ represents the conjugate transpose of A. The

Moore-Penrose (M-P) inverse of A ∈ H
l×k, A†, is defined as the solution of AY A = A, Y AY =

Y, (AY )∗ = AY and (Y A)∗ = Y A. Moreover, LA = I −A†A and RA = I −AA† represent two

projectors along A. Recall that a quaternion matrix A is called η-Hermitian if A = Aη∗ , where

Aη∗ = −ηA∗η and η ∈ {i, j,k} [31]. It is well-known that (LA)
η∗ = RAη∗ , (RA)

η∗ = LAη∗ .
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* Corresponding author.

Email address: wqw@t.shu.edu.cn, wqw369@yahoo.com (Q.W. Wang).

1

http://arxiv.org/abs/2212.02146v1


2

Since Roth [28] first considered the following one-sided Sylvester-type matrix equation in

1952:

AX + Y B = C, (1.1)

which has applications in control theory and singular system control [8], neural networks [43],

there have been extensive studies of equation (1.1). For example, Baksalary and Kala [1] inves-

tigated the necessary and sufficient conditions for the solvability of equation (1.1) by using the

generalized inverses of the matrices involved. Further, Flanders and Wimmer [9] provided an

invariant proof of Roth’s theorem, while Baksalary and Kala [1] established the necessary and

sufficient conditions for the following Sylvester-type matrix equation to be consistent:

C3X3D3 + C4X4D4 = E1. (1.2)

Özgüler [25] studied the necessary and sufficient conditions for the solvability of equation (1.2)

over a principal ideal domain. Furthermore, Wang [32] provided some necessary and sufficient

conditions for equation (1.2) to enable a solution over an arbitrary regular ring with identity

and obtained an expression for its general solution.

In 1843, Irish mathematician sir William Rowan Hamilton introduced quaternions. It is well

known that the quaternion algebra, H, is an associative noncommutative division algebra over R,

which has applications in computer science, orbital mechanics, signal and color image processing,

and control theory ([2], [4], [15], [26], [27] [30]).

Based on the wide applications of quaternions, interest in Sylvester-type matrix equations has

expanded to H, finding many applications, including signal processing, color-image processing

and so on (see, e.g., [16], [29], [40], [41]). Many researchers have studied the Sylvester-type matrix

equations over H ( [10]-[20], [22], [23], [33]-[39] ). For example, He et al. [11] investigated some

necessary and sufficient conditions for Sylvester-type quaternion matrix equations and derived

an expression for their general solution. In addition, Solvability conditions and the general

solution for a system of constrained two-sided Sylvester-type quaternion matrix equations were

established by Wang [37]. Moreover, Wang et al. [38] presented some necessary and sufficient

conditions for the Sylvester-type matrix equations

A1X = C1, XB1 = C2,

A2Y = C3, Y B2 = C4,

A3XB3 +A4Y B4 = Cc

(1.3)

to provide a common solution and an expression for a general solution to equations (1.3) over

H. In 2022, Liu, et al. [19] derived some necessary and sufficient conditions to solve the

following Sylvester-type quaternion matrix equation by using ranks of coefficient matrices and

M-P inverses, respectively:

A1X1 +X2B1 +A2Y1B2 +A3Y2B3 +A4Y3B4 = B. (1.4)

They also given an expression for a general solution (when it is solvable). Moreover, He andWang

[14] studied the solvability conditions for the following Sylvester quaternion matrix equations to
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be consistent using matrix decomposition:

A1Y1 = A2, Y1B1 = B2,

A11Y1B11 +A22Y2B22 +A33Y3B33 = B.
(1.5)

However, to our knowledge, there is no additional information to extend equations (1.5) and

investigate the necessary and sufficient conditions for equations (1.5) to be consistent in terms of

M-P inverses and derive an expression for its general solution using these inverses. Motivated by

the worked mentioned above and keeping the interest and wide application of matrix equations,

in this paper, we extend equations (1.5), i.e., the following Sylvester-type matrix equations:

A1U = C1, V B1 = D1,

A2X = C2, XB2 = D2,

A3Y = C3, Y B3 = D3,

A4Z = C4, ZB4 = D4,

E1U + V F1+E2XF2 + E3Y F3 + E4ZF4 = Cc.

(1.6)

This is achieved using rank equalities and M-P inverses of some coefficients quaternion matrices

in equations (1.6) and derive a formula for its general solution (when it is solvable), where Ai,

Bi, Ci, Di, Ei, Fi (i = 1, 4) and Cc are given matrices, while X, Y , Z are unknown. It is

obvious that the system of matrix equations (1.6) is an extension of the other equations (1.1),

(1.2), (1.3), (1.4) and (1.5). As a special case of equations (1.6), we present some necessary

and sufficient conditions for the following system of two-sided Sylvester-type matrix equations

to provide a solution and derive an expression of its general solution (when it is solvable):

A1X = C1, XB1 = D1,

A2Y = C2, Y B2 = D2,

A3Z = C3, ZB3 = D3,

E1XF1 + E2Y F2 + E3ZF3 = C.

(1.7)

We known that η-Hermitian matrices have some applications, such as in linear modeling

(e.g., [12], [13], [30]). Many researchers have studied matrix equations involving η-Hermicity.

For instance, He and Wang [10] established the necessary and sufficient conditions for a solution

to the following matrix equation:

B1XB
η∗

1
+C1Y C

η∗

1
= D1, (1.8)

where X and Y are η-Hermitian. Zhang and Wang [44] presented the solvability conditions and

the general solution of the following matrix equations:

A1X = C1, Y B1 = D1,

A2XA
η∗

2
+A3Y A

η∗

3
= D3,

(1.9)

where X and Y are η-Hermitian.

Furthermore, as an application of equations (1.6), we investigate some necessary and sufficient

conditions for the following matrix equations to be consistent and derive an expression for its
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general solution:

A1U = C1,

A2X = C2, X = Xη∗ ,

A3Y = C3, Y = Y η∗ ,

A4Z = C4, Z = Y η∗ ,

E1U + (E1U)η
∗

+ E2XE
η∗

2
+ E3Y E

η∗

3
+ E4ZE

η∗

4
= Cc.

(1.10)

As a special case of equations (1.10), we establish the necessary and sufficient conditions for the

following system of matrix equations to provide a solution and a formula for its general solution,

which is an η-Hermitian solution:

A1X = C1, X = Xη∗ ,

A2Y = C2, Y = Y η∗ ,

A3Z = C3, Z = Y η∗ ,

E1XE
η∗

1
+ E2Y E

η∗

2
+ E3ZE

η∗

3
= C.

(1.11)

Clearly, equation (1.8) and equations (1.9) are special case of equations (1.10).

The remainder of this article is built up as follows. In Section 2, we present the preliminaries.

In Section 3, we establish some necessary and sufficient conditions for the system of matrix

equations (1.6) to have a solution by using the M-P inverses and rank equalities of the quaternion

matrices involved. In addition, we provide a formula for its general solution (when it is solvable).

As a special case of equations (1.6), we also present the solvability conditions and a formula for

the general solution of equations (1.7) (when it is solvable). In Section 4, as an application of

equations (1.6), we investigate some solvability conditions and the general solution to equations

(1.10), where X,Y,Z are η-Hermitian. Moreover, as a special case of equations (1.10), we also

investigate some solvability conditions and the general solution to equations (1.11), which is an

η-Hermitian solution. In section 5, we present an algorithm and an example to illustrate the

main results. Finally, we provide a brief conclusions to close the paper in Section 6.

2. Preliminaries

The following lemma is due to Marsaglia and Styan [24], which can be generalized to H.

Lemma 2.1. [24] Let A ∈ H
m×n, B ∈ H

m×k, C ∈ H
l×n, D ∈ H

j×k and E ∈ H
l×i be given.

Then we have the following rank equality:

r

(

A BLD

REC 0

)

= r







A B 0

C 0 E

0 D 0






− r(D)− r(E).

Lemma 2.2. [3] Let A1 and A2 be given matrices H. Then A1X = A2 is solvable if and only if

A2 = A1A
†
1
A2. In this case, the general solution to this equation can be expressed as

X = A
†
1
A2 + LA1

U1,

where U1 is an any matrix with conformable size over H.



5

Lemma 2.3. [3] Let A1 and A2 be given matrices with adequate shapes over H. Then XA1 = A2

is solvable if and only if A2 = A2A
†
1
A1. In this case, the general solution to this equation can

be expressed as

X = A2A
†
1
+ U1RA1

,

where U1 is an any matrix with conformable size over H.

Lemma 2.4. [3] Let A1 ∈ H
m1×n1 , B1 ∈ H

r1×s1 , C1 ∈ H
m1×r1 and C2 ∈ H

n1×s1 be given

matrices. Then the system

A1X1 = C1, X1B1 = C2 (2.1)

is consistent if and only if

RA1
C1 = 0, C2LB1

= 0, A1C2 = C1B1.

