
ar
X

iv
:2

21
2.

04
85

6v
1

 [
m

at
h.

C
O

]
 9

 D
ec

 2
02

2

Planar Regularity Structures

Ludwig Rahm∗

December 12, 2022

Abstract

Branched rough paths, used to solve ODEs on R, have been generalised in two different directions.

In one direction, there are regularity structures aimed at solving SPDEs on R. In the other direction,

there are planarly branched rough paths to solve ODEs on homogeneous spaces. This paper combines

these two directions to construct planar regularity structures, for (S)PDEs on homogeneous spaces.

1 Introduction

Geometric and branched rough paths [11, 15] were introduced to solve so-called rough differential equations

yt = f(y)dX,

characterised by being driven by some noise. The unknown y is a map R → R. This has been generalised

in two different directions. In one direction, rough paths generalise to regularity structures [13] to solve for

maps y : Rd → R. In the other direction, rough paths generalise to planarly branched rough paths [8] to

solve for maps R → M , where the target space M is a homogeneous space. Considering these two results,

there should reasonably be a way to generalise both the initial space and the target space at the same time.

Indeed, the ultimate goal of this paper is to construct such a generalisation, which we call planar regularity

structures.

Branched Rough Paths
R→R

Planarly Branched Rough Paths
R→M

Regularity Structures

Rd→R

Planar Regularity Structures

Rd→M

Manifold to reals
M→R

Manifold to manifold
M→N

Rough paths, as well as regularity structures, have been developed and studied through the formalism

of Hopf algebras on rooted trees. Indeed, one can understand the generalisation from branched rough paths

to planarly branched rough paths as a Hopf algebra morphism. Starting from the free post-Lie algebra

structure on planar rooted trees, and applying the post-Lie version of the Guin–Oudom procedure [9, 18],

one obtains the planar Grossman–Larson product. Dualising this product gives the Munthe-Kaas–Wright

Hopf algebra HMKW . A planarly branched rough paths can be seen as a map from R
2 taking values in

the character group of the Hopf algebra HMKW . One can then find the Butcher–Connes–Kreimer Hopf

algebra HBCK as a Hopf subalgebra of HMKW . A branched rough path on the other hand can be seen as a

map on R
2 that takes values in the character group of HBCK . The Butcher–Connes–Kreimer Hopf algebra

∗Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.

ludwig.rahm@ntnu.no.

1

http://arxiv.org/abs/2212.04856v1

can furthermore be obtained as the dual of the non-planar Grossman–Larson product, which one gets from

applying the Guin–Oudom procedure to the free pre-Lie algebra structure on non-planar rooted trees.

To get to the algebraic structures used in regularity structures, one again starts with the free pre-Lie alge-

bra structure on non-planar rooted trees. This structure is then altered to obtain the so-called deformed

pre-Lie product. The vector space of non-planar rooted trees is then augmented to furthermore contain the

unit vectors in N
d in its basis. Extending the deformed pre-Lie product, and defining a Lie bracket, turns

this larger space into a post-Lie algebra. One can then apply the post-Lie version of the Guin–Oudom

procedure to obtain a deformed Grossman–Larson product. One of the relevant structures for regularity

structures is the coaction obtained from dualising this deformed Grossman–Larson product [5]. This is the

coaction for re-centering, also called positive renormalisation. The other relevant structure is the coaction

for renormalisation, also called negative renormalisation. It was shown in [6] that one can use the deformed

Grossman–Larson product to define a new pre-Lie product on the non-planar rooted trees. Applying the

Guin–Oudom procedure to this new pre-Lie structure yields a Grossman–Larson-like product, which is dual

to the coaction for renormalisation.

The generalisation from Branched rough paths to regularity structures was studied in [3], where the au-

thors established a bijection between the set of branched rough paths, and a subset of all possible regularity

structures. In this sense, one can see branched rough paths as a special case of regularity structures. In

this bijection, re-centering corresponds to Connes–Kreimer coproduct on the Butcher–Connes–Kreimer Hopf

algebra. The authors furthermore introduced the concept of translations of rough paths, which corresponds

to renormalisation of regularity structures. The concept of translation was extended to planarly branched

rough paths in [19].

This paper aims to introduce the algebraic structures for planar regularity structures, which generalise

both the structures from planarly branched rough paths, and those from regularity structures, at the same

time. We will accomplish this by following the procedures used in [6] and [5], where the authors obtained the

algebraic structures for regularity structures by starting with the free pre-Lie algebra structure on non-planar

rooted trees. However, we will instead start with the free post-Lie algebra structure on planar rooted trees,

and perform the corresponding procedures. We will furthermore show how planarly branched rough paths

can be seen as regularity structures.

The paper is organised as follows. In Section 2, we summarize the definitions and results that the present

paper builds upon. In Section 3, we show how to obtain a regularity structure from a planarly branched

rough path. In Section 4, we construct the algebraic structures of planar regularity structures. First we

construct a re-centering coaction, followed by a renormalisation coaction. Finally we show an important

cointeraction property between the coactions.

Acknowledgements: The author is supported by the Research Council of Norway through project

302831 ”Computational Dynamics and Stochastics on Manifolds" (CODYSMA).

This work grew out of discussions with Dominique Manchon during the author’s visit to Université Clermont-

Auvergne in spring 2022. The author thanks the university for the visit, and thanks Dominique for the

helpful discussions both during and after the visit. The author thanks Kurusch Ebrahimi-Fard for helpful

discussions.

2 Preliminaries

We review the theory of rough paths, regularity structures and planarly branched rough paths. We fur-

thermore outline how rough paths can be considered a special case of both regularity structures as well

as planarly branched rough paths. We will in later sections combine these two different generalisations of

rough paths into planar regularity structures, which will generalise both regularity structures and planarly

2

branched rough paths.

2.1 Hopf algebras on rooted trees, planar and non-planar

Smooth ordinary differential equations (ODEs) on R have been studied using Butcher’s B-series methods

[12], which can be described in terms of characters on the Butcher–Connes–Kreimer (BCK) Hopf algebra

over undecorated non-planar rooted trees [7]. In the generalisation from smooth ODEs to rough differential

equations, by means of so-called branched rough paths [11], characters in the BCK Hopf algebra over non-

planar rooted trees with decorated vertices are considered. Further generalising to rough partial differential

equations (PDEs), using the notion of regularity structures [13], characters from a BCK-like Hopf algebra

over non-planar rooted trees with decorated vertices and decorated edges appear. There is a similar story

for differential equations with a homogeneous space as the target space. Smooth ODEs on a homogeneous

space have been studied using so-called Lie–Butcher series (LB-series), a blend of Lie- and Butcher’s B-

series, which can be described in terms of characters on the Munthe-Kaas–Wright (MKW) Hopf algebra over

undecorated planar rooted trees [17]. The MKW Hopf algebra is a generalisation of the BCK Hopf algebra

to planar rooted trees. Further generalising to rough ODEs results in the notion of planarly branched rough

paths [8], which is based on characters over the MKW Hopf algebra over planar rooted trees with decorated

vertices. A central goal of this paper is to look at planarly branched rough paths from the viewpoint of

regularity structures by constructing a MKW-like Hopf algebra over planar rooted trees with both decorated

vertices and decorated edges.

The purpose of this section is to describe the above mentioned Hopf algebras over planar and non-planar

rooted trees. We will begin with the MKW Hopf algebra over planar rooted trees with decorated vertices,

and then see how Hopf algebras of non-planar rooted trees can be described as subalgebras.

Consider the set of planar rooted trees

PT =
{

, , , , , , , , . . .
}
,

and the vector space PT = 〈PT〉. A tree τ ∈ PT has a set of vertices, V (τ), and a set of edges, E(τ). With

the exception of a particular vertex, every v ∈ V (τ) has exactly one incoming and arbitrarily many outgoing

edges. The special vertex, called the root, is drawn at the bottom of the tree and has no incoming edge.

Vertices with no outgoing edges are the leaves of a tree. Elements in PT are furthermore endowed with an

embedding in the plane. This means, for example, that the two following trees are considered to be different

and .

We say that trees in PT are decorated by the set C, if for each tree there exists a map from the set of its

vertices to C. Decorations are denoted next to the vertices. Similarly, the set of edges can be decorated as

well. For instance, the following planar rooted tree has both decorated vertices and decorated edges:

α β

γ

a

b c

d

.

Let PTC denote the set of planar rooted trees whose vertices are decorated by C, and let (Lie(PT C), [·, ·])

be the free Lie algebra generated by PTC . We can endow PT C with the left grafting product ⊲, where τ1 ⊲ τ2

3

is the sum over all possible trees obtained by adding to any vertex in the planar embedding of τ2 a new

leftmost edge to the root of τ1. For example:

a

b

⊲
c

d e

=

c

a

b

d e +

c

d

a

b

e

+

c

d e

a

b

.

Extending the left grafting product ⊲ to Lie(PT C) by the rules:

[x, y] ⊲ z = x ⊲(y ⊲ z)− (x ⊲ y) ⊲ z − y ⊲(x ⊲ z) + (y ⊲ x) ⊲ z, (1)

x ⊲[y, z] = [x ⊲ y, z] + [y, x ⊲ z], (2)

turns (Lie(PT C), ⊲, [·, ·]) into the free post-Lie algebra generated by the set C. The rules (1) and (2) define

the two axioms characterising the notion of post-Lie algebra [10][1].

Consider now the free non-commutative associative algebra (OFC , ·) generated by PT C . Its associative

product is the concatenation of trees giving ordered forests:

OF =
〈{

1, , , , , , , , , . . .
}〉

.

Note that this is the universal enveloping algebra of the Lie algebra (Lie(PT C), [·, ·]). The left grafting

product ⊲ can be extended to OFC by the post-Lie version of the Guin–Oudom construction [18, 9]:

1 ⊲ω = ω, (3)

ω ⊲ 1 = 0, (4)

(τ1ω) ⊲ τ2 = τ1 ⊲(ω ⊲ τ2)− (τ1 ⊲ ω) ⊲ τ2, (5)

ω ⊲(ω1ω2) = (ω(1) ⊲ ω1)(ω(2) ⊲ω2), (6)

for τ1, τ2 ∈ Lie(PT C) and ω, ω1, ω2 ∈ OFC . We use Sweedler’s notation to denote the deshuffle coproduct

∆
�

(ω) = ω(1) ⊗ ω(2).

This construction gives the free D-algebra (OFC , ·, ⊲) [17]. Recall that a D-algebra (A, ·, ⊲) consists of a

unital associative algebra (A, ·) together with a second product ⊲. Letting D(A) denote the set {x ∈ A :

x ⊲(ab) = (x ⊲ a)b + a(x ⊲ b), ∀a, b ∈ A}, the D-algebra axioms are given by:

1 ⊲ a =a,

a ⊲ x ∈D(A),

x ⊲(a ⊲ b) =(x · a) ⊲ b+ (x ⊲ a) ⊲ b,

for x ∈ D(A) and a, b ∈ A.

Following [18, 9], we now define a second associative product ∗ on OFC , known as planar Grossman–

Larson product:

ω ∗ ω′ = ω(1)(ω(2) ⊲ ω
′). (7)

Then (OFC , ∗,∆�) is the dual Hopf algebra to the Munthe-Kaas–Wright (MKW) Hopf algebra HC
MKW ,

which we will now describe. There exists a bijection between ordered forests and planar rooted trees,

denoted B+, which grafts all of the trees in the forest onto a common (undecorated) root. The planar

4

embedding of the tree is given by the non-commutative order of the forest. We denote the inverse map by

B−. For example:

B+

()
= ,

B−

()
= .

Let τ be a planar forest and let c be a subset of its edges. We say that c is a left admissible cut if:

• Any path from the root of τ to a leaf, contains at most one edge in c.

• If e ∈ c, then every other outgoing edge of the vertex that is to the left of e in the planar embedding

is also in c.

For c an admissible cut, we define the pruned part P c(τ) and the trunk T c(τ). The trunk T c(τ) is given by

the connected component containing the root, obtained after removing all edges in c from τ . The pruned

part P c(τ) is obtained by first concatenating connected components that were cut off from the same vertex in

T c(τ) into a forest, and then taking the shuffle product of these forests. We now define the MKW coproduct

∆MKW : OFC → OFC by:

∆MKW (ω) =
∑

c left admis. cut of B+(ω)

P c(B+(ω))⊗B−(T
c(B+(ω))). (8)

We can think of the MKW coproduct as taking left admissible cuts of a forest, where we are allowed to cut

between the different trees of the forest. The formula achieves this by grafting the forest onto a root using

the B+ operation, then making the cut, and finally removing the added root from the trunk. For example:

∆MKW

(
a

b

c d)
= 1⊗ a

b

c d

+ a

b

c d

⊗ 1 + a ⊗
b

c d

+ c ⊗ a

b

d

+ a
�

c ⊗
b

d

+ c d ⊗ a b + a
� (c d)⊗ b .

The MKW Hopf algebra with vertex decoration C, as used in planarly branched rough paths, is defined as

HC
MKW = (OFC ,�,∆MKW), where � is the shuffle product. The case of LB-series and undecorated trees

is obtained by forgetting the vertex decorations. Recall Lie(PT C), the free Lie algebra generated by PT C ,

and let SC = (S(Lie(PT C)×C), �) be the free symmetric algebra generated by Lie(PT C)×C. The important

concepts of substitution of LB-series [14, 16] and translations of planarly branched rough paths [19], which

will later be generalised to renormalisation of regularity structures, can be described by two coactions, ρS

respectively ρT , from HMKW to SC⊗HMKW . They are called cosubstitution and cotranslation, respectively.

To describe these coactions, we define the notion of admissible partition. Let ω be a forest and let ω1, . . . , ωn

be disjoint subforests of ω. Note that there is no order on the subforests, the subscripts only serve to label

the subforests for notational purposes. We say that ω1, . . . , ωn is an admissible partition if:

• Either all roots of ωi are roots of ω, or if every root of ωi is grafted onto the same vertex of ω.

Furthermore, the roots of ωi are adjacent in the planar embedding of ω.

