arXiv:2212.02146v1 [math.RA] 5 Dec 2022

The general solutions to some systems of
Sylvester-type quaternion matrix equations
with an applicationl

Qing-Wen Wang®?*, Long-Sheng Liu®®

a Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
b Collaborative Innovation Center for the Marine Artificial Intelligence, Shanghai 200444, P. R. China
¢ School of Mathematics and Computational Science, Anqing Normal University, Anqing 246011,
People’s Republic of China

Abstract: Sylvester-type matrix equations have applications in areas including
control theory, neural networks, and image processing. In this paper, we establish
the necessary and sufficient conditions for the system of Sylvester-type quater-
nion matrix equations to be consistent and derive an expression of its general
solution (when it is solvable). As an application, we investigate the necessary
and sufficient conditions for quaternion matrix equations to be consistent and
derive a formula for its general solution involving n-Hermicity. As a special case,
we also present the necessary and sufficient conditions for the system of two-
sided Sylvester-type quaternion matrix equations to have a solution and derive
a formula for its general solution (when it is solvable). Finally, we present an

algorithm and an example to illustrate the main results of this paper.
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1. Introduction

Throughout this paper, The field of real numbers is denoted by R. H™*" represents the space

of all m x n matrices over H,
H = {vg + v1i 4 v2j + vsk|i® = j2 = k? = ijk = —1,vg, vy, v2,v3 € R}.

Here, the rank of A is denoted by r(A), while I and 0 represent an identity matrix and a zero
matrix of appropriate sizes, respectively. Term A* represents the conjugate transpose of A. The
Moore-Penrose (M-P) inverse of A € H'*F AT is defined as the solution of AY A= A, YAY =
Y, (AY)* = AY and (YA)* = Y A. Moreover, Ly = I — ATA and R4 = I — AAT represent two
projectors along A. Recall that a quaternion matrix A is called n-Hermitian if A = A", where
A" = —nA*n and n € {i,j,k} [B1]. Tt is well-known that (La)" = Ry, (RaA)" = L 40+
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Since Roth [28] first considered the following one-sided Sylvester-type matrix equation in
1952:

AX +YB=C, (1.1)

which has applications in control theory and singular system control [8], neural networks [43],
there have been extensive studies of equation (LII). For example, Baksalary and Kala [I] inves-
tigated the necessary and sufficient conditions for the solvability of equation (LI by using the
generalized inverses of the matrices involved. Further, Flanders and Wimmer [9] provided an
invariant proof of Roth’s theorem, while Baksalary and Kala [I] established the necessary and
sufficient conditions for the following Sylvester-type matrix equation to be consistent:

C3X3Ds + Cy XyDy = Ey. (12)

Ozgiiler [25] studied the necessary and sufficient conditions for the solvability of equation (L2I)
over a principal ideal domain. Furthermore, Wang [32] provided some necessary and sufficient
conditions for equation (2 to enable a solution over an arbitrary regular ring with identity
and obtained an expression for its general solution.

In 1843, Irish mathematician sir William Rowan Hamilton introduced quaternions. It is well
known that the quaternion algebra, H, is an associative noncommutative division algebra over R,
which has applications in computer science, orbital mechanics, signal and color image processing,
and control theory ([2], [, [15], [26], [27] [30]).

Based on the wide applications of quaternions, interest in Sylvester-type matrix equations has
expanded to H, finding many applications, including signal processing, color-image processing
and so on (see, e.g., [16], [29], [40], [41]). Many researchers have studied the Sylvester-type matrix
equations over H ( [10]-[20], [22], [23], [33]-[39] ). For example, He et al. [II] investigated some
necessary and sufficient conditions for Sylvester-type quaternion matrix equations and derived
an expression for their general solution. In addition, Solvability conditions and the general
solution for a system of constrained two-sided Sylvester-type quaternion matrix equations were
established by Wang [37]. Moreover, Wang et al. [38] presented some necessary and sufficient

conditions for the Sylvester-type matrix equations
A1 X =Ch, XBy = 0o,
AsY =3, Y By = Cy, (1.3)
A3 X Bs + AY By = C,
to provide a common solution and an expression for a general solution to equations (L3]) over
H. In 2022, Liu, et al. [19] derived some necessary and sufficient conditions to solve the

following Sylvester-type quaternion matrix equation by using ranks of coefficient matrices and

M-P inverses, respectively:
A1 X1 + XoBy + AyY1 By + A3YoBs + AyY3 By = B. (14)

They also given an expression for a general solution (when it is solvable). Moreover, He and Wang

[14] studied the solvability conditions for the following Sylvester quaternion matrix equations to



be consistent using matrix decomposition:
A1Y1 = Ay, 1By = By,

(15)
AnY1B11 + A2YoBas + As3Y3Bss = B.

However, to our knowledge, there is no additional information to extend equations (Bl and
investigate the necessary and sufficient conditions for equations (LE]) to be consistent in terms of
M-P inverses and derive an expression for its general solution using these inverses. Motivated by
the worked mentioned above and keeping the interest and wide application of matrix equations,

in this paper, we extend equations (5, i.e., the following Sylvester-type matrix equations:
AU =Cy, VBy = Dy,
A X =y, XBy = Do,
A3Y =C5, YB3 = Ds, (1.6)
AyZ = Cy, ZB4y = Dy,
EyWU+ VIR +EXFy + EsYFy+ EgZFy = C..
This is achieved using rank equalities and M-P inverses of some coefficients quaternion matrices
in equations (L) and derive a formula for its general solution (when it is solvable), where A;,
Bi, Ci, D;, E;, F; (i = 1,4) and C. are given matrices, while X, Y, Z are unknown. It is

obvious that the system of matrix equations (L6]) is an extension of the other equations (L),
([C2), (C3), () and (LH). As a special case of equations (LLO), we present some necessary

and sufficient conditions for the following system of two-sided Sylvester-type matrix equations

to provide a solution and derive an expression of its general solution (when it is solvable):
A1 X =Cy, XBy =Dy,
AY = Cy, Y By = Do,
AsZ = Cs3, ZB3 = Ds,
E\XFy + EYFy + E3sZF3=C.

(1.7)

We known that n-Hermitian matrices have some applications, such as in linear modeling
(e.g., [12], [13], [30]). Many researchers have studied matrix equations involving 7n-Hermicity.
For instance, He and Wang [10] established the necessary and sufficient conditions for a solution

to the following matrix equation:
BIXB! +C,YC] =Dy, (1.8)

where X and Y are n-Hermitian. Zhang and Wang [44] presented the solvability conditions and

the general solution of the following matrix equations:

A1 X =Cq, YBy = Dy,
. . (1.9)
AQXAg + A3YAg = D3,

where X and Y are n-Hermitian.
Furthermore, as an application of equations (@), we investigate some necessary and sufficient

conditions for the following matrix equations to be consistent and derive an expression for its



general solution:

AU =y,
A X =Cy, X = X7,
AsY =C5, YV =Y, (1.10)

AZ=Cy Z=YT,
BE\U + (B\U)T + By XEY + E3sYE! + EjZE] = C..
As a special case of equations (LI0), we establish the necessary and sufficient conditions for the
following system of matrix equations to provide a solution and a formula for its general solution,
which is an n-Hermitian solution:
A X =0, X=XT,
AY =Co, Y =Y,

. 1.11
AsZ =Cs, Z=YT, (L11)

E\XET + E,)YE] + EsZE] = C.

