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QUANTUM AFFINE VERTEX ALGEBRAS ASSOCIATED
TO UNTWISTED QUANTUM AFFINIZATION ALGEBRAS

FEI KONG

ABSTRACT. Let Up(g) be the untwisted affinization of a symmetriz-
able quantum Kac-Moody algebra U(g). For £ € C, we construct
an f-adic quantum vertex algebra Vj;(¢,0), and establish a one-to-
one correspondence between ¢-coordinated Vj (¢,0)-modules and re-
stricted Uy (§)-modules of level £. Suppose that £ is a positive integer.
We construct a quotient h-adic quantum vertex algebra Lg;(¢,0) of
Vi.1(€,0), and establish a one-to-one correspondence between certain ¢-
coordinated Lg ;(¢,0)-modules and restricted integrable Ux(§)-modules
of level £. Suppose further that g is of finite type. We prove that
Ls.n(€,0)/hL;g 1 (£,0) is isomorphic to the simple affine vertex algebra
L4(¢,0).

1. INTRODUCTION

Let g be a finite dimensional simple Lie algebra, and let § = g@C[t,t~]@
Cc be the corresponding affine Kac-Moody Lie algebra. For any complex
number ¢ € C, we define the induced module

Vg(& 0) =U(g) QU (Gy) Cy, where g =g® (C[t] @ Cc

and C; = C is a gy-module with g ® C[t] acting trivially and ¢ acting as
scalar £. The induced module Vj(¢,0) carries a vertex algebra structure,
and the category of Vj(¢,0)-modules is naturally isomorphic to the category
of restricted g-modules of level ¢ [FZ,[Lill[LL]. If ¢ is a positive integer,
then the unique simple quotient g-module Ly(¢,0) of V;(¢,0) is integrable.
Moreover, Ly(¢,0) carries a simple quotient vertex algebra structure, and
the category of L(¢,0)-modules is naturally isomorphic to the category of
restricted integrable g-modules of level ¢ [FZL[DLMP1,MP2,[DLMILLLJ.
Denote by Up(g) the (untwisted) quantum affine algebra associated to g
(IDr1] and [Jim]). Like the affinization realization of affine Kac-Moody Lie
algebras, Drinfeld provided a quantum affinization realization of Uj(g) in
[Dr2]. Based on the Drinfeld presentation, Frenkel and Jing constructed
vertex representations for simply-laced untwisted quantum affine algebras
in [FJ]. In the very paper, they formulated a fundamental problem of de-
veloping certain “quantum vertex algebra theory” associated to quantum

2020 Mathematics Subject Classification. 17B69, 17B37.
Key words and phrases. Quantum vertex algebra, affine vertex algebra, ¢-coordinated
module, quantum affine algebra, quantum affinization.
1


http://arxiv.org/abs/2212.04888v2

affine algebras, in parallel with the connection between affine Kac-Moody
Lie algebras and vertex algebras.

As one of the fundamental works, Etingof and Kazhdan ([EK]) developed
a theory of quantum vertex operator algebras in the sense of formal defor-
mations of vertex algebras. The most visible difference between these and
vertex algebras is that the usual locality is replaced by the S-locality. Such
S-locality is controlled by a rational quantum Yang-Baxter operator. Partly
motivated by the work of Etingof and Kazhdan, H. Li conducted a series of
studies. While vertex algebras are analogues of commutative associative al-
gebras, H. Li introduced the notion of nonlocal vertex algebras [Li4], which
are analogues of noncommutative associative algebras. A nonlocal vertex
algebra is a weak quantum vertex algebra [Lid] if it satisfies the S-locality.
In addition, it becomes a quantum vertex algebra [Li4] if the S-locality is
controlled by a rational quantum Yang-Baxter operator. Mainly in order to
associate quantum vertex algebras to quantum affine algebras, a theory of
¢-coordinated quasi modules was developed in [Li7,[Li8]. The A-adic coun-
terparts of these notions were introduced in [Li6]. In this framework, a
quantum vertex operator algebra in sense of Etingof-Kazhdan is an h-adic
quantum vertex algebra whose classical limit is a vertex algebra.

In the pioneer work [EK], Etingof and Kazhdan constructed quantum
vertex operator algebras as formal deformations of Vi (¢,0) and V (£,0),

by using the R-matrix type relations given in [RSTS]. Recently, Butorac,
Jing and Kozi¢ ([BJK]) extended Etingof-Kazhdan’s construction to type
B, C and D rational R-matrices. The modules of these quantum vertex
operator algebras are in one-to-one correspondence with restricted modules
for the corresponding Yangian doubles (see [Kol]). Based on the R-matrix
presentation of quantum affine algebras (see [DELJLMILIJLM?2]), Kozi¢ con-
structed the quantum vertex operator algebras associated with trigonometric
R-matrices of types A, B, C and D (|[Ko2l[Kol]), and established a one-to-
one correspondence between ¢-coordinated modules and restricted modules
for quantum affine algebras.

In [JKLT2|], N. Jing, H. Li, S. Tan and I developed a method to con-
struct desired quantum vertex algebras. Let V be a nonlocal vertex algebra,
and let (H, p,T) be a triple consisting of a cocommutative nonlocal vertex
bialgebra H, a right H-comodule nonlocal vertex algebra structure p on V,
and a “compatible” H-module nonlocal vertex algebra structure 7 on V.
Then a new nonlocal vertex algebra D%(V) with V as the underlying space
was obtained. It was also proved that under certain conditions, D7(V) is
a quantum vertex algebra. On the representation side, it was proved that
for any ¢-coordinated V-module W with a “compatible” ¢-coordinated H-
module structure, there exists a ¢-coordinated D% (V')-module structure on
W. Later in [JKLT3|, we introduced an h-adic version of this construction,
and constructed a family of h-adic quantum vertex algebras Vi, [[h]]" as for-
mal deformations of the lattice vertex algebras V. When L is a root lattice
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of A, D, FE type, we established a natural connection between twisted quan-
tum affine algebras and equivariant ¢-coordinated quasi modules for V7 [[A]]”
with suitable 7.

It is remarkable that Drinfeld’s quantum affinization process can be ex-
tended to general symmetrizable quantum Kac-Moody algebras ([GKV]Jinl,
NLICJKT]). We denote by Up(g) the untwisted quantum affinization of a
symmetrizable quantum Kac-Moody algebra Uy(g). In this paper, we use
the language of Drinfeld presentations to construct the A-adic quantum ver-
tex algebra V;;(¢,0) and establish a one-to-one correspondence between
restricted Up(g)-modules of level £ and ¢-coordinated Vj (¢, 0)-modules. As-
sume further that ¢ is a positive integer. We will study a quotient h-adic
quantum vertex algebra Lg (£,0) of V;;(£,0), and establish a one-to-one
correspondence between restricted integrable U (g)-modules of level ¢ and
¢-coordinated weight modules of Ly ;(¢,0). Finally, when g is of finite type,
we show that Lg ;(¢,0)/hLg;(¢,0) = Ly (¢,0) as vertex algebras.

