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Abstract

In this note we prove that if two Riesz-Fischer sequences in a separable Hilbert space H are
biorthogonal and one of them is complete in H , then both sequences are Riesz bases for H . This
complements a recent result by D. T. Stoeva where the same conclusion holds if one replaces the
phrase “Riesz-Fischer sequences” by “Bessel sequences”.
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1 Introduction

Let H be a separable Hilbert space endowed with an inner product 〈 · 〉 and a norm || · ||. Let {fn}
∞
n=1

be a sequence of vectors in H. We say that {fn}
∞
n=1

is a Riesz basis for H if fn = V (en) where
{en}

∞
n=1

is an orthonormal basis for H and V is a bounded bijective operator from H onto H.

One of the many equivalences of Riesz bases [6, Theorem 1.1] states that

• A sequence is a Riesz basis forH, if and only if it is a complete Bessel sequence having a complete
biorthogonal Bessel sequence in H.

Recall that {fn}
∞
n=1

is a Bessel sequence if there is a positive constant B so that

∞
∑

n=1

|〈f, fn〉|
2 < B · ||f || ∀ f ∈ H,

and {fn}
∞
n=1

is complete if its closed span in H is equal to H. Biorthogonality between two
sequences {fn}

∞
n=1

and {gn}
∞
n=1

means that

〈fn, gm〉 =

{

1, m = n,

0, m 6= n.

Recently Stoeva [6] improved the above equivalence by assuming completeness on just one sequence.

Theorem A. [6, Theorem 2.5] Let two sequences in H be biorthogonal. If both of them are Bessel
sequences and one of them is complete in H, then they are Riesz bases for H.

Our goal in this note is to complement Theorem A by replacing the phrase “Bessel sequences” by
“Riesz-Fischer sequences”. Following Young [7, Chapter 4, Section 2], {fn}

∞
n=1

is a Riesz− Fischer

sequence in H if the moment problem
〈f, fn〉 = cn

has at least one solution f ∈ H for every sequence {cn}
∞
n=1

in the space l2(N). We prove the following.

Theorem 1.1. Let two sequences {fn}
∞
n=1

and {gn}
∞
n=1

in H be biorthogonal. If both of them are
Riesz-Fischer sequences and one of them is complete in H, then they are Riesz bases for H.

The proof is given in Section 3, once we present below some properties of Bessel and Riesz-Fischer
sequences and a nice result connecting the two notions (Proposition A).
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2 Riesz-Fischer sequences and Bessel sequences

In [7, Chapter 4, Section 2, Theorem 3] we find the following two theorems which provide a necessary
and sufficient condition so that a sequence in H is either a Riesz-Fischer sequence or a Bessel sequence.
Both results are attributed to Nina Bari.

• {fn}
∞
n=1

is a Riesz-Fischer sequence in H if and only if there exists a positive number A so that
for any finite scalar sequence {βn} we have

A
∑

|βn|
2 ≤

∣

∣

∣

∣

∣

∣

∑

βnfn

∣

∣

∣

∣

∣

∣

2

. (2.1)

• {fn}
∞
n=1

is a Bessel sequence in H if and only if there exists a positive number B so that for any
finite scalar sequence {βn} we have

∣

∣

∣

∣

∣

∣

∑

βnfn

∣

∣

∣

∣

∣

∣

2

≤ B
∑

|βn|
2. (2.2)

If a sequence is both a Bessel sequence and a Riesz-Fischer sequence, then it is called a Riesz sequence
(see Seip [5, Lemma 3.2]). That is, {fn}

∞
n=1

is a Riesz sequence if there are some positive constants A
and B, A ≤ B, so that for any finite scalar sequence {βn} we have

A
∑

|βn|
2 ≤

∣

∣

∣

∣

∣

∣

∣

∣

∑

βnfn

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ B
∑

|βn|
2.

Remark 2.1. A Riesz sequence is also a Riesz basis for the closure of its linear span in H (see [2, p.
68]). Therefore, a complete Riesz sequence in H is a Riesz basis for H.

Now, it easily follows from (2.1) that a Riesz-Fischer sequence is also a minimal sequence, that is
each fn does not belong to the closed span of {fk}k 6=n in H.