Under these conditions, a general solution to equations (2.1) can be expressed as

X1 = A
†
1
C1 + LA1

C2B
†
1
+ LA1

U1RB1
,

where U1 is an arbitrary matrix of appropriate shape over H.

Lemma 2.5. [19] Let Ai, Bi and B (i = 1, 4) be given quaternion matrices with appropriate

sizes. Put

RA1
Ai+1 = Aii, Bi+1LB1

= Bii(i = 1, 3), T1 = RA1
BLB1

, B22LB11
= N1, RA11

A22 = M1,

S1 = A22LM1
, C = RM1

RA11
, C1 = CA33, C2 = RA11

A33, C3 = RA22
A33, C4 = A33, D = LB11

LN1
,

D1 = B33, D2 = B33LB22
, D3 = B33LB11

, D4 = B33D, E1 = CT1, E2 = RA11
T1LB22

,

E3 = RA22
T1LB11

, E4 = T1D, C11 = (LC2
, LC4

), D11 =

(

RD1

RD3

)

, C22 = LC1
, D22 = RD2

,

C33 = LC3
, D33 = RD4

, F1 = C
†
1
E1D

†
1
+ LC1

C
†
2
E2D

†
2
, E11 = RC11

C22, E22 = RC11
C33, E33 = D22LD11

,

E44 = D33LD11
, F2 = C

†
3
E3D

†
3
+ LC3

C
†
4
E4D

†
4
, M = RE11

E22, N = E44LE33
, F = F2 − F1, E = RC11

FLD11
,

S = E22LM , G1 = E2 − C2C
†
1
E1D

†
1
D2, F11 = C2LC1

, F22 = C4LC3
, G2 = E4 − C4C

†
3
E3D

†
3
D4.

Then following statements are equivalent:

(1) Equation (1.4) is consistent.

(2)

RCi
Ei = 0, EiLDi

= 0 (i = 1, 4), RE22
ELE33

= 0.

(3)

r

(

B A2 A3 A4 A1

B1 0 0 0 0

)

= r(B1) + r(A2, A3, A4, A1),
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r







B A2 A4 A1

B3 0 0 0

B1 0 0 0






= r(A2, A4, A1) + r

(

B3

B1

)

,

r







B A3 A4 A1

B2 0 0 0

B1 0 0 0






= r(A3, A4, A1) + r

(

B2

B1

)

,

r











B A4 A1

B2 0 0

B3 0 0

B1 0 0











= r







B2

B3

B1






+ r(A4, A1),

r







B A2 A3 A1

B4 0 0 0

B1 0 0 0






= r(A2, A3, A1) + r

(

B4

B1

)

,

r











B A2 A1

B3 0 0

B4 0 0

B1 0 0











= r







B3

B4

B1






+ r(A2, A1),

r











B A3 A1

B2 0 0

B4 0 0

B1 0 0











= r







B2

B4

B1






+ r(A3, A1),

r

















B A1

B2 0

B3 0

B4 0

B1 0

















= r











B2

B3

B4

B1











+ r(A1),

r

























B A2 A1 0 0 0 A4

B3 0 0 0 0 0 0

B1 0 0 0 0 0 0

0 0 0 −B A3 A1 A4

0 0 0 B2 0 0 0

0 0 0 B1 0 0 0

B4 0 0 B4 0 0 0

























= r

















B3 0

B1 0

0 B2

0 B1

B4 B4

















+ r

(

A2 A1 0 0 A4

0 0 A3 A1 A4

)

.
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In this case, the solution of equation (1.4) can be expressed as

X1 = A
†
1
(B −A2Y1B2 −A3Y2B3 −A4Y3B4)−A

†
1
U1B1 + LA1

U2,

X2 = RA1
(B −A2Y1B2 −A3Y2B3 −A4Y3B4)B

†
1
+A1A

†
1
U1 + U3RB1

,

Y1 = A
†
11
TB

†
11

−A
†
11
A22M

†
1
TB

†
11

−A
†
11
S1A

†
22
TN

†
1
B22B

†
11

−A
†
11
S1U4RN1

B22B
†
11

+ LA11
U5 + U6RB11

,

Y2 = M
†
1
TB

†
22

+ S
†
1
S1A

†
22
TN

†
1
+ LM1

LS1
U7 + U8RB22

+ LM1
U4RN1

,

Y3 = F1 + LC2
V1 + V2RD1

+ LC1
V3RD2

,

or

Y3 = F2 − LC4
W1 −W2RD3

− LC3
W3RD4

,

where T = T1 −A33Y3B33, Ui(i = 1, 8) are arbitrary matrices with appropriate sizes over H,

V1 = (Im, 0)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (Im, 0)
[

C
†
11
U11D11 − LC11

U12

]

,

W1 = (0, Im)
[

C
†
11
(F −C22V3D22 − C33W3D33)

]

− (0, Im)
[

C
†
11
U11D11 − LC11

U12

]

,

W2 =
[

RC11
(F −C22V3D22 − C33W3D33)D

†
11

]

(

0

In

)

+
[

C11C
†
11
U11 + U21RD11

]

(

0

In

)

,

V2 =
[

RC11
(F − C22V3D22 − C33W3D33)D

†
11

]

(

In

0

)

+
[

C11C
†
11
U11 + U21RD11

]

(

In

0

)

,

V3 = E
†
11
FE

†
33

− E
†
11
E22M

†FE
†
33

− E
†
11
SE

†
22
FN †E44E

†
33

− E
†
11
SU31RNE44E

†
33

+ LE11
U32 + U33RE33

,

W3 = M †FE
†
44

+ S†SE
†
22
FN † + LMLSU41 + LMU31RN − U42RE44

,

U11, U12, U21, U31, U32, U33, U41 and U42 are arbitrary matrices of appropriate sizes over H. m

is the column number of A4 and n is the row number of B4.

3. Necessary and sufficient conditions for the existence of a solution to

equations (1.6)

The goal of this section is to establish the solvability conditions and a formula of its general

solution to equations (1.6).

For the convenience, we define some notations the follows: Let Ai, Bi, Ci, Di, Ei, Fi (i = 1, 4),

and Cc be given matrices of appropriate sizes over H. Put

EiLAi
= Aii, RBi

Fi = Bii(i = 1, 4), Bj1 = BjjLB11
(j = 2, 4), T1 = Cc −E1A

†
1
C1

−D1B
†
1
F1 −

(

4
∑

i=2

Ei(A
†
iCi + LAi

DiB
†
i )Fi

)

, A1j = RA11
Ajj, B31LB21

= N1, RA12
A13 = M1,

S1 = A13LM1
, RA11

T1LB11
= T2,

(3.1)
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G = RM1
RA12

, G1 = GA14, G2 = RA12
A14, G3 = RA13

A14, G4 = A14, H = LB21
LN1

,

H1 = B41, H2 = B41LB31
, H3 = B41LB21

, H4 = B41H, L1 = GT2, L2 = RA12
T2LB31

,

L3 = RA13
T2LB21

, L4 = T2H,

(3.2)

C11 = (LG2
, LG4

), D11 =

(

RH1

RH3

)

, C22 = LG1
, D22 = RH2

, C33 = LG3
, D33 = RH4

,

E11 = RC11
C22 E22 = RC11

C33, E33 = D22LD11
, E44 = D33LD11

, M = RE11
E22,

N = E44LE33
, F = F44 − F33, E = RC11

FLD11
, S = E22LM , F11 = G2LG1

,

(3.3)

G11 = L2 −G2G
†
1
L1H

†
1
H2, F22 = G4LG3

, G22 = L4 −G4G
†
3
L3H

†
3
H4,

F33 = G
†
1
L1H

†
1
+ LG1

G
†
2
L2H

†
2
, F44 = G

†
3
L3H

†
3
+ LG3

G
†
4
L4H

†
4
.

(3.4)

Theorem 3.1. Consider (1.6) with the notation in (3.1) to (3.4). The following statements are

equivalent:

(1) System (1.6) has a solution.