Clearly, equation (L8] and equations (L9) are special case of equations (LI0)).

The remainder of this article is built up as follows. In Section 2, we present the preliminaries.
In Section 3, we establish some necessary and sufficient conditions for the system of matrix
equations (L6]) to have a solution by using the M-P inverses and rank equalities of the quaternion
matrices involved. In addition, we provide a formula for its general solution (when it is solvable).
As a special case of equations (LG), we also present the solvability conditions and a formula for
the general solution of equations (L7 (when it is solvable). In Section 4, as an application of
equations (L)), we investigate some solvability conditions and the general solution to equations
(LI0), where X,Y, Z are n-Hermitian. Moreover, as a special case of equations (L.I0]), we also
investigate some solvability conditions and the general solution to equations (L1I), which is an
n-Hermitian solution. In section 5, we present an algorithm and an example to illustrate the

main results. Finally, we provide a brief conclusions to close the paper in Section 6.

2. PRELIMINARIES

The following lemma is due to Marsaglia and Styan [24], which can be generalized to H.

Lemma 2.1. [24] Let A € H™*" B € H™* C € H>*", D € H/** and E € H™? be given.
Then we have the following rank equality:

A BI A B 0
r (REC 0D> =r|C 0 E|—-r(D)-r(E).
0O D O

Lemma 2.2. [3] Let Ay and Ay be given matrices H. Then A1 X = Ay is solvable if and only if
Ay = AlAJ{Ag. In this case, the general solution to this equation can be expressed as

X = Al Ay + L, Uy,

where Uy is an any matriz with conformable size over H.
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Lemma 2.3. [3] Let Ay and Ay be given matrices with adequate shapes over H. Then X Ay = A,
is solvable if and only if Ay = AgAIAl. In this case, the general solution to this equation can

be expressed as

X = A, Al + U Ry, ,
where Uy is an any matriz with conformable size over H.

Lemma 2.4. [3] Let Ay € H™*™ By € H"*%1 C; € H™*™ and Cy € H™ 51 be given

matrices. Then the system

A1 X1 =0, X1By1 =0 (2.1)
1s consistent if and only if
Ry, C1 =0, CoLp, =0, ACy=0C1B.
Under these conditions, a general solution to equations (ZII) can be expressed as
X1 = AlCy + La,CoB] + L4, URp,,

where Uy is an arbitrary matriz of appropriate shape over H.

Lemma 2.5. [19] Let A;, B; and B (i = 1,4) be given quaternion matrices with appropriate
sizes. Put

Ra,Ais1 = A, BiyaLp, = Bii(i =1,3), Th = Ra, BLp,, BaaLp,, = N1, Ra, A = M,

S1 = ALy, C= Ry, Ra,,,C1 = CAzs, Cy = Ry, Ass, C3 = Ra,,Az3, Cy = Azz, D = Lp, Ly,
Dy = B33, Dy = B33zLp,,, D3 = B33Lp,,, Dy = B33D, E1 = CT1, Es = Ra,,T1Lp,,,

Rp,
Rp,

C33 = L¢,, D33 = Rp,, F1 = CIE1DI + LCIC;EQD; E1n = Ry, Coa, Fog = Re,,Cs3, E33 = DaylLp,,,
By = D33Lp,,, Fo = C}E3D} + Lo,C{ED}, M = Rp,,Ess, N = EyLp,,, F=F, —F, E=Rc,FLp,,
S = FEypLy, Gy = Ey — CQCIElDJ{DL Fi1 = CoLg,, Foo = Cylc,, Gy = Ey — C4C§E3D§D4-

Es = Ra,,T\Lp,,, E4=T\D, Ci1 = (Lc,, Lc,), D1 = ( ) , Coa = Loy, Dag = Rp,,

Then following statements are equivalent:
(1) Equation (L4) is consistent.

(2)

RCiEi =0, EiLD¢ =0 (Z = 1’4)a REQQELESS =0.

3)

B Ay, Ay Ay A
.
B 0 0 0 0

) :T(B1)+T(A2, A3, A4, Al),



=r

Ay

O O O O O O

Ay
0 = T’(AQ, A4, Al) —|—T‘<
0
Aq
0 ZT(Ag, Ay, Al)—l—r
0
By
=r B3 —|—7°(A4, Al),
By
Aq
0 = 7“(142, Ag, Al) —|—7"<
0
Bs
=r By —|—7°(A2, Al),
By
By
=r By —|—’I“(A3, Al),
By
By
Bs
+r(Ay),
B (A1)
By
0 0 0 Ay
0 0 0 0
0 0 0 0
—-B A3 Ay Ay
By, 0 0 0
By 0 0 0
By 0 0 0
Ay A 0 0 Ay
+r
0 0 As Ay Ay




In this case, the solution of equation (L) can be expressed as

X; = Al(B — A3Y1 By — A3YaBs — AyY3By) — AlUL By + Lo, Us,
Xo=Ra,(B— AY1By — A3Y2B3 — A4Y?,B4)BI + A1AIU1 + UsRp,,
V1= AJ{lTBirl - AJ{1A22M1TTBI1 - AJ{lslAngNIBmBL

- AJ{151U4RN13223L + La,,Us + UsRp,,,

Yo = M{TB, + Si1S1ALTN{ + Ly, Ls, Uy + UsRp,, + Lar,UsRx,
Y3 = I+ Lc,Vi +VaRp, + Lc, VaRp,,

or

Y3 =F, — Lc,Wy —WyRp, — Lc,W3Rp,,

where T =Ty — As3Y3Bss, U;(i = 1,8) are arbitrary matrices with appropriate sizes over H,
Vi = (I, 0) {CL(F — C2V3Dgp — 033W3D33)} — (Im, 0) [CLUnDn — L¢y, U12} ;

Wi =(0, Iy) [CL(F — C2V3D9y — 033W3D33)] — (0, Ipn) [CLUHDH — Lcy, U12] ,

0 0
Wy = [RCH(F— CooV3 D99 — 033W3D33)DJ{1] < I ) + [CllCLUH + U21RD11] < I ) )

n

I I
Vo= [RCH(F — C92V3Dgy — 033W3D33)D11} ( (;l ) + [CnCLUn + U21RD11} < On ) ;
Vs = E|\FEl, — El, EsyMTFEL, — El SEL,FNTEEl, — Bl SUsi Ry EEly + L, Usy + Uss Rz,
Ws = MFE], + S1SELLFN' 4+ Ly LsUs + LyUsi Ry — U R,
U11,Uqo, Ua1, U3y, Uso, Uss, Uyy and Uyo are arbitrary matrices of appropriate sizes over H. m

is the column number of A4 and n is the row number of By.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A SOLUTION TO
EQUATIONS ([L6)

The goal of this section is to establish the solvability conditions and a formula of its general

solution to equations ([L0).