Now we provide some detailed information. Let A = (a;;)i jer be a sym-
metrizable generalized Cartan matrix (GCM). Then there are unique rel-
atively prime positive integers r; (i € I) such that DA is symmetric with
D = diag{r; }icr. Let g = [g(A), g(A)] be the derived subalgebra of the Kac-
Moody Lie algebra g(A), and let g be an “affinization Lie algebra” associated
to g (see Definition [2.4]). Recall that the (untwisted) quantum affinization
algebra (see [CJKT]) Un(g) is the C[[A]]-algebra topologically generated by
(1.1) {h@q(n), zE (n), c‘ iel,nce Z},

Z7q

and subject to the relations in terms of the generating functions

¢:|7:q( ) :th@ q(o) exp ( q — q Z h ’q ) s

+m>0
+ + -
z;,(2) = Z z;,(m)z"",

meZ

The relations are (4,5 € I):

Q1) 6,67 ,(2)] = 0= [¢7,(2), &, (w)] = [e, 2, (2)],
Q2 :q(zl (bj_,q(zz = (by_,q 2'2)(]52;1 21)t21,229i5,q (4 22/21)_1927',(1(q_rcz2/zl)7

I®)

1
LZ172’2giqu(q$ 2T622/21):t17

1
Lz27z1gji,q(q$ 2T621/22)$17

Q4

(
(
(
(
(Q5

) (

) ) ) ( (
3) ¢ ()2 (22) = a7 (22) 8] (=1
) ) ) = z,( (

)

" _.(-1,—1 01y (:1073)5 (Ziqlm) — 67, (21427)0 <%l_m> >
(Q6)  Fi; (21, 2)a7, (1)1, (22) = G (21, 22) 37 ()7, (21),
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Q) D D (- <W;J> Tig(Zo(n)) iy (Zo(h) )5 ()

UESmij k=0
+ + :
X xi’q(zo(kﬂ)) e xi7q(zo(m”)) =0, if a; <0,

where ¢ = exp h € C[[h]], ¢; = ¢", r is the least common multiple of {r;}icr
and

+a;; +a;;

Fijjt,q(ZhZ?) =2 —q; "z, Gz’ij,q(zhzz) =q;, Yz — 2,
Gija(2) = G;;,q(l’z)
Z-yiq - Ax 4 N
Fi—ji'_,q(LZ)

and the map ¢, ., is defined as in [FHL, §3.1]. The classical limit U(g)/hUx(g)
is isomorphic to the universal enveloping algebra of §.

Let V;(¢,0) be the vertex algebra associated to g (see Definition 2.6]).
Different from the construction of Vi [[A]]7 in [JKLT3|, we are not able to
find a suitable “deforming triple” for V;(¢,0), such that the corresponding

h-adic quantum vertex algebra can be associated to U(g). Let L{,{ (g) be the
unital associative algebra over C[[A]] topologically generated by the elements

(LT) subject to relations (Q1)-(Q4), (Q6) and
(Q55) (1= q20/20)% (1 — g a )20 [ (1), 27, ()] = O, i,j € T.

It is easy to see that Uy(g) is a quotient algebra of Z/{;{ (§). Using the theory
of free vertex algebras developed by Roitman (|R]), we construct a ver-
tex algebra F'(A,¢) (see Definition 2.6). Then by using the construction
given in [JKLT2|JKLT3|, we get a family of h-adic quantum vertex algebras
F.(A,?) as formal deformations of F'(A,¢) (see Theorem[1.13]). The category
of restricted Z/{,{ (g)-modules is isomorphic to the category of ¢-coordinated
F; (A, ¢)-modules with suitable 7. For this suitable 7, we construct the quo-
tient h-adic quantum vertex algebras Vj(¢,0) and Lg (¢, 0) of F-(A,£).
Finally, based on the “normal ordered” type quantum Serre relations given
in [CJKT] and the integrable conditions developed in [DM], we establish
a natural connection between restricted (resp. restricted integrable) Uy (g)-
modules of level ¢ and ¢-coordinated modules (resp. ¢-coordinated weighted
modules) for Vj ;(¢,0) (resp. Lgx(¢,0)).

The paper is organized as follows. In Section 2, we recall the basics about
vertex algebras and free vertex algebras. Define the vertex algebra F'(A, /)
associated to a symmetrizable generalized Cartan matrix A and a complex
number £. Then we realize Vj(¢,0) and Lg(¢,0) as quotient vertex algebras
of F(A,0). In Section [B] we recall the notion of fi-adic quantum vertex
algebras, and the theory of constructing h-adic nonlocal vertex algebras
introduced in [Li6]. In Section [B we construct an f-adic nonlocal vertex
algebra F;(A,¢). By using the deformation method introduced in [JKLT2,
JKLT3| (see Section M), we prove that F;(A,¢) is an h-adic quantum vertex
algebra and F.(A,{¢)/hF;(A,0) = F(A,/l) as vertex algebras. In Section
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[, we construct two quotient f-adic quantum vertex algebras Vj ;(¢,0) and
L p(¢£,0) of Fr(A,£). In Section [7, we recall the notion of ¢-coordinated
modules of h-adic nonlocal vertex algebras, and study the category of ¢-
coordinated modules of V;;(¢,0). In Section B, we establish the natural
connections between certain Uy (§)-modules and ¢-coordinated modules for
the two h-adic quantum vertex algebras V; ;(¢,0) and Lg ;(¢,0).

Throughout this paper, we denote the set of nonnegative integer and
positive integers by N and Z. , respectively. For any ring R, we denote the
set of invertible elements by R*.

2. VERTEX ALGEBRAS AND AFFINE VERTEX ALGEBRAS

In this section, we recall the notion of vertex algebras and define some
vertex algebras associated to the symmetrizable GCM A = (a;;); jer-
A vertex algebra is a vector space V equipped with a linear map
(2.1) Y(-,2):V = &V):=Hom(V,V((2))); v+—Y(v,2z)= Zvnz_"_l
nez
and equipped with a distinguished vector 1 of V, called the vacuum vector,
such that

(2.2) Y(1,2)v=v, Y(v,2)1e€ V][], lin%Y(v,z)l =v forveV
z—

and such that for u,v,w € V, the following Jacobi identity holds true

P <Zl — z2>Y(u, 2)Y (v, z9)w — 2510 <Z2 — Zl) Y (v,29)Y (u, 21)w
20 —Z20
(2.3) =216 <227—t2’0> Y (Y (u, z0)v, z9)w.

A conformal Lie algebra (C,Y T, T) ([Kac]), also known as a vertex Lie
algebra ([DLM2L[P]), is a vector space C' equipped with a linear operator T
and a linear map

(24) Y*(,2): C—Hom(C,2z 'Clz71]); u— Y (w,2) =Y upz ™!
n>0
such that for any u,v € C,
17, (0, 2)] = Y (Tu, ) = 0¥ (u,2),
Y (u, z)v = Sing, (7Y (v, —2)u)
[Y+(u7 Zl)v Y+ (U7 22)] = Singz1 Sing22 (Y+(Y+ (’LL, 21— Z2)”7 Z2))7

where Sing stands for the singular part. Let (C,Y,T), (C1,Y;",T1) be
conformal Lie algebras. A linear map f : C — (] is called conformal Lie
algebra homomorphism if f(Y ¥ (u,z)v) = Y;"(f(u),2)f(v) and f(Tu) =
T f(u) for u,v € C.