(2)

AiDi = CiBi, (i = 2, 4) (3.5)

and

RAj
Cj = 0, DjLBj

= 0, RGj
Lj = 0, LjLHj

= 0(j = 1, 4), RE22
ELE33

= 0. (3.6)

(3) (3.5) holds and

r(Ci, Ai) = r(Ai), r

(

Di

Bi

)

= r(Bi) (i = 1, 4), (3.7)

r





















Cc E1 E2 E3 E4 D1

F1 0 0 0 0 B1

C1 A1 0 0 0 0

C2F2 0 A2 0 0 0

C3F3 0 0 A3 0 0

C4F4 0 0 0 A4 0





















= r

















E1 E2 E3 E4

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

















+ r(F1, B1), (3.8)

r





















Cc E1 E2 E4 E3D3 D1

C1 A1 0 0 0 0

C2F2 0 A2 0 0 0

C4F4 0 0 A4 0 0

F3 0 0 0 B3 0

F1 0 0 0 0 B1





















= r











E1 E2 E4

A1 0 0

0 A2 0

0 0 A4











+ r

(

F3 B3 0

F1 0 B1

)

, (3.9)
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r





















Cc E1 E3 E4 E2D2 D1

C1 A1 0 0 0 0

C3F3 0 A3 0 0 0

C4F4 0 0 A4 0 0

F2 0 0 0 B2 0

F1 0 0 0 0 B1





















= r











E1 E3 E4

A1 0 0

0 A3 0

0 0 A4











+ r

(

F2 B2 0

F1 0 B1

)

, (3.10)

r





















Cc E4 E1 E2D2 E3D3 D1

F2 0 0 B2 0 0

F3 0 0 0 B3 0

F1 0 0 0 0 B1

C4F4 A4 0 0 0 0

C1 0 A1 0 0 0





















= r







F2 B2 0 0

F3 0 B3 0

F1 0 0 B1






+ r







E4 E1

A4 0

0 A1






, (3.11)

r





















Cc E1 E2 E3 E4D4 D1

C1 A1 0 0 0 0

C2F2 0 A2 0 0 0

C3F3 0 0 A3 0 0

F4 0 0 0 B4 0

F1 0 0 0 0 B1





















= r











E1 E2 E3

A1 0 0

0 A2 0

0 0 A3











+ r

(

F4 B4 0

F1 0 B1

)

, (3.12)

r





















Cc E2 E1 E3D3 E4D4 D1

F3 0 0 B3 0 0

F4 0 0 0 B4 0

F1 0 0 0 0 B1

C2F2 A2 0 0 0 0

C1 0 A1 0 0 0





















= r







F3 B3 0 0

F4 0 B4 0

F1 0 0 B1






+ r







E2 E1

A2 0

0 A1






, (3.13)

r





















Cc E3 E1 E2D2 E4D4 D1

F2 0 0 B2 0 0

F4 0 0 0 B4 0

F1 0 0 0 0 B1

C3F3 A3 0 0 0 0

C1 0 A1 0 0 0





















= r







F2 B2 0 0

F4 0 B4 0

F1 0 0 B1






+ r







E3 E1

A3 0

0 A1






, (3.14)

r





















Cc E1 E4D4 E2D2 E3D3 D1

F4 0 B4 0 0 0

F2 0 0 B2 0 0

F3 0 0 0 B3 0

F1 0 0 0 0 B1

C1 A1 0 0 0 0





















= r











F4 B4 0 0 0

F2 0 B2 0 0

F3 0 0 B3 0

F1 0 0 0 B1











+ r

(

E1

A1

)

, (3.15)
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r

















































Cc E2 E1 0 0 0 E4 E3D3 D1 0 0 E4D4

F3 0 0 0 0 0 0 B3 0 0 0 0

F1 0 0 0 0 0 0 0 B1 0 0 0

0 0 0 Cc E3 E1 E4 0 0 E2D2 D1 0

0 0 0 F2 0 0 0 0 0 B2 0 0

0 0 0 F1 0 0 0 0 0 0 B1 0

F4 0 0 −F4 0 0 0 0 0 0 0 B4

C2F2 A2 0 0 0 0 0 0 0 0 0 0

C1 0 A1 0 0 0 0 0 0 0 0 0

0 0 0 C3F3 A3 0 0 0 0 0 0 0

0 0 0 C1 0 A1 0 0 0 0 0 0

0 0 0 C4F4 0 0 A4 0 0 0 0 0

















































= r

















F3 0 B3 0 0 0 0

F1 0 0 B1 0 0 0

0 F2 0 0 B2 0 0

0 F1 0 0 0 B1 0

F4 F4 0 0 0 0 B4

















+ r

























E2 E1 0 0 E4

0 0 E3 E1 E4

A2 0 0 0 0

0 A1 0 0 0

0 0 A3 0 0

0 0 0 A1 0

0 0 0 0 A4

























.

(3.16)

In this case, the general solution to system (1.6) is

U = A
†
1
C1 + LA1

S1, V = D1B
†
1
+ S2RA1

, X = A
†
2
C2 + LA2

D2B
†
2
+ LA2

U1RB2
,

Y = A
†
3
C3 + LA3

D3B
†
3
+ LA3

U2RB3
, Z = A

†
4
C4 + LA4

D4B
†
4
+ LA4

U3RB4
,

(3.17)

where

S1 = A
†
11
(T1 −A22XB22 −A33Y B33 −A44ZB44)−A

†
11
W11B11 + LA11

W12,

S2 = RA11
(T1 −A22XB22 −A33Y B33 −A44ZB44)B

†
11

+A11A
†
11
W11 +W13RB11

,

U1 = A
†
12
TB

†
21

−A
†
12
A13M

†
1
TB

†
21

−A
†
12
S1A

†
13
TN

†
1
B31B

†
21

−A
†
12
S1U4RN1

B31B
†
21

+ LA21
U5 + U6RB21

,

U2 = M
†
1
TB

†
31

+ S
†
1
S1A

†
22
TN

†
1
+ LM1

LS1
U7 + U8RB22

+ LM1
U4RN1

,

U3 = F10 + LG2
V1 + V2RH1

+ LG1
V3RH2

, orU3 = F20 − LG4
W1 −W2RH3

− LG3
W3RH4

,

V1 = (Im, 0)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (Im, 0)
[

C
†
11
U11D11 − LC11

U12

]

,

W1 = (0, Im)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (0, Im)
[

C
†
11
U11D11 − LC11

U12

]

,

W2 =
[

RC11
(F −C22V3D22 − C33W3D33)D

†
11

]

(

0

In

)

+
[

C11C
†
11
U11 + U21RD11

]

(

0

In

)

,
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V2 =
[

RC11
(F − C22V3D22 − C33W3D33)D

†
11

]

(

In

0

)

+
[

C11C
†
11
U11 + U21RD11

]

(

In

0

)

,

V3 = E
†
11
FE

†
33

− E
†
11
E22M

†FE
†
33

− E
†
11
SE

†
22
FN †E44E

†
33

−E
†
11
SU31RNE44E

†
33

+ LE11
U32 + U33RE33

,

W3 = M †FE
†
44

+ S†SE
†
22
FN † + LMLSU41 + LMU31RN + U42RE44

,

where T = T1 − A33U3B33, Uj(j = 4, 6), Ui1(i = 1, 4), U12, U32, U33 and U42 are arbitrary

matrices with appropriate shapes over H. m is the column number of A4 and n is the row

number of B4.

Proof. (1) ⇔ (2) It is clear that the system of matrix equations (1.6) is solvable if and only if

both

A1U = C1, V B1 = D1,

A2X = C2, XB2 = D2,

A3Y = C3, Y B3 = D3,

A4Z = C4, ZB4 = D4

(3.18)

and

E1U + V F1 +E2XF2 +E3Y F3 + E4ZF4 = Cc (3.19)

are solvable. It follows from Lemma 2.2, Lemma 2.3, and Lemma 2.4 that the system of matrix

equations (3.18) has a solution if and only if (3.5) holds and

RAi
Ci = 0, BiLDi

= 0 (i = 1, 4). (3.20)

In this case, the general solution of equations (3.18) can be expressed as

U = A
†
1
C1 + LA1

S1, V = D1B
†
1
+ S2RA1

,

X = A
†
2
C2 + LA2

D2B
†
2
+ LA2

U1RB2
,

Y = A
†
3
C3 + LA3

D3B
†
3
+ LA3

U2RB3
,

Z = A
†
4
C4 + LA4

D4B
†
4
+ LA4

U3RB4
.

(3.21)

By substituting U, V,X, Y, Z from (3.21) into (3.19) yields

A11S1 + S2B11 +A22U1B22 +A33U2B33 +A44U3B44 = T1, (3.22)

where Aii, Bii(i = 1, 4), and T1 are defined by (3.1). By Lemma 2.5, we obtain that equation

(3.22) has a solution if and only if

RGi
Li = 0, LiLHi

= 0 (i = 1, 4), RE22
ELE33

= 0. (3.23)
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Under these conditions, the general solution to the matrix equation (3.22) can be expressed as

S1 = A
†
11
(T1 −A22XB22 −A33Y B33 −A44ZB44)−A

†
11
W11B11 + LA11

W12,

S2 = RA11
(T1 −A22XB22 −A33Y B33 −A44ZB44)B

†
11

+A11A
†
11
W11 +W13RB11

,

U1 = A
†
12
TB

†
21

−A
†
12
A13M

†
1
TB

†
21

−A
†
12
S1A

†
13
TN

†
1
B31B

†
21

−A
†
12
S1U4RN1

B31B
†
21

+ LA21
U5 + U6RB21

,

U2 = M
†
1
TB

†
31

+ S
†
1
S1A

†
22
TN

†
1
+ LM1

LS1
U7 + U8RB22

+ LM1
U4RN1

,

U3 = F10 + LG2
V1 + V2RH1

+ LG1
V3RH2

, orU3 = F20 − LG4
W1 −W2RH3

− LG3
W3RH4

,

V1 = (Im, 0)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (Im, 0)
[

C
†
11
U11D11 − LC11

U12

]

,

W1 = (0, Im)
[

C
†
11
(F − C22V3D22 −C33W3D33)

]

− (0, Im)
[

C
†
11
U11D11 − LC11

U12

]

,

W2 =
[

RC11
(F −C22V3D22 − C33W3D33)D

†
11

]

(

0

In

)

+
[

C11C
†
11
U11 + U21RD11

]

(

0

In

)

,

V2 =
[

RC11
(F − C22V3D22 − C33W3D33)D

†
11

]

(

In

0

)

+
[

C11C
†
11
U11 + U21RD11

]

(

In

0

)

,

V3 = E
†
11
FE

†
33

−E
†
11
E22M

†FE
†
33

− E
†
11
SE

†
22
FN †E44E

†
33

− E
†
11
SU31RNE44E

†
33

+ LE11
U32 + U33RE33

,

W3 = M †FE
†
44

+ S†SE
†
22
FN † + LMLSU41 + LMU31RN + U42RE44

,

where T = T1 − A33U3B33, Uj(j = 4, 6), Ui1(i = 1, 4), U12, U32, U33 and U42 are arbitrary

matrices with appropriate shapes over H. m is the column number of A4 and n is the row

number of B4.