• If e is an edge in ω, then every edge e′ that is outgoing from the same vertex as e and is to the right

of e in the planar embedding of ω, is also in ωi.

5

If every vertex of ω belongs to an ωi, we say that ω1, . . . , ωn is a spanning admissible partition. For ω1, . . . , ωn

admissible, we denote by ω/c ω1, . . . , ωn, c = (c1, . . . , cn) ∈ C×n the forest obtained by contracting each ωi

into a single vertex decorated by the i : th component of c. We then define the coactions by:

ρS(ω) =
∑

ω1,...,ωn
spanning admiss. partition

∑

c∈C×n

(π(ω1), c1) � · · · � (π(ωn), cn)⊗ ω/cω1, . . . , ωn, (9)

ρT (ω) =
∑

ω1,...,ωn
admiss. partition

∑

c∈C×n

(π(ω1), c1) � · · · � (π(ωn), cn)⊗ ω/cω1, . . . , ωn, (10)

where π : OFC → Lie(PT C) is the projection onto Lie polynomials. We illustrate this by an example.

Consider the decorated tree

a

b c

d

.

The spanning admissible partitions are as follows, where each ωi is identified by vertex colours:

a

b c

d

,

a

b c

d

,

a

b c

d

,

a

b c

d

,

a

b c

d

,

a

b c

d

,

a

b c

d

,

a

b c

d

.

Hence the coaction ρS evaluates to:

ρS

(

a

b c

d

)
=

∑

c1∈C

(

a

b c

d

, c1

)
⊗ c1 +

∑

c∈C×4

(
a , c1

)
�

(
b , c2

)
�

(
c , c3

)
�

(
d , c4

)
⊗

c1

c2 c3

c4

+
∑

c∈C×2

(
b, c1

)
�

(

a

c

d

, c2

)
⊗

c2

c1

+
∑

c∈C×2

(
a , c1

)
�

(
[b ,

c

d

], c2

)
⊗

c1

c2

+
∑

c∈C×2

(
d, c1

)
�

(
a

b c

, c2

)
⊗

c2

c1

+
∑

c∈C×3

(
b , c1

)
�

(
d , c2

)
�

(
a

c

, c3

)
⊗
(

c3

c1 c2

+
c3

c2 c1)

+
∑

c∈C×3

(
a , c1

)
�

(
[b , c], c2

)
�

(
d, c3

)
⊗

c1

c2

c3

+
∑

c∈C×3

(
a , c1

)
�

(
b , c2

)
�

(
c

d

, c3

)
⊗

c1

c2 c3

.

We will now describe the Butcher–Connes–Kreimer (BCK) Hopf algebra defined over non-planar rooted

trees. Recall that the latter have not been endowed with a planar embedding. The set of non-planar rooted

trees is denoted by:

T = { , , , , , , ,

, , , , , . . . },

6

and spans the vector space T . The symmetric algebra F generated by T is spanned by elements from the

set F of forests. We define the injection Ω : F → OF as the sum over all ways to endow a non-planar forest

with a planar embedding, for example:

Ω
(

a

b

c

d

e

f)
=

a

b

c

d

e

f

+

a

d b

c

e

f

+
e

f

a

b

c

d +
e

f

a

d b

c

.

The map Ω is in fact a Hopf algebra morphism from the BCK Hopf algebra HBCK = {F , ·,∆CK} to the

MKW Hopf algebra [17]. Hence the image of Ω is a Hopf subalgebra of HMKW , isomorphic to HBCK . The

coproduct ∆CK is given by admissible cuts, which are subsets of edges that contain at most one edge from

any path from the root to a leaf. Note that they differ from left admissible cuts (on planar trees), in that

they have no requirement with respect to the planar embedding. We can then describe ∆CK by:

∆CK(ω) =
∑

c admiss. cut of B+(ω)

P c(B+(ω))⊗B−(T
c(B+(ω))).

Compare with equation (8) that defined the MKW coproduct. We also obtain the non-planar versions of the

two coactions ρS , ρT in this way, i.e., by forgetting the planarity in the definition of admissible partitions.

Denote them by ρnpS , ρnpT : FC → S(TC × C)⊗FC . They can be described by contracting subtrees, where we

have no planar requirements on these subtrees, compare to (9) and (10):

ρnpS (ω) =
∑

ω1,...,ωn
spanning disjoint subtrees

∑

c∈C×n

(ω1, c1) � · · · � (ωn, cn)⊗ ω/c ω1, . . . , ωn,

ρnpT (ω) =
∑

ω1,...,ωn
disjoint subtrees

∑

c∈C×n

(ω1, c1) � · · · � (ωn, cn)⊗ ω/c ω1, . . . , ωn.

An alternative way to arrive at the BCK Hopf algebra is to consider the free pre-Lie algebra structure on

non-planar rooted trees. Recall that a pre-Lie algebra is a post-Lie algebra with abelian Lie bracket, i.e.,

they are characterised by the (left) pre-Lie axiom

x y (y y z)− (x y y) y z − y y (x y z) + (y y x) y z = 0,

obtained by setting the Lie bracket to zero in (1) and (2). The free pre-Lie product τ1 y τ2 of non-planar

rooted trees is given as the sum over all ways to add an edge from any vertex of τ2 to the root of τ1. As

in the post-Lie algebra case, we can extend the grafting product from TC to its universal enveloping algebra

using the Guin–Oudom relations (3)-(6). The universal enveloping algebra of TC is FC. We then arrive at

the dual Hopf algebra to HBCK via equation (7).

We now sketch how the BCK-like Hopf algebra used in regularity structures is constructed following the

recent work of Bruned and Katsetsiadis [5]. The setting is the one of non-planar rooted trees where both

vertices and edges are decorated by elements from N
d, the space of these trees is denoted by T. A non-planar

rooted tree is called planted if its root is undecorated and has exactly one outgoing edge. Let Iα be the

operator that grafts an input tree τ onto an undecorated root, by using an edge decorated by α, for example:

Iα

(

β γ

δ

a

b c

d

)
=

α

β γ

δ

a

b c

d

.

Then any planted tree can be written as Iα(τ), for some α ∈ N
d and some decorated tree τ . Planted trees

can be endowed with the pre-Lie product defined by

Iα(τ1) y Iβ(τ2) := Iβ(τ1 yα τ2),

7

where yα means grafting τ1 onto τ2 using an edge decorated by α. This is then deformed into the pre-Lie

product

Iα(τ1)ŷIβ(τ2) =
∑

v∈Nτ2

∑

ℓ∈Nd

(
nv

ℓ

)
Iβ(τ1 y

v
α−ℓ (↑

−ℓ
v τ2)),

where the set of vertices of τ2 is denoted Nτ2 = V (τ2). The operation y
v
α−ℓ means grafting onto the vertex

v, ↑−ℓ
v is defined by subtracting ℓ from the decoration of the vertex v, and nv means the decoration of the

vertex v. For example:

α

β γ

a

b c

ŷ
δ

ǫ

d

e

=
∑

ℓ

(
d

ℓ

)

δ

α− ℓ

β γ

ǫ

d− ℓ

a

b c

e

+
∑

ℓ

(
e

ℓ

)

δ

ǫ

α− ℓ

β γ

d

e− ℓ

a

b c

.

Now consider the units X i, i = {0, . . . , 0, 1, 0, . . . , 0} ∈ N
d and let V be the vector space that has planted

trees and X i’s as basis. Define the Lie bracket [·, ·]0:

[X i, Xj]0 =0,

[Iα(τ1), Iβ(τ2)]0 =0,

[Iα(τ1), X
i] =Iα−i(τ1),

and extend ŷ to V by:

X i
ŷIα(τ) =

∑

v∈Nτ

Iα(↑
i
v τ),

Iα(τ)ŷX i =0,

X i
ŷXj =0.

Then (V , ŷ, [·, ·]0) is a post-Lie algebra [5]. The product ŷ can be extended to the universal enveloping

algebra by (3)-(6), and one obtains a Hopf algebra by defining the product ∗+ according to equation (7).

This is the dual Hopf algebra to the Connes–Kreimer–like Hopf algebra used in regularity structures.

Lastly, we want to sketch how the cotranslation (renormalisation) coaction was constructed for regularity

structures in [6]. We define a product ⋄̂ by:

τ1 ⋄̂v τ2 =(Pv(τ2) ∗+ τ1) yv Tv(τ2),

τ1 ⋄̂ τ2 =
∑

v vertex of τ2

τ1 ⋄̂v τ2,

where Pv(τ2) is the subtree of τ2 that has v as a root, and Tv(τ2) is the tree obtained by removing all branches

attached to v in τ2 and setting the decoration of v to zero. The product yv means identifying the root of

the left argument with the vertex v in the right argument. This is a pre-Lie product and we can extend it to

the symmetric algebra by (3)-(6). This gives an action S(T−) ⊗ T → T, where T− is the subspace of trees

that has negative regularity. The renormalisation coaction is the dual of this action.

2.2 Rough paths in a combinatorial Hopf algebra, and their translations

We will in later sections link the concept of translations of rough paths with that of renormalisation of

regularity structures. Because of this, we find it useful to recall some results following mainly the article

8

[19]. The notion of translation of rough path was first considered in the 2017 work [3], and further developed

in the recent article [2]. Rough paths from the viewpoint of combinatorial Hopf algebras were considered in

[8], which is the setting we will be working in. See also [20]. The relevant definitions are as follows:

Definition 2.1. A combinatorial Hopf algebra (H,⊙,∆, η, ǫ) is a graded connected Hopf algebra H =

⊕∞
n=0Hn over a field K of characteristic zero, together with a basis B = ∪n≥0Bn of homogeneous elements,

such that:

1. There exists two positive constants B and C such that the dimension of Hn is bounded by BCn.

2. The structure constants czxy and cxyz of the product respectively the coproduct, defined for all elements

x, y, z ∈ B by

x⊙ y =
∑

z∈B

czxyz,

∆(z) =
∑

x,y∈B

cxyz x⊗ y,

are non-negative integers.

We furthermore say that H is non-degenerate if B ∩ Prim(H) = B1.

Remark 1. The above definition of a combinatorial Hopf algebras was given in [8]. and is useful for our

specific setting. In general, there is no consensus on what an appropriate definition of a combinatorial Hopf

algebra should be.

Definition 2.2. Let H = ⊕n≥0Hn be a commutative graded Hopf algebra with unit 1, and let γ ∈ (0, 1].

Suppose that H is endowed with a basis B making it combinatorial and non-degenerate in the sense of

Definition 2.1. A γ-regular H-rough path is a two-parameter family X = (Xst)s,t∈R of linear forms on H

such that 〈Xst, 1〉 = 1 and:

1. For any s, t ∈ R and any x, y ∈ H, the following identity holds

〈Xst, x⊙ y〉 = 〈Xst, x〉〈Xst, y〉.

2. For any s, t, u ∈ R, Chen’s identity holds

Xsu ∗ Xut = Xst,

where ∗ is the convolution product for linear forms on H, defined in terms of the coproduct on H.

3. For any n ≥ 0 and any x ∈ Bn, we have estimates

sup
s6=t

|〈Xst, x〉|

|t− s|γ|x|
< ∞,

where |x| = n denotes the degree of the element x ∈ Bn.

A rough path in the BCK Hopf algebra is called a branched rough path, these are used to solve rough

differential equations

dYt = f0(Yt)dt+

n∑

i=1

fi(Yt)dX
i
t , Y0 = y0 (11)

on R
d. If the driving path X was smooth, one could solve the equation with Picard iteration

Yt = Y0 +
∞∑

n=1

∑

1≤i1≤···≤in≤n

(∫
· · ·

∫

s≤t1≤···≤tn≤t

fin · · · fi1dX
i1
t1
· · · dX in

tn

)
.

9

If the path X is sufficiently rough, the above integrals are not defined. The main idea of rough path theory

is to obtain a notion of solution by postulating the values of the first few integrals. The properties we require

in Definition 2.2 generalise the properties we expect a notion of integration to have. Indeed, we think of

the linear forms Xst as encoding integrals, and we think of the parameters s, t as the integration limits.

In branched rough paths, the rooted tree structure of the elements in the BCK Hopf algebra reflects the

structure of nested integrals. We, for example, have the following, where we think of the right side as being

defined by the left side:

〈Xst,
3

1 2

〉 =:

∫ t

s

X i1
t1
X i2

t2
dX i3

t1
.

A rough path in the MKW Hopf algebra is called planarly branched rough path. We will take a closer look at

these in a later section. Note that, because the BCK Hopf algebra is a Hopf subalgebra of the MKW Hopf

algebra, branched rough paths will be a special case of planarly branched rough paths.

Recall that the definition of a combinatorial Hopf algebra comes with a choice of a basis B, this basis

will also play a role in the concept of translations. Let (H,⊙,∆, η, ǫ) be a non-degenerate combinatorial

Hopf algebra with basis B and B1 = {e0, . . . , em−1}. Let (H∗, ∗,∆⊙) denote the graded dual space, with

convolution product ∗ dual to ∆ and coproduct ∆⊙ dual to ⊙. Let (H∗, ∗,∆⊙) be the completion of H∗ with

respect to the grading, together with the continuously extended product ∗, and ∆⊙ extended continuously

to a map H∗ → H∗⊗H∗.

A translation is a family of maps Tv, indexed by the m primitive elements v = (v0, . . . , vm−1) ∈ P (H∗)×m,

such that Tv(ei) = ei+vi for all ei ∈ B1 and such that some additional conditions are fulfilled. In the specific

context of regularity structures, we will work with two special assumptions:

1. The basis element e0 corresponds to time, meaning that our rough paths Xst will satisfy the identity:

〈Xst, e0〉 = t− s. (12)

2. We will only translate in the time direction, meaning that our index vectors v will be of the form:

v = (v0, 0, . . . , 0). (13)

Definition 2.3. A rough path that satisfies the assumption (12) is called a time-augmented rough path, and

a translation map Tv that satisfies the assumption (13) is called a time-translation.