Remark 2.2. It is well known that a sequence is minimal if and only if it has a biorthogonal sequence.
A complete and minimal sequence is called exact and it has a unique biorthogonal sequence.

Clearly now a Riesz-Fischer sequence has at least one biorthogonal sequence. As stated in Casazza et
al. [1], one of them is a Bessel sequence (see Green [3, Proposition 1.2.4] for a proof).

Proposition A. [1, Proposition 2.3, (ii)]

The Riesz-Fischer sequences in H are precisely the families for which a biorthogonal Bessel sequence
exists. In other words

(Part a) Suppose that a Bessel sequence {fn} is biorthogonal to a sequence {gn} in H. Then {gn} is
a Riesz-Fischer sequence.

(Part b) If {fn} is a Riesz-Fischer sequence, then it has a biorthogonal Bessel sequence.

3 Proof of Theorem 1.1

First we prove the following result.

Lemma 3.1. Let two sequences {fn}
∞
n=1

and {gn}
∞
n=1

in H be biorthogonal. If {gn}
∞
n=1

is a Riesz
sequence and {fn}

∞
n=1

is complete in H, then {gn}
∞
n=1

is also complete in H, hence both sequences are
Riesz bases for H.

Proof. Denote by U the closed span of {gn}
∞
n=1

in H. Since {gn}
∞
n=1

is a Riesz sequence then it is a
Riesz basis for U , therefore it has a dual biorthogonal Riesz basis for U , call it {hn}

∞
n=1

. Thus

U = span{hn}
∞
n=1

= span{gn}
∞
n=1

.
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Let U⊥ be the orthogonal complement of U in H, that is

U⊥ = {f ∈ H : 〈f, g〉 = 0 for all g ∈ U}.

Hence if f ∈ U , then 〈f, gn〉 = 0 and 〈f, hn〉 = 0 for all n ∈ N.

Now, due to biorthogonality, for fixed n ∈ N we have 〈fn, gn〉 = 1 and 〈hn, gn〉 = 1. We also have
〈fn, gm〉 = 0 and 〈hn, gm〉 = 0 for all m 6= n. Therefore, 〈(fn − hn), gk〉 = 0 for all k ∈ N, thus,
(fn − hn) belongs to U⊥.

Suppose that (fn − hn) 6= 0. Then (fn − hn) does not belongs to U = span{hn}
∞
n=1

. It readily follows
that fn does not belong to U either (if fn ∈ U then (fn − hn) ∈ U as well). Hence fn belongs to U⊥,
so 〈fn, gk〉 = 0 for all k ∈ N, a contradiction since 〈fn, gn〉 = 1. We have now concluded that fn = hn
and clearly this holds for all n ∈ N. Therefore, {hn}

∞
n=1

= {fn}
∞
n=1

is a complete Riesz sequence in
H, hence a Riesz basis for H. The same of course holds for its biorthogonal sequence {gn}

∞
n=1

.

Corollary 3.1. Suppose that an exponential system E = {eiλnt}, with real λn, is a Riesz-Fischer
sequence in L2(−a, a), and E has a complete biorthogonal sequence. Then E is a Riesz basis for
L2(−a, a).

Proof. It follows from Lindner [4] that E is a Bessel sequence in L2(−a, a) as well. Hence E is a Riesz
sequence in L2(−a, a) and from Lemma 3.1 we obtain the result.

Consider now the assumptions of Theorem 1.1 and without loss of generality, suppose that {fn}
∞
n=1

is
complete in H, hence it is exact since it is also a minimal sequence. Thus it has a unique biorthogonal
sequence and clearly this is {gn}

∞
n=1

. Since {fn}
∞
n=1

is a Riesz-Fischer sequence, then by Proposition A

(Part b) it has a biorthogonal Bessel sequence, and by uniqueness, this is {gn}
∞
n=1

. Therefore {gn}
∞
n=1

is a Bessel sequence and a Riesz-Fischer sequence simultaneously, hence a Riesz sequence. It then
follows from Lemma 3.1 that {fn}

∞
n=1

and {gn}
∞
n=1

are Riesz bases for H. The proof of Theorem 1.1
is now complete.
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