Let C be an arbitrary conformal Lie algebra. Recall the coefficient algebra

C ([R]), also known as the local vertez Lie algebra ([DLM2]) is the Lie algebra
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with the underlying vector space (C ® C[t,t™!])/Im(T ® 1+ 1 ® d/dt), and
the Lie bracket

25) )] = 32 (1) (wxo)om 1~ ),

k>0
where u,v € C, m,n € Z and u(m) is the image of u ® t" in C. Set C~ =
Spang {u(m)| v € C,m < 0} and C* = Spang {u(m)| u € C;m > 0}, and
define
(2.6) Ve =U(C) Sy G

where C is a trivial C*-module. It is proved in [R] Proposition 1.3] (see
also [DLM2, Proposition 3.4]) that C* are Lie subalgebras of C' and C =
C~@®C*. Then Vo 2 U(C™) as vector spaces. For convenience, we identify

u with u(-=1) ® 1 € Vg for u € C. A C-module W is called a restricted
module if

u(z)v = Z u(m)vz"™t e W((2)), forueC, veW.
meZ
It is proved in [DLMZ2] that

Theorem 2.1 ([DLM2| Theorem 4.8]). There ezists a vertex algebra struc-
ture on Vo such that 1 =1® 1 € Vo is the vacuum vector and

Y(u,z) = Z u(m)z"™ Y forueC.
meZ

For any restricted C-module W, there exists a Vo-module structure Yy on
W' such that

Y (u,z) = u(z) = Z u(m)z~™ 1 weC.
meZ

On the other hand, for any Vo-module W, there exists a restricted C-module
structure on W such that

u(z).w = Yy (u, z)w
where uw € C and w € W.

Let B be a set, and let N : B x B — N be a symmetric function called
a locality function ([R]). Denote by Conf(B, N) the category whose objects
are conformal Lie algebras C which contain B as a generating subset and

apb =0 forall a,b € B, n> N(a,b).
The following result is given in [R], Proposition 3.1]

Proposition 2.2. There exists a conformal Lie algebra C (B, N) € Conf(B, N)
such that for any C' € Conf(B, N), there is a unique conformal Lie algebra
homomorphism f from C(B,N) to C such that
fla)=aeBcCC foraeBcCC(B,N).
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Moreover, the coefficient algebra 6’([3, N) of C(B,N) is isomorphic to the
Lie algebra gemerated by

(2.7) {b(n)|beB,nelZ}
and subject to the relations
i (N(a,b) , ,
(2.8) Z(—l) ; [a(n —i),b(m +14)] =0 fora,be B, m,neZ.
i>0

The conformal Lie algebra C'(B, N) is called the free conformal Lie algebra
in [R]. From Theorem 2.1} we get a vertex algebra V (B, N) corresponding
to C(B, N), which is called the free vertex algebra in [R].

We note that the relation (2.8)) is equivalent to the following relation

(2.9) (21 — 22)N @O [a(21),b(22)] = 0 for a,b € B.
Proposition 2.3. Let V be a vertex algebra, and let f : B — V such that
(21 — 2NV (f(a), 21), Y (f(b), 22)] =0 for a,b € B.

ThenAthere exists a vertex algebra homomorphism f: V(B,N) — V such
that flg = f.
We introduce the following Lie algebra.
Definition 2.4. Let g be the Lie algebra generated by
{hi(m), zE(m) |iel, meZ}

and a central element ¢, subject to the relations written in terms of gener-
ating functions in z:

hi(z) = Z hi(m)z~™71 o (2) = Z zE(m)z"™ el
meZ meZ
The relations are (i,j € I)
0 _ z
(Ll) [hi(zl), hj (zg)] = riaijrca—zl 15 <—2> 5
<2

21

(L2) [h,’(Zl),ij(Z?)] = :]:Tz'az’jx;'t(22)21_1(5 <Q> )

(L3) [af (1), 2] (22)] = i—ﬂ (hi(zg)zl_lé (?) + rcaizl—la <9>> ,

) 1

(L4) (21— 22)" [z (21), 25 (22)] = O,

(S) [$z:'t(zl)7 [x:;t(zQ)’ B [$z:'t(zmij)7 x;t(z(])] T H = 07 if Qi < 07
where n;; = 1 — §;; for 4,5 € I and m;; = 1 — a;; for 4, j € I with a;; < 0.
Remark 2.5. Suppose that the GCM A is of finite or affine type. Recall
that g = [g(A), g(A)] is the derived subalgebra of the Kac-Moody Lie algebra

associated to the GCM A. If A is not of type Agl), then g is the universal
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central extension of g ® C[t,t™!] (see [Gar] when A is of finite type and

[MERY] when A is of affine type). If A is of type Agl), then g is the quotient
algebra of the universal central extension of g ® C[t,+~!] modulo the ideal
generated by the following relations

(21 — 22)[$2:~t(21),$;-t(22)] =0, fori#j.

Introduce a set B = {hi, x;t ‘ i€ I}, and define a function N : BxB — N
by

N(hz,h]) :2, N(hz,xf) = 1, N(a:fc,a:j[) = Nyj, N(a:j',m]_) :(5”2
Definition 2.6. For ¢ € C, we let F(A, /) be the quotient vertex algebra of
V (B, N) modulo the ideal generated by

(hi)o(hj), (hi)i(hj) —ria;rel, (hi)o(mj:) F riaija:j[ fori,j € I.

Furthermore, let V;(¢,0) be the quotient vertex algebra of F'(A,£) modulo
the ideal generated by
i 5is
Y (o iy R ij -
(xi )O(xj)_r_ihla (':Uz )l(x])_r_lrgl for 2,7 GIa

(($Z:t)0)m” ($;t) for 7,7 € I with a5 < 0.

If £ € Zy, we define Ly(¢,0) to be the quotient vertex algebra of V;(¢,0)
modulo the ideal generated by

((xi)_l)h/” af foriel.

7

Remark 2.7. Set g, = g® C[t] ® Ce. For £ € C, we let Cy := C be a g4-
module, with g® C[t].C; = 0 and ¢ = £. Then there are g-module structures
on both V;(¢,0) and L4(¢,0), such that

hi(z) =Y (h;, 2), :Ezi(z) = Y(x;t,z), 1el.
In addition, as g-modules, we have that
Va(l,0) = U(8) @y, Ce

Suppose that the GCM A is of finite type. Then g is a finite dimensional
simple Lie algebra. And L4(¢,0) is the unique simple quotient g-module of
V5(£,0), when £ € Z.

3. QUANTUM VERTEX ALGEBRAS

A C[[A]]-module V is said to be torsion-free if hv # 0 for every 0 £ v € V,
and said to be separated if N,>1A"V = 0. For a C[[A]]-module V', using
subsets v + A"V for v € V, n > 1 as the basis of open subsets one obtains
a topology on V', which is called the fi-adic topology. A C][A]]-module V is
said to be h-adically complete if every Cauchy sequence in V with respect
to this h-adic topology has a limit in V. A C[[A]]-module V is topologically
free if V' = Vp[[h]] for some vector space Vy over C. It is known that a
C[[h]]-module is topologically free if and only if it is torsion-free, separated,
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and h-adically complete ([Kas], see [Li6]). For another topologically free
C[[h]]-module U = Uy[[h]], we recall the complete tensor

URV = (Up ® Vp)[[A]).

We view a vector space as a C[[h]]-module by letting & = 0. Fix a C[[A]]-
module W. For k € Z,, and some formal variables z, ..., zi, we define

(3.1) ERVWiz,.. .., 2) = Home (W, W((z1, - . -, 2k)))-

Recall from [Li2, Definition 5.3] that an ordered sequence (ai(z),...,ax(2))
in E0O(W) is said to be compatible if there exists an m € Z,, such that

( H (zi — zj)m) ar(z1) - ap(zr) € EO(Ws21,. .., z1).