We now give the full definition of a translation as defined in [19].

Definition 2.4. A family of algebra morphisms Tv : H∗ → H∗ is a translation if

1. Tv(ei) = ei + vi for every ei ∈ B1 and some v = (v0, . . . , vm−1), vi ∈ H∗ primitive.

2. Tv ◦ Tu = Tv + Tv(u), where Tv(u) = (Tv(u0), . . . , Tv(um−1)).

3. For each H-rough path Xst, the pointwise translation Tv(Xst) is a H-rough path:

(a) Tv maps characters to characters.

(b) Tv is a morphism with respect to the convolution product of H∗.

(c) The bound

sup
s6=t

|〈Tv(Xst), x〉|

|t− s|γ|x|
< ∞

holds.

10

4. There exists a coaction ρT : H → S(P (H∗)× B1)⊗H such that 〈Tv(χ), x〉 = 〈ev ⊗ χ, ρT (x)〉.

Remark 2. In the case of planarly branched rough paths, the coaction ρT in point 4 of the definition is the

cotranslation coaction defined in equation (10). For branched rough paths, the coaction is ρnpT .

The space S(P (H∗) × B1) appears in point 4 of the definition. We will not go into details on this

space. Instead, we will remark that, when Tv is a time-translation, the map ρT can be restricted to a map

ρ0T : H → S(P (H∗)) ⊗ H such that 〈Tv(χ), x〉 = 〈ev ⊗ χ, ρ0T (x)〉, where ev ∈ S(P (H∗)) is the character

generated by v0 ∈ P (H∗). We call the map ρT cotranslation and the map ρ0T time-cotranslation. We will

later need the following important property of (time-)cotranslation, called cointeraction:

Proposition 2.5 ([19]). The coaction ρT satisfies the identity

m1,3(ρT ⊗ ρT)∆ = (id⊗∆)ρT ,

where

m1,3(a⊗ b⊗ c⊗ d) = ac⊗ b ⊗ d.

The cointeraction property also holds for ρ0T .

2.3 Planarly branched rough paths

Branched rough paths were generalized to planarly branched rough paths in [8], to solve differential equations

dYst =

n∑

i=1

fi(Yst)dX
i
t , Yss = y0, (14)

where Ys· : R → M, fi : M → TM, X i
· : R → R, for M a homogeneous space. Note, in the case of M being

R
d, we have branched rough paths. As a homogeneous space, M has a transitive action by Lie group G:

G×M →M

(g, x) 7→g.x

Let g be the Lie algebra of G. Then we can represent vector fields by Lie algebra valued maps:

f :M → g,

#f(x) =
d

dt
|t=0 exp(tf(x)).x ∈ TxM,

and equation (14) can be rewritten in the form

dYst =

d∑

i=1

#fi(Yst)dX
i
t , Yss = y0,

where fi are now Lie algebra valued. The space C∞(M, g) can then be endowed with the product:

(f ⊲ g)(x) =
d

dt
|t=0g(exp(tf(x)).x),

and the pointwise Lie bracket:

[f, g](x) = [f(x), g(x)].

These two products turn C∞(M, g) into a post-Lie algebra, i.e., the axioms (1) and (2) are satisfied. We

now extend the post-Lie algebra over C∞(M, g), to a D-algebra over C∞(M, U(g)), in order to describe

higher order differential operators. Let V ∈ g and f ∈ C∞(M, U(g)), define the Lie derivative:

V [f](x) =
d

dt
|t=0f(exp(tV).x),

11

and extend it to U(g) by

VW [f] = V [W [f]],

where V ∈ g and W ∈ U(g). Let the associative product on C∞(M, U(g)) be defined pointwise:

(fg)(x) = f(x)g(x).

For f, g ∈ C∞(M, U(g)), we define

(f ⊲ g)(x) = (f(x)[g])(x).

Then (C∞(M, U(g)), ·, ⊲) is a D-algebra [17]. Because OF f is the free D-algebra, there exists a D-algebra

morphism Ff : OF f → C∞(M, U(g)) generated by mapping a single-vertex tree decorated by i to fi ∈

C∞(M, g). We can now define the second associative product ∗ on C∞(M, U(g)) by

f ∗ g = f(1)(f(2) ⊲ g).

This product describes the composition of differential operators:

#(f ∗ g) = #f ◦#g.

The solution Yst to equation (14) can now be represented by the element Yst ∈ C∞(M, U(g)) satisfying

Ψ(Yst) = (Yst ⊲Ψ)(y0),

for all Ψ ∈ C∞(M, U(g)). Using this representation, we can define what we mean by a formal solution to

equation (14).

Definition 2.6. A formal solution to the equation (14) is given by

Yst =
∑

x∈OF{1,...,n}

〈Xst, x〉Ff(x),

where Xst is a rough path in H
{1,...,n}
MKW such that

〈Xst, i〉 = X i
t −X i

s.

We will now describe translations of planarly branched rough paths. The primitive elements in H
{1,...,n}
MKW

form the free post-Lie algebra (Lie(PT {1,...,n}), ⊲, [·, ·]). Let v = (v1, . . . , vn) be n primitive elements and

define

Tv(i) = i + vi,

Tv(x ⊲ y) =Tv(x) ⊲ Tv(y),

Tv([x, y]) =[Tv(x), Tv(y)],

Tv(a ∗ b) =Tv(a) ∗ Tv(b),

for x, y ∈ Lie(PT {1,...,n}) and a, b ∈ OF{1,...,n}. Then Tv is a translation for planarly branched rough paths

and the dual coaction is given by ρT defined in equation (10).

Proposition 2.7 ([19]). Let Tv be translation of planarly branched rough paths. Yst is a formal solution to

dYst =

n∑

i=1

fi(Yst)d(Tv(X
i
t))

if and only if Yst is a formal solution to

dYst =

n∑

i=1

Ff(vi)(Yst)dX
i
t.

12

2.4 Regularity Structures

Regularity structures were introduced by M. Hairer [13] to solve rough partial differential equations:

u = K ∗ F (u, ξ), (15)

for unknown u : Rd → R, K a convolution kernel, ξ some noise and F a non-linearity. Solving the equation

using regularity structures requires three main steps:

1. First, one constructs a regularity structure; a vector space that will allow us to extend the notion of a

Taylor expansion, by also including terms involving the noise ξ and in general other functions, rather

than only polynomials. This algebraic construction should be sufficiently rich to allow us to express

equation (15).

2. Formally solve the algebraic equation formulated in step 1.

3. Give meaning to the formal solution obtained in step 2. This is typically done by renormalisation,

and requires postulating the value of finitely many ill-defined products. Note that this is similar to

postulating the values of integrals as done for rough paths.

The focus of this paper will mainly be on steps 1 and 3. It was already shown in Section 4.3 of [13] that

one can construct a regularity structure from any connected, graded, commutative Hopf algebra. In [4], the

authors constructed a Connes–Kreimer-like Hopf algebra over non-planar rooted trees with decorated vertices

and decorated edges, whose regularity structure is useful to express many concrete differential equations.

They furthermore obtained a renormalisation procedure for step 3, by constructing a coaction on this Hopf

algebra. Recall that we constructed the Hopf algebra and the coaction in Section 2.1. We now give the

definition of a regularity structure.

Definition 2.8. A regularity structure R = (A, T,G) consists of

• An index set A ⊂ R that is bounded from below and locally finite.

• A graded vector space T = ⊕α∈ATα, with each Tα a Banach space. Furthermore, T0 ≃ R, and we

denote the unit vector by 1.

• A group G of linear operators acting on T , such that for every Γ ∈ G, every α ∈ A and every a ∈ Tα,

one has

Γa− a ∈ ⊕β<αTβ.

We think of the index set A as being the set regularities of the functions/distributions we want to build,

and the vector space T as formal Taylor series. We will soon define a model for a regularity structure. If an

element in T is a formal Taylor series, then a model maps the formal Taylor series to a concrete expansion

around a given point. The group G will describe how to re-expand around a different point, often called

re-centering or positive renormalisation.

Definition 2.9. A model for a given regularity structure R = (A, T,G) on R
d consists of:

• A map Γ : Rd × R
d → G such that Γxx = Id and such that ΓxyΓyz = Γxz for all x, y, z ∈ R

d.

• A collection of continuous linear maps Πx : T → S′(Rd) such that Πy = ΠxΓxy for every x, y ∈ R
d.

One typically also requires some analytical bounds on the model, see [13] for details. For the purpose of

this paper, we will not be considering this.

13

2.5 Branched rough paths as a special case of regularity structures

In the language of Section 2.2, branched rough paths are rough paths in the BCK Hopf algebra HBCK ,

which was described in Section 2.1. Recall from Section 2.2 that branched rough paths are used to solve

differential equations of the form

dYt = f0(Yt)dt+
n∑

i=1

fi(Yt)dX
i
t , Y0 = y0. (16)

Letting K denote the Heaviside kernel, this equation can be written in the form (15) as

Yt = Y0 +K ∗

n∑

i=1

fi(Yt)X
i
t ,

hence the construction from [4] can be applied to the problem. We will in this subsection outline how, in

reference [3], a special case of the construction in the work [4] was recovered from the rough path setting.

Let B denote the space of non-planar rooted trees whose edges are decorated by elements from the set

{0, . . . , n}, where we will use undecorated edges to represent the 0 decoration, and where edges decorared

by elements from {1, . . . , n} are adjacent to leaves. Then there is an isomorphism φ between T{0,...,n} and

B. We will draw trees in B in blue, to distinguish them from trees in T{0,...,n}. The isomorphism is given

by replacing every non-zero decorated vertex in T{0,...,n} with two vertices connected by an edge of the same

decoration as the decoration of the original vertex.

Example 2.10. The isomorphism between T{0,...,n} and B.

φ
(

1

0 3

1

)
=

1

3

1

φ
(

2

0

2 5

1

)
=

2 5

1

2

Let αi denote the regularity of the path X i from equation (11) and define the index set A = {0}∪iαiN∪i

(αiN − 1). We associate a degree in A to each tree τ ∈ B, as the sum over all edges in τ where an edge

decorated by i contributes αi − 1 and undecorated edges contribute 1.

Recall the root-adding map B+ that sends forests to trees, and the root-removing map B− that sends

trees to forests. Define on B the tree product τ1τ2 := B+(B−(τ1)B−(τ2)), i.e., by identifying τ1τ2 with the

tree obtained by joining the roots of τ1 and τ2. We write B− for the free commutative associative algebra

generated by trees of negative degree, where we interpret the product as the forest product. Write B+ for the

vector space spanned by trees of positive degree where no decorated edge is adjacent to the root, together

with the tree product.

Using the isomorphism φ between T{0,...,n} and B, any tree τ ∈ B+ can be written as τ = B+(φ(ω)),

where ω ∈ F . Furthermore, if τ is an arbitrary tree in B, then B+(τ) ∈ B+ and can be written in this form.

We use this fact to construct a regularity structure in the following theorem.

Theorem 2.11 ([3]). Let Xst be a branched rough path over the (time-augmented) path (t,X1
t , . . . , X

m
t) that

satisfies

〈Xst, τ ⊲ •〉 =

∫ t

s

〈Xsu, τ〉du,

14

for τ ∈ T . Define a map Π : R2 × B → R by

Πs(B+(φ(τ)))(t) =〈Xst, τ〉,

Πs(τ)(t) =
d

dt
Πs(B+(τ))(t).

Define a map Γ : R2 × B∗ → B∗ by

Γst(B+(φ(τ))) =(Xst ⊗B+ ◦ φ)∆CK(τ),

Γst(τ) =(Xst ⊗ φ)(∆CK(φ−1(τ)) − φ−1(τ) ⊗ 1).

Then (A,B, G) is a regularity structure and (Π,Γ) is a model over the regularity structure, where G is the

group generated by Γg = (g ⊗ id)∆+for g in B∗
+.

Both in defining Π and defining Γ, we need two equalities. One equality to define the maps on trees with

undecorated root, and a second equality to define what happens for trees with decorated root. Note that

the second equalities also makes sense for trees where the root is not decorated. It is shown in [3] that the

two equalities are consistent with each other in these cases. This construction of Γ furthermore agrees with

the more general construction:

Γst = (γts ⊗ id)∆+,

where ∆+ is the Connes–Kreimer-like coproduct used for regularity structures, and γst = B+(φ(Xst)). We

sketched the construction of the dual product ∗+ to ∆+ at the end of 2.1.

We will now describe how the renormalisation coaction can be obtained from the cotranslation coaction.

Let ℓ ∈ B∗
− be a character and denote by Mℓ renormalisation by ℓ, in the sense of regularity structures, this

can be described by a coaction ∆−:

Mℓ(τ) = (ℓ⊗ id)∆−(τ).

For the general case where regularity structure trees have decorated edges and vertices, we sketched the

construction of the dual product to ∆− at the end of Section 2.1. One uses the renormalisation map to

obtain a renormalised model by:

ΠMℓ
s =ΠsMℓ,

ΓstMℓ =(γstMℓ ⊗ id)∆+.

Let ρnpT : T{0,...,n} → F{0,...,n} ⊗ T{0,...,n} be the time-cotranslation coaction for branched rough paths.

Let π− be projection onto trees of negative degree. Denote δ− = (π− ⊗ id)ρnpT . Then:

∆−(φ(τ)) =(φ⊗ φ)δ−(τ),

Mℓ(φ(τ)) =φ(T ∗
log(ℓ)(τ)),

where T ∗ is dual to translation, and log(ℓ) is the primitive element that generates the character ℓ.

3 Planarly branched rough paths as regularity structures

In this section we will generalize the construction from [3], that saw branched rough paths as a special case

of regularity structures, and apply it to planarly branched rough paths.