To sum up, both the equations (3.18) and the equation (3.19) are solvable if and only if

conditions (3.5), (3.20) and (3.23) hold, i.e, the system of matrix equations (1.6) has a solution

if and only if (3.5) and (3.6) hold. Under these conditions, the general solution to equations

(1.6) can be expressed as (3.17).

(2) ⇔ (3) We first show that (3.20) ⇔ (3.7). According to Lemma 2.1, it follows that

RAi
Ci = 0 ⇔ r(RAi

Ci) = 0 ⇔ r(Ci, Ai) = r(Ai)(i = 1, 2, 3) ⇔ (3.7),

DjLBj
= 0 ⇔ r(DjLBj

) = 0 ⇔ r

(

Dj

Bj

)

= r(Bj)(j = 1, 2, 3) ⇔ (3.7).
(3.24)

It follows from (3.24) that (3.20) ⇔ (3.7).

We now turn to show that (3.23) holds if and only if (3.8) to (3.16) hold. By Lemma 2.5,

(3.23) is equivalent to
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r

(

T1 A22 A33 A44 A11

B11 0 0 0 0

)

= r(B11) + r(A22, A33, A44, A11), (3.25)

r







T1 A22 A44 A11

B33 0 0 0

B11 0 0 0






= r(A22, A44, A11) + r

(

B33

B11

)

, (3.26)

r







T1 A33 A44 A11

B22 0 0 0

B11 0 0 0






= r(A33, A44, A11) + r

(

B22

B11

)

, (3.27)

r











T1 A44 A11

B22 0 0

B33 0 0

B11 0 0











= r







B22

B33

B11






+ r(A44, A11), (3.28)

r







T1 A22 A33 A11

B44 0 0 0

B11 0 0 0






= r(A22, A33, A11) + r

(

B44

B11

)

, (3.29)

r











T1 A22 A11

B33 0 0

B44 0 0

B11 0 0











= r







B33

B44

B11






+ r(A22, A11), (3.30)

r











T1 A33 A11

B22 0 0

B44 0 0

B11 0 0











= r







B22

B44

B11






+ r(A33, A11), (3.31)

r

















T1 A11

B22 0

B33 0

B44 0

B11 0

















= r











B22

B33

B44

B11











+ r(A11), (3.32)

r

























T1 A22 A11 0 0 0 A44

B33 0 0 0 0 0 0

B11 0 0 0 0 0 0

0 0 0 −T1 A33 A11 A44

0 0 0 B22 0 0 0

0 0 0 B11 0 0 0

B44 0 0 B44 0 0 0
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= r

















B33 0

B11 0

0 B22

0 B11

B44 B44

















+ r

(

A22 A11 0 0 A44

0 0 A33 A11 A44

)

, (3.33)

respectively. Hence, we only show that

(19 + i) ⇔ (36 + i) (i = 1, 9),

respectively. When we show that (3.23) holds if and only if (3.8) to (3.16) hold, respectively. It

is easy to know that there exist the U0, V0, X0, Y0 and Z0 of the equations (1.6) such that

A1U0 = C1, V0B1 = D1,

A2X0 = C2, X0B2 = D2,

A3Y0 = C3, Y0B3 = D3,

A4Z0 = C4, Z0B4 = D4,

(3.34)

where

U0 = A
†
1
C1, V0 = D1B

†
1
, X0 = A

†
1
C1 + LA1

D1B
†
1
,

Y0 = A
†
2
C2 + LA2

D2B
†
2
, Z0 = A

†
3
C3 + LA3

D3B
†
3
,

It follows from Lemma 2.1, (3.34) and elementary transformations that

(3.25) ⇔ r(T1, E1LA1
, E2LA2

, E3LA3
) = r(E1LA1

, E2LA2
, E3LA3

)

⇔ r











C E1 E2 E3

C1F1 A1 0 0

C2F2 0 A2 0

C3F3 0 0 A3











= r











E1 E2 E3

A1 0 0

0 A2 0

0 0 A3











⇔ (3.8).

Similarly, we can show that (3.26) ⇔ (3.9), (3.27) ⇔ (3.10), (3.28) ⇔ (3.11), (3.29) ⇔ (3.12), (3.30) ⇔

(3.13), (3.31) ⇔ (3.14), (3.32) ⇔ (3.15),

(3.33) ⇔

r

























T1 E2LA2
E1LA1

0 0 0 E4LA4

RB3
F3 0 0 0 0 0 0

RB1
F1 0 0 0 0 0 0

0 0 0 −T1 E3LA3
E1LA1

E4LA4

0 0 0 RB2
F2 0 0 0

0 0 0 RB1
F1 0 0 0

RB4
F4 0 0 RB4

F4 0 0 0
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= r

















RB3
F3 0

RB1
F1 0

0 RB2
F2

0 RB1
F1

RB4
F4 RB4

F4

















+ r

(

E2LA2
E1LA1

0 0 E4LA4

0 0 E3LA3
E1LA1

E4LA4

)

⇔ r

















































Cc E2 E1 0 0 0 E4 E3D3 D1 0 0 E4D4

F3 0 0 0 0 0 0 B3 0 0 0 0

F1 0 0 0 0 0 0 0 B1 0 0 0

0 0 0 Cc E3 E1 E4 0 0 E2D2 D1 0

0 0 0 F2 0 0 0 0 0 B2 0 0

0 0 0 F1 0 0 0 0 0 0 B1 0

F4 0 0 −F4 0 0 0 0 0 0 0 B4

C2F2 A2 0 0 0 0 0 0 0 0 0 0

C1 0 A1 0 0 0 0 0 0 0 0 0

0 0 0 C3F3 A3 0 0 0 0 0 0 0

0 0 0 C1 0 A1 0 0 0 0 0 0

0 0 0 C4F4 0 0 A4 0 0 0 0 0

















































= r

















F3 0 B3 0 0 0 0

F1 0 0 B1 0 0 0

0 F2 0 0 B2 0 0

0 F1 0 0 0 B1 0

F4 F4 0 0 0 0 B4

















+ r

























E2 E1 0 0 E4

0 0 E3 E1 E4

A2 0 0 0 0

0 A1 0 0 0

0 0 A3 0 0

0 0 0 A1 0

0 0 0 0 A4

























⇔ (3.16).

We have thus proved the theorem. �

Remark 3.2. Chu et al. gave potential applications of the maximal and minimal ranks in the

discipline of control theory(e.g., [5], [6], [7]). We may consider the rank bounds of the general

solution of the equation (1.6).

Next, we discuss the special case of (1.6). Let Ai, Bi, Ci, Di, Ei, Fi (i = 1, 3) and C be given

matrices of appropriate sizes over H.

EiLAi
= Aii, RBi

Fi = Bii(i = 1, 3), M1 = RA11
A22, N1 = B22LB11

, S1 = A22LM1
,

G = RM1
RA11

, T1 = C −

[

3
∑

i=1

Ei(A
†
iCi + LAi

DiB
†
i )Fi

]

, G1 = GA33, G2 = RA11
A33,

G3 = RA22
A33, G4 = A33, H = LB11

LN1
, H1 = B33, L1 = GT1, H2 = B33LB22

,

H3 = B33LB11
, H4 = B33D, L2 = RA11

T1LB22
, L3 = RA22

T1LB11
, L4 = T1H,

C11 = (LG2
, LG4

), D11 =

(

RH1

RH3

)

, C22 = LG1
, D22 = RH2

, C33 = LG3
, D33 = RH4

,
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E11 = RC11
C22, E22 = RC11

C33, E33 = D22LD11
, E44 = D33LD11

, M = RE11
E22, N = E44LE33

,

F = F20 − F10, E = RC11
FLD11

, S = E22LM , F11 = G2LG1
,

G5 = L2 −G2G
†
1
L1H

†
1
H2, F22 = G4LG3

, G6 = L4 −G4G
†
3
L3H

†
3
H4,

F10 = G
†
1
L1H

†
1
+ LG1

G
†
2
L2H

†
2
, F20 = G

†
3
L3H

†
3
+ LG3

G
†
4
L4H

†
4
.