1<i<j<k
Now, we assume W = Wj|[[h]] for some vector space Wy. Then W is
topologically free. Define
k
(32) &P Wiz, z) = Homeyy (W, Wo((z1, -, 2))[[1])-

Note that €,gk)(W; 21, z) = EW (W21, ..., 2)[[H]] is topologically free.
For convenience, we will also write Eék)(W) = Eék)(W; 21,...,2) and write
E(W) = 5;11)(W). For n,k € Z,, the quotient map from W to W/h"W
induces the following C[[h]]-module map
78 Endegy(W)IE .- 28] — Endeg(W/EW)) [ ..., 25
For A(z1, 22), B(21, 22) € Homeyy (W, Wo((21))((22))[[R]]), we write A(21, 22) ~
B(za,21) if for each n € Z there is k € N such that
(21 — 22)* 7D (A(21, 22)) = (21 — 22)"F ) (B(22, 21))
Let Z(z1,22) : Ex(W)RE(W)RC((2))[[A]] — End(c[[h”(W)[[zfl,zécl]] be de-
fined by
Z(z1,22) (a(z) @ b(2) ® f(2)) = 12,2 f (21 — 22)a(z1)b(22).

A subset U of &,(W) is said to be h-adically S-local if for any a(z),b(z) € U,
there exists A(z) € (CU ® CU ® C((2))) [[A]] such that

a(z1)b(z2) ~ Z (22, 21) (A(2)) ,
where CU denotes the subspace spanned by U.

Recall from [Li6, Remark 4.7] that 7 induces a C[[h]]-module map
P eW W) — eWW /AW with kernel A€ (W), And €F (W) is
isomorphic to the inverse limit of the following inverse system

0+—— EROW/RW) —— ER(W/RPW) —— ER(W/BW) ¢—ro - -

If k = 1, we will also write m,, = 7", Then an ordered sequence (a1(z)...,a,(z))
in &, (W) is said to be h-adically compatible if for every n € Z,, the sequence

(mn(a1(2)), ..., mn(ar(2))) in E(W/R"W) is compatible. A subset U of E,(W)
9



is said to be h-adically compatible if every finite sequence in U is h-adically
compatible.

Let (a(z),b(z)) in E(W) be h-adically compatible. That is, for any n €
Z, we have that

(21 — 20)"m, (a(21)) T0n (b(22)) € E@(W/R"W)  for some k, € Zy.
We recall the following vertex operator introduced in [Li6, Definition 4.11]:

(3.3) Ye (a(z),20) b(z) = Z a(z)nb(z)zo_"_l

ne”L

=lim 5" (21 = 2)" 7 (@(20) 70 (0(2)) ) |oyme20

n>0

An h-adic nonlocal vertex algebra [Li6, Definition 2.9] is a topologically free
C[[h]]-module V' equipped with a C[[A]]-module map Y (-,z) : V — Ey(V)
and a distinguished vacuum vector 1 such that the vacuum property (2.2))
holds, and for u,v € V, (Y (u,z2),Y (v, 2)) is an h-adic compatible pair with
(3.4) Ye (Y(u,2),20)Y(v,2) =Y (Y(u, 20)v, 2)

Denote by 0 the canonical derivation on V:
. d
(3.5) U Qu = ;136 EY(U, z)1.

An h-adic weak quantum vertezx algebra (|Li6, Definition 2.9]) is an h-adic
nonlocal vertex algebra V', such that {Y (u,z) | u € V'} is h-adically S-local.
And an h-adic quantum vertex algebra ([Li6, Definition 2.20]) is an h-adic
weak quantum vertex algebra V' equipped with a C[[A]]-module map (called
a quantum Yang-Bazter operator)

(3.6) S(z): VRV — VRVEC((2))[[h]],
which satisfies the shift condition:

d
(37) [8®175(2)] = __5(2)7
dz
the quantum Yang-Bazter equation:
(3.8) 512(Z1)513(Z1 + 22)523(22) = 523(Z2)513(Z1 + 22)512(21),
and the unitarity condition:
(3.9) S21(2)S(=2) =1,
satisfying the following conditions:
(1) The vacuum property:
(3.10) Sz)(1®v)=1®v, forvel.
(2) The S-locality: For any u,v € V, one has
(3.11) Y (u,21)Y (v,22) ~ Y (22)(1 @Y (21))S(22 — 21) (v @ w).
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(3) The hexagon identity:

(3.12)

S(Zl)(Y(Zg) &® 1) = (Y(ZQ) &® 1)523(Z1)513(Z1 + 22).

We list some technical results that will be used later on.

Lemma 3.1. Let (V,S(z)) be an h-adic quantum vertex algebra. Then

(3.13)

(3.14)
(3.15)

(3.16)

(3.17)

SEvel)=v®l forvelV,

1®0,5(z)] = dizS(z),

S(z1)1 @Y (22)) = (1 @Y (22))8"% (21 — 22)S"3(21),
S0 e1) =1 (0014 L) 56 for f(2) € CLAL

S f1ed) =1 (1 ©0- 83) S(z) for f(2) € Cl)[I

Lemma 3.2. Let (V,S(z)) be an h-adic quantum vertex algebra, and let
u,v €V, f(z) € C((2)[[n]].

(1) If SZ)(v@u)=vRu+1®1® f(z), then

S()((v-1)"1 @ u)

=(v_)"1@u+nv_1)" "1 ®1® f(2),

S()(v @ (u-1)"1)

=0 ® (u_1)"1+nl1® (u_y)" "1 ® f(2),

S(2) (exp(v-1)1 @ u)

=exp(v_1)1®u+exp(v_1)1®1® f(2), ifvehV,

S(2) (v @ exp(u-1)1)

=v®@exp(u—1)1 +1®exp(u_1)1® f(z), ifuechV.

(2) If S(z)(v@u)=v@u+1®u® f(z), then

n

SOCMEETES 3f 4 L TTEVO
1=0
() (xp(u1)1 @ ) = exp(e 1)1 @ wdexp (1(2).
if ve hV, f(z) € hRC((2))[[A]].

(3) If S(z)(v@u) =v@u+v®1® f(z), then

S0 ') = 3 (T)ow e 6
=0
S(z) (v®@exp(u_1)l) =v®@exp (u_1)1 @ exp(f(z)),
if uw € WV, f(2) € hC((2))[[h]].
11



For a topologically free C[[h]]-module V' and a submodule M, we recall
the notation given in [Li6, Definition 3.4]:

[M]={veV|hr"V € M for some n € N}.
It is straightforward to verify that

Lemma 3.3. Let (V,S(z)) be an h-adic quantum vertex algebra, and let
U CV be a generating subset of V.. Let M C V be a closed ideal of V' such
that [M] = M and

S(2) (M @U), S(z) (U@ M) C MRVRC((2))[[h] + VEM&C((2))[[A]).

Then V/M is an h-adic quantum vertex algebra with quantum Yang-Bazter
operator induced from S(z).

In the rest of this section, we recall the construction of A-adic nonlocal
vertex algebras and their modules introduced in [Li6]. Here, a module (|Li6),
Definition 2.33]) for an fi-adic nonlocal vertex algebra V' is a topologically
free C[[A]]-module W, equipped with a C[[#]]-module map Yy (-,2) : V —
En(W), satisfying the conditions that Yy (1, z) = 1y and that for u,v € V,
(Yw (u, 2), Yy (v, 2)) is h-adically compatible and

Ye (Yw (u,2), 20) Yw (v, 2) = Yw (Y (u, 20)v, 2) -
The following result is given in [Li6]:

Theorem 3.4. Let W be a topologically free C[[h]]-module, and let U C
E(W) be an h-adically compatible subset. Then there is a minimal h-adically
S-local subset (U) C E(W) containing 1y and U, such that

(1) (U) is topologically free and [(U)] = (U).
(2) (U) is Ye closed in the sense that for any a(z),b(z) € U and any
n € Z, we have a(z),b(z) € (U).
Then ({(U),Ye,lw) carries the structure of an h-adic nonlocal vertex alge-
bra and W is a faithful (U)-module with the module map Yy defined by
Y (a(2),20) = a(zo) for a(z) € (U).