Let Lie(PT) be the Lie algebra over the vector space of planar rooted trees with vertices decorated by

{0, . . . , n}. Let PB denote the vector space of planar rooted trees whose edges are decorated by the set

15

{0, . . . , n}, where we will use undecorated edges to represent the 0 decoration, and where edges decorated

by {1, . . . , n} are adjacent to leaves. Let Lie(PB) denote the Lie algebra over PB. We will draw trees in

Lie(PB) in blue, to differentiate them from trees in Lie(PT). There is an isomorphism ϕ between Lie(PT)

and Lie(PB) given by replacing every non-zero vertex in Lie(PT) with 2 vertices connected by a rightmost

edge of the same decoration as the original vertex.

Example 3.1. The isomorphism between Lie(PT) and Lie(PB).

ϕ
(

1

0 3

1

)
=

1

3

1

ϕ
(
[

2

1

,
1

1 0

]
)
=

[1

2

,

1

1

]
.

Define a map B+ : Lie(PB) → PB by B+(τ) = τ ⊲ , where ⊲ is left grafting. Let OF denote the planar

forests with vertices decorated by {0, . . . , n} and let OB denote the planar forests with edges decorated by

{0, . . . , n}. Extend ϕ : OF → OB to be a shuffle morphism. Define the tree product on PB by τ1τ2 being

the tree obtained by joining the roots of τ1 and τ2 and shuffling the branches. Extend B+ : OB → PB

by B+(τ1 � · · ·� τn) = B+(τ1) · · ·B+(τn), where the product on the right side is the tree product. This

amounts to the natural extension of grafting everything on a new root, and arranging the planar order of

the branches according to the order of the roots in the forest.

Example 3.2. The extended maps B+ and ϕ.

B+

(
ϕ
(

1

0

0

3 4))
= B+

(
1

3 4)

= 1

3 4

.

Let αi denote the regularity of the path X from equation (14) and define the index set A = {0} ∪i

αiN ∪i (αiN − 1). We associate a degree in A to each tree τ ∈ Lie(PB), as the sum over all edges in τ

where decorated edges contribute αi − 1 and undecorated edges contribute 1. We write S(PB)− for the

free commutative associative algebra generated by trees of negative degree. Write PB+ for the vector space

spanned by trees of positive degree, together with the tree product. Denote by G+ the group of characters

over PB+.

Remark 3. The space S(PB)− does not contain any Lie brackets. One should think of this in terms

of negative trees representing distributions and positive trees representing vector fields. The fact that Lie

brackets appear for positive trees reflects the existence of the Jacobi–Lie bracket of vector fields, which does

not exist for distributions.

In the dictionary between rough path trees and regularity structure trees, an extra root is added via B+ to

the regularity structure trees compared to the rough path forests. The "trees" in PB+ are the trees with only

16

one edge adjacent to the root and the "Lie polynomials" are those trees where the edges adjacent to the root

form a Lie polynomial.

Define a coaction ∆+ : PB → PB+ ⊗ PB by

∆+(B+(ϕ(ω))) = (B+ ◦ ϕ⊗B+ ◦ ϕ)∆MKW (ω),

for ω ∈ OF . This defines ∆+ for all input trees that have no decorated edge adjacent to the root. For input

trees ω ∈ PB that have a decorated edge adjacent to the root, define:

∆+(ω) = (id⊗B−)(∆
+(B+(ω))−B+(ω)⊗).

One can describe this coaction with left admissible cuts, where the cut edges are undecorated. The pruned

parts are shuffled and then grafted onto a common root.

Example 3.3.

∆+
(

1

3 4

)
= 1

3 4

⊗ + ⊗ 1

3 4

+ ⊗ 1

3 4

+

1

⊗

3 4

+

3

⊗ 1

4

+
(3

+

3)
⊗ 1

4

+
(1 3

+

3 1)
⊗

4

+

3 4

⊗

1

+
(3 4

+

3 4

+

3 4)
⊗

1

+
(1 3 4

+

3 1 4

+

3 4 1)
⊗ .

Let g ∈ G+, the group of characters over PB+, and define

Γg = (g ⊗ id)∆+.

Denote G = {Γg : g ∈ G+}. Note that G is a group with product ΓgΓh = Γh◦g, where ◦ is the product in G+,

that is dual to ∆+.

Lemma 3.4. The triple (A,PB,G) is a regularity structure.

We are now ready to define maps Π : R2 × PB → R and Γ : R2 × PB∗ → PB∗. Let Xst be a planarly

branched rough path over the time-augmented path (t,X1
t , . . . , X

m
t). Let ω ∈ OF , define Π by

Πs(B+(ϕ(ω)))(t) =〈Xst, ω〉.

This defines Π for all input trees where no decorated edge is adjacent to the root. Let ω ∈ PB have a

decorated edge adjacent to the root and define

Πs(ω)(t) =
d

dt
Πs(B+(ω))(t).

17

Proposition 3.5. If the time-augmented planarly rough path Xst satisfies

〈Xst, ω ⊲ 0〉 =

∫ t

s

〈Xsu, ω〉du, (17)

then the model satisfies

d

dt
Πx(B+(ϕ(ω))(t) = Πx(ϕ(ω))(t),

for all ω ∈ OF .

Proof. Suppose first that there exists an ω′ such that ϕ(ω) = B+(ϕ(ω
′)), then:

d

dt
Πx(B+(ϕ(ω))(t) =

d

dt
Πx

(
B+(B+(ϕ(ω

′)))
)

=
d

dt
Πx

(
B+(ϕ(B+(ω

′)))
)

=
d

dt
〈Xxt, ω

′ ⊲ •〉

=
d

dt

∫ t

x

〈Xxu, ω
′〉du

=〈Xxt, ω
′〉

=Πx

(
B+(ϕ(ω

′))
)
(t)

=Πx

(
ϕ(B+(ω

′))
)
(t)

=Πx

(
ϕ(ω)

)
(t).

Suppose that no such ω′ exists, then the proposition is by definition.

Note that the integral in (17) is not a rough integral, as it is a standard integral against the time-

component of the path rather than any of the rough components. Now define Γ by

Γst = (γts ⊗ id)∆+,

where

γst =B+(ϕ(Xst)).

These definitions of (Π,Γ) generalise those from Theorem 2.11.

Lemma 3.6. If the rough path Xst is time-augmented, i.e. it satisfies

〈Xst, 0〉 = t− s,

then:

Πx()(t) = 1.

Proof.

Πx()(t) =
d

dt
Πx()(t)

=
d

dt
〈Xxt, 0〉

=
d

dt
(t− s)

= 1.

18

Theorem 3.7. If the rough path is time-augmented and satisfies (17), then the above defined maps (Π,Γ)

are a model for the regularity structure (A,PB,G).

Proof. We have to show that ΓxyΓyz = Γxz, that ΠxΓxy = Πy. The first conditions follows immediately

from Chen’s identity on rough paths. For the second identity, first let ω ∈ OF , then:

ΠxΓxy(B+(ϕ(ω)))(t) =Πx((Xyx ⊗B+ ◦ ϕ)∆MKW (ω))(t)

=〈Xxt, (Xyx ⊗ id)∆MKW (ω)〉

=〈Xyx ⊗ Xxt,∆MKW (ω)〉

=〈Xyt, ω〉

=Πy(B+(ϕ(ω)))(t),

which shows that the identity holds for any tree that has no decorated edges adjacent to the root. For a

general tree:

ΠxΓxy(ϕ(ω))(t) =
d

dt
Πx(B+(Γxyϕ(ω)))(t)

=
d

dt
Πx(Γxy(B+(ϕ(ω))) − 〈Xyx, B+(ω)〉)(t)

=
d

dt
Πx(Γxy(B+(ϕ(ω))))(t)

=
d

dt
Πy(B+(ϕ(ω)))(t)

=Πy(ϕ(ω))(t),

where we used Lemma 3.6.

We now generalise the renormalisation construction from Section 2.5. Let ρ0 : Lie(PT) → S(Lie(PT))⊗

Lie(PT) be time-cotranslation in planarly branched rough paths. Let π− be projection onto trees of negative

degree and denote ρ−0 = (π−⊗ id)ρ0 : Lie(PT) → S(PT −)⊗Lie(PT). Define ∆− : PB → S(PB−)⊗PB by

∆− = (ϕ⊗ϕ)ρ−0 . For a character ℓ in the dual algebra PB∗
−, define renormalisation by ℓ as Mℓ = (ℓ⊗ id)∆−.

For a model (Π,Γ), define the renormalised model (ΠMℓ ,ΓMℓ) by

ΠMℓ
s =ΠsMℓ,

ΓMℓ
st =(γtsMℓ ⊗ id)∆+.

Proposition 3.8. The renormalised model is a model.

Proof. First we prove that ΓMℓ
xy Γ

Mℓ
yz = ΓMℓ

xz for an input tree with no decorated edge adjacent to the root.

By definition, we can rewrite:

ΓMℓ
xy Γ

Mℓ
yz (B+(ϕ(ω))) =ΓMℓ

xy (γzyMℓ ⊗ id)∆+(B+(ϕ(ω)))

=(γzyMℓ ⊗ γyxMℓ ⊗ id)(id⊗∆+)∆+(B+(ϕ(ω))).

Then using the definition of ∆+, denoting ϕ−1(log(ℓ)) = ℓ̂, and noting that γyzMℓ ◦ B+ ◦ ϕ = XyzT
∗
ℓ̂
, we

get:

=(XzyT
∗
ℓ̂
⊗ XyxT

∗
ℓ̂
⊗B+ ◦ ϕ)(id⊗∆MKW)∆MKW (ω)

=(XzyT
∗
ℓ̂
⊗ XyxT

∗
ℓ̂
⊗B+ ◦ ϕ)(∆MKW ⊗ id)∆MKW (ω)

=(exp(ℓ̂)⊗ Xzy ⊗ exp(ℓ̂)⊗ Xyx ⊗B+ ◦ ϕ)(ρ−0 ⊗ ρ−0 ⊗ id)(∆MKW ⊗ id)∆MKW (ω).

Now we use the character property of exp(ℓ̂):

=(exp(ℓ̂)⊗ Xzy ⊗ Xyx ⊗B+ ◦ ϕ)m1,3(ρ−0 ⊗ ρ−0 ⊗ id)(∆MKW ⊗ id)∆MKW (ω),

19

and the cointeraction property between ρ−0 and ∆MKW :

=(exp(ℓ̂)⊗ Xzy ⊗ Xyx ⊗B+ ◦ ϕ)(id⊗∆MKW ⊗ id)(ρ−0 ⊗ id)∆MKW (ω)

= exp(ℓ̂)⊗ Xzy ⋆ Xyx ⊗ id)(ρ−0 ⊗B+ ◦ ϕ)∆MKW (ω)

=(XzxT
∗
ℓ̂
⊗B+ ◦ ϕ)∆MKW (ω)

=ΓMℓ
xz (B+(ϕ(ω))).

For an arbitrary input argument, we use the definitions to write:

ΓMℓ
xy Γ

Mℓ
yz (ϕ(ω))

=ΓMℓ
xy (γzyMℓ ⊗ id)(id⊗B−)(∆

+(B+(ϕ(ω))) −B+(ϕ(ω)) ⊗)

=(γzyMℓ ⊗ γyxMℓ ⊗B−)(id⊗∆+ − id⊗ id⊗)(∆+(B+(ϕ(ω))) −B+(ϕ(ω))⊗).

Then translating everything into rough path language gives:

=(XzyT
∗
ℓ̂
⊗ XyxT

∗
ℓ̂
⊗ ϕ)(id⊗∆MKW − id⊗ id⊗ 1)(∆MKW (ω)− ω ⊗ 1)

=(exp(ℓ̂)⊗ Xzy ⊗ exp(ℓ̂)⊗ Xyx ⊗ ϕ)(ρ−0 ⊗ ρ−0 ⊗ id)(id⊗∆MKW − id⊗ id⊗ 1)(∆MKW (ω)− ω ⊗ 1)

=(exp(ℓ̂)⊗ Xzy ⊗ exp(ℓ̂)⊗ Xyx ⊗ ϕ)(ρ−0 ⊗ ρ−0 ⊗ id)((id⊗∆MKW)∆MKW (ω)−∆MKW (ω)⊗ 1).

We now use the character property and the cointeraction property:

=(exp(ℓ̂)⊗ Xzy ⊗ Xyx ⊗ ϕ)m1,3(ρ−0 ⊗ ρ−0 ⊗ id)((∆MKW ⊗ id)∆MKW (ω)−∆MKW (ω)⊗ 1)

=(exp(ℓ̂)⊗ Xzy ⊗ Xyx ⊗ ϕ)(id⊗∆MKW ⊗ id)((ρ−0 ⊗ id)∆MKW (ω)− ρ−0 (ω)⊗ 1)

=(exp(ℓ̂)⊗ Xzy ⋆ Xyx ⊗ ϕ)((ρ−0 ⊗ id)∆MKW (ω)− ρ−0 (ω)⊗ 1)

We now factor out the ρ−0 in the rightmost term, and translate everything back to regularity structure

language using the definitions.

=(exp(ℓ̂)⊗ Xzx ⊗ ϕ)(ρ−0 ⊗ id)(∆MKW (ω)− ω ⊗ 1)

=(XzxT
∗
ℓ̂
⊗ ϕ)(∆MKW (ω)− ω ⊗ 1)

=(γzxMℓ ⊗B−)(∆
+(B+(ϕ(ω))) −B+(ϕ(ω))⊗)

=ΓMℓ
xz (ϕ(ω)).

Next we prove ΠMℓ
x ΓMℓ

xy = Πy. First if the input tree has no decorated edges adjacent to the root, we can

rewrite:

ΠMℓ
x ΓMℓ

xy (B+(ϕ(ω)))(t) =ΠMℓ
x (γyxMℓ ⊗ id)∆+(B+(ϕ(ω)))(t)

=(XyxT
∗
ℓ̂
⊗ XxtT

∗
ℓ̂
)∆MKW (ω)

=(exp(ℓ̂)⊗ Xyx ⊗ exp(ℓ̂)⊗ Xxt)(ρ
−
0 ⊗ ρ−0)∆MKW (ω).