For the convenience, we define some notations the follows: Let A;, B;, C;, D;, E;, F; (i = 1,4),

and C, be given matrices of appropriate sizes over H. Put

EiLAi = A“‘, RBle = B”(Z = 1,4), le = BijBu(j = 2,4), T = Cc — ElAJ{Cl

4
~ DyBFy - (Z Ei(AlC; + LAiDzBiT)Fl) , A1y = Ray Ajjs BaiLp,, = N1, Ray,Aiz = M,
=2
S1=AisLny, Ra, 1L, = To,
(3.1)



G =Ry Ray,, Gy = GA, Go = Ra, A, Gz = Ra A, Gy = Ay, H = Lp, Ly,
Hy = By1, Hy = By Lp,,, H3 = By1Lp,,, Hy = ByyH, L1 = GT3, Ly = Ry, ToLp,,, (3.2)
L3 - RA13T2L3217 L4 - T2H7

Cn = (Lay, La,), D1 = < ggl ) , C2 = Lg,, Dy = Ry,, C33 = Lg,, D3z = Rpy,,
3
(3.3)
E11 = Rey Oz Eg = Rey, Cs3, E33 = DaoLp,,, Eyy = D33Lp,,, M = Rg,, Es,
N = EyLp,,, F = Fyy — F33, E = Rc,,FLp,,, S = Ex»Ly, Fi11 = G2Lg,,
Gi1 = Ly — GoGlLiH Hy, Fyy = GyLcy,, Gag = Ly — G4GLL3HIHy, )

Fy3 = Gl LiH + Lo, GYLoHY, Fuy = GLLsHY + La, G Ly H].

Theorem 3.1. Consider (L6]) with the notation in BI) to (B4). The following statements are
equivalent:
(1) System (LQ) has a solution.

(2)
AiD; = C;B;, (i =2,4) (3.5)
and
Ry,C; =0, DjLp, =0, Rg,Lj =0, LjLy, = 0(j=1,4), Rg,yELg,, =0. (3.6)
(3) B3A) holds and
D; .
T(Ch Az) = T(Ai)a r ( B ) = 7G(BZ) (Z = 174)7 (37)

ci A 0 O 0 0 E, Ey Ey
Cofy, 0 Ay O 0 0 Ay 0 0 F3 Bs 0
r e ° =r ! |2 ) (3.9)
CaFy 0 0 Ay 0 0 0 Ay O 0 B
Fsz 0 0 0 Bs 0 0 0 A
Fy 0 0 O 0 B



CC
Cq
CyFy
CyFy
Vi)
Fy

CC
Vi)
F3
Fy
CyFy
Cq

CC
Ch
CyFy
Oy Fy
Fy
Fy

C3F3
Cq

C. E
C

Fy 0O
Fy, 0
Fy 8
Fy

C, Ay

Eq
Ay
0

0
0
0

Ey
0
0
0

Ay
0

Eq
Ay
0

0
0
0

As
0

EsDy
By

E3

0

As

0
0
0

Ey
0
0
0
0

Ay

Es

0

Az

0
0
0

A

o o O
@)

Ey
0
0

Ay
0
0

E>Do
By

0
0
As
0
0

0
0
0
0

Iy

0

E5Ds
0
0
0
By
0

E3Ds
0

By

E Dy

D,
0
0
0
0

By

Dy
0

By
Dq

Ey
Ay

Fy
F3

Fj

Fy

Fy
Fy

Fy
Vi)
F3

Fy
g
0
0| +r
By
Fy
+7r P
0
0|+
By
0
0|+
B
0 0
0 0
0
Bs
0 B

Ey
Ay

0

0 A

By
0

E,

As

0

Er

A

Eq

)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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0 0 Ey E3Ds D 0 0 E4sDy4

0
K 0 0 O 0 0 O B 0 0 0 0
AR 0 0 0O 0 0 0O O B 0 0 0
0 0 0 C FE B E; 0 0 EDy, D 0
o o0 0 F O 0 0O 0O 0 B, 0 0
o 0o 0o F O 0 0O 0O O 0 B 0
"' % 0o 0o —-F 0 0 0 0 0 0 0 B
CwF, A4, 0 0 0 0 0O 0 0 0 0 0
c, 0 4 0 0 0 O O 0 0 0 0
0 0 0 CsF A, 0 0 0O 0 0 0 0 (3.16)
o 0 0 ¢ 0 A 0O 0O 0 0 0 0
0 0 0 CoF, 0 0 A O 0 0 0 0
B, E, 0 0 E,
F, 0 B; 0 0 0 0 0 0 Es E FE
FF 0 0 B 0 0 0 A4 0 0 0 0
|l 0o B 0 0o B 0 0 |+r] 0 4 0o 0 o0
0 F,L, 0 0 0 B 0 0 0 A3 0 0
F, F, 0 0 0 0 B, 0 0 0 4, 0
0 0 0 0 A

In this case, the general solution to system (LG]) is

U=AlC,+LaS), V=DBl +5Rs, X=ACy+ La,DyB + La,URp,,

(3.17)
Y = ALCs + LayDsBl + La,UsRp,, Z = AlCy+ La,DiB)} + La,UsRp,,

where

S1 = AJ{l(Tl — A X Boy — A33Y B3z — Ay Z Buay) — AhWan + La,, Wia,

Sy = Ra,, (T1 — Aga X Boy — A33Y B33 — A44ZB44)BL + A11A11W11 + WisRp,,,

Uy = AJ{QTB; - AJ{QAL‘%M{[TB; - AJ{QSlAJ{?,TN{rBSlB;l

- AJ{251U4RN1B31B;[1 + La,,Us + UsRp,,,

Uy = M]TBI, + S18, AL, TN + Ly, Ls, Uz + UsRp,, + L, UsRn,,

Us = Fio + Lg,Vi + VaRy, + Lg, Vs Ry, orUs = Fy — Lg, W1 — WaRp, — La,WsRpu,,
Vi=(Im, 0) {CL(F — CyoV3 Doy — C33W3D33)} — (I, 0) [CLUHDH - LCMUlQ} ,

Wi = (0, L) {CL(F — C92V3 Doy — 033W3D33)] — (0, Ipn) {CLUHDH - LcnUm} ,

0 0
Wy = [RCH(F— C22V3Dgy — 033W3D33)DL] < P ) + [CnCLUn + U21RD11] < P ) ,

n
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I, I,
Vo = [RCH(F — C92V3Da0 — 033W3D33)D11] < 0 > + [CnCLUn + U21RD11] < 0 > ,

Vs = E|\FEl, — El, ExyMTFEL, — El, SEL,FNTEEL,
- ELSUmRNEME;g + Lg,,Uss + UssREg,,,
W3 = MTFEl, + STSELFN' + Ly LsUs + LyUsi Ry + Uso R,
where T = T1 - A33U3333, U](] = 4,—6), Ull(’L = 1,—4), U12, U32, U33 and U42 are arbitmry

matrices with appropriate shapes over H. m is the column number of Ay and n is the row

number of By.