Remark 3.5. If U is h-adically S-local, then (U) is an h-adic weak quantum
vertex algebra.

We recall the following result from [Li6l Theorem 4.24] for later use.

Theorem 3.6. Let V be a topologically free C[[h]]-module, U C V,1 €V,
and Y° a map

YO U = &V); u— You,2) =u(z) = Zunz_"_l.
neL
Assume that all the following conditions hold:
YO(u,2)1 € V[[z]] and lin%] You,2)1 =u foruel,
2—

12



U(z) = {u(z) | uw e U} is h-adically S-local, and V' is h-adically spanned by
vectors

(3.18) U%)l e u%?l

forr e N, u” € U, m; € Z. In addition we assume that there exists a
C[[h]]-module map ¢ from V to (U(z)) C Ex(V') such that (1) = 1y and
(v

(3.19) U (Y (u, z9)v) = Ye (u(2),20) ¥(v) forueU,veV.

Then the map YO extends uniquely to a C[[h]]-module map Y from V to
En(V) such that (V,Y,1) carries the structure of an h-adic weak quantum
vertex algebra.

4. DEFORMATION BY VERTEX BIALGEBRAS

In this section, we recall the deformation of Ai-adic nonlocal vertex algebras
by using vertex bialgebras introduced in [JKLT2|[JKLT3].

We start by recalling the notion of vertex bialgebras and smash products
given in [Li5| (see also [JKLT3]). An h-adic (nonlocal) vertex bialgebra is
an h-adic (nonlocal) vertex algebra V' equipped with a classical coalgebra
structure (A, ¢) such that (the coproduct) A : V — V@V and (the counit)
e : V — C[[h]] are homomorphisms of fi-adic nonlocal vertex algebras.

Remark 4.1. Let (H,A,e) be a bialgebra over C[[A]] equipped with a
derivation 0. Suppose that H is topologically free. Then H is an h-adic
nonlocal vertex bialgebra with vacuum 1 and vertex operator defined by

Y(a,z)b = <ezaa> b fora,be H.
We denote this h-adic nonlocal vertex bialgebra by (H, 0, A,¢).

Let (H,A,¢) be an h-adic nonlocal vertex bialgebra. A (left) H-module
(nonlocal) vertex algebra ([Li5]) is an A-adic nonlocal vertex algebra V
equipped with a module structure 7 on V for H viewed as an h-adic nonlocal
vertex algebra such that

(4.1) T(h,2)v € VRC((2)[[A],  7(h,2)1y =e(h)1y,

(4.2) T(hy21)Y (u, 2z9)v = ZY 7(hay, 21 — 22)u, 22)7(h(2), 21)v

for h € H u,v € V, where 1y denotes the vacuum vector of V' and A(h) =
> ha is the coproduct in the Sweedler notation.

A (mght) H-comodule nonlocal vertex algebra ([JKLT2]) is a nonlocal
vertex algebra V equipped with a homomorphism p : V — VRH of h-adic
nonlocal vertex algebras such that

(4.3) (polp=10A)p 1&e)p=Idy.

p is compatible with an H-module nonlocal vertex algebra structure 7 (see
JKLT2]) if

(4.4) p(1(h,2)v) = (1(h,z) ® 1)p(v) for he H,veV.
13



We introduce the following notion.

Definition 4.2. Let V be an fi-adic nonlocal vertex algebra. A deforming
triple for V' is a triple (H, p,7), where H is a cocommutative fi-adic non-
local vertex bialgebra, (V, p) is a right H-comodule nonlocal vertex algebra
and (V,7) is an H-module nonlocal vertex algebra, such that p and 7 are
compatible.

The following result is given in [JKLT2].

Theorem 4.3. Let V' be an h-adic nonlocal vertex algebra, and let (H, p,T)
be a deforming triple. Set

(4.5) D2(Y)(a,z) = ZY(a(l), 2)7(ag),2) fora€V,

where p(a) = Y aq)®apy € VOH. Then (V,D7(Y),1) carries the structure
of an h-adic nonlocal vertex algebra. Denote this h-adic nonlocal vertex
algebra by DF(V'). Moreover, (D7(V), p) is also a right H-comodule nonlocal
vertex algebra.

Remark 4.4. Let H be a cocommutative h-adic nonlocal vertex bialgebra,
and let (V, p) be an H-comodule nonlocal vertex algebra. We view the counit
€ as an H-module nonlocal vertex algebra structure on V' as follows

(4.6) e(h,z)v=e(h)v forhe HyveV.
Then it is easy to verify that € and p are compatible, and D2(V) = V.

Remark 4.5. Let V7, V5 be two h-adic nonlocal vertex algebras. Suppose
that (H,p1,71) and (H, pa,2) are deforming triples of V; and Va respec-
tively. Suppose that f : Vi — V5 is an h-adic nonlocal vertex algebra
homomorphism such that

pof=(f®1)op, and f(r(h,z)v)=m2(h,2)f(v) for he H, ve V.
Then f is an h-adic nonlocal vertex algebra homomorphism from D% (V)
to D02 (Va).
Now, we fix a cocommutative A-adic nonlocal vertex bialgebra H, and an
H-comodule nonlocal vertex algebra (V, p). Note that
Hom (H, Hom(V, V&C((x))[[A]]))
is a unital associative algebra, where the multiplication is defined by
(fxg)(h,2) = f(hay, 2)g9(h2), 2)
for f,g € Hom (H,Hom(V,V&C((2))[[A]])), and the unit e. For f,g €
Hom (H, Hom(V, V@(C((z))[[h]])), we say f and g commute if
[f(h7z1)7g(k7z2)] =0 for h,k‘GH.
Let £7,(V) be the set of H-module nonlocal vertex algebra structures on V
that are compatible with p. The following is an immediate h-adic analogue

of [JKLT2, Proposition 3.3 and Proposition 3.4].
14



Proposition 4.6. Let 7 and 7' are commuting elements in £5,(V). Then
7 € (V) and T+ 7' = 7' x 7. Moreover, T € &4, (9?,(V)) and

(4.7) DL (D2,(V)) =27 (V).

77/

Recall that an element 7 € £7,(V) is said to be invertible if there exists

71 € £8,(V), such that 7 and 77! are commute and 7% 7! = . We have
the immediate fi-adic analogue of [JKLT2, Theorem 3.6].

Theorem 4.7. Let Vi be a vertex algebra, and let V- = Vy[[h]] be the corre-
sponding h-adic vertex algebra. Suppose that (H,p,T) is a deforming triple
of V, such that T is invertible in £5,(V). Then ©7(V') is an h-adic quantum
vertez algebra with quantum Yang-Baxter operator S(z) defined by

S(2)weu) =Y r(ug), —2)vay @7 (ve), 2)uqy  for u,v €V,
where p(u) = Y uq) @ ugg) and p(v) = D vy @ V().

