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HERMITIAN GEOMETRY OF LIE ALGEBRAS WITH ABELIAN IDEALS

OF CODIMENSION 2

YUQIN GUO AND FANGYANG ZHENG

Abstract. We examine Hermitian metrics on unimodular Lie algebras which contains a J-
invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like
and all Bismut torsion-parallel metrics on such Lie algebras.
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1. Introduction and statement of results

A major difficulty in the study of differential geometry of Hermitian manifolds is the algebraic
complexity of the curvature tensor, which lack of symmetry due to the presence of torsion. When
the universal cover of the manifold is a Lie group, the situation is much simpler in the sense
that every point looks like every other point. But even in this case the torsion and curvature
of the Hermitian metric already present rich and interesting algebraic complexity, which could
serve as good sample spaces as well as provide guidance towards the study of the general case.
For this reason, it makes sense to study Hermitian geometry of Lie groups.

Recall that a Lie-Hermitian manifold is a compact Hermitian manifold (Mn, g) whose uni-
versal cover is (G, J, g), where G is an even-dimensional (connected and simply-connected) Lie
group, equipped with a left-invariant complex structure J and a left-invariant Riemannian metric
g compatible with J . The compactness of M forces G to be unimodular.

In the past decades, Lie-Hermitian manifolds were studied from various angles by A. Gray,
S. Salamon, L. Ugarte, A. Fino, L. Vezzoni, F. Podestà, D. Angella, A. Andrada, and others.
There is a vast amount of literature on this topic, here we will just mention a small sample: [6],
[13], [16], [20], [24], [26], [32], [39], [43], [45], and interested readers could start their exploration
there. For more general discussions on non-Kähler Hermitian geometry, see for example [1], [5],
[29], [41], [42] and the references therein.

The cases when G is nilpotent or when dimG ≤ 6 are relatively well-understood, while the
non-nilpotent and general dimensional cases are less clear. One exception is perhaps the case of
almost abelian groups, where the Lie algebra g of G has an abelian ideal of codimension one. A
number of interesting results were obtained about this special type, see for instance [2], [7], [9],
[12], [19], [21], [36], [37], [43] and the references therein for more details.
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Another special types of Lie-Hermitian manifolds are quotients of 2-step solvable Lie groups.
In the beautiful recent papers [27],[28], Freibert and Swann studied the Hermitian geometry of
such Lie groups, especially on balanced and pluriclosed (namely, SKT) structures.

The purpose of this article is two fold: on one hand we would like to demonstrate the
convenience of using complex coordinates in the study of Hermitian structures on Lie algebras,
and we would like to illustrate this point by summarizing some of the existing results about
almost abelian Lie algebras, and give hopefully somewhat simplified computation and argument
there. This will be treated in §3, where we will collect some known results on almost abelian
Lie algebras and also prove a couple of new ones, regarding Bismut torsion-parallel metrics and
astheno-Kähler metrics. The second purpose is to push this complex coordinate computation to
another very special type of Lie algebras: those which contain an abelian ideal of codimension
two. Note that such a Lie algebra is always solvable of step at most 3, but in general it will not
be solvable of step 2.

Let a be an abelian ideal of codimension 2 in a Lie algebra g of real dimension 2n. If J
is an integrable almost complex structure on g, then the J-invariant subspace aJ := a ∩ Ja

has codimension either 2 or 4 in g, and it is of codimension 2 if and only if Ja = a. In this
article we will focus on this simpler case, and mimic the study on almost abelian Lie algebras
to characterize some special types of Hermitian structures on such Lie algebras. This will be
carried out in §4. The main result is Proposition 5 below, which gives a description of all Bismut
torsion-parallel metrics on such Lie algebras.

We will prove the following statements regarding almost abelian Lie algebras or Lie algebras
with J-invariant abelian ideals of codimension 2. For an almost abelian Lie algebra g equipped
with a Hermitian structure (J, g), there always exists a unitary basis {e1, . . . , en} of the complex
vector space g

1,0 = {x−
√
−1Jx | x ∈ g} so that the structure equation of g takes the form

(1)





dϕ1 = −λϕ1 ∧ ϕ1,

dϕi = −vi ϕ1 ∧ ϕ1 +
n∑

j=2

Aij (ϕ1 + ϕ1) ∧ ϕj , 2 ≤ i ≤ n.

Here ϕ is the unitary coframe dual to e, λ ∈ R, v ∈ Cn−1, and A is a complex (n− 1)× (n− 1)
matrix. Such a frame will be called admissible for the Hermitian almost abelian Lie algebra.

Recall that a Hermitian metric is said to be Bismut torsion-parallel (BTP in short) if its
Bismut connection has parallel torsion tensor. It is called Bismut Kähler-like (BKL in short) if
the curvature tensor of the Bismut connection obeys all Kähler symmetries. An equivalent form
of a conjecture proposed by Angella, Otal, Ugarte, Villacampa in [3] states that BKL metrics
are always BTP. This was confirmed by Zhao and the second named author in [49].

Proposition 1. Let (g, J, g) be a Hermitian structure on an almost abelian Lie algebra. Then
g is Bismut torsion-parallel if and only if it is Bismut Kähler-like if and only if A+A∗ = 0 and
Av = 0 under any admissible frame.

Here and from now on A∗ stands for conjugate transpose tA. Note that g is unimodular if
and only if λ+ tr(A) + tr(A) = 0. So when g is unimodular, the skew-Hermitian property of A
implies that λ = 0, and one can choose a unitary frame e so that A is diagonal.

Recall that a Hermitian manifold (Mn, g) is said to be astheno-Kähler [33], if ∂∂(ωn−2) = 0,
where ω is the Kähler form of g. For almost abelian Lie algebras, we have the following

Proposition 2. Let (g, J, g) be a Hermitian structure on a unimodular almost abelian Lie
algebra. Assume that the complex dimension n ≥ 4. Then g is astheno-Kähler if and only if g
is pluriclosed if and only if [A∗, A] = 0 and one of the eigenvalue of A has real part equal to −λ

2
while the other eigenvalues have real part equal to 0.

The characterization for pluriclosed metrics on almost abelian Lie algebras were obtained by
Arroyo and Lafuente [7]. Note that when n = 3 the astheno-Kähler and pluriclosed conditions
coincide, so the above statement holds automatically.
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If one drops the assumption that g is unimodular, then from the proof of Proposition 2 we
know that g is astheno-Kähler if and only if [A∗, A] = 0 and the real part of the eigenvalues of
A satisfy the following condition:

There exists an integer 0 ≤ k ≤ n− 1 such that k of them equal to − (n−1−k)
2(n−2) λ while the other

n− 1− k of them equal to (k−1)
2(n−2)λ.

In the unimodular case, k is necessarily 1, so the real part of one eigenvalue of A equals −λ
2

while the real part of the other eigenvalues of A all equal to 0.
We remark that, the simplicity of the structure equation (1) enables one to explore Hermitian

properties on almost abelian Lie algebras with relative ease, and the above two propositions were
intended to serve as an illustration.

Next, let g be a Lie algebra equipped with a Hermitian structure (J, g), and let a ⊆ g be
a J-invariant abelian ideal of codimension 2. Then there always exists unitary frame e under
which the structure equation becomes

(2)

{
dϕ1 = −λϕ1ϕ1,

dϕ = −ϕ1ϕ1v − ϕ1
tXϕ+ ϕ1Y ϕ− ϕ1Z ϕ.

Here we wrote ϕ = t(ϕ2, . . . , ϕn) as a column vector, while λ ≥ 0, v ∈ Cn−1, and X , Y , Z are
complex (n− 1)× (n− 1) matrices satisfying

(3)

{
λ(X∗+ Y ) + [X∗, Y ]− ZZ = 0,

λZ − (Z tX + Y Z) = 0.

Such a unitary frame e will be called an admissible frame. Note that the algebraic data involves
three matrices satisfying a system of matrix equations and are tangled up, unlike the almost
abelian case. Also, when λ 6= 0, g is not 2-step solvable in general, although it is always 3-step
solvable.

Proposition 3. Let (g, J, g) be a Lie algebra with Hermitian structure and let a ⊆ g be a
J-invariant abelian ideal of codimension 2. Then under any admissible frame,

(i) g is unimodular if and only if λ− tr(X) + tr(Y ) = 0,
(ii) g is balanced if and only if tr(X) = tr(Y ) and v = 0,
(iii) g is Kähler if and only if v = 0, tZ = Z, and X = Y . When g is unimodular, g is

Kähler if and only if λ = 0, v = 0, Z = 0, and X = Y is normal. In this case there is
a unitary frame under which the structure equation becomes

dϕ1 = 0, dϕi = (aiϕ1 − aiϕ1)ϕi, 2 ≤ i ≤ n.

where a2, . . . , an are arbitrary complex numbers.
(iv) g is pluriclosed (SKT) if and only if it satisfies (3) and the equation below:

(4) XX∗ − Y X∗ + tZZ − ZZ + Y ∗Y − Y ∗X + λ(Y −X) = 0.