Theorem 3.2. The following statements are equivalent:

(1) system (1.7) has a solution.

(2)

AiDi = CiBi, (i = 1, 3) (3.35)

and

RAi
Ci = 0, DiLBi

= 0, RGj
Lj = 0, LjLHj

= 0 (i = 1, 3, j = 1, 4), RE22
ELE33

= 0.

(3) (3.35) holds and for i = 1, 3.

r(Ci, Ai) = r(Ai), r

(

Di

Bi

)

= r(Bi),

r











C E1 E2 E3

C1F1 A1 0 0

C2F2 0 A2 0

C5F3 0 0 A3











= r











E1 E2 E3

A1 0 0

0 A2 0

0 0 A3











,

r











C E1 E3 E2D2

F2 0 0 B2

C1F1 A1 0 0

C3F3 0 A3 0











= r







E1 E3

A1 0

0 A3






+ r(F2, B2),

r











C E3 E2 E1D1

F1 0 0 B1

C3F3 A3 0 0

C2F2 0 A2 0











= r







E3 E2

A1 0

0 A3






+ r(F1, B1),

r











C E3 E1D1 E2D2

F1 0 B1 0

F2 0 0 B2

C3F3 A3 0 0











= r

(

F1 B1 0

F2 0 B2

)

+ r

(

E3

A3

)

,

r











C E1 E2 E3D3

F3 0 0 B3

C1F1 A1 0 0

C2F2 0 A2 0











= r







E1 E2

A1 0

0 A2






+ r(F3, B3),



17

r











C E1 E3D3 E2D2

F3 0 B3 0

F2 0 0 B2

C1F1 A1 0 0











= r

(

F3 B3 0

F2 0 B2

)

+ r

(

E1

A1

)

,

r











C E2 E1D1 E3D3

F1 0 B1 0

F3 0 0 B3

C2F2 A2 0 0











= r

(

F1 B1 0

F3 0 B3

)

+ r

(

E2

A2

)

,

r











C E1D1 E2D2 E3D3

F1 B1 0 0

F2 0 B2 0

F3 0 0 B3











= r







F1 B1 0 0

F2 0 B2 0

F3 0 0 B3






,

r































C 0 E1 0 E3 E2D2 0 E3D3

0 −C 0 E2 E3 0 −E1D1 0

F2 0 0 0 0 B2 0 0

0 F1 0 0 0 0 B1 0

F3 F3 0 0 0 0 0 B3

C1F1 0 A1 0 0 0 0 0

0 −C2F2 0 A2 0 0 0 0

0 −C3F3 0 0 A3 0 0 0































= r







F2 0 B2 0 0

0 F1 0 B1 0

F3 F3 0 0 B3






+ r

















E1 0 E3

0 E2 E3

A1 0 0

0 A2 0

0 0 A3

















.

In this case, the general solution to system (1.7) is

X = A
†
1
C1 + LA1

D1B
†
1
+ LA1

U1RB1
, Y = A

†
2
C2 + LA2

D2B
†
2
+ LA2

U2RB2
,

Z = A
†
3
C3 + LA3

D3B
†
3
+ LA3

U3RB3
,

where

U1 = A
†
11
TB

†
11

−A
†
11
A22M

†
1
TB

†
11

−A
†
11
S1A

†
22
TN

†
1
B22B

†
11

−A
†
11
S1U4RN1

B22B
†
11

+ LA11
U5 + U6RB11

,

U2 = M
†
1
TB

†
22

+ S
†
1
S1A

†
22
TN

†
1
+ LM1

LS1
U7 + U8RB22

+ LM1
U4RN1

,

U3 = F10 + LG2
V1 + V2RH1

+ LG1
V3RH2

,

or

U3 = F20 − LG4
W1 −W2RH3

− LG3
W3RH4

,

V1 = (Im, 0)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (Im, 0)
[

C
†
11
U11D11 − LC11

U12

]

,
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W1 = (0, Im)
[

C
†
11
(F − C22V3D22 − C33W3D33)

]

− (0, Im)
[

C
†
11
U11D11 − LC11

U12

]

,

W2 =
[

RC11
(F − C22V3D22 − C33W3D33)D

†
11

]

(

0

In

)

+
[

C11C
†
11
U11 + U21RD11

]

(

0

In

)

,

V2 =
[

RC11
(F − C22V3D22 − C33W3D33)D

†
11

]

(

In

0

)

+
[

C11C
†
11
U11 + U21RD11

]

(

In

0

)

,

V3 = E
†
11
FE

†
33

− E
†
11
E22M

†FE
†
33

− E
†
11
SE

†
22
FN †E44E

†
33

− E
†
11
SU31RNE44E

†
33

+ LE11
U32 + U33RE33

,

W3 = M †FE
†
44

+ S†SE
†
22
FN † + LMLSU41 + LMU31RN

+ U42RE44
,

where T = T1 − A33U3B33, Uj(j = 4, 6), Ui1(i = 1, 4), U12, U32, U33 and U42 are arbitrary

matrices with appropriate shapes over H. m is the column number of A3 and n is the row

number of B3.

Proof. It follows from Theorem 3.1 that this holds when A1, C1, B1,D1, E1, F1 vanish in Theorem

3.1 �

Lettiing Ai, Bi, Ci, Di(i = 1, 3), E3 and F3 vanish in Theorem 3.1, it yields to the following

result:

Corollary 3.3. Let C3, D3, C4, D4 and E1 be given matrices with adequate shapes. Let M1 =

RC3
C4, N1 = D4LD3

, S1 = C4LM1
. Then the matrix equation (1.2) is consistent if and only if

the following rank equalities hold:

r(C3 E1 C4) = r(C3 C4), r







D3

E1

D4






= r

(

D3

D4

)

,

r

(

C3 E1

0 D4

)

= r(C3) + r(D4), r

(

D3 0

E1 C4

)

= r(D3) + r(C4).

In this case, the general solution to equation (1.2) can be expressed as

X3 = C
†
3
E1D

†
3
− C

†
3
C4M

†
1
E1D

†
3
− C

†
3
S1C

†
4
E1N

†
1
D4D

†
3

− C
†
3
S1Y11RN1

D4D
†
4
+ LC3

Y12 + Y13RD3
,

X4 = M
†
1
E1D

†
4
+ S

†
1
S1C

†
4
E1N

†
1
+ LM1

LS1
Y14 + Y15RD4

+ LM1
Y11RN1

,



19

where Y1i(i = 1, 5) are any matrices with appropriate sizes over H.

Remark 3.3. The above corollary has the main findings of [1].

Lettiing A3, B3, C3, D3, E3 and F3 vanish in Theorem 3.1, it yields to the following result:

Corollary 3.4. Let Ai, Bi, Ci(i = 1, 4) and Cc be given with appropriate sizes over H. Set

A = A3LA1
, B = RB1

B3, C = A4LA2
, D = RB2

B4,

M = RAC, N = DLB, S = CLM , E = Cc −A3A
†
1
C1B3

−AC2B
†
1
B3 −A4A

†
2
C3B4 − CC4B

†
2
B4.

Then the following statements are equivalent:

(1) the system of matrix equations (1.3) is solvable.

(2)

A1C2 = C1B1, A2C4 = C3B2, RA1
C1 = 0,

RA2
C3 = 0, C2LB1

= 0, C4LB2
= 0,

RMRAE = 0, RAELD = 0, ELBLN = 0, RCELB = 0.

(3)

A1C2 = C1B1, A2C4 = C3B2, r(A1, C1) = r(A1),

r(A2, C3) = r(A2), r

(

C2

B1

)

= r(B1), r

(

C4

B2

)

= r(B2),

r







A1 0 C1B3

A3 A4C4 Cc

0 B2 B4






= r







A1 0 0

A3 0 0

0 B2 B4






,

r







A2 0 C3B4

A4 A3C2 Cc

0 B1 B3






= r







A2 0 0

A4 0 0

0 B1 B3






,

r







B1 0 B3

0 B2 B4

A3C2 A4C4 Cc






= r

(

B1 0 B3

0 B2 B4

)

,

r







C1B3 A1 0

C3B4 0 A2

Cc A3 A4






= r







A1 0

0 A2

A3 A4






.

In this case, the general solution to the system (1.3) can be expressed as

X1 = A
†
1
C1 + LA1

C2B
†
1
+ LA1

A†EB†RB1
− LA1

A†CM †RAEB†RB1
− LA1

A†SC†ELBN
†DB†RB1

− LA1
A†SV RNDB†RB1

+ LA1
(LAU + ZRB)RB1

,

X2 = A
†
2
C3 + LA2

C4B
†
2
+ LA2

M †RAED†RB2
+ LALMS†SC†ELBN

†RB2

+ LA2
LM(V − S†SV NN †)RB2

+ LA2
WRDRB2

,

where U, V,W and Z are arbitrary matrices with appropriate sizes over H.
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Remark 3.4. The above corollary has the main findings of [38].