5. CONSTRUCTION OF F(A, /)
In this section, we fix a GCM A = (a;j); jer and a complex number £. Let
T be the set of tuples
1,+ 2,4 , e2=%
T = (Tij(z)yTij (Z)vTij (z)77_7;€j1 EQ(z))il];Z[ )

where 75(2), 725 (2), 725 (2), 722 (2) € C((2))[[H]], such that

) 7,] Y] 7ty

. . 1,4+ 2,+
hII(l) 7ij(2) = ?liur(l) Tji(—2), hII(l) T (2) = 7111_% T (=2),

lim 7% (2) = lim 77 (—2) € C[[2]]*.

Definition 5.1. Let 7 € . Define M, to be the category consisting of
topologically free C[[A]]-modules W, equipped with fields hi,h(z),xfh(z) €
Er(W) (i € I) satistying the following conditions

(5.1)  [hin(21), hjn(22)]
ma,]rgai ~1s <z1> + 7ij(z1 — 22) — Tji(22 — 21),
(5:2)  [hin(21), 27, (22)]
= +27,(2) (riaijzl‘lé <z—i (e —z) T (2 — z1)> ;

(5.3) 77521 — 2) (21 — 2) " ah (21) 25, (22)
= 75,5 (22 — 21) (21 — 22) T (20)2 (1),
(5.4) TZ-:;’:F(Zl — 29)(21 — 22)25”3:%(21)35?&(22)
=155 (2 — 21)(;1 — 22)"9 2T ()2 (21).
15



Let F; be the forgetful functor from M, to the category of topologically
free C[[]]-modules. Define Endc(j;(F-) to be the algebra of endomorphisms
of the functor .. For each W € M., Endc (W) is a topological algebra
over C[[A]] such that

{(K:"W)| KCW, |K|<oo,n€Zy}
forms a local basis at 0, where
(K : hnW) = {(,0 S End(c[[h”(W) | (,D(K) C hnW}

Equip Endgjj(F-) with the coarsest topology such that for any W € M.,
the canonical C[[A]]-algebra epimorphism from A to Endcy; (W) is con-
tinuous. It is easy to verify that both Endg( (W) and Endgyp;(Fr) are
topologically free.
For each i € I, we define endomorphisms h; 5(n) and :Eziﬁ(n) (n € Z) of

F, as follows:

Z hin(n).wz=""t = hyp(2)v, Z mfh(n).fuz_"_l = xfh(z)v.

nez ne”
where v € W and W € M,. We denote by A the closed subalgebra of
Endg( (F7) generated by {hi’ﬁ(n), a;fch(n) ‘ 1€l,ne Z}. Then A is topo-
logically free. Let A4 be the minimal closed left ideal of A containing h; 5(n)
and :Eziﬁ(n) (i € I, n > 0), such that [A;] = A. Define
(5.5) F.(A0) =A/A,.

Set 1 =14+ Ay € Fr(A,¢). And for each i € I, we identify h;p and xfh
with h; 5(—1)1 and a:ich(—l)l in F(A, /), respectively. It is straightforward
to verify the following result.

Lemma 5.2. The topologically free C[[h]]-module F,(A,f) equipped with
fields hi,ﬁ(Z),IIf??h(Z) (i € 1) is an object in M. Moreover, let W be an
object in M., and let v € W be such that h;(n).vy = 0 = xfh(n).m

fori eI and n > 0. Then there exists a unique A-module homomorphism
p: F (A 0) = W such that (1) = v.

Proposition 5.3. There exists an h-adic nonlocal vertex algebra structure
on Fr(A,€) such that 1 is the vacuum vector and the vertex operator map
Y, is determined by the following conditions

(5.6) Y (hip, 2) = hip(2), YT(ath, z) = mffh(z), iel.

Moreover, there exists a natural isomorphism between the category of Fr(A,()-
modules and M.,.

Proof. Let (W, h; p(2), mfh(z)) be an object in the category M, and let

U = {hiﬁ(z), w5 (2), c( ie 1} C E(W).

16



It follows from the relations (5.1), (5.2), (5.3) and (5.4) that Uy is an A-
adically S-local subset. From Theorem [3.4] we get an h-adic weak quantum
vertex algebra (Uy) C &;(W) containing Uy, 1y, such that 1y is the
vacuum vector and Yg is the vertex operator (see ([B.3])). Moreover, W is a
faithful (U )-module with Yy (a(z), z0) = a(zg) for a(z) € (Uw).

Using [Li6, Lemma 4.21], we get that <<UW>, Ye(hin(21),2), Ye (xfh(zl), z))
is an object in M. From the vacuum property (2.2]), we have that

hin(2)lw = Ye(hin(21), 2)1w,
:L'fh(z)lw = Yg(xfh(zl),z)lw e (Uw)|[z]] foriel.

Combining this with Lemma[5.2] we get an .A-module map g : F-(A,{) —
(Uw), such that oy (1) = L.

Note that F;(A,£) is an object in M, (see Lemma[5.2)). Since ¢p, (4, is
an A-module map, we have that

PF, (a0 (al20)v) = a(20)¢F, (a0 (V) = Ye(a(z), 20)0r, (4,0 (V)
for a = h; 5 or xfh, ve F(AY).

From the definition of F(A,¢) we have that a(z)1 € F;(A,¢)[[z]] for a =
hi hs x;th Then by using Theorem B.0, we get a unique C[[A]]-module map
Y, such that

Y (hin, 2) = hin(z), YT(:th, z) = xfh(z), iel,

and (F;(A,¢),Y;,1) carries the structure of an h-adic weak quantum vertex
algebra.

An immediate fi-adic analogue of [Lid, Proposition 6.7] implies that every
F.(A, ¢)-module is an object in M. On the other hand, let (W, h; 5(z), x;th(z))
be an object in the category M,. Since pw : Fr(A,¢) — (Uwy) is an A-
module map, we have that

ow (Yzr(a, z0)v) = pw(a(z0)v) = a(20)ew (v) = Ye(a(z), 20)pw (v),

for any a = hip, a:ich and v € F;(A,l). Hence, o is an h-adic weak
quantum vertex algebra homomorphism. Since W is a faithful (Uyy)-module,
we get that W is a F(A, ¢)-module. O

The proof of Proposition [£.3] implies that F,(A,¥¢) admits the following
universal property.

Proposition 5.4. Let V' be an h-adic nonlocal vertex algebra, and let Y
be the vertex operator map of V. Suppose there exists Ei’ﬁ,.’i’i:h eV, such
that (V,Y (hip,2),Y (35,,2)) becomes an object of M.. Then there erists
a unique h-adic nonlocal vertex algebra homomorphism ¢ : Fr (A 0) — V,
such that ¢(hi ) = hip and gp(mzih) = a’:fh foriel.
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Corollary 5.5. Let V' be an h-adic commutative vertex algebra, and let

oy, e;-t € V (i € I). Then there exists a unique h-adic nonlocal vertex

algebra homomorphism p : Fy(A,0) — Fy(A,0)®V, such that
plhin) =hin®1+1® a, p(xlir,) = xfh ® ef, 1€1.
Let Hy be the symmetric algebra of the following vector space, and let
H = Hy[[h]):
& (Cl9] (Cai @ Cef @ Ce;)) .
1€l
Then H is a commutative and cocommutative bialgebra with A and ¢
uniquely determined by (i € I, n € N):

A(@"0) =0"0; ®1+10 0", A@"eS) =) <Z> et @ et
k=0
e(0";) =0, £(0"€F) = dnp.
Let O be the derivation on H such that
A(O"a;) = "My, 9(O"ef) =0"Tef foricI,neN.
It is straightforward to see that Aod=(0®14+1®J)o A and 09 = 0.