From items (ii) and (iv) above, one can write down explicit examples of balanced metrics or
pluriclosed metrics on such g. See §4 for more details. Similar to the almost abelian case, one
could also analyze the behavior of the Chern and Bismut curvature of g. In particular, one has
the following

Proposition 4. Let (g, J, g) be a Lie algebra with Hermitian structure and a be a J-invariant
abelian ideal of codimension 2. Then the Chern curvature satisfies the following

(i) g is Chern flat if and only if λ = 0, v = 0, Z = 0, [Y, Y ∗] = 0, and [Y,X∗] = 0. In this
case one can choose unitary frame so that Y is diagonal and X is block-diagonal in the
form (5) below;

(ii) The rank of the first Chern Ricci Ric(1) is at most 1, and it has the same sign with the
Chern scalar curvature s. In particular, Ric(1) = 0 ⇐⇒ s = 0 ⇐⇒ λ = 0 or λ =
−Re{tr(Y )};

(iii) If the second Chern Ricci Ric(2) ≥ 0, then R = 0;
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(iv) For the (first) Bismut Ricci curvature Ricb, its (2, 0)-part has rank 2 or 0, and its
(1, 1)-part has rank at most 1 if v = 0 and has rank at most 3 in general. g is Bismut
Ricci flat if and only if Xv = 0, Y ∗v + tZv = 0, and sb = 0, where the Bismut scalar
curvature sb is given by (6) below. In particular, g is Bismut Ricci flat when v = 0 and
λ = 0, or when v = 0 and λ = Re{tr(X)− 2tr(Y )}.

In the Chern flat case, since Y is normal and [X∗, Y ] = 0, we can choose a unitary frame e

so that Y is diagonal and X is block-diagonal in the following way:

(5) Y =




λ1In1

. . .

λrInr


 , X =




X1

. . .

Xr


 ,

where n1 + · · · + nr = n − 1 and λ1, . . . , λr are distinct, while each Xi is an arbitrary ni × ni

matrix. The Bismut scalar curvature in (iv) above is given by

(6) sb = −2|v|2 − λ
(
2λ+ 2tr(Y ) + 2tr(Y )− tr(X)− tr(X)

)
.

A Hermitian metric g with zero Bismut (first) Ricci curvature is said to be Calabi-Yau with
torsion, or CYT in short. In [21, Theorem 3.1], Fino and Paradiso characterized CYT metrics
on almost abelian Lie algebras, and item (iv) above is just analogous to their result.

Also analogous to the almost abelian case, for g with J-invariant abelian ideal of codimension
2, one could also ask when will the metric be Bismut torsion-parallel or Bismut Kähler-like. The
following is the main result of this article:

Proposition 5. Let (g, J, g) be a unimodular Lie algebra with Hermitian structure and a be a
J-invariant abelian ideal of codimension 2. Then g is Bismut Kähler-like if and only if there
exists a unitary frame under which the structure equation is given by (7) below. g is Bismut
torsion-parallel if and only if there exists a unitary frame under which the structure equation is
given by (7), or (8), or (9).

(7)






dϕ1 = 0,

dϕ2 = −v2ϕ1ϕ1,

dϕi = (aiϕ1 − aiϕ1)ϕi, 3 ≤ i ≤ n;

where v2 > 0 and a3, . . . , an are complex numbers.

(8)





dϕ1 = dϕ3 = 0,

dϕ2 = −v2ϕ1ϕ1 + p (ϕ1ϕ3 − ϕ1ϕ3),

dϕi = (aiϕ1 − aiϕ1)ϕi, 4 ≤ i ≤ n.

where v2 > 0, p > 0, and a4, . . . , an are complex numbers.

(9)






dϕ1 = 0,

dϕi = λiϕ1ϕi − λiϕ1

r+1∑

j=2

Wijϕj , 2 ≤ i ≤ r + 1,

dϕi = 0, r + 2 ≤ i ≤ 2r + 1,

dϕi = (aiϕ1 − aiϕ1)ϕi, 2r + 2 ≤ i ≤ n.

where r is an integer with 1 ≤ r ≤ n−2
2 , each ai is a complex number, S = diag{λ2, . . . , λr+1} > 0

and W is any unitary symmetric r × r matrix satisfying WS = SW .
Note that (7) and (8) are not balanced, while (9) is balanced. Analogous to the almost

abelian case, one could show that, for any unimodular Lie algebra with J-invariant abelian ideal
of codimension 2, if the metric is Chern Kähler-like, then it must be Chern flat. So again
there is no non-trivial example of compact Chern Kähler-like manifolds amongst this type of
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Lie algebras. Also analogous to the almost abelian case, for unimodular g with J-invariant
abelian ideal of codimension 2, when the complex dimension n ≥ 4, then one can write down
explicitly the matrix equation for the metric to be astheno-Kähler, in the form P = µI where
P is a matrix involving X , Y , Z and µ is a constant. The computation is strictly analogous but
slightly more tedious, and we will skip it here.

The article is organized as follows. In §2 we will set up notations and collect some basic
formula for Lie-Hermitian manifolds. In §3 we will recall some known properties about almost
abelian groups and also prove a couple of new ones: Propositions 1 and 2 stated above. In §4,
we will turn our attention to Lie algebras with J-invariant abelian ideals of codimension 2, and
prove a number of properties including Propositions 3 - 5 stated above.

2. Preliminary on Lie-Hermitian manifolds

In this section, we will collect some basic formula for Lie-Hermitian manifolds that will be
used later. We will follow the notations in [44].

Let (Mn, g) be a Lie-Hermitian manifold, with universal cover (G, J, g) where G is an even-
dimensional Lie group and J is a left-invariant complex structure on G, while g is a left-invariant
Riemannian metric on G compatible with J . As we mention before, the compactness ofM forces
G to be unimodular.

Denote by g the Lie algebra of G, and use the same letter J or g = 〈, 〉 to denote respectively
the almost complex structure or inner product on g corresponding to that of G. As is well
known, the integrability of J is characterized by the property

(10) [x, y]− [Jx, Jy] + J [Jx, y] + J [x, Jy] = 0, ∀ x, y ∈ g.

Denote by g
C the complexification of g, and by g

1,0 = {x−
√
−1Jx | x ∈ g} ⊆ g

C. The condition
(10) simply says that g1,0 is a complex Lie subalgebra of gC. Extend g = 〈, 〉 bi-linearly over C,
and let e = {e1, . . . , en} be a unitary basis of g1,0. Following [44], we will use

C
j
ik = 〈[ei, ek], ej〉, D

j
ik = 〈[ej , ek], ei〉

to denote the structure constants, or equivalently, under the unitary frame e we have

(11) [ei, ej ] =
∑

k

Ck
ijek, [ei, ej ] =

∑

k

(
Di

kjek −D
j
kiek

)
.

Note that g is unimodular if and only if tr(adx) = 0 for any x ∈ g, which is equivalent to

(12) g is unimodular ⇐⇒
∑

r

(
Cr

ri +Dr
ri

)
= 0, ∀ i.

We should note that two Lie-Hermitian manifolds could be holomorphically isometric to
each other, while their universal covers are not isomorphic as Lie groups. For instance, there
are Lie-Hermitian manifold Mn with non-abelian G whose metric turns out to be Kähler and
flat, thus forcing Mn to be a quotient of the abelian group Cn. In general it would be an
interesting question to determine when will two non-isomorphic Lie groups be holomorphically
isometric as Hermitian manifolds, but since our goal is primarily to find examples of Hermitian
manifolds satisfying special geometric conditions, we will ignore this more subtle issue of group
isomorphism here.

Next, let us denote by ∇ the Chern connection, and by T , R its torsion and curvature tensor.
Then one has

∇ei =
∑

j

θijej , θij =
∑

k

(
Γj
ikϕk − Γi

jk ϕk

)
, Γj

ik = D
j
ik,

where {ϕ1, . . . , ϕn} is the coframe dual to e. The torsion tensor T of ∇ has components

(13) T (ei, ej) = 0, T (ei, ej) =
∑

k

T k
ijek, T

j
ik = −C

j
ik −D

j
ik +D

j
ki.
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The only possibly non-zero components of R are Rij̄kℓ̄ = 〈Rei ēj ek, ēℓ〉, which are equal to

(14) Rij̄kℓ̄ =
∑

r

(
Dr

kiD
r
ℓj −Dℓ

riD
k
rj −D

j
riD

k
ℓr −Di

rjD
ℓ
kr

)
.