Then we can use the character property and cointeraction:

=(exp(ℓ̂)⊗ Xyx ⊗ Xxt)m
1,3(ρ−0 ⊗ ρ−0)∆MKW (ω)

=(exp(ℓ̂)⊗ Xyx ⊗ Xxt)(id⊗∆MKW)ρ−0 (ω)

=(exp(ℓ̂)⊗ Xyt)ρ
−
0 (ω)

=XytT
∗
ℓ̂
(ω)

=ΠMℓ
y (B+(ϕ(ω)))(t).

20

Finally, if the input tree is arbitrary, we use the definitions to write:

ΠMℓ
x ΓMℓ

xy (ϕ(ω))(t) =ΠMℓ
x (γyxMℓ ⊗B−)(∆

+(B+(ϕ(ω))) −B+(ϕ(ω))⊗)(t)

=(γyxMℓ ⊗
d

dt
ΠxB+MℓB−)(∆

+(B+(ϕ(ω))) −B+(ϕ(ω))⊗)(t)

=(γyxMℓ ⊗
d

dt
ΠxMℓ)(∆

+(B+(ϕ(ω)))− B+(ϕ(ω))⊗)(t).

We then translate into the language of rough paths:

=(XyxT
∗
ℓ̂
⊗

d

dt
XxtTℓ̂

)(∆MKW (ω)− ω ⊗ 1)

=
d

dt
(exp(ℓ̂)⊗ Xyx ⊗ exp(ℓ̂)⊗ Xxt)(ρ

−
0 ⊗ ρ−0)(∆MKW (ω)− ω ⊗ 1).

Use the character property and cointeraction:

=
d

dt
(exp(ℓ̂)⊗ Xyx ⊗ Xxt)m

1,3(ρ−0 ⊗ ρ−0)(∆MKW (ω)− ω ⊗ 1)

=
d

dt
(exp(ℓ̂)⊗ Xyx ⊗ Xxt)(id⊗∆MKW)ρ−0 (ω)−

d

dt
(exp(ℓ̂)⊗ Xyx ⊗ Xxt)(ρ

−
0 (ω)⊗ 1).

Now we note that d
dt
〈Xxt, 1〉 = 0 and simplify:

=
d

dt
(exp(ℓ̂)⊗ Xyt)ρ

−
0 (ω)

=
d

dt
XytT

∗
ℓ̂
(ω)

=
d

dt
ΠMℓ

y (B+(ϕ(ω)))

=ΠMℓ
y (ϕ(ω)),

where we used that B+Mℓ = MℓB+, which follows from that the edge added by B+ can not be part of a

subtree with negative regularity.

We conclude the section by giving the combinatorial description of ∆−.

Definition 3.9. Let τ ∈ PB be a tree and let τ1, . . . , τn be a set of disjoint (not necessarily spanning)

subtrees of τ . We say that τ1, . . . , τn is PB−-admissible if the following conditions hold:

1. If e is an edge in τi and e′ is an edge in τ that is outgoing from the same vertex as e, and if e′ is to

the right of e in the planar embedding, then e′ is in τi.

2. If e = (v1, v2) is an edge in τ with a non-zero decoration then either both v1 and v2 belong to the same

subtree, or neither v1 or v2 belong to any subtree.

3. Each τi has negative regularity.

For τ1, . . . , τn PB−-admissible, denote by τ/τ1 . . . τn the tree obtained by contracting each τi into a single

vertex.

Proposition 3.10. Let τ ∈ PB, then

∆−(τ) =
∑

τ1,...,τn
PB−-admissible

τ1 . . . τn ⊗ τ/τ1 . . . τn,

where the product in the left tensor is the free symmetric product in S(PB−).

21

Example 3.11. Let 1
2 − ǫ < α < 1

2 for all positive ǫ, then:

∆−(

2 3

1

) = 1 ⊗

2 3

+ 2 ⊗

3

1

+ 3 ⊗

2

1

+

3

1

⊗

2

+ 1 2 ⊗

3

+ 1 3 ⊗

2

+ 2 3 ⊗
1

+

3

1

2 ⊗ .

4 Planar regularity structures

We now want to extend the notions from the previous section, to define a concept of planar regularity

structures and their renormalisation. To achieve this, we will adapt the constructions based on the pre-Lie

structure of non-planar trees to a construction based on the post-Lie structure of planar trees. We will need

the following notation:

Let I = {G1, . . . , Gk} be a set of convolution kernels and let Ξ = {X1
t , . . . , X

n
t } be a set of noises.

Denote D = I ∪ Ξ × N
d. Let T denote the space of planar trees where the edges are decorated by D and

the vertices are decorated by N
d, such that each vertex has at most one outgoing noise edge and such that

vertices with an incoming noise edge has no outgoing edges. We will say that a vertex is a noise vertex if

it has an incoming noise edge. We denote by T̃ the subset of trees that has zero root decoration, which we

call planted forests. To each tree τ ∈ T, we define the regularity |τ | as the sum over all edge decorations

and all vertex decorations; vertex decorations contribute the sum of its components, the N
d part of an edge

decoration subtracts the sum of its components, a noise decoration X i
t contributes αi − 1 where αi is the

regularity of the path X i
t , a convolution kernel Gi contributes the regularity of the convolution kernel. The

space T will be the model space for the regularity structure we are constructing, and the index set will be

the set of possible regularities. Following the planarly branched rough path example, we construct the group

of linear operators by considering a Hopf algebra in the next subsection. To construct this Hopf algebra, we

use the natural generalisation of the non-planar construction from [6] and [5].

4.1 The positive Hopf algebra

We follow the constructions in [6] and [5], but adapted for planar trees.

Let T+ denote the subspace of T generated by trees of positive regularity that has no noise edge at the

root. Let T̃+ denote the subspace of T+ spanned by planted forests. As before, we will draw trees in T+

using the colour blue to indicate that they are regularity structure trees, as opposed to rough path trees.

We will write Ia(ω) for the tree obtained by grafting the ordered forest ω onto a zero-decorated vertex using

edges decorated by (I, a) ∈ D. We say that Ia(τ) is a planted tree if τ is a tree. Let Ṽ denote the free Lie

algebra generated by planted trees. We will see Ṽ as a subspace of T+ by identifying the generic elements

[Iia(τ1), I
j
b (τ2)] with a difference of trees as follows:

[Iia(τ1), I
j
b (τ2)] =

d d′

τ1 τ2

− d′ d

τ2 τ1

, (18)

where a vertex decorated by τi symbolically represents a subtree τi that could be bigger than a single vertex,

and where we write d = (Ii, a), d′ = (Ij , b) for the edge decorations. We define a product on the subspace of

22

planted trees by:

Iia(τ1) ⊲ I
j
b (τ2) = Ijb (τ1 ⊲Ii

a
τ2),

where ⊲Ii
a

means left grafting of τ1 onto τ2 using an edge decorated by (Ii, a) ∈ D. We do not graft on noise

vertices, as this would result in trees outside of T.

Recall the operator ↑ℓv on non-planar trees from Section 2.1, we now extend it to planar trees by letting

↑ℓv τ be the tree obtained by changing the decoration of the vertex v ∈ V (τ) from nv to nv + ℓ. Let ↑−ℓ
v by

defined by reducing the decoration. Define ↑ℓ τ =
∑

v∈Nτ
↑ℓv τ , where Nτ is the set of non-noise vertics in

τ . Define the deformed grafting product by

Iia(τ1) ⊲̂ I
j
b (τ2) =

∑

v∈Nτ2

∑

ℓ∈Nd

(
nv

ℓ

)
Ijb (τ1 ⊲

v
Ii
a−ℓ

(↑−ℓ
v τ2)),

where the terms in the sum are understood to be 0 whenever a−ℓ or nv−ℓ has a strictly negative component.

We now extend the deformed grafting product to Ṽ such that the post-Lie axioms are satisfied:

a⊲̂(I
i
a(ω1), I

j
b (ω2), I

k
c (ω3))− a⊲̂(I

j
b (ω2), I

i
a(ω1), I

k
c (ω3)) =[Iia(ω1), I

j
b (ω2)] ⊲̂ I

k
c (ω3), (19)

[Iia(ω1) ⊲̂ I
j
b (ω2), I

k
c (ω3)] + [Ijb (ω2), I

i
a(ω1) ⊲̂ I

k
c (ω3)] =Iia(ω1) ⊲̂[I

j
b (ω2), I

k
c (ω3)]. (20)

Identity (19) amounts to saying that deformed grafting a Lie polynomial means that each added edge is

deformed individually, for example:

[Iia(τ1), I
j
b (τ2)] ⊲̂

d′′

α

=
∑

ℓ1,ℓ2
d′′

d− ℓ1 d′ − ℓ2

α− ℓ1 − ℓ2

τ1 τ2

−
∑

ℓ1,ℓ2
d′′

d′ − ℓ2 d− ℓ1

α− ℓ1 − ℓ2

τ2 τ1

,

where d− ℓ1 = (Ii, a− ℓ1) and d′ − ℓ2 = (Ij , b− ℓ2). Let

V = Ṽ ⊕ 〈{X i : i = (0, . . . , 0, 1, 0, . . . , 0)}〉

denote the vector space spanned by Lie polynomials of planted trees and by unit vectors in N
d. Define a

product ◮̂ on V by

X i
◮̂ y = ↑i y,

y ◮̂X i =0,

X i
◮̂Xj =0,

y ◮̂ z =y ⊲̂ z,

for y, z ∈ Ṽ . Furthermore define a Lie bracket by

[X i, Xj]0 =0,

[y, z]0 =[y, z],

[y,X i]0 = ↓i y,

where ↓i y sums over the edges in y that are adjacent to the root, and subtracts i from one decoration per

term, for example:

[[Ija(ω1), I
k
b (ω2)], X

i]0 = ↓i [Ija(ω1), I
k
b (ω2)]

=[Ija−i(ω1), I
k
b (ω2)] + [Ija(ω1), I

k
b−i(ω2)].

Note that this is equivalent to defining ↓i (Ija(ω)) = Ija−i(ω) and extending to be a derivation for the Lie

bracket [·, ·].

23

Lemma 4.1. The following identity holds:

↑i (y ◮̂ z) = (↑i y) ◮̂ z + y ◮̂(↑i z)− (↓i y) ◮̂ z.

Proof. The same proof as for Proposition 3.1 in [5] applies when y is a planted tree. If y is a Lie polynomial,

we note that we can reduce it to the planted tree case by repeated application of identity (19).

Proposition 4.2. (V , ◮̂, [·, ·]0) is a post-Lie algebra.

Proof. The identities

a(x, y, z)− a(y, x, z) =[x, y]0 ◮̂ z,

z ◮̂[x, y]0 =[z ◮̂x, y]0 + [x, z ◮̂ y]0

are clear if x = X i and y = Xj , or if both x, y are in Ṽ . They are also clear if z = Xj. If x, z ∈ Ṽ and

y = X i, then by Lemma 4.1:

a(x, y, z)− a(y, x, z) =x ◮̂ ↑i z− ↑i (x ◮̂ z) + (↑i x) ◮̂ z

= ↓i x ◮̂ z

=[x, y]0 ◮̂ z.

Furthermore:

z ◮̂[x, y]0 =z ◮̂(↓i x)

= ↓i (z ◮̂ x) + [x, 0]0

=[z ◮̂x, y]0 + [x, z ◮̂ y]0,

where we used the identity z ◮̂(↓i x) =↓i (z ◮̂x), which comes from the fact that ◮̂ does not add any edges

adjacent to the root.

Because (V , ◮̂, [·, ·]0) is a post-Lie algebra we can apply the planar Guin-Oudom construction from [9] to

extend ◮̂ to the Lie enveloping algebra of V . This is a generalisation of the Guin-Oudom construction for

pre-Lie algebras from [18].

Lemma 4.3. The Lie enveloping algebra of (V , ◮̂, [·, ·]0) can be represented by the space T+.

Proof. It is clear that X i’s commute under the associative product on U(V), as their commutator Lie bracket

is abelian. Let Xm be a commutative polynomial of X i’s whose indices adds up to m ∈ (Nd)×2 and represent

this object with a single vertex decoared by m. It is furthermore clear by the identification (18) that we can

represent the associative product of two planted trees by merging the roots of the trees letting the branches of

the left argument be to the left of the branches of the right argument. It remains to represent the associative

product between single vertices and planted trees. Let X iτ be represented by the planted tree τ , except with

the root decorated by i. Note that this implies that τX i is represented by τX i = X iτ−[X i, τ]0 = X iτ+ ↓i τ .

Since ↓i τ is again a planted tree, this means that we can always write any element in U(V) as a sum of

elements of the form Xmτ1 . . . τk, which we represent by the tree τ1 . . . τk, whose root has decoration m.

We endow the space T+ with the cocommutative coproduct ∆
�

, defined by letting V be primitive elements

and then generating as an algebra morphism for the associative product. We extend ◮̂ to the Lie enveloping

algebra by:

1 ◮̂ω =ω, (21)

τ1ω ◮̂ τ2 =τ1 ◮̂(ω ◮̂ τ2)− (τ1 ◮̂ω) ◮̂ τ2, (22)

ω1 ◮̂(ω2ω3) =((ω1)(1) ◮̂ω2)((ω1)(2) ◮̂ω3), (23)

where ∆
�

(ω1) = (ω1)(1) ⊗ (ω1)(2) is Sweedler’s notation, τ1, τ2 ∈ V and ω, ω1, ω2, ω3 ∈ T+.

24

Lemma 4.4. Let Xmω1, X
nω2 be two generic elements in T+, with ω1, ω2 planted forests. Then:

Xmω1 ◮̂Xnω2 = Xn(Xmω1 ◮̂ω2).

Proof. This follows by equations (22),(23) and the fact that anything grafted on an X i is zero.