Proof. (1) < (2) It is clear that the system of matrix equations (L)) is solvable if and only if
both

AU =C4, VBy = Dy,
Ao X = Co, XBy = Do,

(3.18)
A3Y =(C3, YB3 = D3,
Ay Z =Cy, ZBy = Dy
and
FE\WU+VF, +EsXFy+ EYEF;+ FEy,ZF,=C, (319)

are solvable. It follows from Lemma 2.2 Lemma 2.3, and Lemma 2.4 that the system of matrix
equations (B.I]]) has a solution if and only if (3.1 holds and

R4,C; =0, B;Lp, =0 (i =1,4). (3.20)
In this case, the general solution of equations (B.I8]) can be expressed as

U=AlC,+ LS, V=DB] + SRy,
X = AYCy + L4, DBl + LA, U Rp,,

; : (3.21)
Y = A3C3+ La, D3B3 + La,UsRp,,
Z = AlCy+ La,DyBl + L4, UsRp,.
By substituting U, V, X, Y, Z from 2] into (BI9]) yields
A11S1 + S2B11 + AUy Bog + A33UsBag + AUz Byy =11, (3.22)

where A;;, By(i = 1,4), and T} are defined by ([BI)). By Lemma 25 we obtain that equation
[B22) has a solution if and only if

Ra,Li =0, LiLy, =0 (i=1,4), Rp,,ELp,, = 0. (3.23)
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Under these conditions, the general solution to the matrix equation ([3.22]) can be expressed as

S1 = AJ{l(Tl — A X Boy — A33Y B3z — Ay Z Buay) — AhWan + La,, Wia,
Sy = Ra,, (T1 — Aga X Boy — A33Y B3g — A44ZB44)BL + A11A11W11 + WisRp,,,
Uy = Al,TBI, — AL, AisMITBS, — Al,S, A, TN! By, B,
— Al,S1UsRN, B31 B, + Lay, Us + Us Ry,
Uy = M{TBY, + S15, AL, TN + Ls, Ls, Uy + UsRp,, + Lo, UsRuy,,
Us = Fio + Lg,Vi + VaRy, + La,VsRy,, orUs = Fy — Lg, W1 — WaRp, — La,WsRpu,,
Vi = (I, 0) [CL(F — C2V3Day — C33W3D33)| — (I, 0) [CLUHDH - LCHUm] ;
— (0

Wi = (0, Ip,) [CL(F — C2V3D9y — 033W3D33)} (0, Im) [CLUnDn — Lcy, Ulz} ,

n

0 0
Wy = |:RC’11(F_ Co9V3 D99 — ngWngg)DJ{l] ( I ) + [CllCLUﬂ + U21RD11] ( I ) )

I, I,
Vo = [RCH(F — C92V3 D90 — 033W3D33)D11} ( 0 ) + [CnCLUn + U21RD11} ( 0 ) ,

Vs = Bl \FEl, — El, By MTFEL, — El, SEl,FNTE,EL,
- ELSUmRNEME;g + Lg,,Uss + Uss RE,,,
Wi = MTFEl, + STSELFN' + Ly LsUs + LyUsi Ry + Uso R,

where T' = Ty — As3UsBss, Uj(j = 4,6), Ui (i = 1,4), Ur2, Usz, Usg and Uyy are arbitrary
matrices with appropriate shapes over H. m is the column number of A4 and n is the row
number of Bjy.

To sum up, both the equations (B.I8) and the equation (B.I9]) are solvable if and only if
conditions ([B.3), (B:20) and 23] hold, i.e, the system of matrix equations (LG has a solution
if and only if (B5) and B.6) hold. Under these conditions, the general solution to equations

(L8 can be expressed as (3I7).
(2) & (3) We first show that (8.20) < [B.7). According to Lemma 2] it follows that

R4,Ci =05 1r(RyCi) =0<1r(Ci, 4) =1r(4)(=1,2,3) < 31,

D; , (3.24)
DjLp, =0« r(DjLp) =0<r B{ =7r(B;j)(j =1,2,3) & B1).
J

It follows from ([B.24]) that (320) < B.7).
We now turn to show that ([B.23]) holds if and only if (B.8) to (8I6) hold. By Lemma 2.5

[B23)) is equivalent to



A A A
33 S4B LB (g, Ass, Aw, An),
0 0 0
A44 All B
0 0 | =r(Axn, Aw, An)+r <333> ’
. . 11
A44 All B
0 0 - 7/1(*’433, A44, All) +r ( 22) ’
By
0 0
A
0 Bas
o | =7 B + (A, Ann),
B
0 11
A33 All B
0 0 | =r(Axn, As, An)+r <B44> ’
5 . 11
A
0 Bss
o | =7 Bu + (A2, An),
B
0 11
A
011 Bas
0 =r Byy + 7°(A?)3a All)?
B
0 11
Bas
Bss
= +r(A11),
By
By
An 0 0 0 Ay
O 0 0 0 0
O 0 0 0 0
0 -Tv Aszs A Au
0 By 0 0 0
0 Bun 0 0 0
0 Bu 0 0 0

13

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Bll 0
A A 0 0 A44
( 22 11 ) , (333)

=1 0 B22 0 0 A A A
0 Bll 1

Biy By

respectively. Hence, we only show that

(19+i) < (36 +1) (i=1,9),

respectively. When we show that ([3:23)) holds if and only if (3.8) to ([BI6) hold, respectively. It
is easy to know that there exist the Up, Vp, Xo, Yo and Zj of the equations (LG) such that

AU = C1, VoBy = Dy,
A Xy = Oy, XoBy = Do,
A3Yy = C3, YoBs = Ds,
AyZy = Cy, ZyBy = Dy,

(3.34)

where

Up = A{Cy, Vo = D1B], Xo = A{Cy + La, D1 B},
Yo = ASCy + La,DyBY, Zy = A{Cs + La,DsB,

It follows from Lemma 2] ([B:34]) and elementary transformations that

(B:m) <:>7/1(Tla EILAU EQLAQa E3LA3) :T(EILAU EQLAQ? E3LA3)

C E FEy, FEs FEy By Ej

A A
Ci1Fy 1 0 0 . 1 0 0 o B3).
CQF 2 0 A2 0 0 A2 0
CsF3 0 0 Aj 0 0 Aj

Similarly, we can show that (3.:20) < (3.9), B27) < (B.10), B28) < B11), 329) < B12), B30) <
B13), B30 < B.14), B32) < B.13),

B33) <
T EoLy, E1Lg, 0 0 0 EyLy,
Rp,F3 0 0 0 0 0 0
Rp Fy 0 0 0 0 0 0
r 0 0 0 =T EsLs, Ei1La, EsLa,
0 0 0 Rp, F 0 0 0
0 0 0 Rp Fy 0 0 0
Rp, Iy 0 0 Rp, Iy 0 0 0
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Rp,F5 0

Ao i 0 EyLy, EiLs, 0 0  EyLga,
R I I 0 EsLa, EiLa Eila
0 Ry, Fy 3 1 4
Rp,Fy Rp,Fy
C. FEy FE 0 0 0 FEy FE3D3 D 0 0 E4Dy
Fy 0 0 0 0 0 0 B3 0 0 0 0
Fi 0 0 0 0 0 0 0 By 0 0 0
0 0 0 C. FEs FEi E4 0 0 FEsDy Dy 0
0 0 0 Fy 0 0 0 0 0 By 0 0
oy 0 0 0 Fi 0 0 0 0 0 0 By 0
Fy 0 0 —-F; O 0 0 0 0 0 0 B,
CoFy Ay O 0 0 0 0 0 0 0 0 0
& 0 A 0 0 0 0 0 0 0 0 0
0 0 0 C3F3 Az O 0 0 0 0 0 0
0 0 0 4 0 A O 0 0 0 0 0
0 0 0 C4Fy O 0 Ay 0 0 0 0 0
Ey E;y O 0 FEy
F; 0 B 0 0 0 0 0 0 FE3 Ei E4
FrF 0 0 By O 0 0 Ay 0 0 0 0
=r| 0 B 0 0 By 0 0 [+r| 0 4 0 0 0 |< @I).
0 Fi O 0 0 By 0 0 0 Az 0 0
Fy Fy O 0 0 0 By 0 0 0 A; O
0 0 0 0 Ay
We have thus proved the theorem. O

Remark 3.2. Chu et al. gave potential applications of the maximal and minimal ranks in the
discipline of control theory(e.g., [5], [6], [7]). We may consider the rank bounds of the general
solution of the equation (LG]).