Denote by ω =
√
−1
∑

i ϕi ∧ϕi the Kähler form of the metric. Recall that Gauduchon’s torsion
1-form η ([30]) is defined by ∂ωn−1 = −η ∧ ωn−1. Its components are

(15) η =
∑

i

ηiϕi, ηi =
∑

r

T r
ri =

∑

r

Dr
ir,

where the last equality holds when g is unimodular (12). The structure equation takes the form:

(16) dϕi = −1

2

∑

j,k

Ci
jk ϕj ∧ ϕk −

∑

j,k

D
j
ik ϕj ∧ ϕk

Differentiate the above, we get the first Bianchi identity, which is equivalent to the Jacobi
identity in this case:

∑

r

(
Cr

ijC
ℓ
rk + Cr

jkC
ℓ
ri + Cr

kiC
ℓ
rj

)
= 0,(17)

∑

r

(
Cr

ikD
ℓ
jr +Dr

jiD
ℓ
rk −Dr

jkD
ℓ
ri

)
= 0,(18)

∑

r

(
Cr

ikD
r
jℓ − C

j
rkD

i
rℓ + C

j
riD

k
rℓ −Dℓ

riD
k
jr +Dℓ

rkD
i
jr

)
= 0.(19)

Next, denote by ∇b the Bismut connection of g, and let Γbj
ik = 〈∇b

ek
ei, ej〉 be the connection

coefficients under the frame e. We have

Γbj
ik = Γj

ik + T
j
ik = −C

j
ik +D

j
ki.

More generally, for any t ∈ R, denote by ∇(t) = (1 − t
2 )∇ + t

2∇b the t-Gauduchon connection
([31]). Its connection coefficients are given by

Γ
(t)j
ik = Γj

ik +
t

2
T

j
ik = (1− t

2
)Dj

ik +
t

2

(
− C

j
ik +D

j
ki

)
.

The following observation should be well-known to experts, and we give a proof here for readers’
convenience.

Lemma 1. Let g be a unimodular Lie algebra with a Hermitian structure (J, g), then g is always
Gauduchon, namely, ∂∂ωn−1 = 0. Here ω is the Kähler form of g.

Proof. By the defining equation of η, one gets

∂∂ωn−1 = (∂η + η ∧ η) ∧ ωn−1.

So g is Gauduchon if and only if χ = |η|2, where |η|2 =
∑

i |ηi|2 and χ =
∑

i ηi,̄i under any
unitary frame. Here and from now on the index after comma stands for covariant derivatives
with respect to the Chern connection ∇. Since Γj

ik = D
j
ik and g is unimodular, by (15) we have

χ =
∑

i

ηi,̄i =
∑

i,r

ηrΓi
ri =

∑

r

ηrηr = |η|2.

Therefore g is always Gauduchon. �

Now let us discuss the geometric meaning of the constants C and D. Note that J makes g
a complex Lie algebra when and only when D = 0, so the tensor D in a way measures how far
(g, J) is deviated from being a complex Lie algebra. When D = 0, we know from (14) that g is
Chern flat. Note that the converse of this not true: if the Hermitian manifold (G, J, g) is Chern
flat, then D might not be identically zero.

For the tensor C, C = 0 means [Jx, Jy] = [x, y] for any x, y ∈ g. In this case J is called an
abelian complex structure, representing a rather special type of Lie-Hermitian manifolds. The
condition D = −C is equivalent to g being a bi-invariant metric on G, and in this case the
Bismut connection ∇b ([8]) has coefficients Γb = 0, hence g is Bismut flat. A beautiful recent
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result of Lafuente and Stanfield [34], settling a question raised in [47], states that for any t 6= 0, 2
if a Hermitian manifold has flat t-Gauduchon connection ∇(t), then g must be Kähler. In the
special case of Lie-Hermitian manifolds, their result implies that

Proposition 6 ([34]). For any t 6= 0, 2, if (g, J, g) satisfies Γ(t) = 0, then g is Kähler, namely,

T = 0. In other words, if t 6= 0, 2, Dj
ik = −D

j
ki, and C = 2(1−t)

t
D, then C = D = 0 thus g is

abelian.

Note that for Lie-Hermitian manifolds, T = 0 does not imply g is abelian in general, as we
mentioned before. But in this particular case, since T = −C−D+ tD = −C−2D as tD = −D,
so when T = 0 we get C = −2D = −2(1 − 1

t
)D, which leads to D = 0 hence C = 0. We

remark that, the result of Lafuente and Stanfield is highly non-trivial even in the special case
of Lie-Hermitian manifolds.

Recall that a Hermitian metric g is called pluriclosed (also called strong Kähler with torsion,
or SKT in short in some literature), if its Kähler form ω satisfies ∂∂ω = 0. For Lie-Hermitian
manifolds, one has

Lemma 2. Let (g, J, g) be any Lie algebra with a Hermitian structure. It holds that

√
−1∂∂ω =

∑

i,j,k,ℓ

∑

r

(
−1

2
T r
ikC

r
jℓ − T

j
irD

k
rℓ + T

j
krD

i
rℓ

)
ϕiϕkϕjϕℓ.

In particular, g is pluriclosed if and only if

(20)
∑

r

(
−T r

ikC
r
jℓ − T

j
irD

k
rℓ + T

j
krD

i
rℓ + T ℓ

irD
k
rj − T ℓ

krD
i
rj

)
= 0

for any 1 ≤ i < k ≤ n and any 1 ≤ j < ℓ ≤ n.

Proof. From the structure equation (16), we have
√
−1∂ω = −

∑

i,j,k

T
j
ikϕiϕkϕj

√
−1∂∂ω = −d(

√
−1∂ω) =

∑

i,j,k

T
j
ik

(
(d(ϕiϕk))

2,1ϕj + ϕiϕk(dϕj)2,0
)

=
∑

i,j,k

T
j
ik

(
∑

p,q

(
D

p
iqϕpϕk +D

p
kqϕiϕp

)
ϕqϕj −

∑

p,q

1

2
C

j
pqϕiϕkϕpϕq

)

=
∑

i,j,k,ℓ

∑

r

(
−1

2
T r
ikC

r
jℓ − T

j
irD

k
rℓ + T

j
krD

i
rℓ

)
ϕiϕkϕjϕℓ

=
1

2

∑

i,j,k,ℓ

∑

r

(
−T r

ikC
r
jℓ − T

j
irD

k
rℓ + T

j
krD

i
rℓ + T ℓ

irD
k
rj − T ℓ

krD
i
rj

)
ϕiϕkϕjϕℓ.

This completes the proof of the lemma. �

Let us denote by ζi =
∑

r D
r
ri under any unitary frame e. When g is unimodular, we also

have ζi = −∑r C
r
ri. Define ζ =

∑
i ζiϕi, where ϕ is the coframe dual to e, then clearly ζ is

independent of the choice of e, hence is a globally defined left-invariant (1, 0)-form on G. By
the structure equation (16), a straight-forward computation leads to

Lemma 3. Let (G, J, g) be the universal cover of a Lie-Hermitian manifold. Then one has

d(ϕ1ϕ2 · · ·ϕn) = ζ ∧ ϕ1ϕ2 · · ·ϕn.

where ϕ is a unitary coframe of left-invariant (1, 0)-forms. So when ζ = 0, the global (n, 0)-form
ϕ1ϕ2 · · ·ϕn is a nowhere zero holomorphic n-form, hence g is Chern Ricci flat.