4. The general solution to equations (1.10) with η-Hermicity

In this section, as an application of equations (1.6), we establish some necessary and sufficient

conditions for the system of matrix equations (1.10) to have a solution, and derive a formula

for its general solution, where X,Y,Z are η-Hermitian. Let Ai, Bi, Ei (i = 1, 4) and Cc be given

with appropriate sizes over H. Set

EiLAi
= Aii(i = 1, 4), RA11

Ajj = A1j(j = 2, 4), RA12
A13 = M1, S1 = A22LM1

,

T1 = Cc − E1A
†
1
C1 − C

η∗

1
(Aη∗

1
)†Eη∗

1
−

[

3
∑

i=1

Ei

(

A
†
iBi + LAi

B
η∗

i (Aη∗

i )†
)

E
η∗

i

]

,

T2 = RA11
T1(RA11

)η
∗

, G = RM1
RA12

, G1 = GA14, G2 = RA12
A14, G3 = RA13

A14,

G4 = A14, L1 = GT2, L2 = RA12
T2(RA13

)η
∗

,

L3 = RA13
T2(RA12

)η
∗

, L4 = T2G
η∗ , C11 = (LG2

, LG4
), E11 = RC11

C22, C22 = LG1
, C33 = LG3

,

E22 = RC11
C33, M = RE11

E22, N = (RE22
E11)

η∗ , F = F44 − F33, E = RC11
F (RC11

)η
∗

, S = E22LM ,

F11 = G2LG1
, G1 = L2 −G2G

†
1
L1(G

η∗

4
)†Gη∗

3
, F22 = G4LG3

, G2 = L4 −G4G
†
3
L3(G

η∗

2
)†Gη∗

1
,

F1 = G
†
1
G1(G

η∗

4
)† + LG1

G
†
2
L2(G

η∗

3
)†, F2 = G

†
3
L3(G

η∗

2
)† + LG3

G
†
4
L4(G

η∗

1
)†.

Then we have the following theorem.

Theorem 4.1. Consider (1.10). The following statements are equivalent:

(1) The system of matrix equations (1.10) has a solution.

(2)

RE22
E(RE22

)η
∗

= 0, RAi
Bi = 0, RGi

Li = 0 (i = 1, 4).

(3)

r(Bi, Ai) = r(Ai) (i = 1, 4),

r





















Cc E1 E2 E3 E4 (C1)
η∗

(E1)
η∗ 0 0 0 0 (A1)

η∗

C1 A1 0 0 0 0

C2E
η∗

2
0 A2 0 0 0

C3E
η∗

3
0 0 A3 0 0

C4E
η∗

4
0 0 0 A4 0





















= r

















E1 E2 E3 E4

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

















+ r

(

E1

A1

)

,

r





















Cc E4 E2 E1 (C3)
η∗ (C1)

η∗

(E3)
η∗ 0 0 0 (A3)

η∗ 0

(E1)
η∗ 0 0 0 0 (A1)

η∗

C4E
η∗

4
A4 0 0 0 0

C2E
η∗

2
0 A2 0 0 0

C1 0 0 A1 0 0





















= r











E4 E2 E1

A4 0 0

0 A2 0

0 0 A1











+ r







E3 E1

A3 0

0 A1






,
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r





















Cc E4 E3 E1 (C2)
η∗ (C1)

η∗

(E2)
η∗ 0 0 0 (A2)

η∗ 0

(E1)
η∗ 0 0 0 0 (A1)

η∗

C4E
η∗

4
A4 0 0 0 0

C3E
η∗

3
0 A3 0 0 0

C1 0 0 A1 0 0





















= r











E4 E3 E1

A4 0 0

0 A3 0

0 0 A1











+ r







E2 E1

A2 0

0 A1






,

r





















Cc E4 E1 (C3)
η∗ (C2)

η∗ (C1)
η∗

(E3)
η∗ 0 0 (A3)

η∗ 0 0

(E2)
η∗ 0 0 0 (A2)

η∗ 0

(E1)
η∗ 0 0 0 0 (A2)

η∗

C4E
η∗

4
A4 0 0 0 0

C1 0 0 A1 0 0





















= r











E3 E2 E1

A3 0 0

0 A2 0

0 0 A1











+ r







E4 E1

A4 0

0 A1






,

r

















































Cc E2 E1 0 0 0 E4 P3 C
η∗

1
0 0 P4

E
η∗

3
0 0 0 0 0 0 A

η∗

3
0 0 0 0

E
η∗

1
0 0 0 0 0 0 0 A

η∗

1
0 0 0

0 0 0 Cc E3 E1 E4 0 0 P2 C
η∗

1
0

0 0 0 E
η∗

2
0 0 0 0 0 A

η∗

2
0 0

0 0 0 E
η∗

1
0 0 0 0 0 0 A

η∗

1
0

E
η∗

4
0 0 −E

η∗

4
0 0 0 0 0 0 0 A

η∗

4

P2 A2 0 0 0 0 0 0 0 0 0 0

C1 0 A1 0 0 0 0 0 0 0 0 0

0 0 0 P3 A3 0 0 0 0 0 0 0

0 0 0 C1 0 A1 0 0 0 0 0 0

0 0 0 P4 0 0 A4 0 0 0 0 0

















































= 2r

























E2 E1 0 0 E4

0 0 E3 E1 E4

A2 0 0 0 0

0 A1 0 0 0

0 0 A3 0 0

0 0 0 A1 0

0 0 0 0 A4

























,

where Pi = CiE
η∗

i (i = 2, 4). In this case, the general solution to the system (1.10) can be

expressed as

U =
U1 + (U2)

η∗

2
, X =

X̃ + (X̃)η
∗

2
,

Y =
Ỹ + (Ỹ )η

∗

2
, Z =

Z̃ + (Z̃)η
∗

2
,

U1 = A
†
1
C1 + LA1

S1, U2 = U
η∗

1
,
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X̃ = A
†
1
B1 + LA1

B
η∗

1
(Aη∗

1
)† + LA1

U1(LA1
)η

∗

,

Ỹ = A
†
2
B2 + LA2

B
η∗

2
(Aη∗

2
)† + LA2

U2(LA2
)η

∗

,

Z̃ = A
†
3
B3 + LA3

B
η∗

3
(Aη∗

3
)† + LA3

U3(LA3
)η

∗

,

where

S1 = A
†
11
(T1 −A22XA

η∗

22
−A33Y A

η∗

33
−A44ZA

η∗

44
)−A

†
11
W11A

η∗

11
+ LA11

W12,

U1 = A
†
12
T (A†

12
)η

∗

−A
†
12
A13M

†
1
T (A†

12
)η

∗

−A
†
12
S1U4RM

η∗

1

A
†
13
(A†

12
)η

∗

−A
†
12
S1A

†
13
T (Mη∗

1
)†A†

13
(A†

12
)η

∗

+ LA12
U5 + U6RA

η∗

12

,

U2 = M
†
1
T (A†

13
)η

∗

+ S
†
1
S1A

†
13
T (M †

1
)η

∗

+ LM1
LS1

U7 + U8RA
η∗

13

+ LM1
U4RM

η∗

1

,

U3 = F1 + LG2
V1 + V2RG

η∗

4

+ LG1
V3RG

η∗

3

, or U3 = F2 − LG4
W1 −W2RG

η∗

2

− LG3
W3RG

η∗

1

,

V1 = (Im, 0)
[

C
†
11
(F − C22V3C

η∗

33
− C33W3C

η∗

22
)
]

− (Im, 0)
[

C
†
11
U11C

η∗

11
+ LC11

U12

]

,

W1 = (0, Im)
[

C
†
11
(F −C22V3C

η∗

33
− C33W3C

η∗

22
)
]

− (0, Im)
[

C
†
11
U11C

η∗

11
+ LC11

U12

]

,

W2 =
[

RC11
(F −C22V3C

η∗

33
− C33W3C

η∗

22
)(Cη∗

11
)†
]

(

0

In

)

+
[

C11C
†
11
U11 + U21L

η∗

C11

]

(

0

In

)

,

V2 = RC11
(F − C22V3C

η∗

33
− C33W3C

η∗

22
)(Cη∗

11
)†

(

0

In

)

+
[

C11C
†
11
U11 + U21L

η∗

C11

]

(

In

0

)

,

V3 = E
†
11
F (Eη∗

22
)† − E

†
11
E22M

†F (Eη∗

22
)† − E

†
11
SE

†
22
FN †E

η∗

11
(Eη∗

22
)† − E

†
11
SU31RNE

η∗

11
(Eη∗

22
)†

+ LE11
U32 + U33L

η∗

E22
,

W3 = M †F (Eη∗

11
)† + S†SE

†
22
FN † + LMLSU41 + LMU31RN − U42L

η∗

E11
,

where T = T1 −A33U3(A33)
η∗ , Uj(j = 4, 5, 6), Ui1(i = 1, 2, 3, 4), U12, U32, U33, and U42 are any

matrices with suitable dimensions over H.