Next, we discuss the special case of (L)). Let A4;, By, C;, D;, E;, F; (i = 1,3) and C be given

matrices of appropriate sizes over H.

E;La, = Aii, Rp,F; = Byi(i =1,3), My = Ra,,Asa, N1 = BooLp,,, S1 = AxL,

3
G=Ry,Ra,,, Ty = C — | Y Ei(AlC; + La,D;B)F, |, Gy = GAss, Gy = Ra,, Ass,
=1
G3 = Ra,,As3, Gy = Azz, H=Lp, Ln,, Hi = B33, L1 = GT1, Hy = B33Lp,,,

Hs = BssLp,,, Hy = B33D, Ly = Rs,,T1Lp,,, L3 = Ra,,T1Lp,,, L+ =T1H,

Ru,

Cin = (La,, La,), D= (
Ry,

)a C22 :LGU D22:RH2) C33ZLG35 D33:RH45
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E11 = Rc,,Ca2, Eao = Rc,,Cs3, E33 = Daolp,,, Eya = D33sLp,,, M = Rg,, Fa, N = FEyLg,,,
= F20 - FlOa E= RCHFLDH, S = E22LM5 Fll — G2LG15
Gs = Ly — GoGiLiHI Hy, Fpy = G4La,, Go = Ly — G4GLLsHIHy,
Fio= GILiH| + L, GYLoHY, Foo = GLLsHY + Lo, G L, H].

Theorem 3.2. The following statements are equivalent:
(1) system ([IT) has a solution.

(2)

A;D; = C;B;, (i=T1,3) (3.35)

and

R4,Ci =0, D;Lp, =0, Ra;Lj =0, LjLy, =0 (1=1,3,7=1,4), Rg,,ELp,, =0.

(3) (B35) holds and for i =1,3.

r(Cy, Ag) =r(4;), r < D ) =r(By),

B;
C FE, Ey Fj E, E, Fj
CiFy A4 0 0 Aq 0 0
r =r s
C2F2 0 AQ 0 0 A2 0
C5F3 0 0 A3 0 0 A3

C E, B3 EyD
F, 0 0 B
r =r|A; 0 | +r(fy, B),

CiFL A, 0 0 ! (P, Ba)

C3F3; 0 Ag 0

C Es FEy E{D;

Fy 0 0 B,
r =r| A 0 | +r(f1, By),
CsF3 A 0 0 ! (Fi, Bi)

0 A
CoFy, 0 Ay 0 3
C E; E/D, EyD
FF 0 B 0 F, B, 0 Es
r =r +r s
F 0 0 Bo F, 0 By As
C3Fy Az 0 0
C E, By FEsD
F 01 02 ;3 Ev By
3 3
r =r| A 0 | +r(Fs, Bs),
CiF, A, 0 ! (Fs, Bs)
0 A

Colby 0 A 0
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C E1 E3D3 E2D2

F3 0 B3 0 Fs; Bs 0 Eq
T =r +r ,
F, 0 0 By F, 0 B Ay
CiFy Ay 0 0
C Ey FE1Dy E3Ds
Fi 0 By 0 F, By 0 FEs
T =r +r )
F3 0 0 B3 F; 0 Bs Ao
CoFy Ay 0 0
C E\Dy EsDy EsD
11 22 33 F, B 0 0
Fy By 0 0
T =r|F, 0 By 0|,
F 0 By 0
F; 0 0 Bs
F3 0 0 B3
0 Ey 0 FEs3 EsDo 0 E3Ds
0 -C 0 FEy Ej 0 —FE1 Dy 0
Fy 0 0 0 0 By 0 0
0 Fy 0 0 0 0 By 0
r
F3 Fy 0 0 0 0 0 B3
C Iy 0 A 0 0 0 0 0
0 —CoFy 0 Ay O 0 0 0
0 —C3F3 0 0 As 0 0 0
E; 0 Ej
Fr, 0 By 0 0 0 FEy Ej
=T 0 F1 0 B1 0 +r A1 0 0
F; F3 0 0 Bs 0 Ay 0
0 0 As

In this case, the general solution to system (L) is

X =AlC 4+ La,D1Bl + La,UiRp,, Y = AlCo + La,DaBl + La,UsRp,,
7 = ALC3 + La,D3B) + La,UsRp,,
where
Uy = Al TB], — Al ApxMITB], — A1, 8, AL, TN By Bl, — Al 81U, Ry, Boa B, + L a,,Us + Us R,
Uy = M]TBI, + ST, AL, TNT + Ly, Ls, Uz + UsRp,, + Las, UsRn,,
Us = Fio + Lg,Vi + VaRu, + Lg,V3Ru,,
or
Us = Fag — La,Wi — WaRpr, — Lo, WaR,,
Vi = (I, 0) |Cf,(F — C2V3Day — 033W3D33)} = (Im, 0) [CLUnDn —Ley Uia|
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W1 = (0, I,) {CL(F — C2V3Dgy — 033W3D33)]

— (0, Ipn,) [CLUIIDII - LCHU12] ,

0
Wo = {RCH(F—C22V3D22 —033W3D33)D11] ( I )

0
+ [CnCLUn + U21RD11] < I > ;

I,
Vo = [ch(F— Co2V3Dao — C33W3D33)DJ1F1] < 0 >

1

+ [CnCLUu + U21RD11] < g ) ;

Vs = E|\FEL, — El, Esx MTFEL, — El,SEL,FN'EyE]

3 11 33 114422 33 11° 522 4433

- ELSUisNEME;g + Lg,,Uss + UssREg,,,

Ws = MFEl, + StSELLFN' + Ly LsUs + Ly Usi Ry

+ U42RE447
where T = T1 — A33U3333, Uj(j = 4,—6), Uil(i = 1,—4), U12, U32, U33 and U42 are arbz'tmry
matrices with appropriate shapes over H. m is the column number of As and n is the row

number of Bs.

Proof. Tt follows from Theorem BIlthat this holds when Ay, C1, By, D1, E71, Fy vanish in Theorem
B.1 O

Lettiing A;, B;, C;, D;(i = 1,3), E5 and F3 vanish in Theorem 3.1, it yields to the following
result:

Corollary 3.3. Let Cs, D3, Cy, Dy and Ey be given matrices with adequate shapes. Let My =
Rc,Cy, N1 = DyLp,,S1 = CyLyr,. Then the matriz equation (L2) is consistent if and only if
the following rank equalities hold:

D3
D
r(Cs By Cy) =r(Cs Cy),r | By r< D3 ) ,
4
Dy

r (COB g) =7(C3) 4 r(Dy), r (gi” 004> = 7(Ds) +1(Cy).