Conversely, if G admits a global nowhere zero holomorphic n-form, then ζ = ∂f for some
smooth function f on G, namely, ζ is ∂-exact.
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By taking trace of the Chern curvature tensor R (see (14)) in three different ways, one gets
the first, second, and third Chern Ricci curvature tensors:

Ric
(1)

ij̄
=

∑

r

Rij̄rr̄ = −
∑

r

(
ζrD

i
rj + ζrD

j
ri

)
,(21)

Ric
(2)

ij̄
=

∑

r

Rrr̄ij̄ =
∑

r,s

(
Dr

isD
r
js −Dj

rsD
i
rs

)
−
∑

r

(
ηrD

i
jr + ηrD

j
ir

)
,(22)

Ric
(3)

ij̄
=

∑

r

Rrj̄ir̄ = −
∑

r,s

Dj
rsD

i
sr −

∑

r

ηrD
i
rj .(23)

From the first equation, we could also see that ζ = 0 implies Ric(1) = 0. In the second and
third line, we assumed that g is unimodular, so ηi =

∑
r D

r
ir. By taking trace again on these

Ricci tensors, one gets the Chern scalar curvature s and altered scalar curvature ŝ:

s =
∑

i

Ric
(1)

īi
=
∑

i

Ric
(2)

īi
= −

∑

i

(
ζiηi + ζiηi

)
,(24)

ŝ =
∑

i

Ric
(3)

īi
= −

∑

r,s,t

Dt
rsD

t
sr − |η|2.(25)

Note that on any Hermitian manifolds, ŝ = s− χ always holds, and ŝ and χ are both real. For
Lie-Hermitian manifolds, we have |η|2 = χ, and by (19) one gets

∑

r,s

Dj
rsD

i
sr =

∑

r

(
ζrD

i
rj + ζrD

j
ri

)
, ∀ i, j.

Thus ŝ = s− χ holds, and s = −∑r,s,t D
t
rsD

t
sr. This last equality leads to the following

Lemma 4. If a Lie-Hermitian manifold Mn has symmetric D tensor, namely, Dj
ik = D

j
ki for

any i, j, k, then s = −∑r,s,t |Dt
rs|2 ≤ 0, and s < 0 unless D = 0. Similarly, if D is skew-

symmetric: D
j
ik = −D

j
ki, then s =

∑
r,s,t |Dt

rs|2 ≥ 0, and s > 0 unless D = 0. Note that when
s > 0 the Kodaira dimension of Mn is necessarily −∞.

Finally, let us close this section by recalling the covariant differentiation formula for Chern
torsion:

T
j
ik,ℓ =

∑

r

(
−T

j
rkΓ

r
iℓ − T

j
irΓ

r
kℓ + T r

ikΓ
j
rℓ

)
(26)

T
j

ik,ℓ̄
=

∑

r

(
T

j
rkΓ

i
rℓ + T

j
irΓ

k
rℓ − T r

ikΓ
r
jℓ

)
(27)

for any 1 ≤ i, j, k, ℓ ≤ n, where index after comma stands for covariant derivatives with respect
to the Chern connection ∇. Of course when ∇ is replaced by another Hermitian connection,
then the same differentiation formula holds when Γ is replaced by the connection coefficients of
that connection.

3. Almost abelian Lie algebras

In this section let us specialize to Lie-Hermitian manifolds where g is an almost abelian Lie
algebra, namely, when g is non-abelian but contains an abelian ideal of codimension one.

An equivalent definition for this is a non-abelian Lie algebra g which contains an abelian
subalgebra of codimension one. In this case, g always contains an abelian ideal of codimension
one by [10, Prop. 3.1].

Let g be an almost abelian Lie algebra, with a ⊆ g an abelian ideal of codimension one.
Assume that (J, g) is an Hermitian structure on g, with dim g = 2n. Since aJ := a ∩ Ja is the
intersection of two hyperplanes and is J-invariant, it is necessarily of codimension 2 in g. Thus
we can choose a unitary basis {e1, . . . , en} of g1,0 so that a is spanned by

a = spanR{
√
−1(e1 − e1); (ei + ei),

√
−1(ei − ei); 2 ≤ i ≤ n}.
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We will call such a unitary basis an admissible frame, and we will choose e to be admissible
from now on. Since a is abelian, we get

[ei, ej ] = [ei, ej ] = [e1 − e1, ei] = 0, ∀ 2 ≤ i, j ≤ n.

From this and (11) we deduce that

C∗
ij = D

j
∗i = D1

∗i = C∗
1i +Di

∗1 = 0, ∀ 2 ≤ i, j ≤ n.

Since a is an ideal, [e1 + e1, a] ⊆ a, which leads to C1
1i = 0 and D1

11 = D1
11. Putting these

together, we know that the only possibly non-trivial components of C and D are

(28) D1
11 = λ ∈ R, D1

i1 = vi ∈ C, D
j
i1 = Aij , C

j
1i = −Aji, 2 ≤ i, j ≤ n.

So the only algebraic data for the structure constants are λ ∈ R, a complex column vector
v ∈ Cn−1, and a complex (n − 1) × (n − 1) matrix A = (Aij)2≤i,j≤n. In terms of the dual
coframe ϕ, the structure equation (16) now takes the following form:

Lemma 5. Let g be an almost abelian Lie algebra with a Hermitian structure (J, g). Then there
exists a unitary coframe ϕ under which the structure equation is





dϕ1 = −λϕ1 ∧ ϕ1,

dϕi = −vi ϕ1 ∧ ϕ1 +

n∑

j=2

Aij (ϕ1 + ϕ1) ∧ ϕj , 2 ≤ i ≤ n.

This is well-known to experts studying almost abelian Lie algebras and is stated as (1) in §1.
Clearly, d2ϕ1 = d2ϕi = 0, so (17) - (19) do not impose further restriction on λ, v, or A. These
three terms are not all zero, as g is assumed to be non-abelian.

The following properties about Hermitian structures on almost abelian Lie algebras are dis-
covered by various people and we summarize into a proposition, and include a proof here for
readers’ convenience. Item (iii) was discovered by Lauret and Will [36], item (iv) was studied
extensively by Fino and Paradiso [19], [21], and item (v) was proved by Arroyo and Lafuente
[7].

Proposition 7. Let g be an almost abelian Lie algebra with Hermitian structure (J, g). Then
there exists unitary coframe with structure equation (1) and the following holds:

(i) g is nilpotent ⇐⇒ λ = 0 and An−1 = 0;

(ii) g is unimodular ⇐⇒ λ+ tr(A) + tr(A) = 0;
(iii) g is Kähler ⇐⇒ v = 0 and A+A∗ = 0.

(iv) g is balanced ⇐⇒ v = 0 and tr(A) + tr(A) = 0.
(v) g is pluriclosed ⇐⇒ λ(A+A∗) + (A+A∗)2 + [A∗, A] = 0 ⇐⇒ [A,A∗] = 0 and the

real part of each eigenvalue of A is either 0 or −λ
2 .

Proof. Let e be an admissible frame. The components of C and D are given by the real constant
λ, complex column vector v, and complex square matrix A, with structure equation as (1). Since
ade1+e1 corresponds to the matrix

Ã :=

[
λ 0
v A

]
,

we know that g will be nilpotent if and only if λ = 0 and A is nilpotent (i.e., An−1 = 0). For
any i > 1, we have

∑n

r=1(C
r
ri +Dr

ri) = 0, while

n∑

r=1

(Cr
r1 +Dr

r1) = λ+ tr(A) + tr(A),

so g is unimodular if and only if λ+ tr(A) + tr(A) = 0. By (13), the Chern torsion components
are given by

(29) T ∗
ij = 0, T 1

1i = vi, T
j
1i = Aij +Aji, 2 ≤ i, j ≤ n.
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Thus the metric is Kähler if and only if v = 0 and A∗ = −A. As ηa =
∑

r T
r
ra, we have ηi = vi

for i > 1 and η1 = −(tr(A) + tr(A)). So the metric g is balanced if and only if v = 0 and

tr(A) + tr(A) = 0. For (v), the metric g is pluriclosed if and only if equation (20) holds for any
1 ≤ i < k ≤ n and any 1 ≤ j < ℓ ≤ n. Since D∗

∗p = T ∗
pq = D

p
11 = 0 for any p, q > 1, one just

needs to check the j = 1 and i = 1 case of (20), which is

−
∑

r>1

T r
1kC

r
1ℓ +

∑

r>1

T ℓ
1rD

k
r1 − T ℓ

k1D
1
11 =

∑

r>1

{T r
1kD

ℓ
r1 +Dk

r1T
ℓ
1r}+ λT ℓ

1k = 0, ∀ k, ℓ > 1.

In other words, the metric g is pluriclosed if and only if

(30) (A+A∗)A+A∗(A+A∗) + λ(A +A∗) = 0.

This is discovered by Arroyo and Lafuente in [7] and they also showed that it is equivalent to:

(31) [A,A∗] = 0, and the real part of each eigenvalue of A is either 0 or − λ

2
.