From Remark [LI]we have that (H, 0, A, ¢) carries an h-adic vertex bialgebra
structure. It is immediate from Corollary that

Lemma 5.6. There is a unique h-adic nonlocal vertex algebra map p :
F.(A,0) —» F.(A,0)®H, such that

(5.7) p(hip) =hip®1+1® aq, p(xfﬁ) = xfﬁ ® eli forie 1.
Moreover, (F;(A,£),p) is an H-comodule nonlocal vertex algebra.

Recall from [Li5] that a pseudo-endomorphism of an h-adic nonlocal ver-
tex algebra V' is a C[[A]]-module map A(z) : V — VRC((2))[[A]], such that
A)1=1®1, A(z1)Y(u,22)v =Y (A(z1 — 22)u, 22)v  for u,v € V.

And a pseudo-derivation of V is a C[[]]-module map D(z) : V — VRC((2))[[A]],
such that

[D(z21),Y (u, 22)] = Y(D(21 — 22)u, 22) forue V.
As a straightforward fi-adic analogue of [Li3|, Proposition 2.11], we have that

Proposition 5.7. Let V be an h-adic nonlocal vertexr algebra, and view
C((2))[[R]] as an h-adic vertex algebra with the vertex operator map

Y (f(2),20)9(2) = f(z — 20)g(2).
Suppose that A(z) is an h-adic nonlocal vertex algebra homomorphism from

V to the tensor product h-adic nonlocal vertex algebra VRC((2))[[A]]. Then
A(z) is a pseudo-endomorphism of V.. Moreover, let

D(z) : V = VC((2))[[H]]
18



be a C[[h]]-module map. We view V[5]/62V[d] as an h-adic nonlocal vertex
algebra. If 1 +0D(z) is a C[6]-linear pseudo-endomorphism of V[§]/62V [4],
then D(z) is a pseudo-derivation of V.

Using Corollary and Proposition 5.7 we have:

Lemma 5.8. Let 0 € ¥. Then for each i € I there exists a pseudo-
derivation o;(z) on F.(A,{) such that

1+
(5.8) oi(2)hjn =1® 045(2), ai(z)xfh = ia:jfh ® 0,7 (2).
And there exists a pseudo-endomorphism oi(x) on Fy(A,£) such that

(5.9) o} (hjn = hin @ 1F 1@ o7 (2), o} (2)afp = 25, ® 0" (2) 7,

K3 K3

where e =+ and 1,5 € 1.

Let V be an h-adic nonlocal vertex algebra. A subset U of
Hom(V, V&C((2))[[1]])

is said to be A-closed (see [Li5]) if for any a(z) € U, there exist two sequences
{aan) (2) }n>1,{a@n) (2) }n>1 C U C Hom(V, VRC((2))[[R]]) that converge to
0 under the h-adic topology and

a(z1)Y (v, 2z9) = ZY(a(ln)(zl — 22)v, 22)a(2n)(21) forv e V.

n>1

Let B(V) be the sum of all A-closed subspaces U of Hom(V, VRC((2))[[A]])
such that

(5.10) a(z)1 € C[[a]]1 for a(z) € U.

Note that Hom(V, VRC((2))[[R]]) = End(c((z))[[ﬁ”(V@(C((z))[[h]]) is an asso-
ciative algebra.
The following is the immediate h-adic analogue of [Li5l Proposition 3.4].

Proposition 5.9. For any h-adic nonlocal vertex algebra V., B(V') is a A-
closed associative subalgebra of Hom(V, VRC((2))[[1]]) and it is closed under
the derivation 0 = d%. Moreover, B(V') is an h-adic nonlocal vertex algebra
with the vertex operator defined by

Y(a(z),20)b(z) = a(z + 20)b(z) for a(z), b(z) € B(V).
Furthermore, V is a B(V)-module with the module action Yy (a(z),zp) =
a(zg) for a(z) € B(V).

We have that

Proposition 5.10. For each o € ¥, there exists an H-module structure
o(-,z) on Fr(A,L) such that

(5.11) o(ai,2) = 04(2), o(ef,2) =0F(2), i€l

7
Moreover, (H,p, o) is a deforming triple for Fr(A,Z).
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Proof. Note that there is a C[[A]]-algebra homomorphism ¢ : H — B(F,(A,¥))
defined by

Aoy, (2) d™o; d"o;,
(’D(an1ailan2ai2 . 'anr-air) — o 1(2) 02(2) . UT(Z)

dzm dzre dgnr
n1 ~€1 no ~€2 My ~Er
(8meﬁlanze€2 . 8717“657“) _ d Tiy (=) d Tiy (Z) d i, (2)
i i1 12 ir) n n ne
dz™ dz"2 dz™
where i1,12,...,4. € I, €1,€2,...,¢, =+t and 0 < ny,...,n,. € Z. It is easy

to see that
d
©(Oh) = Ecp(h) for h € H.

Then ¢ is an h-adic vertex algebra homomorphism. Hence, F;(A,/) is an
H-module, and we denote this module action by o(-, z).

Let H' be the maximal C[[h]]-submodule of H such that for any h € H’',
one has o(h,2)1 = ¢(h)1 and

O'(h, zl)YT(u, ZQ)U = Z YT(O'(h(l) , 21 — 22)u, Zg)o‘(h@) s 21)?],

for all u,v € F;(A, (), where A(h) = > h(1) ® hey. It is straightforward to
check that H' is an h-adic vertex subalgebra of H. Since {ozz-, e;-t ‘ 1€l } C
H' and H is generated by {o, eli‘ i €1}, we get that H' = H. Hence,
(Fr(A,¢),0) is an H-module nonlocal vertex algebra.

Similarly, one can easily checks that

(5.12) p(o(h,z)v) = (o(h,z) ® 1) o p(v) for h € H, v e F.(A,J0).
This proves that (H, p,0) is a deforming triple for F;(A, 7). O

Let 7,0 € ¥. Combining Theorem [4.3] and Proposition (.10l we have the
h-adic nonlocal vertex algebra

(5.13) DL(F, (A, 0)).
Define 7 * o to be

1+ 1+ 2.+ 2.+ : : o=
(1i(2) + 035(2), 757 (2) + 0357 (2), 7377 (2) + 0357 (2), 7532 (2)05; 2 (2)ijer -

Then ¥ is an abelian group under * with identity e defined by

1,+ 2,+ €1,€
(5.14) gij(2) =0 = €} (2) = €ij (2), sijl- (z) =1,
where i,j € I, €1,e0 = +.

Lemma 5.11. Let 7,7',7" € €. Then the following relations hold true on
FL(4,0)

(7' (h,z1), 7" (W, 22)] =0 for h,h' € H.
Proof. From (G5.11)), (5.8) and (5.9]), we have that

[7'(a,z1),7" (b, 22)]v = 0.
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for a,b € {ai,e;t| iel}, v e {hi,h,xfh | i € I}. Let V be the C[[A]]-
submodule of F,(A,¢) consisting of elements v such that
-

[7'(a,21),7"(b,22)Jv =0 for a,b= e, i€l

It is easy to verify that V' is a subalgebra of F(A,{). Since F-(A, () is gener-

ated by {h; s, xfh | i € I}, we get V = F;(A,¢). Since H is a commutative

h-adic vertex algebra generated by {ozz-, e;-t | 1el }, we have that
[7'(h,z1), 7" (W, 20)]Ju =0 for h,h' € H, v € F.(A,J).

Therefore, we complete the proof. O

It follows from Lemma [5.1T] and Proposition that
(515) D (DL(FHA D)) = DA ) forrr 7" €T

T/*7!!