Proof. Since the solvability of the system (1.10) is equivalent to system

A1U1 = B1, U2(A1)
η∗ = B

η∗

1
, U2 = (U1)

η∗ ,

A2X̃ = B2, X̃(A2)
η∗ = B

η∗

2
, X̃ = X̃η∗ ,

A3Ỹ = B3, Ỹ (A3)
η∗ = B

η∗

3
, Ỹ = Ỹ η∗ ,

A4Z̃ = B4, Z̃(A4)
η∗ = B

η∗

4
, Z̃ = Z̃η∗ ,

E1U1 + U2E
η∗

1
+ E2X̃E

η∗

2
+ E3Ỹ E

η∗

3
+ E4Z̃E

η∗

4
= Cc.

(4.1)

If the system (1.10) has a solution, say, (U, X, Y, Z), then

(U1, U2, X̃, Ỹ , Z̃) := (U, Uη∗ , X, Y, Z)

is a solution to the system of matrix equations (4.1). Conversely, if the system (4.1) has a

solution, say

(U1, U2, X̃, Ỹ , Z̃),
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then equations (1.10) clearly has a solution

(U, X, Y, Z) :

= (
U1 + (U2)

η∗

2

X̃ + (X̃)η
∗

2
,
Ỹ + (Ỹ )η

∗

2
,
Z̃ + (Z̃)η

∗

2
).

�

Next, we study the special case (1.11) of the matrix equations (1.10).

Theorem 4.2. Let Ai, Ci, Ei (i = 1, 3) and C be given with appropriate size. Set

E1LA1
= A11, E2LA2

= A22, E3LA3
= A33, RA11

A22 = M1, S1 = A22LM1
,

T1 = C − E1(A
†
1
B1 + LA1

B
η∗

1
(Aη∗

1
)†)Eη∗

1
− E2(A

†
2
B2 + LA2

B
η∗

2
(Aη∗

2
)†)Eη∗

2

− E3(A
†
3
B3 + LA3

B
η∗

3
(Aη∗

3
)†)Eη∗

3
, G = RM1

RA11
,

G1 = GA33, G2 = RA11
A33, G3 = RA22

A33, G4 = A33,

L1 = GT1, L2 = RA11
T1(RA22

)η
∗

, L3 = RA22
T1(RA11

)η
∗

,

L4 = T1G
η∗ , C11 = (LC2

, LC4
), C22 = LC1

, C33 = LC3
,

E11 = RC11
C22, E22 = RC11

C33, M = RE11
E22,

N = (RE22
E11)

η∗ , F = F2 − F1, E = RC11
F (RC11

)η
∗

,

S = E22LM , F11 = G2LG1
, H1 = L2 −G2G

†
1
L1(G

η∗

4
)†Gη∗

3
,

F22 = G4LG3
, H2 = L4 −G4G

†
3
L3(G

η∗

2
)†Gη∗

1
,

F1 = G
†
1
L1(G

η∗

4
)† + LG1

G
†
2
L2(G

η∗

3
)†, F2 = G

†
3
L3(G

η∗

2
)† + LG3

G
†
4
L4(G

η∗

1
)†.

Then the following statements are equivalent:

(1) The system of the matrix equations (1.11) is consistent.

(2)

RAj
Bj = 0, RGi

Li = 0(i = 1, 4, j = 1, 3),

RE22
E(RE22

)η
∗

= 0.

(3)

r(Aj , Bj) = r(Aj)(j = 1, 2, 3),

r











C E3 E1 E2

B3E
η∗

3
A3 0 0

B1E
η∗

1
0 A1 0

B2E
η∗

2
0 0 A2











= r











E3 E1 E2

A3 0 0

0 A1 0

0 0 A2











,
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r











C E3 E1 E2B
η∗

2

E
η∗

2
0 0 A

η∗

2

B3E
η∗

3
A3 0 0

B1E
η∗

1
0 A1 0











= r







E3 E1

A3 0

0 A1






+ r

(

E2

A2

)

,

r











C E3 E2 E1B
η∗

1

E
η∗

1
0 0 A

η∗

1

B3E
η∗

3
A3 0 0

B2E
η∗

2
0 A2 0











= r







E3 E2

A3 0

0 A2






+ r

(

E1

A1

)

,

r











C E3 E1B
η∗

1
E2B

η∗

2

E
η∗

1
0 A

η∗

1
0

E
η∗

2
0 0 A

η∗

2

B3E
η∗

3
A3 0 0











= r







E1 E2

A1 0

0 A2






+ r

(

E3

A3

)

,

r































C 0 E1 0 E3 E2B
η∗

2
0 E3B

η∗

3

0 −C 0 E2 E3 0 −E1B
η∗

1
0

E
η∗

2
0 0 0 0 A

η∗

2
0 0

0 E
η∗

1
0 0 0 0 A

η∗

1
0

E
η∗

3
E

η∗

3
0 0 0 0 0 A

η∗

3

B1E
η∗

1
0 A1 0 0 0 0 0

0 −B2E
η∗

2
0 A2 0 0 0 0

0 −B3E
η∗

3
0 0 A3 0 0 0































= 2r

















E1 0 E3

0 E2 E3

A1 0 0

0 A2 0

0 0 A3

















.

In this case, the general solution of matrix equation (1.11) can be expressed as

X =
X̃ + (X̃)η

∗

2
, Y =

Ỹ + (Ỹ )η
∗

2
, Z =

Z̃ + (Z̃)η
∗

2
,

X̃ = A
†
1
B1 + LA1

B
η∗

1
(Aη∗

1
)† + LA1

U1(LA1
)η

∗

,

Ỹ = A
†
2
B2 + LA2

B
η∗

2
(Aη∗

2
)† + LA2

U2(LA2
)η

∗

,

Z̃ = A
†
3
B3 + LA3

B
η∗

3
(Aη∗

3
)† + LA3

U3(LA3
)η

∗

,

where

U1 = A
†
11
T (A†

11
)η

∗

−A
†
11
A22M

†
1
T (A†

11
)η

∗

−A
†
11
U4A

†
22
T (M †

1
)η

∗

(A†
22
)η

∗

+ LA11
U5 + U6RA

η∗

11

,

U2 = M
†
1
T (A†

22
)η

∗

+ S
†
1
S1A

†
22
T (M †

1
)η

∗

+ LM1
LS1

U7 + U8RA
η∗

22

+ LM1
U4RM

η∗

1

,

U3 = F 0
1 + LG2

V1 + V2RG
η∗

4

+ LG1
V3RG

η∗

3

, or U3 = F 0
2 − LG4

W1 −W2RG
η∗

2

− LG3
W3RG

η∗

1

,
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V1 = (Im, 0)
[

C
†
11
(F − C22V3C

η∗

33
− C33W3C

η∗

22
)
]

− (Im, 0)
[

C
†
11
U11C

η∗

11
+ LC11

U12

]

,

W1 = (0, Im)
[

C
†
11
(F − C22V3C

η∗

33
− C33W3C

η∗

22
)
]

− (0, Im)
[

C
†
11
U11C

η∗

11
+ LC11

U12

]

,

W2 =
[

RC11
(F − C22V3C

η∗

33
− C33W3C

η∗

22
)(Cη∗

11
)†
]

(

0

In

)

+
[

C11C
†
11
U11 + U21L

η∗

C11

]

(

0

In

)

,

V2 = RC11
(F − C22V3C

η∗

33
−C33W3C

η∗

22
)(Cη∗

11
)†

(

0

In

)

+
[

C11C
†
11
U11 + U21L

η∗

C11

]

(

In

0

)

,

V3 = E
†
11
F (Eη∗

22
)† − E

†
11
E22M

†F (Eη∗

22
)† − E

†
11
SE

†
22
FN †E

η∗

11
(Eη∗

22
)† − E

†
11
SU31RNE

η∗

11
(Eη∗

22
)†

+ LE11
U32 + U33L

η∗

E22
,

W3 = M †F (Eη∗

11
)† + S†SE

†
22
FN † + LMLSU41 + LMU31RN − U42L

η∗

E11
,

where T = T1 −A33U3(A33)
η∗ , Uj(j = 4, 5, 6), Ui1(i = 1, 2, 3, 4), U12, U32, U33 and U42 are any

matrices with appropriate dimensions.

Proof. It follows from Theorem 4.1 that this theorem holds when A1, C1, and E1 vanish in

Theorem 4.1. �

In Theorem 4.2, let Ai, Ci, Bi, Di(i = 1, 3), E3 and F3 be vanish. Then we can get the

η-Hermitian solution of the matrix equation (1.8).

Corollary 4.3. Let B1, C1 and D1 = D
η∗

1
be given. Set M = RB1

C1, S = C1LM . Then the

following statements are equivalent:

(1) Matrix equation (1.8) has a pair of η-Hermitian solutions Y and Z.