To see this equivalence, write X = A+ A∗, then (30) says that [A,X ] = λX +X2. Since X is
Hermitian, one can take a unitary basis change of {e2, . . . , en} to make it into a real diagonal
matrix. Group the same diagonal values into blocks, then the equation implies that A is block-
diagonal, and within each block, X is a constant multiple (say λi) of the identity. By taking
trace in this block, we know that the constant λi must be either 0 or −λ, and [A,X ] = 0. Thus
[A,A∗] = 0 which means A is normal hence diagonalizable by unitary similarity. Note that λi

is twice the real part of an eigenvalue of A, so the assertion (31) holds. Thus (30) implies (31).
The converse is certainly true as well. This establishes the equivalence of (v). �

From the above, we see that unimodular plus balanced means that λ = 0, v = 0, while A can
be any complex matrix with trace in iR. By Schur’s triangulation theorem, A is unitary similar
to an upper triangular matrix. Analogously, unimodular plus pluriclosed means that the real
part of only one eigenvalue of A is −λ

2 while the others are zero, so after unitary similarity, A is

equal to a diagonal matrix with diagonal entries {ib2, . . . , ibn−1, ibn− λ
2 }, with all bj ∈ R, while

λ ∈ R and v ∈ Cn−1 are arbitrary.
In [37], Paradiso characterized all Hermitian almost abelian Lie algebra that are locally con-

formally balanced, and in [15], Djebbar, Ferreira, Fino, and Youcef give characterization of all
locally conformally pluriclosed ones.

Note that since we are primarily interested in compact examples, we need the Lie group G

to admit a co-compact lattice which might be difficult to find for general solvable groups. But
in the almost ableian case there is a nice sufficient condition given by Bock [9, Prop 2.1] (see
also §4 of [15] and [2], [12]).

Next let us look at the Chern curvature of an almost abelian Lie algebra. By (14) and (28),
we deduce that Ri∗̄∗∗̄ = 0 and

R11̄11̄ = −2λ2 − |v|2, (R11̄i1̄) = −A∗v, (R11̄ij̄) = vv∗ + [A,A∗]− λ(A+A∗),

for any i, j > 1. By (25) and (28), we get

ŝ = −λ2 − |η|2 = −λ2 − |v|2 − (tr(A) + tr(A))2.

From these formula we conclude that

Lemma 6. Let g be an almost abelian Lie algebra with a Hermitian structure (J, g). Then it is
Chern flat if and only if λ = 0, v = 0, and [A,A∗] = 0. It has altered scalar curvature ŝ = 0 if

and only if λ = 0, v = 0 and tr(A) + tr(A) = 0. In the latter case g is necessarily unimodular.

Using the definition of three Ricci curvatures, a direct calculation leads to the following:

Lemma 7. Assume that g is as in Lemma 6 and is unimodular, namely, λ+ tr(A)+ tr(A) = 0.
Then the following holds:

• s = −λ2 ≤ 0, and s = 0 ⇐⇒ Ric(1) = 0 ⇐⇒ λ = 0;
• ŝ = −2λ2 − |v|2 ≤ 0, and ŝ = 0 ⇐⇒ Ric(3) = 0 ⇐⇒ λ = 0, v = 0;



LIE ALGEBRAS WITH ABELIAN IDEALS OF CODIMENSION 2 11

• Ric(2) = 0 ⇐⇒ R = 0 ⇐⇒ λ = 0, v = 0, [A,A∗] = 0.

Next let us consider the Chern Kähler-like condition (cf. [46], [3]), which means a Hermitian
manifold whose Chern curvature tensor obeys the symmetry Rij̄kℓ̄ = Rkj̄iℓ̄. As is well-known,
the first Bianchi identity implies that

T ℓ
ik,j̄ = Rkj̄iℓ̄ −Rij̄kℓ̄

for any indices, where index after comma denotes covariant derivatives with respect to the Chern
connection ∇. So the Chern Kähler-like condition simply means that ∇XT = 0 for any type
(1, 0) tangent vector X . Chern flat metrics are certainly Chern Kähler-like, and it would be
very interesting to find examples of compact Chern Kähler-like manifolds that are not Chern
flat. In [50], it was shown that amongst all complex nilmanifolds, Chern Kähler-like ones are all
Chern flat. For almost abelian ones, the phenomenon continues:

Lemma 8. Let g be a unimodular almost abelian Lie algebra with a Hermitian structure (J, g).
Then g is Chern Kähler-like if and only if it is Chern flat.

Proof. Assume that g is Chern Kähler-like. Then we have T ℓ
ik,j̄

= 0 for any i, j, k, ℓ. By (27),

this means that ∑

r

(
T

j
rkΓ

i
rℓ + T

j
irΓ

k
rℓ − T r

ikΓ
r
jℓ

)
= 0.

Take i = ℓ = 1 < k, since Γ = D, while T and D are given by (29) and (28), we get from the
j = 1 case that A∗v = 0, and from the j > 1 case that

λ(A +A∗) + [A∗, A]− v v∗ = 0.

Taking trace, we get −λ2 − |v|2 = 0, hence λ = 0, v = 0, and [A,A∗] = 0. Thus R = 0. �

Next we mention the result by Fino and Paradiso [21, Theorem 3.1] which characterize CYT
metrics on almost abelian Lie algebras. Recall that a Hermitian metric is called Calabi-Yau
with torsion, or CYT for short, if the first Ricci curvature of the Bismut connection vanishes.
Denote by θb, Θb the connection and curvature matrix of ∇b under an admissible frame. Then
one has

tr(Θb) = d(tr(θb)) = d (tr(θ) + η − η) = d(α− α),

where α = (λ − tr(A))ϕ1 +
∑n

r=2 vrϕr. By the structure equation (1), and assuming that g is
unimodular, then one gets

tr(Θb) = d(α− α) = −(2|v|2 + 3λ2)ϕ1ϕ1 + (ϕ1 + ϕ1)

n∑

i,j=2

{Aijviϕj −Aijviϕj}.

Therefore it holds that

Proposition 8 ([21]). For any unimodular almost abelian Lie algebra g with Hermitian structure

(J, g), it is CYT if and only if λ = 0, v = 0, and tr(A) + tr(A) = 0. In particular, it is CYT
when and only when it is balanced.

Next let us prove Proposition 1 stated in the introduction, which describes all Bismut torsion-
parallel or Bismut Kähler-like metrics on almost abelian Lie algebras.

Proof of Proposition 1: Let (g, J, g) be an almost abelian Lie algebra with Hermitian struc-
ture. Assume that g is Bismut torsion-parallel (BTP), namely, ∇bT = 0. The expression of the
covariant derivatives of Chern torsion T with respect to the Bismut connection ∇b are given by
formula (26) and (27) with Γ = D replaced by Γb = Γ + T = D + T . So we know that BTP is
equivalent to

∑

r

(
−T

j
rk(D

r
iℓ + T r

iℓ)− T
j
ir(D

r
kℓ + T r

kℓ) + T r
ik(D

j
rℓ + T

j
rℓ)
)
= 0,(32)

∑

r

(
T

j
rk(D

i
rℓ + T i

rℓ) + T
j
ir(D

k
rℓ + T k

rℓ)− T r
ik(D

r
jℓ + T r

jℓ)
)
= 0(33)



12 YUQIN GUO AND FANGYANG ZHENG

for any 1 ≤ i < k ≤ n and any j, ℓ. Now by (28), (29), and by taking i = j = 1 < k, ℓ in (33),
we get

∑

r>1

T r
1kT

r
1ℓ = 0,

which means that (n − 1) × (n − 1) matrix X = (T j
1i) = A + A∗ satisfies XX∗ = 0, hence

X = 0. That is, the BTP assumption implies A+A∗ = 0 for almost abelian Lie algebras. With
A being skew-Hermitian, by (29) we know that the only possibly non-zero torsion components
are T 1

1i = vi. Letting i = j = ℓ = 1 < k in (32), we get Av = 0.
Conversely, when A+A∗ = 0 and Av = 0, the only possibly non-zero torsion components are

T 1
1i = vi, and it is easy to check that both (32) and (33) are satisfied. Thus for almost ableian

Lie algebra, the BTP condition is equivalent to A + A∗ = 0 and Av = 0. This establishes the
first statement in Proposition 1.

Now we check the BKL condition for almost abelian Lie algebra. By [49], we know that
a Hermitian metric g is BKL if and only if it is both BTP and pluriclosed. Now by Arroyo-
Lafuente’s result, (v) of Proposition 7, we know that an almost abelian Lie algebra will be
pluriclosed when and only when A is normal and whose eigenvalues have real part equal to
either 0 or −λ

2 . But this condition is automatically satisfied when A is skew-Hermitian. So for
almost abelian Lie algebras, the BKL condition and the BTP conditions coincide. Note that
the Lie algebra will be unimodular in this case if and only if λ = 0. This completes the proof of
Proposition 1. �

On general Hermitian manifolds, BKL and BTP metrics were studied by several authors in
recent years, for more discussions on such special Hermitian structures, we refer the readers to
[3], [4], [22], [23], [34], [46], [48], [49], [50], [51], [52], [53] and the references therein.