In this case, the general solution to equation ([L2)) can be expressed as
X3 = CiE D} — cleyME DY — ¢ls,ClE N DyD]
— C}S1Y11 Ry, DaD} + Ly Yiz + Yis R,
Xy = M{E\D} + S{S1C{E\N] + Ly, Ls, Y14 + YisRp,
+ Lan Y11 Ry



19

where Y1;(i = 1,5) are any matrices with appropriate sizes over H.
Remark 3.3. The above corollary has the main findings of [I].
Lettiing As, Bs, C3, D3, E3 and F3 vanish in Theorem 3.1, it yields to the following result:

Corollary 3.4. Let A;, B;, C;i(i = 1,4) and C. be given with appropriate sizes over H. Set
A= A3Ls,, B=Rp, B, C =A4La,, D= Rp,By,
M = RuC, N=DLp, S=CLy, E=C.— A3AIC,Bs
— AC,BI By — A4ALC3 By — CC4BI By,

Then the following statements are equivalent:

(1) the system of matriz equations (L3)) is solvable.

(2)

A1Cy = C1 By, ACy = C3By, Ry, C1 =0,

Ry,C3 =0, CoLp, =0, C4Lp, =0,

Ry RAE =0, RA\ELp =0, ELgLy =0, RoELp = 0.
(3)

A1Cy = C1By, ACy = C3Bsy, 1(A1, C1) =r(Ay),

C C
r(Ay, C3)=71(As), r| 2 | =r(By), r| * | =r(Bo),
Bl B2
A, 0 O.Bs A 0 0
r A3 A4C4 Cc =T A3 0 0 ;
0 By By 0 By By
As 0 C3By Ay 0 0
r A4 AgCQ Cc =T A4 0 0 5
0 By Bs 0 B; Bs
B 0 B
! 3 B, 0 Bs
r 0 B2 B4 =T 0 B B 5
AsCy ACy C, 2 7
ClBg Al 0 Al 0
r 0334 0 A2 =T 0 A2
C. A; Ay As Ay

In this case, the general solution to the system (L3]) can be expressed as

X, = AlCy + Lo, CoBl + L, A'TEB'Rp, — Ly, A"CMTRAEB'Rp, — L4, ATSC'ELyNTDBRp,
— Ly, ATSVRNDB'Rp, + LA, (LAU + ZRp)Rp,,

Xy = ALCs + L4,C4BY + Lay,M'RAED'Rp, + LaLySTSCTELpNTRp,

+ La,Ly(V —STSVNNORp, + La,WRpRB,,

where U, V,W and Z are arbitrary matrices with appropriate sizes over H.
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Remark 3.4. The above corollary has the main findings of [3§].

4. THE GENERAL SOLUTION TO EQUATIONS ([LLI0) wiTH n-HERMICITY

In this section, as an application of equations (L]), we establish some necessary and sufficient
conditions for the system of matrix equations (LI0) to have a solution, and derive a formula
for its general solution, where X,Y, Z are n-Hermitian. Let A;, B;, E; (i = 1,4) and C. be given

with appropriate sizes over H. Set

EiLa, = Aii(i =1,4), Ra, Ajj = A1(j =2,4), Ra, A1z =My, S1 = ALy,

T\ = C.— EJAlC, — C7 (AT ET —

3
> E; (A@TBz‘ + LaBY (A?*)*) Ej
=1

Ty = Ra,, T1(Ra,,)" , G = Ry, Ray,, Gi1 = GAs, G = Ra, Ay, G = R, A,

Gy = A, L1 =GTy, Ly = Ra,To(Ra,)" .

Ly = RayTo(Ray,)", Lo =ToG", Cii = (Lay, La,)s En = Rey O, Con = Lay, Caz = Ly,

B = Ry, C33, M = Rp,, By, N = (Rp,En1)", F=Fu— Fy, E=Re,,F(Rey,)", S= ExnLy,
Fii = GaoLg,, Gi = Ly — GoGILi(GT )G | Foy = GaLg,, Go = Ly — G4GLL3(GY)TGT

P =GIG(GT) 4 La, GY Lo (G, Fy = GEL3(GI) + L, GLL4(GTHT.

Then we have the following theorem.

Theorem 4.1. Consider (LIQO). The following statements are equivalent:
(1) The system of matriz equations (LI0) has a solution.

(2)

RipE(Rpy,)" =0, Ra,B; =0, Rg,L; =0 (i =T1,4).

. . E, B, By E
E)" 0 0 0 0 (A)" Al 02 03 04
c, A0 0 0 0 01 o o lea(P
r - =r r ,
CET 0 A, 0 0 0 ’ Ay
. 0 0 A; 0
CsEI” 0 0 Ay 0 0 0 0 o 4
C4ET 0 0 0 Ay 0 ‘
C. Ei E, Ey (C)7 (C)7
(B3 0 0 0 (A3)7 0 E, By E;
. . Es Ey
(E)™ 0 0 0 0 (A Agoooo 00
r - =r r ,
C4ET Ay 0 0 0 0 0 A4 0 03 )
CET 0 Ay 0 0 0 0 0 A !
Gy 0 0 A 0 0




()™ 0 0 0 (A)" 0 E, E3 E;
. . E, E

(Ey)" 0 0 0  (A) Ay 00
"VouEr A4 0 0 0 o |="lo 4, o T j ’

CsEl” 0 As 0 0 0 0 0 4 0 A

0 0 A 0 0

Ce By Er (C3)T (Co)T (C))T

(Bs)T 0 0 (A3)" 0 0 B3y By, Ey

. . E, E

BT 000yt 0 Ay 00

(El)"* 0 0 0 0 (A" 0 Ay 0 0 A ’

CLET Ay 00 0 0 0 0 A !

00 A 0 0

C. B kL, 0 0 0 B, P35 CI' 0 0 P

E 0 0 0 0 0 0 A" 0o 0 0 0

El 0 0 0 0 0 0 0 A7 0 0 0

0O 0 0 C E;y EL B4 0 0 P CI' 0

o 0 0 EI' 0 0 0O 0 0 A 0 0
R E’ 0 0 0 0 0 0 AV 0

El 0 0 —-E 0 0 0 0 0 0 o0 A7

P, A 0O 0 0 0O 0O 0 0O 0 0 0

c, 0 A 0O 0 0O 0O O O 0 0 0

0O 0 0 P A3 0O 0O O 0 0 0 0

O 0 0 ¢ 0 A 0 0 0 0 0 0

o 0 0 P 0O O A O 0 0 0 0

Ey By 0 0 Ey
0 0 FE3 Ey Ey
A, 0 0 0 O

=2r{ 0 A O O 0],
0 0 A3 0 0
0 0 0 A O
0

0 0 0 A

where P; = C’iE?* (1 = 2,4). In this case, the general solution to the system ([LI0) can

expressed as

n* Y n
g D@ X+
2 2
Y + (V)" Z+ (2
Y = +é) , 4= +é) ,

Uy = A{Cy + LA, Sy, U =UT

21

be
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X = AlBy + La,BY (A7) 4+ La, Uy (L))",
Y = ALBy + La, BY (A + La,Us(La,)",