We now want to describe the expression Xmω1 ◮̂ω2. To do this, we first extend the operators ↑m and

↓m to arbitrary m ∈ N
d and acting on the whole T̃. For ω ∈ T̃, let ↑m ω be defined by composition

↑m ω = (↑(1,0,...,0))m1 ◦ · · · ◦ (↑(0,...,0,1))mdω. Similarly for ↓m. Note that this is the same as summing over

all ways to increase the decorations of vertices in ω, weighted by the number of ways to do this increase by

adding a unit at a time. We illustrate this with an example where N
d = N

1:

↑2 a

k1

k2

= ↑1 (a

k1 + 1

k2

+ a

k1

k2 + 1

)

= a

k1 + 2

k2

+ a

k1 + 1

k2 + 1

+ a

k1 + 1

k2 + 1

+ a

k1

k2 + 2

=
∑

2=δ1+δ2

(
2

δ1, δ2

)
a

k1 + δ1

k2 + δ2

.

We furthermore have the identity Xm
◮̂ω =↑m ω, which is straightforward to see from equation (22).

Lemma 4.5. The following identity holds:

Xmω1 ◮̂ω2 = ↑m (ω1 ◮̂ω2)− (↑m ω1) ◮̂ω2

=ω1 ◮̂(↑m ω2)− (↓m ω1) ◮̂ω2.

Proof. If ω2 ∈ Ṽ , then the statements follows from equation (22) and Lemma 4.1. If ω2 is not primitive,

then note that iterating equation (23) says that we have to split ω2 into all of its branches and then look at

all possible ways to pair up Xmi’s and branches of ω1 with the branches of ω2, with
∑

Xmi = Xm. But

splitting Xm into Xmi’s and summing over all ways to apply these to different branches, is the same as

applying Xm to the whole tree.

Lemma 4.6. The following identity holds:

XmωXn =
∑

r1+r2=n

(
n

r2

)
(Xm+r1 ↓r2 ω).

Proof. We can write ω = τ1 . . . τk and Xn = Xn1 . . . Xnp , with τj ’s and Xnq ’s primitive, then:

XmωXn =Xmτ1 . . . τkX
n

=Xmτ1 . . . τk−1X
n1τkX

n2 . . .Xnp +Xmτ1 . . . τk−1(↓
n1 τk)X

n2 . . . Xnp

=Xmτ1 . . . τk−2X
n1τk−1τkX

n2 . . .Xnp +Xmτ1 . . . τk−2(↓
n1 τk−1)τkX

n2 . . .Xnp

+Xmτ1 . . . τk−1(↓
n1 τk)X

n2 . . . Xnp

= . . .

=Xm+n1τ1 . . . τkX
n2 . . . Xnp +Xm(↓n1 τ1 . . . τk)X

n2 . . .Xnp

=Xm+n1ωXn2 . . . Xnp +Xm(↓n1 ω)Xn2 . . . Xnp .

Repeat the process for each Xnq to get the statement.

We now define the deformed Grossman–Larson product ∗+ by:

25

(Xmω1) ∗+ (Xnω2) =(Xmω1)(1) · ((X
mω1)(2) ◮̂Xnω2)

Now using the above lemmas, we can rewrite the above expression:

(Xmω1)(1) · ((X
mω1)(2) ◮̂Xnω2) =

∑

m1+m2=m

n1+n2=n

(
n

n2

)
Xm1+n1(↓n2 (ω1)(1)) · (X

m2(ω1)(2) ◮̂ω2)

=
∑

m1+m2=m

n1+n2=n

(
n

n2

)
Xm1+n1(↓n2 (ω1)(1)) · ((ω1)(2) ◮̂(↑m2 ω2)− (↓m2 (ω1)(2)) ◮̂ω2).

Finally, we introduce the notation ↑mNω2
to mean ↑m acting only on the vertices of ω2, including the root.

Then we can rewrite:

(Xmω1) ∗+ (Xnω2) =↑mNω2

∑

n=n1+n2

(
n

n2

)
Xn1(↓n2 (ω1)(1)) · ((ω1)(2) ◮̂ω2). (24)

Proposition 4.7. (T+, ∗+,∆�) is a Hopf algebra.

Proof. This is a standard result for the enveloping algebra over a post-Lie algebra, see for example [9].

Extend the product ∗+ to be an action ∗+ : T+ ⊗ T → T in the natural way, meaning that we take ◮̂

to still mean deformed grafting on all non-root non-noise vertices and define ∗+ by equation (24). Denote

the dual coaction by ∆+ : T → T+ ⊗ T. Let H+ = (T+,�,∆+) be the dual Hopf algebra and let G+ be its

group of characters. We define the recentering group for our regularity structure by G = {Γg = (g⊗ id)∆+ :

g character of H+}.

Lemma 4.8. The recentering maps Γg : T → T satisfy

|Γgω − ω| < |ω|

for all ω ∈ T and all g ∈ H+.

Proof. Since edge decorations contribute negatively to the regularity, and vertex decorations contribute

positively, we have |x ∗+ y| = |x| + |y|. Hence, if ω is homogeneous with regularity β, we have ∆+(ω) ∈

⊕m+n=β
m≥0

T+
m ⊗ Tn. The component in T+

0 ⊗ Tn is exactly 1⊗ ω. Every other component in ∆+(ω) must be

of regularity less than β in the right tensor. So Γgω = (g ⊗ id)∆+(ω) = ω + lower regularity terms.

We would now like to say that (A,T,G) is a regularity structure, where A is the set of regularities.

However, this is not completely accurate as the set A is not bounded from below. This issue was dealt with

in [4] in the following way. For each specific equation, one only needs to consider a specific subset of trees.

Hence they formulate the concept of trees generated by rules, where one is expected to find the rule from the

specific equation. If the rule has a property called subcritical, then it only generates finitely many negative

trees and one can build a regularity structure by restricting the (co)products to only trees generated by this

rule. We will not go into details on rules for planar trees, and instead just define:

Definition 4.9. A regularity structure built from restricting (A,T,G) to a subspace is called a planar regu-

larity structure.

Proposition 4.10. Restricting the planar regularity structure from Definition 4.9 to trees with no vertex

decorations and edge decorations D = Ξ recovers the rough path regularity structure from section 3.

26

Proof. This follows from the fact that there is no deformation if there are no vertex decorations, and that

the rough path regularity structure is obtained by applying the Guin-Oudom construction to non-deformed

grafting.

We are now interested in giving a combinatorial description of the action ∗+ and the coaction ∆+. This

is achieved by interpreting equation (24). In the action (Xmω1) ∗+ (Xnω2), some branches of ω1 are grafted

onto non-root vertices of ω2, where the grafting is done in the deformed sense and where branches grafted

on the same vertex respect their planar order. The remaining branches are merged into the root of ω2 in the

sense of the associative product. We can interpret this root-merging also as deformed grafting, but onto the

root. The term
(
n
n2

)
Xn1(↓n2 (ω1)(1)) is a generic deformed term. Letting n1 = n− ℓ and n2 = ℓ, we could

rewrite it as
(
n
ℓ

)
Xn−ℓ(↓ℓ (ω1)(1)). We note that this is exactly a deformed grafting, as we are simultaneously

subtracting ℓ from the root decoration and from the decorations of the grafted edges, together with the

appropriate combinatorial coefficient. Hence we can describe this as deformed-grafting ω1 onto ω2 where we

include the root as a valid vertex to graft on. Finally, the root decoration Xm of Xmω1 gets split over all

vertices in ω2 in the sense of ↑mNω2
. We illustrate this with an example:

Example 4.11.

b c

δ

β γ

∗+ a

ω

α

=
∑

δ=δ1+δ2,ℓ1,ℓ2

(
δ

δ1, δ2

)
(

(
ω

ℓ1, ℓ2

)
b− ℓ1 c− ℓ2 a

ω + δ1 − ℓ1 − ℓ2

β γ α+ δ2

+

(
ω

ℓ1

)(
α

ℓ2

)

b− ℓ1 a

c− ℓ2

ω + δ1 + ℓ1

β α+ δ2 − ℓ2

γ

+

(
ω

ℓ2

)(
α

ℓ1

)

c− ℓ2 a

b − ℓ1

ω + δ1 − ℓ2

γ α+ δ2 − ℓ1

β

+

(
α

ℓ1, ℓ2

)

a

b− ℓ1 c− ℓ2

ω + δ1

α+ δ2 − ℓ1 − ℓ2

β γ

).

We now want to describe the coaction ∆+. Let Xnω be a generic element in T. We say that a subset c

of edges in Xnω is a left admissible cut if:

1. The set c does not contain any noise edges.

2. Any path from the root of ω to a leaf of ω contains at most one edge in c.

3. If e ∈ c is an edge in the cut, then every other edge that is outgoing from the same vertex as e and is

to the left of e in the planar embedding, is also in c.

For c an admissible cut of Xnω, we define the pruned part P c(Xnω) and the trunk T c(Xnω). The pruned

part P c(Xnω) is the tree obtained by cutting all of the edges in c and grafting these edges on a new

root with no decoration. Edges cut off from different vertices are shuffled. The trunk T c(Xnω) is the

tree obtained by removing the edges in c from ω and keeping the part that is connected to the root. For

P c(Xnω), T c(Xnω) being the trunk and the pruned part for the same cut c, we define the deformed tensor

product P c(Xnω)⊗̂T c(Xnω) as the sum over all tensors P c(Xnω) ⊗ T n(Xnω) where we simultaneously

increase the decorations of vertices in the right tensor and by the same amount increase the decoration of

the edge in the left tensor that was cut off from the vertex. See Example 4.13 below, where in the rightmost

term on the top line we add ℓ1 to a vertex decoration and to the edge that was cut off from this vertex.

Multiplied by the appropriate combinatorial factor, being the reciprocal of what the grafting coefficient

would have been. We furthermore sum over all ways to decrease decorations of vertices in the right tensor

while increasing the decoration of the root in the left tensor by the same amount, see the root decoration n

in Example 4.13.

Proposition 4.12. The coproduct ∆+ can be described by left admissible cuts by:

∆+(Xnω) =
∑

c

P c(Xnω)⊗̂T c(Xnω).

27

Proof. The coaction ∆+(Xnω), being dual to ∗+, is a weighted sum (over some choice of basis) of elements

x, y such that x ∗+ y contains Xnω as a summand. This means that the skeletons of x, y have to be given by

left admissible cuts. Then we sum over all ways to decorate these skeletons such that the resulting product

has a term with the correct decoration, and multiply by the appropriate weights.

Example 4.13. In the following computation, note that the sums are finite as we require the left tensor to

have positive regularity.

∆+(
b c

a

δ

β γ

α

) =1⊗
b c

a

δ

β γ

α

+
b c

a

δ

β γ

α

⊗ 1 +
∑

n=n1+n2+n3,ℓ1

1(
n

n1,n2,n3

)(
δ+ℓ1−n1

ℓ1

) b+ ℓ1

n

β

⊗
c

a

δ + ℓ1 − n1

γ − n2

α− n3

+
∑

n=n1+n2+n3,ℓ1

1(
n

n1,n2,n3

)(
γ+ℓ1−n3

ℓ1

) a+ ℓ1

n

α

⊗ b c

δ − n1

β − n2 γ + ℓ1 − n3

+
∑

n=n1+n2,ℓ1,ℓ2

1(
n

n1,n2

)(
δ+ℓ1−n1

ℓ1

)(
γ+ℓ2−n2

ℓ2

) (b+ ℓ1 a+ ℓ2

n

β α

+ a+ ℓ2 b+ ℓ1

n

α β

)⊗ c

δ + ℓ1 − n1

γ + ℓ2 − n2

+
∑

n,ℓ1,ℓ2

1(
δ+ℓ1+ℓ2−n

ℓ1,ℓ2

)
b+ ℓ1 c+ ℓ2

a

n

β γ

α

⊗ δ + ℓ1 + ℓ2 − n +
∑

n=n1+n2+n3+n4

1(
n

n1,n2,n3,n4

) n ⊗
b c

a

δ − n1

β − n3 γ − n4

α− n2

.

4.2 The negative Hopf algebra

We follow the constructions from [6], but adapted for planar trees.

Let T− denote the subspace of T generated by planar trees of negative regularity. We define an action of

T− onto T by

τ1 ⋄ τ2 =
∑

v∈Ñτ2

τ1 ⋄v τ2,

where τ1 ∈ T −, τ2 ∈ T , Ñτ2 is the set of vertices in τ2 that are not adjacent to a noise edge and ⋄v means

insertion of τ1 into the vertex v. By inserting τ1 into v, we mean that we identify the root of τ1 with the

vertex v. The outgoing edges from v are interpreted as getting left-grafted onto τ1, i.e. we sum over all

ways to left-graft these edges onto vertices of τ1 such that the planar order is preserved when two edges are

grafted onto the same vertex. We sum over all ways to increase the decoration of vertices in τ1 such that

the sum of increases equals the decoration of v.

28

Example 4.14.

d1 d2

k1

k2 k3

⋄k5

d3

d4

d5

d6

d7

k4

k5

k7

k8

k9

k6

=
∑

k5=δ1+δ2+δ3

(
k5

δ1, δ2, δ3

)
(

d3

d4

d5

d6 d1 d2

d7

k4

k1 + δ1

k7

k8

k9 k2 + δ2 k3 + δ3

k6

+

d3

d4

d5

d1

d6

d2

d7

k4

k1 + δ1

k7

k8

k2 + δ2

k9

k3 + δ3

k6

+

d3

d4

d5

d1 d2

d6

d7

k4

k1 + δ1

k7

k8

k2 + δ2 k3 + δ3

k9

k6

+

d3

d6 d1

d4

d5

d2

d7

k4

k1 + δ1

k9 k2 + δ2

k7

k8

k3 + δ3

k6

+

d3

d1

d4

d5

d6

d2

d7

k4

k1 + δ1

k2 + δ2

k7

k8

k9

k3 + δ3

k6

+

d3

d1

d4

d5

d2

d6

d7

k4

k1 + δ1

k2 + δ2

k7

k8

k3 + δ3

k9

k6

+

d3

d6 d1 d2

d4

d5

d7

k4

k1 + δ1

k9 k2 + δ2 k3 + δ3

k7

k8

k6

+

d3

d1

d6

d2

d4

d5

d7

k4

k1 + δ1

k2 + δ2

k9

k3 + δ3

k7

k8

k6

+

d3

d1 d2

d4

d5

d6

d7

k4

k1 + δ1

k2 + δ2 k3 + δ3

k7

k8

k9

k6

).