Astheno-Kähler metrics were introduced by Jost-Yau in [33], as a relaxation to the Kähler
condition. It is defined by ∂∂(ωn−2) = 0 where ω is the Kähler form and n is the complex
dimension of the manifold. This special type of Hermitian metrics has seen a number of recent
development, and we refer the readers to [11], [14], [17], [18], [25], [35], [38], [40] for instance.

Proof of Proposition 2: Let (g, J, g) be a an almost abelian Lie algebra with Hermitian struc-
ture. Then there exists a unitary frame e so that the structure equation takes the form of (1),
namely, dϕ1 = −λϕ1ϕ1, dϕi = −viϕ1ϕ1+

∑
j Aij(ϕ1+ϕ1)ϕj . Here and below we set the index

range to be 2 ≤ i, j, k, ℓ ≤ n. The Kähler form ω is given by ω =
√
−1 (ϕ1ϕ1 +

∑
i ϕiϕi). Let

us write H = A+ A∗. Since H is Hermitian, by a unitary change of e we may assume that H
is diagonal, say H = diag{h2, . . . , hn}. We have

−
√
−1∂ω = −ϕ1ϕ1

∑

i

viϕi + ϕ1

∑

i,j

Hijϕiϕj = −ϕ1ϕ1

∑

i

viϕi + ϕ1

∑

i

hiϕiϕi,

∂ω ∧ ∂ω = −ϕ1ϕ1

(∑

i

hiϕiϕi

)2
= −ϕ1ϕ1

∑

i,j

hihj ϕiϕiϕjϕj ,

√
−1∂∂ω = −ϕ1ϕ1

∑

i,j

Lijϕiϕj ,

where L = λH+A∗H+HA = λH+H2+[A∗, A]. Now assume that n ≥ 4. The astheno-Kähler
condition means that

(34)
1

n− 2
∂∂ωn−2 = ∂∂ω ∧ ωn−3 + (n− 3)∂ω ∧ ∂ω ∧ ωn−4 = 0.

For any 2 ≤ i < j ≤ n, if we wedge the above equality with ϕiϕj , then the second term on the
right hand side produce zero, while the first term gives us Lij = 0, ∀ i 6= j. So L, hence [A∗, A],
is diagonal. On the other hand, the diagonal entries

[A∗, A]ii = [H,A]ii = hiAii −Aiihi = 0,
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so we conclude that [A∗, A] = 0. Thus L = λH+H2. Now if we fix any i and wedge the equality
(34) with ϕiϕi, we get

0 =
∑

j 6=i

Ljj +
∑

j 6=k; j,k 6=i

hjhk

= tr(L)− Lii + (
∑

j 6=i

hj)
2 −

∑

j 6=i

h2
j

= tr(L)− Lii + (h− hi)
2 −

∑

j

h2
j + h2

i

= λh+ tr(H2)− λhi − h2
i + h2 − 2hhi + h2

i − tr(H2) + h2
i

= (λh+ h2)− (λ+ 2h)hi + h2
i

= (λ+ h− hi)(h− hi),

where h stands for tr(H). Therefore each hi is equal to either h or λ + h. Suppose there are
k entries amongst h2 through hn that equals to h, while the other (n− 1 − k) entries equal to
λ+ h, then we have h = h2 + · · ·+ hn = kh+ (n− 1− k)(λ+ h), therefore,

(35) (n− 1− k)λ+ (n− 2)h = 0.

To summarize, if (J, g) is a Hermitian structure on an almost abelian Lie algebra g and g is
astheno-Kähler, then [A∗, A] = 0, so A is unitary similar to a diagonal matrix diag{λ2, . . . , λn}
where λi are eigenvalues of A. Furthermore, twice of the real part of λi is equal to either λ+ h

or h, where h is the sum of 2Re(λi) for all 2 ≤ i ≤ n. If we denote by k the number of these
eigenvalues with 2Re(λi) = h, then k and h obeys the equation (35). Equivalently, A can be
described in the following way: there exists a unitary (n− 1)× (n− 1) matrix U such that

UAU∗ =




λ2

. . .

λn


 ,




2Re(λ2)
. . .

2Re(λn)


 =

[
hIk

(λ+ h)In−1−k

]

where k is an integer in the range 0 ≤ k ≤ n− 1 and h is determined by k and λ via (35).

Note that h = tr(A) + tr(A), so g is unimodular if and only if λ + h = 0. In this case (35)
becomes (1− k)λ = 0, thus for the real part of eigenvalues of A, one of them equal to −λ

2 while
the other n− 2 of them are equal to 0. By part (ii) and (v) of Proposition 7, we know that this
is exactly the condition for g to be pluriclosed. This completes the proof of Proposition 2. �

4. Lie algebras with J-invariant abelian ideal of codimension 2

Now let us consider Lie algebras with codimension 2 abelian ideals. Let g be a Lie algebra
and a ⊆ g be an abelian ideal of codimension 2. Note that such g will always be solvable of step
at most 3, but in general it will not be of 2-step solvable.

Suppose (J, g) is a Hermitian structure on g. Then the codimension of aJ := a ∩ a is either
2 or 4, and it is 2 if and only if Ja = a. In this article we will focus on this case, and leave the
other case to a future project.

Analogous to the almost ableian case, we may take a unitary basis {e1, . . . , en} of g1,0 so that

a = spanR{ei + ei,
√
−1(ei − ei); 2 ≤ i ≤ n}.

We will again call such a basis an admissible frame. Since a is abelian and is an ideal, we have

C∗
ij = D

j
∗i = C1

∗∗ = Di
1∗ = D∗

1i = 0, ∀ 2 ≤ i, j ≤ n.

So the only possibly non-zero components of C and D are

(36) C
j
1i = Xij , D1

11 = λ, D
j
i1 = Yij , D1

ij = Zij , D1
i1 = vi, 2 ≤ i, j ≤ n,

where λ ≥ 0, v ∈ Cn−1 is a column vector and X , Y , Z are (n− 1)× (n− 1) complex matrices.
Here and from now on we have rotated the angle of e1 to assume that D1

11 ≥ 0. Note that when
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{e2, . . . , en} is changed to {ẽ2, . . . , ẽn} by a unitary matrix U , then v is changed to Uv, X and
Y are changed to UXU∗ and UY U∗ respectively, while Z is changed to UZ tU . For convenience,
let us write ϕ for the column vector t(ϕ2, . . . , ϕn), then the structure equation (16) becomes (2)
stated in §1: {

dϕ1 = −λϕ1ϕ1,

dϕ = −ϕ1ϕ1v − ϕ1
tXϕ+ ϕ1Y ϕ− ϕ1Z ϕ.

By the Bianchi equation (17) - (19), or equivalently, by d2ϕ = 0, we get the system of matrix
equations (3) stated in §1:

{
λ(X∗+ Y ) + [X∗, Y ]− ZZ = 0,

λZ − (Z tX + Y Z) = 0.

By (13), we know that the possibly non-zero components of the Chern torsion are:

(37) T 1
1i = vi, T 1

ij = Zji − Zij , T
j
1i = Yij −Xij , 2 ≤ i, j ≤ n.

Proof of Proposition 3: Let g be a Lie algebra with an abelian ideal a of codimension 2 and
with a Hermitian structure (J, g), and assume that Ja = a. By our discussion above, there exists
a unitary frame under which the structure equation is given by (2), where λ ≥ 0, v ∈ Cn−1 is
a column vector and X , Y , Z are complex (n − 1) × (n − 1) matrices satisfying (3). By (12),
we know that g is unimodular if and only if

∑n

r=1(C
r
ri + Dr

ri) = 0 for each 1 ≤ i ≤ n. By
(36), we see that this number is 0 when i > 1 and is λ + tr(Y ) − tr(X) when i = 1. So (i)
holds. Similarly, Gauduchon’s torsion 1-form η has components ηi =

∑n

r=1 T
r
ri. By (37), we get

η1 = tr(X) − tr(Y ) and ηi = vi for i > 1, so (ii) holds. Also by (37), we know that T = 0 if
and only if v = 0 plus X = Y and tZ = Z. Now assuming that g is unimodular. Then by (i)
we get λ = 0, hence the first equation of (3) reads [X∗, X ] = ZZ = ZZ∗. Taking trace on both
sides, we get tr(ZZ∗) = 0 thus Z = 0 and X is normal. So by a unitary change of {e2, . . . , en}
if necessary, we may assume that X is diagonal. This leads to the structure equation stated in
case (iii) of the proposition.