*

7 = AlBs + La,BY (A1) + La,Us(La,)",
where
S1 = AJ{I(Tl — AQQXAg; — A33YAg; — A44ZAZZ) — ALWIIA?I + LA11W12,
U = AJ{QT(AJ{Q)U* - AJ{QABM{[T(AJ{Q)”* - AJ{251U4RM{7* Aig(AIQ)n* - AIQSlAigT(M{] )TAJ{?,(AJ{Q)”*
+ LA12 U5 + UGRAW*7
12
Uy = MlTT(AJ{g)n* + SISlAJ{?’T(M{r)n* + LM1L51U7 + UgRA;,;‘ + LM1U4RMI’*’
Us = F1+ Lg,Vi + VaR o + LG, V3R -, or Us = Fy — L, W1 — WaR o — La; W3R o,
4 3 2 1
Vi = (Im’ 0) [CL(F - C22V3Cg; - C33W3Cg;)] - (Im’ 0) [CLUUC?I + L011U12} )
Wi = (0, In) [CLL(F = CoaVaCly — CisWsCh)| = (0, L) [CLUNCT + Loy, U
* * * 0 * 0
Wy = [RCH (F — 022‘/},0;73 — C33W3C§2)(C{71 )T} ( I ) + [CnCLUﬂ + UQngH] < I > ,

n

* * * O * In
Vo = RCu(F - 022‘/30573 - C33W3C;]2)(C{]1 )T < I > + [CllcirlUll + UQlLrC]‘u} ( 0 ) ’

n
Vs = B\ F(ES,)" — B, EnMTF(EL)" — B, SEL FNTE] (B, ) — B}, SUs Ry Y, ()
+ Lp, Us2 + U33L7§227
Wy = MYF(E)) + STSELFNT + LyyLsUs + LyUsi Ry — Use LY,
where T =Ty — A33Us(As3)", Uj(j = 4,5,6), Uit (i = 1,2,3,4), Uy2, Usa, Uss, and Uye are any
matrices with suitable dimensions over H.
Proof. Since the solvability of the system (L.I0) is equivalent to system
AUy = By, Uy(A)7 = B?*, Uy = (U)",
AsX = By, X(A)" =BJ, X = X",
AsY = B3, Y(43)" =B, Y =Y, (4.1)
AyZ =By, Z(A)" =B, Z=2",
E\Uy + UL EY + ByXEY + EsYED + EyZE] = C..
If the system (LI0) has a solution, say, (U, X, Y, Z), then
(Uh, Uz, X, Y, 2):= (U, U", X, Y, 2Z)

is a solution to the system of matrix equations (LI]). Conversely, if the system (4I)) has a

solution, say

(Ul, U2a X, Y’ Z)’
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then equations (LI0) clearly has a solution

U, X, Y, Z):

Uy + (Ug)n* X + (X')’?
2 2 ’ 2 ’ 2

*
i

= (

Next, we study the special case (ILII]) of the matrix equations (LI0J).

Theorem 4.2. Let A;,C;, E; (i =1,3) and C be given with appropriate size. Set

E\La, = Ay, EoLa, = Az, E3La, = Azz, Ray Ao = My, S1 = ALy,
Ty = C — E(A{By+ La, By (AT ))E]" — Ea(A}By + La, BY (A )NE]
— E3(ALBs + La,BY (AV)NET | G = Rup Ra,,,

G1 = GAss, G2 = Ra,, As3, G3 = Ra,,Asz, G4 = Ass,

Ly =GTy, Ly = Ra,, Ti(Ray,)", Ls = Ray,Ti(Ra,,)"

Ly=TiG", C11 = (Loy, Ley), Co = Ley, Csz = Ly,

En = Rc,,Co, FEo = Re,,C33, M = Rp,, Fao,

N = (Rp,En)", F=F,— F, E=Re,, F(Rc,,)" ,

S = EyLy, Fi1 = GoLa,, Hi = Ly — GoGl Ly (GT)GT

Foy = GaLg,, Hy = Ly — G4GiLs(GT )G,

Fi =G (G + La, GY Lo (GI, By = GLLs(GI)T + La, GILy(GT )T,

Then the following statements are equivalent:

(1) The system of the matriz equations (LIII) is consistent.

(2)
RAij =0, Rg,Li =00t =1,4,7=1,3),
RE22E(RE22)7]* =0.
(3)
r(4;, Bj) =r(4;)(j =1,2,3),
C E3; E, E Es E1 E»
BsE! A3 0 0 | 4 00
BIE] 0 A 0 0 A 0 |’

ByEl 0 0 A 0 0 A



BsE! A3 0 0

* 0 A
BET 0 A 0 !

*

BsE! A3 0 0

BEl 0 Ay 0 0 4
-
EC’; %3 Eﬁ"l EQ(? 2 B B E
r . ! " r|{A 0 | +r s ,
E] 0 0 Al 0 A <A3>
BsEl As 0 0 2
c 0 Ei 0 B3 EBJ 0 E3BY
0 -C 0 By, E3 0 —EB' 0
ET 0 0o 0 o AT 0 0
0 ET 0 0 0 0 AT 0
"I BT BT 0 0 0 0 0 AT
BET 0 AL 0 0 0 0 0
0 —BEl 0 A, 0 0 0 0
0 —BsEl 0 0 A3 0 0 0
E, 0 FEj
0 E, Ej
=2r| A 0 0
0 Ay 0
0 0 A

In this case, the general solution of matrix equation (LII) can be expressed as

Y + (V)T P Z+(Z)n
) _f7

S
I

X4 (X
(X

2 2
X = AlBy + La,BY (A7) + La, Ui (L))",

*

Y = ALBo + La,BY (A7) + La,Us(La,)"

*

Z = ALBs + La,BY (A] ) + La,Us(Lay)"

where

Ur = A T(AL)T — Al Ao MIT (AT )™ — AL ULALT(M])T (AL)" + Lay, Us + UsR

Uy = MJT(AEQ)W + SISlAEQT(MI)n* + LM1L51U7 + UgRA;,; + LM1 U4RM1”*’

Us = FY + Le, Vi + VR + L, VR

n*
GS

or U3 = FY — Lg,W, — Wl — Lo WsR

24

(il
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Vi = (I, 0) [Ci(F = CooVCly = CoaWsC)| = (I, 0) |CLUNCT, + Ly, U

Wy = (O’ Im) [CII(F - C22V3C§§ - C33W3Cg;)] - (0’ Im) [CIIUUCIZI* + LCuUl?} )

* * * O * 0
W = [RCH(F — CnV3CHs — 033W30572)(C?1)T] < i ) + [CHCLUH + U21Ln011} ( I ) ,

n

0 * I,
. ) +|enclivn + Un Ly, | < ; >

Vo = Ry, (F = CoaVaCily — CaaWsCh ) (O (
Vs = ELF(E;]Q)T - ELE?QMTF(E;]Q)T - ELSE;BFNTE{G (ESQ)T - ELSU&RNE{G (ESIQ)T
+ L, Usz + U33L7£22,
Wy = MYF(E})" + STSELFNT + LysLsUsi + LyUsi Ry — UL,
where T = T1 — A33U3(A33)n*, Uj(] = 4,5,6), Uil(i = 1,2,3,4), Ulg, U32, U33 and U42 are any

matrices with appropriate dimensions.