We can restrict ⋄ to be an action of T− onto itself, then we call it the insertion product.

Lemma 4.15. The algebra (T−, ⋄) is pre-Lie.

Proof. It is straightforward to see that

x ⋄ (y ⋄ z)− (x ⋄ y) ⋄ z

is the sum over all possible ways to insert x and y into different vertices of z, since the terms where x are

inserted into vertices of y cancels. Note that inserting x and y into the same vertex of z is the same as

inserting x into the root of y, hence it cancels. For the same reason, we have that

y ⋄ (x ⋄ z)− (y ⋄ x) ⋄ z

is also a sum over all possible ways to insert x and y into different vertices of z. Hence the two expressions

are equal, which means that the algebra is pre-Lie.

We now deform the action ⋄ in the same way as was done for non-planar trees in [6]. Let the deformed

action be defined by:

τ1 ⋄̂ τ2 =
∑

v∈Ñτ2

τ1 ⋄̂v τ2,

where ⋄̂v means insertion of τ1 into the vertex v. By inserting τ1 into v, we mean that we identify the root

of τ1 with the vertex v. The outgoing edges from v1 are interpreted as getting deformed left-grafted onto τ1,

i.e. we sum over all ways to left-graft these edges onto vertices of τ1 such that the planar order is preserved

when two edges are grafted onto the same vertex and we deform each of the edges in this grafting. We sum

over all ways to increase the decoration of vertices in τ1 such that the sum of increases equals the decoration

of v.

29

Example 4.16.

d1 d2

k1

k2 k3

⋄̂k5

d3

d4

d5

d6

d7

k4

k5

k7

k8

k9

k6

=
∑

k5=δ1+δ2+δ3,ℓ1,ℓ2

(
k5

δ1, δ2, δ3

)
(

(
k1

ℓ1, ℓ2

)

d3

d4 − ℓ1

d5

d6 − ℓ2 d1 d2

d7

k4

k1+δ1
−ℓ1−ℓ2

k7

k8

k9 k2 + δ2 k3 + δ3

k6

+

(
k1
ℓ1

)(
k2
ℓ2

)

d3

d4 − ℓ1

d5

d1

d6 − ℓ2

d2

d7

k4

k1 + δ1 − ℓ1

k7

k8

k2 + δ2 − ℓ2

k9

k3 + δ3

k6

+

(
k1
ℓ1

)(
k3
ℓ2

)

d3

d4 − ℓ1

d5

d1 d2

d6 − ℓ2

d7

k4

k1 + δ1 − ℓ1

k7

k8

k2 + δ2 k3 + δ3 − ℓ2

k9

k6

+

(
k1
ℓ2

)(
k2
ℓ1

)

d3

d6 − ℓ2 d1

d4 − ℓ1

d5

d2

d7

k4

k1 + δ1 − ℓ2

k9 k2 + δ2 − ℓ1

k7

k8

k3 + δ3

k6

+

(
k2

ℓ1, ℓ2

)

d3

d1

d4 − ℓ1

d5

d6 − ℓ2

d2

d7

k4

k1 + δ1

k2+δ2
−ℓ1−ℓ2

k7

k8

k9

k3 + δ3

k6

+

(
k2
ℓ1

)(
k3
ℓ2

)

d3

d1

d4 − ℓ1

d5

d2

d6 − ℓ2

d7

k4

k1 + δ1

k2 + δ2 − ℓ1

k7

k8

k3 + δ3 − ℓ2

k9

k6

+

(
k1
ℓ2

)(
k3
ℓ1

)

d3

d6 − ℓ2 d1 d2

d4 − ℓ1

d5

d7

k4

k1 + δ1 − ℓ2

k9 k2 + δ2 k3 + δ3 − ℓ1

k7

k8

k6

+

(
k2
ℓ2

)(
k3
ℓ1

)

d3

d1

d6 − ℓ2

d2

d4 − ℓ1

d5

d7

k4

k1 + δ1

k2 + δ2 − ℓ2

k9

k3 + δ3 − ℓ1

k7

k8

k6

+

(
k3

ℓ1, ℓ2

)

d3

d1 d2

d4 − ℓ1

d5

d6 − ℓ2

d7

k4

k1 + δ1

k2 + δ2 k3 + δ3 − ℓ1 − ℓ2

k7

k8

k9

k6

).

Lemma 4.17. The following identity holds:

τ1 ⋄̂v τ2 = (Pv(τ2) ∗+ τ1) ⊲v Tv(τ2),

where Pv(τ2) is the subtree of τ2 that has v as a root, and Tv(τ2) is the tree obtained by removing all branches

attached to v in τ2 and setting the decoration of v to zero. The product ⊲v means identifying the root of the

left argument with the vertex v in the right argument.

Proof. It is clear that the definition of ⋄̂ agrees with the combinatorial description of ∗+ from Section 4.1.

Proposition 4.18. The algebra (T−, ⋄̂) is pre-Lie.

Proof. The proof for Proposition 3.21 in [6] applies here, by using Lemma 4.17.

Because (T−, ⋄̂) is pre-Lie, we can use the Guin-Oudom construction [18] to extend ⋄̂ to the symmetric

algebra S(T−) by:

1 ⋄̂ω =ω,

τ1ω ⋄̂ τ2 =τ1 ⋄̂(ω ⋄̂ τ2)− (τ1 ⋄̂ω) ⋄̂ τ2,

ω1 ⋄̂(ω2ω3) =((ω1)(1) ⋄̂ω2)((ω1)(2) ⋄̂ω3),

for τ1, τ2 ∈ T− and ω, ω1, ω2, ω3 ∈ S(T−).

30

Lemma 4.19. The expression

τ1 . . . τn ⋄̂ω,

with τi ∈ T− and ω ∈ S(T−), can be interpreted as a sum over all ways to pair τ ′is with vertices in ω and

deformed insert each τi into their respective vertex. If the number of τ ′is exceed the number of vertices in ω,

the expression is zero.

Proof. Note that τ1τ2 ⋄̂ω = τ1 ⋄̂(τ2 ⋄̂ω) − (τ1 ⋄̂ τ2) ⋄̂ω means deformed insertion of τ1 into τ2 ⋄̂ω, with the

terms where τ1 is deformed inserted into τ1 removed. Hence both τ1, τ2 are deformed inserted into vertices

of ω. Furthermore, they most be inserted into different vertices, because the term in (τ1 ⋄̂ τ2) ⋄̂ω where τ1 is

inserted into the root of τ2 cancels out the term in τ1 ⋄̂(τ2 ⋄̂ω) where both trees are inserted into the same

vertex. The same argument can be made inductively for n ≥ 2.

We now define a product ∗− on S(T−) by:

ω1 ∗− ω2 =(ω1)(1)((ω1)(2) ⋄̂ω2).

Lemma 4.20. (S(T−), ∗−,∆�) is a Hopf algebra.

Proof. This is a standard result for the Guin-Oudom construction.

We call (S(T−), ∗−,∆�) the Hopf algebra for negative renormalisation.

Recall that ⋄̂ was also an action ⋄̂ : T−⊗T → T. We now extend this to an action ⋄̂ : S(T−)⊗T → T by:

τ1ω ⋄̂ τ2 = τ1 ⋄̂(ω ⋄̂ τ2)− (τ1 ⋄̂ω) ⋄̂ τ2,

for τ1 ∈ T−, ω ∈ S(T−) and τ2 ∈ T. Denote the dual coaction by ∆− : T → S(T−) ⊗ T. Now recall

Definition 3.9 for admissible partitions to describe renormalisation of rough paths. We will use an almost

identical definition to describe ∆−, with the major difference being that we now need to take in account

decorations when we contract subtrees.

Definition 4.21. Let τ ∈ T be a tree and let τ1, . . . , τn be a set of disjoint (not necessarily spanning) subtrees

of τ . We say that τ1, . . . , τn is T−-admissible if the following conditions hold:

1. If e is an edge in τi and e′ is an edge in τ that is outgoing from the same vertex as e, and if e′ is to

the right of e in the planar embedding, then e′ is in τi.

2. If e = (v1, v2) is a noise edge in τ then either both v1 and v2 belong to the same subtree, or neither v1

or v2 belong to any subtree.

3. Each τi has negative regularity.

For τ1, . . . , τn T−-admissible, denote by τ/τ1 . . . τn the tree obtained by contracting each τi into a single

vertex. For each contraction, sum over all ways to reduce the decoration of vertices in τi and putting the sum

of the reductions onto the vertex the subtree was contracted into. Furthermore, for every edge that is outgoing

from the subtree, sum over all ways to simultaneously increase the typing of the edge and the decoration of its

adjacent vertex in the subtree (such that the regularity of the subtree remains negative). Everything weighted

by the appropriate combinatorial factor.

Proposition 4.22. The coaction ∆− can be described by:

∆−(τ) =
∑

τ1,...,τn

T−-admissible

τ1 . . . τn ⊗ τ/τ1 . . . τn.

31

Proof. Ignoring the decorations of the tree, the situation is exactly the same as for renormalisation of planarly

branched rough paths. Hence we must contract the same type of subtrees as in that case. It remains to give

the trees the correct decorations. Edges going out of a subtree are dually described as one subtree being

deformed-grafted onto another, hence we have to sum over ways to increase the decoration. Dually, the

vertex we are inserting the subtree into, has its decoration spread out over all vertices in the subtree, hence

we have to sum over all ways to reverse this.

Corollary 4.22.1. Restricting ∆− to trees with no vertex decorations and edge decorations D = Ξ recovers

the coaction from section 3 for renormalising planarly branched rough paths.

Example 4.23. Let Ξ denote a noise edge, then:

∆−(
d1 d2

d3

Ξ

k1

k2 k3

k4

k5) =
∑

δ=δ1+···+δ4

1(
δ

δ1,...,δ4

)
d1 d2

d3

Ξ

k1 − δ1

k2 − δ2 k3 − δ3

k4 − δ4

k5 ⊗ δ

+
∑

δ,ℓ1,ℓ2

1(
k1+ℓ1+ℓ2−δ

ℓ1,ℓ2

) Ξ

k1 − δ + ℓ1 + ℓ2

k5

⊗
d1 + ℓ1 d2 + ℓ2

d3

δ

k2 k3

k4

+
∑

δ=δ1+δ2,ℓ1,ℓ2

1(
δ

δ1,δ2

)(
k1+ℓ1−δ1

ℓ1

)(
k2+ℓ2−δ2

ℓ2

) d2 Ξ

k1 − δ1 + ℓ1

k3 − δ2 + ℓ2 k5

⊗ (d1 + ℓ1 d3 + ℓ2

δ

k2 k4

+ d3 + ℓ2 d1 + ℓ1

δ

k4 k2

)

+
∑

δ=δ1+···+δ3,ℓ1

1(
δ

δ1,...,δ3

)(
k1+ℓ1−δ1

ℓ1

)
dw

d3

Ξ

k1 − δ1 + ℓ1

k3 − δ2

k4 − δ3

k5 ⊗ d1 + ℓ1

δ

k2

+
∑

δ=δ1+...,δ3,ℓ1

1(
δ

δ1,...,δ3

)(
k3+ℓ1−δ3

ℓ1

) d1 d2 Ξ

k1 − δ1

k2 − δ2 k3 − δ3 + ℓ1 k5

⊗ d3 + ℓ1

δ

k4

+
∑

δ,ℓ1,

δ′=δ′
1
+δ′

2

1(
δ′

δ′
1
,δ′

2

)(
k1+ℓ1+ℓ2−δ1

ℓ1,ℓ2

) Ξ

k1 − δ + ℓ1 + ℓ2

k5

d3

k3 − δ′1

k4 − δ′2

⊗ d1 + ℓ1 d2 + ℓ2

δ

k3 δ′

,

where we note that the sums are finite as we interpret any term in the left tensor, that has positive regularity,

as zero. Note that we do not include subtrees consisting of a single vertex, as these always has positive

regularity. Also note that we do not subtract decorations from the vertex k5, as this would dually correspond

to grafting on a noise vertex.

4.3 Cointeraction

We are now interested in the cointeraction property

(Id⊗∆+)∆− = m1,3(∆− ⊗∆−)∆+, (25)

where

m1,3(a⊗ b⊗ c⊗ d) = ac⊗ b ⊗ d.

It is this property that makes the proof of Proposition 3.8 work, i.e., to show that the renormalised model is

a model for planarly branched rough paths. The cointeraction property is important for regularity structures

for the same reason. Because of this, we consider (25) important also for planar regularity structures.

In equation (25), the left ∆− in the right side of the equality will take an input argument from T+. This

is not problematic if one sees T+ as a subspace of T, but that is not the correct way to read the equation.

32

We want to define ∆− on T+ in such a way that it doesn’t contract any subtree containing the root. In

[4], this was achieved by giving the root that is added by ∆+ a special colour that is not allowed to be in

an admissible partition. In [6], the authors defined a coaction ∆−
non−root that does not contract subtrees

containing the root. For (planarly) branched rough paths, this was not an issue as no subtree containing

the root could be negative. In this paper, we will use the solution from [6] and we define ∆−
non−root as the

coaction that contracts all admissible partitions that do not contain the root.

This is however not sufficient to get the cointeraction property, as there is furthermore an issue with ∆+

projecting onto positive trees in its left tensor. This issue was solved for regularity structures, in [4], by

considering so-called extended decorations. We will consider the extended decorations later in the section,

but first we follow [6] and establish the cointeraction property when we forgo the projection part of ∆+.

Define ∆+
0 : T → T⊗T to be the same as ∆+, except for also keeping negative trees in the left tensor. We

now have to consider the completed tensor ⊗, as the deformation will give an infinite sum.

Proposition 4.24. The cointeraction property

(Id⊗∆+
0)∆

− = m1,3(∆−
non−root ⊗∆−)∆+

0 , (26)

holds.