For part (iv), by Lemma 2 we know that g will be pluriclosed if and only if equation (20) is
satisfied. When i or j is 1, the equation (20) automatically holds. Take i = j = 1 < k, ℓ in (20),
by (36) and (37) we get

∑

r>1

(
(Xkr − Ykr)Xℓr + (Zrk − Zkr)Zrℓ + (Yrℓ −Xrℓ)Yrk + λ(Ykℓ −Xkℓ)

)
= 0.

That is,
XX∗ − Y X∗ + tZZ − ZZ + Y ∗Y − Y ∗X + λ(Y −X) = 0,

namely (4) holds. So g is pluriclosed if and only if equations (3) and (4) hold. This proves part
(iv) thus we have completed the proof of Proposition 3. �

Note that if we take the trace of (4), we would get

||X − Y ||2 + ||Z||2 = tr(ZZ) + λ(tr(X)− tr(Y )) = λ(tr(X) + tr(X)),

where the last equality is from taking trace on the first equation of (3). When λ = 0 or when

tr(X) + tr(X) = 0, we would have Z = 0 and X = Y . If g is unimodular, then λ = 0 and
[X,X∗] = 0, so X is unitary similar to a diagonal matrix. That is, when g is unimodular and
λ = 0, pluriclosed metrics admit unitary frame under which the structure equation becomes:

dϕ1 = 0, dϕi = −viϕ1ϕ1 + (aiϕ1 − aiϕ1)ϕi, i > 1.

Note that when v 6= 0, the above metric is neither balanced nor Chern flat. Also, there are
plenty of solutions to equations (3) and (4) with λ > 0. For instance, for any positive constant
λ > 0, if we let

Z = 0, X = −Y =
λ

2
diag{1, 0, . . . , 0},

and let v be arbitrary, then g would be unimodular and equations (3) and (4) are satisfied, hence
g is pluriclosed.
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Proof of Proposition 4: Let (g, J, g) be a Hermitian structure on a Lie algebra which contains
a J-invariant abelian ideal of codimension 2. First let us examine the behavior of the Chern
curvature tensor. By (14), (36), and (21) - (23), we have

Ric(1) =

[
s, 0
0, 0

]
, where s = −λ(2λ+ tr(Y ) + tr(Y )),

Ric(2) =

[
−(|v|2 + ||Z||2 + 2λ2), −( tvZ∗ + v∗Y )

−(Zv̄ + Y ∗v), vv∗ + ZZ∗ + [Y, Y ∗]− λ(Y + Y ∗)

]
,(38)

Ric(3) =

[
ŝ, − tvZ

−Y ∗v, 0

]
, where ŝ = −|v|2 − λ(2λ+ tr(Y ) + tr(X)).

In the last line we used the fact that tr(ZZ) = λ(tr(Y ) + tr(X)) by taking trace on the first

equation of (3). Now if R = 0, then by Ric
(2)

11̄
= 0, we get λ = 0, v = 0 and Z = 0. Thus the

only possibly non-zero components of D are D
j
i1 = Yij for i, j > 1. By (14), for 2 ≤ k, ℓ ≤ n,

we have

(R11̄kℓ̄) = Y Y ∗ − Y ∗Y.

So Y is normal and can be diagonalizable via unitary similarity. On the other hand, when λ = 0
and Z = 0, the first equation of (3) says that [X∗, Y ] = 0, so if we write

Y =




λ1In1

. . .

λrInr


 ,

where n1 + · · ·+ nr = n− 1 and λ1, . . . , λr are distinct, then X would be block-diagonal

X =




X1

. . .

Xr




where Xi is any ni × ni complex matrix, 1 ≤ i ≤ r. Therefore if R = 0, then λ = 0, v = 0,
Z = 0, Y is normal, and [X∗, Y ] = 0. By a unitary change of the frame, Y can be made
diagonal while X is block-diagonal as above. The converse is certainly true, namely, in this case
the only possibly non-zero components of D are Di

i1 = Yii, and by (14) one easily checks that
R = 0. This establishes (i). Part (ii) is immediate from the above formula for the first Chern
Ricci Ric(1) and Chern scalar curvature s. For part (iii), assume that the second Chern Ricci is

non-neagtive. By looking at the component Ric
(2)

11̄
in (38), we know that we must have λ = 0,

v = 0, Z = 0. The lower right corner of (38) now says that [Y, Y ∗] ≥ 0. But the matrix has zero
trace, so it must be identically zero, and we end up in the R = 0 situation.

For part (iv), note that Gauduchon’s torsion 1-form η has components η1 = tr(Y −X) and
ηi = vi for i > 1. So by (36), (2) and (37) we obtain the following

dη = d(
∑

r

ηrϕr) = η1dϕ1 −
∑

r>1

vr

(
vrϕ1ϕ1 +

∑

i>1

{Xirϕ1ϕi + Y riϕiϕ1 + Zriϕ1ϕi}
)

= −(λη1 + |v|2)ϕ1ϕ1 −
∑

i,r>1

vr
(
Xirϕ1ϕi + Y riϕiϕ1 + Zriϕ1ϕi

)
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Since the trace of the connection matrices for Chern and Bismut are related by tr(θb) = tr(θ) +
η − η, so the Bismut Ricci form is given by

tr(Θb) = tr(Θ) + dη − dη = sϕ1ϕ1 + dη − dη

= −
(
2|v|2 + λ{2λ+ 2tr(Y ) + 2tr(Y )− tr(X)− tr(X)}

)
ϕ1ϕ1 +

+
∑

i,r>1

(
vrXirϕ1ϕi − vrXirϕ1ϕi

)
−
∑

i,r>1

(
vrZri + vrYri

)
ϕ1ϕi

−
∑

i,r>1

(
vrYri + vrZri

)
ϕiϕ1

That is,

(39)






(Ricb)2,0 =
1

2

[
0 tv tX

−Xv 0

]
,

(Ricb)1,1 =

[
sb −(v∗Y + tvZ)

−(Y ∗v + tZv) 0

]
,

where the Bismut scalar curvature sb is given by (6) as follows:

sb = −2|v|2 − λ(2λ+ 2tr(Y ) + 2tr(Y )− tr(X)− tr(X)).

When g is unimodular, λ = tr(X) − tr(Y ), and sb = −2|v|2 − λ(tr(Y ) + tr(Y )). By (39), we
know that the rank of the (2, 0)-part of Ricb is either 2 or 0 (when Xv = 0), while the (1, 1)-part
of Ricb has rank at most 3, or at most 1 when Y ∗v + tZv = 0. The entire Ricb = 0 if and
only if sb = 0 and Xv = 0, Y ∗v + tZv = 0. This proves part (iv) and completes the proof of
Proposition 4. �

The remaining part of the article is devoted to the proof of Proposition 5, where we want
to characterize Bismut torsion-parallel (BTP) and Bismut Kähler-like (BKL) metrics on Lie
algebras with J-invariant abelian ideal of codimension 2. Since BKLmeans BTP plus pluriclosed
[49], we will just focus on the BTP condition.

Proof of Proposition 5: Again let (g, J, g) be a Hermitian structure on a unimodular Lie
algebra with a J-invariant abelian ideal of codimension 2. Assume that g is BTP. This means
that both (32) and (33) are satisfied, which now takes the form

(40)





∑

r

(
T

j
rkΓ̃

r
iℓ + T

j
irΓ̃

r
kℓ − T r

ikΓ̃
j
rℓ

)
= 0,

∑

r

(
T

j
rkΓ̃

i
rℓ + T

j
irΓ̃

k
rℓ − T r

ikΓ̃
r
jℓ

)
= 0

for any indices 1 ≤ i < k ≤ n and any 1 ≤ j, ℓ ≤ n, where Γ̃ = D + T are the connection
coefficients for the Bismut connection. For simplicity, let us denote by

A = tZ − Z, B = Y −X.