Proof. It follows from Theorem 4.1 that this theorem holds when A;,C7, and E; vanish in
Theorem 4.1. ]

In Theorem 4.2, let A;, C;, B;, D;(i = 1,3), E3 and F3 be vanish. Then we can get the

n-Hermitian solution of the matrix equation (LS]).

Corollary 4.3. Let B1,Cq and D, = D?* be given. Set M = Rp,C1,S = C1Ly;. Then the
following statements are equivalent:
(1) Matriz equation (L) has a pair of n-Hermitian solutions Y and Z.

(2)
RyRp, Dy =0, Rp,Di(Re,)" =0.

3)

B1 Dy
r<0 C{?*>:r(31)—|—r(01),

T (Bl Cl D1> =T (Bl Cl) .
In this case, the n-Hermitian solution to matriz equation ([L8) can be expressed as
o1 n . n*
v = B[D; (B])" - SBlCM! Dy [14— (c])" s ] (8])
1 t t 1 n* n* 1 n* + n* + n* n* n*
- 5B (1+sci)py (M) cf (Bl)" - Blswas™ (B])" +Lp,U+U" (Ls,)"
1 * * 1 *
7z =MDy (cf)’ {1 + (s1s)" } +5 (1+5's) ¢l ()’
+ Ly Wa (L) + VLE + Lo,V + Ly LsWi + WY (L) (Lan)"

where W1, U,V and Wy = W277 are arbitrary matrices over H with appropriate sizes.

Remark 4.3. The above corollary has the main findings of [10].
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Corollary 4.4. Let Ay,C1, Ay, A3, B1,D1,D3 and D3 = Dg* be coefficient matrices in ([L9]).

Define some new matrices as follows:
By = AsLya,, C1= A3 (Rp,)" |
Dy =Dy — 4 [afCr + (alen)" - alawey (a])"] ay
. [DlBI + <DlBI>n* - (BI)U* B?*D1B1:| AT
M = Rp,Cy, S=Cy4Ly.

Then the following statements are equivalent:

(1) The system ([L9) has a solution (X,Y,Z), where Y and Z are n-Hermitian.
(2) The coefficient matrices in equations (LI) satisfy

A CT = AT, BY D, =DV By,

Ry, C1 =0, DyLp =0, RyRp,Ds=0,
RB4D4 (RC’4)n* =

(3) The coefficient matrices in equations (L9) and their ranks satisfy

ACT =ClAT, BY' D, =D7 B,

7"< Ay Cl):r(Al), r( D ) =r(B1),

D3 As Ay

e Ay Ay
r %12{;]% BOI /(1)1 =r B?* 0 —|—7“< Ay ) ,
c 0 0 0 A
D3 Ay AszD, A
r Ag* 0 By :T<A2>—|—’I“<Ag* Bl).
CLAT Ay 0 !

In this case, the general solution to the system of matriz equations (L9) can be expressed as

v =v7 = alcr+ (alar)" - alacy ()
+ LA1V (LAl)n* ’

Z=27" =D\Bl + <DlBI>" - <BI)" BY D, Bi

+ (RB1)7]* WRB17
v =v" = 5D, (B])"

- %BICE;MT Dy [I + (q{)"* S”*] (81)"

*
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- %Bl <I + SCZ) Dy (MT )"* o (Bl)"*
— BJSUsS™ (Bl)"* + Lp,Us+ U} (Lp,)"
o o (1) [+ (1)’
+ % (I + STS) CiDy (MT)U* + LayUs (L))" + Us L,

+ LC4U57* + Ly LsUs + Ug* (Ls)n (LM)U* ,

where Us, Uy ,Us and Ug = Ug* are arbitrary matrices over H with appropriate sizes.

5. ALGORITHM WITH A NUMERICAL EXAMPLE

In this section, we present an algorithm and an example to illustrate Theorem 3.1.

Algorithm 5.1

(1) Feed the values of A;, B; C;, D;, E;, F;(i =1,4) and C. with conformable shapes over
HI.

(2) Compute the symbols in B1]) to (B.4).

(3) Check (2) in Theorem 3.1 or (B1) to (BI6). If no, it returns “inconsisten”.

(4) Else, compute U V, X, Y, Z.

Example 5.1 Let

21 -1 1+k 2

Dy = ' , U3 = N , D= ' ;
k 0 k 2
i+] 2i 2 i

2 < 9 )7 3 <k>7 1 <O k>7

E2: v 7E3: (.) ! 7F1: T )
0 k j k j
j k i+ 2k

F2: ‘! ’F3: . aC: 31.+ . .
i i 1-4i+3j—k
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Computation directly yields

o3
A1Dy =C1B; = ( 01 ) ;

2
AyDy = CyBy = ,
2472 202 (—1+2J—|—k>

—24+k
A3D3=C333=< + >,

—1

B;
(m)zll’ (B:g):& (m):10, ng,
@IZ) =10, @¥) =9, @) =9, BIF) =8, @I0) = 19.

All the rank equalities in (3.7) to (316) hold. Hence, according to Theorem 3.1, the system of

matrix equations (L6]) has a solution, and the general solution to matrix equations (L6l can be

r(Ci, Aj) =1(A) =2, r < D ) =r(B;) =1(i =T1,3),

expressed as

0.5000 + 1.0000i
U= 0
1 — 0.5000i

0.5000 0 —0.50001
+ 0 1.000 0 S1,
0.500001 0 0.5000

T 0 0.5000 0.5000
~\0  —0.5000i + 0.5000j 0.5000 + 0.5000k / ’

2.
Y 000 0 7
1.000i 3.000
v — 1.000 1.000i 7= 1.000i 1.000j ,
0 2.000 0 1.000
—0.5000 + 2.000i — 1.0000k

S1 = | 1.0000 — 3.0000i + 1.0000j + 1.0000k
—2.0000 — 0.5000i + 1.0000j

where

1.0000 —1.0000i 2.0000
— | —1.0000 1.0000i + 1.0000 | W71 | —1.0000k | ,
1.0000i 1.0000 1.0000i

W11 is a any matrix equation with suitable size over H.

Finally, we give the following conclusion that summarizes the work of this paper.
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6. CONCLUSIONS

We have established the solvability conditions and a formula for the general solution to the
Sylvester-type quaternion matrix equations (.6l). As an application of equations (L], we also
have established some necessary and sufficient conditions for the system of quaternion matrix
equations (LI0) to provide a solution and derived an exact expression of its general solution
involving n-Hermicity. As a special case of equations ([L6l), we have presented the necessary
and sufficient conditions for the system of two-sided Sylvester-type quaternion matrix equations
([L7) to be consistent and derived a formula for its general solution (when it is solvable). As a
special case of equations ([LI0]), we have investigated the necessary and sufficient conditions for
the system of matrix equations (LII]) to have a solution and provided a general solution, which
is an n-Hermitian.

It is noteworthy that the main results of (LLG)) are available over R and C and for any division

ring. Furthermore, motivated by [2I], we can investigate equations (L) in tensor form.
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