(2)

RMRB1
D1 = 0, RB1

D1 (RC1
)η

∗

= 0.

(3)

r

(

B1 D1

0 C
η∗

1

)

= r (B1) + r (C1) ,

r
(

B1 C1 D1

)

= r
(

B1 C1

)

.

In this case, the η-Hermitian solution to matrix equation (1.8) can be expressed as

Y = B
†
1
D1

(

B
†
1

)η∗

−
1

2
B

†
1
C1M

†D1

[

I +
(

C
†
1

)η∗

Sη∗
]

(

B
†
1

)η∗

−
1

2
B

†
1

(

I + SC
†
1

)

D1

(

M †
)η∗

C
η∗

1

(

B
†
1

)η∗

−B
†
1
SW2S

η∗
(

B
†
1

)η∗

+ LB1
U + Uη∗ (LB1

)η
∗

,

Z =
1

2
M †D1

(

C
†
1

)η∗
[

I +
(

S†S
)η∗
]

+
1

2

(

I + S†S
)

C
†
1
D1

(

M †
)η∗

+ LMW2 (LM )η
∗

+ V L
η∗

C1
+ LC1

V η∗ + LMLSW1 +W
η∗

1
(LS)

η∗ (LM)η
∗

,

where W1, U, V and W2 = W
η∗

2
are arbitrary matrices over H with appropriate sizes.

Remark 4.3. The above corollary has the main findings of [10].
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Corollary 4.4. Let A1, C1, A2, A3, B1,D1,D3 and D3 = D
η∗

3
be coefficient matrices in (1.9).

Define some new matrices as follows:

B4 = A2LA1
, C4 = A3 (RB1

)η
∗

,

D4 = D3 −A2

[

A
†
1
C1 +

(

A
†
1
C1

)η∗

−A
†
1
A1C

η∗

1

(

A
†
1

)η∗]

A
η∗

2

−A3

[

D1B
†
1
+
(

D1B
†
1

)η∗

−
(

B
†
1

)η∗

B
η∗

1
D1B

†
1

]

A
η∗

3
,

M = RB4
C4, S = C4LM .

Then the following statements are equivalent:

(1) The system (1.9) has a solution (X,Y,Z), where Y and Z are η-Hermitian.

(2) The coefficient matrices in equations (1.9) satisfy

A1C
η∗

1
= C1A

η∗

1
, B

η∗

1
D1 = D

η∗

1
B1,

RA1
C1 = 0, D21LB1

= 0, RMRB4
D4 = 0,

RB4
D4 (RC4

)η
∗

= 0.

(3) The coefficient matrices in equations (1.9) and their ranks satisfy

A1C
η∗

1
= C1A

η∗

1
, B

η∗

1
D1 = D

η∗

1
B1,

r
(

A1 C1

)

= r (A1) , r

(

D1

B1

)

= r (B1) ,

r











D3 A3 A2

D
η∗

1
A

η∗

3
B

η∗

1
0

C1A
η∗

2
0 A1

C1 0 0











= r







A3 A2

B
η∗
1

0

0 A1






+ r

(

A1

)

,

r







D3 A2 A3D1

A
η∗

3
0 B1

C1A
η∗
2

A1 0






= r

(

A2

A1

)

+ r
(

A
η∗

3
B1

)

.

In this case, the general solution to the system of matrix equations (1.9) can be expressed as

Y = Y η∗ = A
†
1
C1 +

(

A
†
1
C1

)η∗

−A
†
1
A1C

η∗

1

(

A
†
1

)η∗

+ LA1
V (LA1

)η
∗

,

Z = Zη∗ = D1B
†
1
+
(

D1B
†
1

)η∗

−
(

B
†
1

)η∗

B
η∗

1
D1B

†
1

+ (RB1
)η

∗

WRB1
,

V = V η∗ = B
†
4
D4

(

B
†
4

)η∗

−
1

2
B

†
4
C4M

†D4

[

I +
(

C
†
4

)η∗

Sη∗

]

(

B
†
4

)η∗
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−
1

2
B

†
4

(

I + SC
†
4

)

D4

(

M †
)η∗

C
η∗

4

(

B
†
4

)η∗

−B
†
4
SU6S

η∗
(

B
†
4

)η∗

+ LB4
U4 + U

η∗

4
(LB4

)η
∗

,

W = W η∗ =
1

2
M †D4

(

B†
)η∗ [

I +
(

S†S
)η]

+
1

2

(

I + S†S
)

C
†
4
D4

(

M †
)η∗

+ LMU6 (LM)η + U5L
η
C4

+ LC4
U

η∗

5
+ LML5U3 + U

η∗
3

(LS)
η (LM )η

∗

,

where U3, U4 , U5 and U6 = U
η∗

6
are arbitrary matrices over H with appropriate sizes.

5. Algorithm with a numerical example

In this section, we present an algorithm and an example to illustrate Theorem 3.1.

Algorithm 5.1

(1) Feed the values of Ai, Bi Ci, Di, Ei, Fi(i = 1, 4) and Cc with conformable shapes over

H.

(2) Compute the symbols in (3.1) to (3.4).

(3) Check (2) in Theorem 3.1 or (3.7) to (3.16). If no, it returns “inconsisten”.

(4) Else, compute U V, X, Y, Z.

Example 5.1 Let

A1 =
(

1 0 i

)

, B1 =







0

1

j






, A2 =

(

0 i

j k

)

, B2 =

(

i

1

)

,

A3 =

(

0 1

i j

)

, B3 =

(

j

1

)

, A4 =

(

i 1

0 k

)

, B4 =

(

1

k

)

,

C1 = 1 + 2i, D1 =

(

j

−i+ j

)

, C2 =

(

−1 3i

3j 3k

)

, D2 =

(

2i

2

)

,

C3 =

(

0 2

i −1 + 2j

)

, C4 =

(

−1 1 + k

0 k

)

, D3 =

(

i+ j

2

)

,

D4 =

(

2i

k

)

, C3 =

(

−1 1 + k

0 k

)

, D1 =

(

2i

2

)

,

D2 =

(

i+ j

2

)

, D3 =

(

2i

k

)

, E1 =

(

2 i

0 k

)

,

E2 =

(

i j

0 k

)

, E3 =

(

0 1

j k

)

, F1 =

(

i

j

)

,

F2 =

(

j

i

)

, F3 =

(

k

i

)

, C =

(

3i+ 2k

1− 4i+ 3j− k

)

.
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Computation directly yields

A1D1 = C1B1 =

(

2i

0

)

,

A2D2 = C2B2 =

(

2

−1 + 2j+ k

)

,

A3D3 = C3B3 =

(

−2 + k

−i

)

,

r(Ci, Ai) = r(Ai) = 2, r

(

Di

Bi

)

= r(Bi) = 1(i = 1, 3),

(3.8) = 11, (3.9) = 8, (3.10) = 10, (3.11) = 9,

(3.12) = 10, (3.13) = 9, (3.14) = 9, (3.15) = 8, (3.16) = 19.

All the rank equalities in (3.7) to (3.16) hold. Hence, according to Theorem 3.1, the system of

matrix equations (1.6) has a solution, and the general solution to matrix equations (1.6) can be

expressed as

U =







0.5000 + 1.0000i

0

1− 0.5000i







+







0.5000 0 −0.5000i

0 1.000 0

0.50000i 0 0.5000






S1,

V =

(

0 0.5000j 0.5000

0 −0.5000i + 0.5000j 0.5000 + 0.5000k

)

,

X =

(

2.000 0

1.000i 3.000

)

,

Y =

(

1.000 1.000i

0 2.000

)

, Z =

(

1.000i 1.000j

0 1.000

)

,

where

S1 =







−0.5000 + 2.000i − 1.0000k

1.0000 − 3.0000i + 1.0000j + 1.0000k

−2.0000 − 0.5000i + 1.0000j







−







1.0000 −1.0000i

−1.0000 1.0000i + 1.0000

1.0000i 1.0000






W11







2.0000

−1.0000k

1.0000i






,

W11 is a any matrix equation with suitable size over H.

Finally, we give the following conclusion that summarizes the work of this paper.
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6. Conclusions

We have established the solvability conditions and a formula for the general solution to the

Sylvester-type quaternion matrix equations (1.6). As an application of equations (1.6), we also

have established some necessary and sufficient conditions for the system of quaternion matrix

equations (1.10) to provide a solution and derived an exact expression of its general solution

involving η-Hermicity. As a special case of equations (1.6), we have presented the necessary

and sufficient conditions for the system of two-sided Sylvester-type quaternion matrix equations

(1.7) to be consistent and derived a formula for its general solution (when it is solvable). As a

special case of equations (1.10), we have investigated the necessary and sufficient conditions for

the system of matrix equations (1.11) to have a solution and provided a general solution, which

is an η-Hermitian.

It is noteworthy that the main results of (1.6) are available over R and C and for any division

ring. Furthermore, motivated by [21], we can investigate equations (1.6) in tensor form.
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