Then the only possibly non-zero components of T and Γ̃ are
{
T 1
1i = vi, T 1

ij = Aij , T
j
1i = Bij ;

Γ̃1
11 = λ, Γ̃1

1i = vi, Γ̃1
ij = Zji, Γ̃j

i1 = Xij , Γ̃j
1i = Bij ,

where 2 ≤ i, j ≤ n. We remark that when the basis {e2, . . . , en} is changed to {ẽ2, . . . , ẽn} by
a unitary matrix U ∈ U(n − 1), the matrix A is changed into UA tU , just like Z, while B is
changed to UBU∗, just like X or Y . So strictly speaking we should denote the entries of B as
B

j
i or Bij̄ , but for the sake of simplicity we will just write it as Bij .
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Note that for both T and Γ̃, the components are zero unless at least one of the indices is 1.
If we take i, j, k, ℓ > 1 in (40), then only the r = 1 terms survive, and we get

BkjZℓi −BijZℓk −AikBℓj = 0,(41)

BkjBℓi −BijBℓk −AikZℓj = 0,(42)

where 2 ≤ i, j, k, ℓ ≤ n. Write tB = tr(B) and tZ = tr(Z). By letting k = j and summing up,
or k = ℓ and summing up, or j = ℓ and summing up, we get

{
tBZ − Z tB +BA = 0

tBB −B tB + ZA = 0
(43)

{
tZB − tZB −AB = 0

B∗B − tBB −AZ = 0
(44)

{
BZ − tZ tB + tBA = 0

BB −B∗ tB + tZA = 0
(45)

Next we consider the cases where at least one of the four indices is 1. If i = j = ℓ = 1, then by
the fact that Γ̃i

11 = Γ̃1
i1 = 0 for any i > 1, (40) yields

(46) Xv = X∗v = 0.

Similarly, when exactly one of the indices is 1, the ℓ = 1 case of (40) automatically holds, while
the j = 1 and i = 1 cases lead to

{
vkZℓi − viZℓk − vℓAik = 0,

vkBℓi − viBℓk − vℓAik = 0,
∀ 2 ≤ i, k, ℓ ≤ n;(47)

{
vℓBkj − vkBℓj = 0,

vℓBkj − vkZℓj = 0,
∀ 2 ≤ j, k, ℓ ≤ n.(48)

Now consider the cases when exactly two of the four indices are 1, (40) yields the following

BA = Z tB, ZA = B tB;(49)

[B,X ] = [B,X∗] = λB;(50)

XA+A tX = X∗A+AX = λA.(51)

Of course the Lie algebra g will be unimodular if and only if

(52) λ+ tB = 0.

The metric g will be BTP when and only when (3) and (41) – (52) are all satisfied. When v 6= 0,
it is easy to find out all the solutions to this system of matrix equations. By a unitary change of
{e2, . . . , en} if necessary, we may assume that v2 > 0 and v3 = · · · = vn = 0. By (47) and (48),
we know all rows except the first of Z are zero, and B = Z. The other equations now imply
that

λ = 0, X =

[
0 0
0 X1

]
, Z =

[
0 tz

0 0

]
,

and X1z = X∗
1z = 0, [X1, X

∗
1 ] = 0. So depending on whether z = 0 or not, we end up in one of

the two cases for BTP metrics with v 6= 0 on unimodular g: there exists unitary frame so that
the structure equation takes the form:





dϕ1 = 0,

dϕ2 = −v2ϕ1ϕ1,

dϕi = (aiϕ1 − aiϕ1)ϕi, 3 ≤ i ≤ n;

or





dϕ1 = dϕ3 = 0,

dϕ2 = −v2ϕ1ϕ1 + p (ϕ1ϕ3 − ϕ1ϕ3),

dϕi = (aiϕ1 − aiϕ1)ϕi, 4 ≤ i ≤ n.
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They are respectively (7) and (8) stated in §1 before. Here v2 > 0, p > 0, and ai are arbitrary
complex numbers.

Next we consider the v = 0 case. First we claim that λ must zero. Assume otherwise, then
by comparing (43) with (49), we see that B and Z must be zero, which forces λ = −tB = 0
since g is unimodular. So λ must be zero. Next we claim that BZ = 0. Since tB = 0, by the
first line of (45), we know that BZ is symmetric. On the other hand, by the first equation of
(49), we get

t(BA) = B tZ = B(A+ Z) = BA+BZ.

Hence BZ is skew-symmetric. Therefore, we must have BZ = 0 and the claim is proved. So for
unimodular g with BTP metric and with v = 0, the equations (3) and (41) – (52) become

(53)





λ = tB = 0, v = 0, BZ = 0, XA, X∗A, BA = B tZ are symmetric,

[B,X ] = [B,X∗] = 0, [X∗, X ] = ZZ, Z tX +XZ = 0,

ZA = B tB, AZ = B∗B, ZB = tZB, t(BB)−BB = tZA.

Since B∗B = AZ = tZZ−ZZ = tZZ− [X∗, X ], by taking trace we get ||B||2 = ||Z||2. Therefore,
if B = 0 or Z = 0, we get B = Z = A = 0 and the metric g will be Kähler and flat. Similarly,
if A = 0, then by B tB = ZA we get B = 0 hence Z = 0. So in the following let us assume that
A,Z,B are all non-trivial.

Since BZ = 0, Z must be singular. Denote by r its rank, we have 1 ≤ r < n − 1. Choose
unitary basis {e2, . . . , en} so that the first r rows of Z are linearly independent while the other
rows are all zero, and write B in the same block form:

Z =

[
x y

0 0

]
, B =

[
0 u

0 w

]

where x is an r × r matrix, and the first column blocks of B vanish because BZ = 0. Since
ZA = B tB, the lower right corner gives us w tw = 0 hence w = 0. Therefore B has only the
upper right corner thus BB = 0, which leads to tZA = 0. Therefore we must have tZ = 0 as A
is assumed to be non-trivial.

Now we claim that the block x must also be zero. Since w = 0, by comparing the upper
left corner of AZ = B∗B, we get ( tx − x)x = 0, so tr(xx) = ||x||2. On the other hand, since
ZZ = [X∗, X ], we have tr(xx) = tr(ZZ) = 0, hence x = 0.

Note that the r × (n − 1 − r) matrix y has rank r, so after a unitary change in the last
(n − 1 − r) elements of ei, we may assume that y = (z, 0), where z is an r × r non-singular
matrix. Write u = (b, c) where b is r× r, then by AZ = B∗B we know that we must have c = 0,
hence the matrices now take the form

Z =




0 z 0
0 0 0
0 0 0



 , A =




0 −z 0
tz 0 0
0 0 0



 , B =




0 b 0
0 0 0
0 0 0



 ,

where z and b are r × r matrices with z non-singular. The equations in (53) implies that

(54) z tz = b tb, tzz = b∗b, b tz = z tb,

and via the non-singularity of b that

X =




0 0 0
0 0 0
0 0 x


 , [x∗, x] = 0.

All the solutions to the system of matrix equations (54) are given by the following elementary
lemma, and we include its proof here for readers convenience:

Lemma 9. Two non-singular square matrices z and b satisfy (54) if and only if

b = USV ∗, z = USW tV,

where S > 0 is diagonal, U , V , W are unitary, with tW = W and WS = SW .
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Proof of Lemma 9: Since z tz = b tb is positive definite, it equals to US2U∗ for some unitary
matrix U and a positive definite diagonal matrix S. This means that V ∗ = S−1U−1b and
Q = S−1U−1z are both unitary. Plug b = US tV and z = USQ into the other two equations of
(54), we see that the unitary matrix W = QV is symmetric and commutes with S2, hence with
S. This completes the proof of the lemma. �

Now let us continue with the proof of Proposition 5. If we group S into blocks with equal
diagonal values, then W is block-diagonal, with each block being symmetric and unitary. Write
Sij = λiδij , 2 ≤ i, j ≤ r + 1. Clearly, we can choose the unitary basis e so that

Z =




0 SW 0
0 0 0
0 0 0


 , X =




0 0 0
0 0 0
0 0 x


 , Y = X +B =




0 S 0
0 0 0
0 0 x




where x is diagonal. The structure equation now takes the form




dϕ1 = 0,

dϕi = λiϕ1ϕi − λiϕ1

r+1∑

j=2

Wijϕj , 2 ≤ i ≤ r + 1,

dϕi = 0, r + 2 ≤ i ≤ 2r + 1,

dϕi = (aiϕ1 − aiϕ1)ϕi, 2r + 2 ≤ i ≤ n,

which is (9) given in §1 before. Here each ai is complex, S = diag{λ2, . . . , λr+1} > 0 and
W is any unitary symmetric r × r matrix satisfying WS = SW . This completes the proof of
Proposition 5. �

Note that all three cases in Proposition 5 are non-Kähler and not Chern flat, with the first
two cases being not balanced while the third case being balanced. Also, since a Hermitian metric
is Bismut Kähler-like if and only if it is both BTP and pluriclosed by [49], so from (4) we see
that (7) is pluriclosed hence is Bismut Kähler-like, while (8) and (9) are not plurilcosed hence
not Bismut Kähler-like.
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