Before we prove the proposition, we want to demonstrate the idea of the proof with an example. We know

that both sides of (26) will produce trees with the same skeletons, possibly only differing by the decorations,

because the cointeraction property holds for these coactions on undecorated trees. We have to show that

both sides agree also on the decorations. A skeleton from the left side of (25), applied to the tree ω, is

obtained by:

1. Fix a T−-admissible partition τ1, . . . , τn of ω.

2. Fix an admissible cut of ω that does not cut any edges internal to a τi.

3. Put τ1, . . . , τn in the leftmost tensor.

4. Contract the τi’s and perform the cut. Put the pruned part of the middle tensor, and the trunk in the

rightmost tensor.

The corresponding skeleton in the right side of (26) is obtained by first considering the same cut, and

then noting that τ1, . . . , τn can be split into one T−-admissible partition for the pruned part, and one T−-

admissible partition for the trunk. What needs to be shown is that both orders of operations will deform

the decorations in the same way.

Example 4.25. Consider the tree

d1 d2

d3 Ξ2

Ξ1

k1

k2 k3

k4 k5

k6 ,

together with the admissible cut d1, d2 and the T−-admissible partition

Ξ1

k1

k6

, d3 Ξ2

k3

k4 k5

.

We now want to first perform the deformed cut, followed by contraction of the partition. And then first

perform the contraction, followed by the cut. Performing the cut gives:

∑

δ,ℓ1,ℓ2

1(
k1+ℓ1+ℓ2−δ

ℓ1,ℓ2

)
d1 + ℓ1 d2 + ℓ2

d3 Ξ2

δ

k2 k3

k4 k5

⊗ Ξ1

k1 − δ + ℓ1 + ℓ2

k6

.

33

Then the contraction gives the following term in the right side of (26):

m1,3
∑

δ,ℓ1,ℓ2

1(
k1+ℓ1+ℓ2−δ

ℓ1,ℓ2

) [(
∑

n=n1+n2

1(
n

n1,n2

) d3 Ξ2

k3 − n1

k4 − n2 k5

⊗ d1 + ℓ1 d2 + ℓ2

δ

k2 n

) (27)

⊗(
∑

m

Ξ1

k1 − δ1 + ℓ1 + ℓ2 −m

k6

⊗ m)].

If we instead were to first do the contraction, we get:

∑

n=n1+n2
µ,κ1,κ2

1(
n

n1,n2

)(
k1+κ1+κ2−µ

κ1,κ2

) d3 Ξ2

k3 − n1

k2 − n2 k5

Ξ1

k1 − µ+ κ1 + κ2

k6

⊗ d1 + κ1 d2 + κ2

µ

k2 n

.

Then performing the cut gets us the following term in the left side of (26):

∑

n=n1+n2
µ,κ1,κ2

1(
n

n1,n2

)(
k1+κ1+κ2−µ

κ1,κ2

) d3 Ξ2

k3 − n1

k2 − n2 k5

Ξ1

k1 − µ+ κ1 + κ2

k6

⊗[
∑

ǫ,κ′
1
,κ′

2

1(
µ+κ′

1
+κ′

2
−ǫ

κ′
1
,κ′

2

) d1+κ1

+κ′
1

d2+κ2

+κ′
2

ǫ

k2 n

⊗ µ− ǫ+ κ′
1 + κ′

2]. (28)

The claim is now that (27) and (28) are equal. Note that we can match up the decorations by identifying:

m =µ− ǫ+ κ′
1 + κ′

2,

δ =ǫ,

ℓ1 =κ1 + κ′
1,

ℓ2 =κ2 + κ′
2.

It remains to show that the combinatorial coefficients agree. For fixed δ,m, ℓ1, ℓ2, n1, n2 The coefficient in

(27) is:

1(
k1+ℓ1+ℓ2−δ

ℓ1,ℓ2

)(
n

n1,n2

) ,

and the corresponding coefficient in (28) is:

∑

κ′
1
,κ′

2

1(
n

n1,n2

)(
k1+ℓ1+ℓ2−m−δ
ℓ1−κ′

1
,ℓ2−κ′

2

)(
m

κ′
1
,κ′

2

) .

The claim now follows from Chu–Vandermonde’s identity:

∑

κ′
1
,κ′

2

(
(k1 + ℓ1 + ℓ2 − δ)−m

ℓ1 − κ′
1, ℓ2 − κ′

2

)(
m

κ′
1, κ

′
2

)
=

(
k1 + ℓ1 + ℓ2 − δ

ℓ1, ℓ2

)
.

We are now ready to generalise the above example into a proof for Proposition 4.24.

Proof. We have already seen that we can match the skeletons of both sides of equation (26). Suppose that

we have fixed a cut c and a partition τ1, . . . , τn of the tree τ , such that the cut does not include any edges

internation to a τi. Note that ∆− will only change the decorations on vertices in each τi, the decoration

of the vertex the trees are contracted into and the decoration of edges outgoing from that vertex, also note

that ∆+ will only change the decorations of the edges in c and the vertices in the trunk T c(τ). Hence we

can conclude that the two sides of (26) will agree in terms of decorations and combinatorial coefficients for

all τi that are above the cut, i.e. are in P c(τ).

Next consider the case where a τi is below the cut, but not adjacent to a cut edge. First doing the cut will

reduce the decoration of all non-noise vertices in P c(τ). If the root of the cut branch has decoration δ, then

the vertices in T c(τ) are reduced by δ1, . . . , δm1
, all summing to δ and with coefficient

(
δ

δ1,...,δm

)−1
. Say that

34

δ1, . . . , δk belong to τi. Then doing the contraction will again reduce the decoration of all vertices in τi, say

by κ1, . . . , κk, and the vertex that τi is contracted into will have decoration κ = κ1+ · · ·+κk, with coefficient(
κ

κ1,...,κk

)−1
. First doing the contraction will reduce the decorations of the vertices in τi by κ′

1, . . . , κ
′
k and

put the decoration κ′ = κ′
1 + · · · + κ′

k on the contracted vertex. Doing the cut after this will reduce the

decoration of the contracted vertex to κ′ − δ′1, where δ′ = δ′1 + · · ·+ δ′m2
is the decoration of the root added

by the cut. We match up the decorations of the two orders of operations by κ = κ′ − δ′1, κ′
j = κj + δj ,

δ′1 = δ1 + · · ·+ δk, δ
′
1+q = δk+q. Then we need to show that the corresponding coefficients

∑

δ1,...,δk

1(
δ

δ1,...,δm1

)(
κ

κ1,...,κk

)

and
(

κ′

κ′
1
,...,κ′

k

)(
δ′

δ′
1
,...,δ′m2

)−1
are equal. This follows by the rewriting

(
δ

δ1, . . . , δm1

)(
κ

κ1, . . . , κk

)
=

(
δ′

δ′1, . . . , δ
′
m2

)(
δ′1

δ1, . . . , δk

)(
κ′ − δ′1

κ1 − δ1, . . . , κk − δk

)

and Chu–Vandermonde’s identity.

Finally we need to consider the case where we cut an edge that is outgoing from a τi. We have already

seen that the deformations coming from the root decoration of the cut and from the contracted decoration

will match. It remains to check the deformation of the cut edge. Let nv denote the decoration of the

vertex in τi that the edge is outgoing from. First performing the cut will increase the decoration by ℓ, and

have a coefficient of
(
nv+ℓ

ℓ

)−1
. Then doing the contraction will not deform the edge. Instead doing the

contraction first, will increase the decoration by κ and will have a coefficient of
(
nv+κ

κ

)−1
. Performing the

cut after the contraction will then increase the decoration by κ′ and have a coefficient of
(
nv+κ+κ′

κ′

)−1
. We

can match the decoration of both cases by identifying ℓ = κ + κ′, and the corresponding coefficients agree

by Chu–Vandermonde’s identity.

The reason the cointeraction property fails for ∆+ : T → T+ ⊗ T, where we project onto positive trees,

is because it matters if we contract a negative subtree before or after we do the projection. Consider the

above Example 4.25. If we were to first do the cut using ∆+, we would get the term:

∑

δ,ℓ1,ℓ2

1(
k1+ℓ1+ℓ2−δ

ℓ1,ℓ2

)
d1 + ℓ1 d2 + ℓ2

d3 Ξ2

δ

k2 k3

k4 k5

⊗ Ξ1

k1 − δ + ℓ1 + ℓ2

k6

,

where we only keep positive trees in the left tensor. The left tree contains the negative subtree:

d3 Ξ2

k3

k4 k5

.

Contracting this subtree with ∆− will improve the regularity of the tree. This improved regularity means

that we could deform by bigger ℓ1, ℓ2 before the tree gets to negative regularity. Hence, if we contract before

we cut, our sum will contain the extra terms of these bigger ℓ1, ℓ2 compared to if we cut before we contract.

We follow [4] and solve this using extended decorations. Consider the space Tex, given by trees where

each node has two decorations. One of the node decorations is the usual Nd decoration. The other node

decoration, which we call the extended decoration, is in the set of regularities A. We now define a grading

| · |+ on Tex, given as the regularity of a tree in the usual sense plus all extended decorations. Let T+
ex be

the subspace of trees that are positive with respect to | · |+. We now let ∆+
ex : Tex → T+

ex ⊗ T be the same

as ∆+ except that every node keeps its extended decoration, and we project onto positive trees according to

the | · |+-degree. We furthermore let ∆−
ex : Tex → T− ⊗Tex be the same as ∆−, except that the | · |+-degree

of a contracted subtree gets put as the extended decoration on the vertex the tree is contracted into, and we

let ∆−
ex−non−root : T

+
ex → T− ⊗ T+

ex be the same as ∆−
ex except that we do not contract subtrees containing

the root.

35

Proposition 4.26. The cointeraction property

(Id⊗∆+
ex)∆

−
ex = m1,3(∆−

ex−non−root ⊗∆−
ex)∆

+
ex

holds.

Proof. We know that both sides of the equation would agree as infinite sums, and possibly only differ by

which terms we keep in the projection done by ∆+
ex. However, every term in the right tensor of ∆−

ex has the

same | · |+-degree as the input tree. Therefore the projection done by ∆+
ex will truncate the infinite sum at

the same deformation parameters regardless if negative subtrees has been contracted or not.

References

[1] Al-Kaabi, M. J. H., Ebrahimi-Fard, K., Manchon, D., and Munthe-Kaas, H. Z. Algebraic

aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov’s double exponential

and special polynomials, 2022.

[2] Bellingeri, C., Friz, P. K., Paycha, S., and Preiss, R. Smooth rough paths, their geometry and

algebraic renormalization. Vietnam J. Math 50 (2021).

[3] Bruned, Y., Chevyrev, I., Friz, P., and Preiss, R. A rough path perspective on renormalization.

Journal of Functional Analysis 277 (01 2017).

[4] Bruned, Y., Hairer, M., and Zambotti, L. Algebraic renormalisation of regularity structures.

Inventiones mathematicae 215 (03 2019).

[5] Bruned, Y., and Katsetsiadis, F. Post-Lie algebras in regularity structures, 2022.

[6] Bruned, Y., and Manchon, D. Algebraic deformation for (S)PDEs. Journal of the Mathematical

Society of Japan (2022).

[7] Connes, A., and Kreimer, D. Hopf algebras, renormalization and noncommutative geometry. Comm.

in Math. Phys. 199 (1998), 203–242.

[8] Curry, C., Ebrahimi-Fard, K., Manchon, D., and Munthe-Kaas, H. Planarly branched rough

paths and rough differential equations on homogeneous spaces. Journal of Differential Equations 269

(04 2018).

[9] Ebrahimi-Fard, K., Lundervold, A., and Munthe-Kaas, H. On the Lie enveloping algebra of a

post-Lie algebra. Journal of Lie Theory 25 (10 2014).

[10] Foissy, L. Extension of the Product of a Post-Lie Algebra and Application to the SISO Feedback

Transformation Group: The Abel Symposium, Rosendal, Norway, August 2016. 01 2018, pp. 369–399.

[11] Gubinelli, M. Ramification of rough paths. Journal of Differential Equations 248 (2010), 693–721.

[12] Hairer, E., Wanner, G., and Lubich, C. Geometric Numerical Integration, 2 ed. Springer Series

in Computational Mathematics. Springer Berlin, Heidelberg, 2006.

[13] Hairer, M. A theory of regularity structures. Invent Math 198 (03 2013).

[14] Lundervold, A., and Munthe-Kaas, H. Backward error analysis and the substitution law for Lie

group integrators. Foundations of Computational Mathematics 13 (2013), 161–186.

[15] Lyons, T. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14, 2 (1998),

215–310.

36

[16] Munthe-Kaas, H., and Føllesdal, K. Lie-Butcher series, geometry, algebra and computation.

In Discrete Mechanics, Geometric Integration and Lie-Butcher Series (2018), K. Ebrahimi-Fard and

M. Barbero Liñán, Eds., vol. 267 of Springer Proceedings in Mathematics & Statistics, Springer, Cham,

pp. 71–113.

[17] Munthe-Kaas, H., and Wright, W. On the Hopf algebraic structure of Lie group integrators.

Foundations of Computational Mathematics 8 (04 2008), 227–257.

[18] Oudom, J.-M., and Guin, D. On the Lie enveloping algebra of a pre-lie algebra. Journal of K-Theory

2, 1 (2008), 147–167.

[19] Rahm, L. Translations of rough paths in combinatorial Hopf algebras, 2021.

[20] Tapia, N., and Zambotti, L. The geometry of the space of branched rough paths. Proc. London

Math. Soc. 121, 3 (2020), 220–251.

37

	1 Introduction
	2 Preliminaries
	2.1 Hopf algebras on rooted trees, planar and non-planar
	2.2 Rough paths in a combinatorial Hopf algebra, and their translations
	2.3 Planarly branched rough paths
	2.4 Regularity Structures
	2.5 Branched rough paths as a special case of regularity structures

	3 Planarly branched rough paths as regularity structures
	4 Planar regularity structures
	4.1 The positive Hopf algebra
	4.2 The negative Hopf algebra
	4.3 Cointeraction