Moreover, we have that
Proposition 5.12. Let 7,0 € . Then
DL(Fr (A, 0) = Fruo(A, D).
Moreover, F(A,0)/hF-(A,l) = F(A,J0).
Proof. From Proposition .6, we have that
DL (Y )(hip, z) = Ye(hip, 2) + 0i(2), CDg(YT)(a;ffh, z) = YT(ath, 2)oE(2).

Using Lemma [5.8] one can easily check that
(DE(Fr(A,0), D5(Y7) (hin, ), DE(Yz) (235, 2))

is an object of M ,,. Using Proposition[5.4] we get an h-adic nonlocal vertex
algebra homomorphism f;, from Fy.,(A,¢) to D5(F(A,¢)). From Remark
we see that f;, is also an h-adic nonlocal vertex algebra homomorphism
from ©°_, (Fr.o(A,0)) to ©_, (D5(F;(A,L))). It follows from Remark 4]
and (BI5) that ©7_, (D5(F;(A,€))) = Fr(A,{). Then f;, becomes an
h-adic nonlocal vertex algebra homomorphism from ©°_,(Fr.,(A,£)) to
F,(A, ). Replacing T with 7 * o and replacing o with o0, we get an h-adic
nonlocal vertex algebra homomorphism

frego—t  Fr(A,0) = D! (Frio(A,0)).
Hence, fr o0 friso-1 is an h-adic nonlocal vertex algebra endomorphism on
F;(A,{) which maps a to a for all a € {hz’ﬁ, xfh ‘ i€ I}. From Proposition
(.4 we get that

f‘r*d,d_ 1

Fr(A,0) D! 1 (Frag(A, 1))

(5.16) \ lf

F(A,0)
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By replacing 7 and ¢ with 7 x 0 and ¢~! in (5.16]), we get that

T*O’(A f) f—> CDp( A 6))

(5.17) \ |frimoms
Frio(A,0)
Notice that

95—1 (FT*O'(A7 E))/h©§71 (FT*O'(A7 E)) = FT*O'(A7 E)/hFT*O' (Av 6)7
D5(Fr(A,0)) /D7 (Fr (A, 0)) = Fr(A, )/ (A, L).

Then f;, and f,,; ,—1 induce the following C-linear isomorphisms

Frog(A,0)/hFy (A, ) F.(A,0)/hF,(A,0)
(5.18) H

DL(F, (A, 0))/hD4(Fy (A, 0)).

Since both Fy.,(A,¢) and D5(F,(A,()) are topologically free, we get that
fro : Frio(A0) — D5 (F-(A,0)) is an hi-adic nonlocal vertex algebra iso-
morphism.

From (5.14]), we see that F.(A,¢) = F(A,/)[[A]] as h-adic vertex algebras.
Recall that ¢ is the identity of 7. Then by replacing 7 and ¢ with ¢ and 7
in (B.I8]), we get that F-(A,¢)/hF (A 0) = F(A,Y). O

For 7 € ¥, we note that

— s + €1,€ —1\€1,e0=*%
7 = (—miy(2), —7 T (2), —T (), R ()T

It is immediate from Theorem .7 that

Theorem 5.13. For any 7 € ¥, F,(A,{) is an h-adic quantum vertex alge-
bra with the quantum Yang-Bazter operator S;(z) defined by

Sr(z)(v@u) = ZT(U(Q), —2)v(1) ® ’7'_1(11(2), 2)uy  for u,v € Fr(A,L).

Moreover, for any i,7 € I and €1,€e9 = £, we have that

(5.19)  Sr(2)(hjn @ hin) = hjn @ hip+1® 1@ (735(—2) — 75i(2)) ,
(520)  S-(2)(2F, ®hip) =25, @hiptal, 1@ (T (—2) + 2jE(z)),
(5.21) T(z)(Jﬁ®x )—h]h®xm:1:1®xm®( (—z2) + (z)),
(5.22)  S-(2)(z] ih) = T ® T A (2T (—2)_1-

6. CONSTRUCTION OF QUANTUM AFFINE VERTEX ALGEBRAS
Let ¢ € C. In the rest of this paper, we fix a special

1,4 2+ P
T= (Tij(z):Tij (Z)vTij (2)77'2'6]'175(2))5,1]‘?1 S

22



defined as follows

Zi e _
(6.1)  T7j(2) = [Tiaij]q% W]q% q" s ErE riagrlz"2,
=+ .+ o2 1+e7* _
(6.2) Tilj (2) = Tfj (2) = [Tiaij]q% q""v 5 o=z li%ij? "
_ -1, _ _ .
63 it (€0 amet —aem ), ity >0
: ] 21 (qi_az‘j/zez/2 _ q;lij/2e—z/2) , if aij <0,

(64) 777 (2) = 279 (2 + 20th),
(6.5) 7T (2) = 2% (2 = 2reh) % g (2) Y,

where g;jn(z) = (1 —q;7e™*)/(q;” — e~*). Then the equations (G.1)), (5:2),
(3), (54) become:

(6.6) [hin(21), hjn(22)]

—21+=2
= [riai] o [rf] o <L q_M% — qréazz) e
1Qij 5 5 21,22 22,21 (1 — 6_214_22)2’

(6.7) [hin(z1),7;5(22)]

+
= i%,n(zz)[ﬁaij]qa;

< 02 rzi> 14 e 1t

2
2] — 9
LZl,qu 2 LZQ,Zlq %2 2 _ 26_Z1+22 Y

i
1 _qiwe 21422

(6.8) L2,z ==y 5 (21)w5,(22)

@ij —z1+22
q;  —€

— +
= lzm (1-— e—z1+z2)5ij :Ejvﬁ(zz)xi,ﬁ(zl)’

(6.9) (21 — 22)% (21 — 29 + 2rLh)%

X ($Ih(z1)x;h(z2) — lay 2 9ij n(21 — z2)$;h(z2)m:h(z1)) =0.
For i,5 € I, we set
—aij/2_5/2
_oomij ety (g; e’ —4q
610)  fun(s) = T e) = S
Then the relation (6.8]) is equivalent to the following equation:
» _ + +
1, i,h j
(6.11) Lay,zo fij (21 — 22) 273 (21) 2 (22)
= (_1)6ij Lz27z1fji(z2 - Zl)xfh(22)xz:‘|,:h(zl)’
It is straightforward to verify that
Lemma 6.1. Leti,j € I. Then

;lij/2e—z/2)

YRR —re2 €

(612)  7ij(2) = 7ji(—2) = [riay] 2 [rl] 2 (qr o az) (1—e=%)*
K 90 1 + e *
(6.13) 75t (2) + 7 (—2) = [riay) 2 (qreaz —q Maz) 5 907

q
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1,— 2,
= Tij (Z) + sz’ (—Z),

(6.14) 75 (2) (=) = gign(z) = 7T ()T (<),
Moreover, we have that

Lemma 6.2. Let

(6.15) F(z) = (¢ —q7%)/z € hC[*|[[n]].

Then for any i,j7 € I, we have that
0
(6.16) F (@) (Tij(z) — sz-(—z))
—T i T 2 ) )
_ <q g @) <T}j+(z) + Tfﬁ(—z)) ,

9 1+ 2.+ o0 0 T (2)
(6.17) F (8—> (@) + () = (a5 — a7 ) og e
;i
Proof. From (613]), we have that
(7% = %) (177 () + 3 (=2)
= (0% — %) [0 o (" () + 75 (=2)

1 () g2lrt] g G+ + 7 (-2)

q 9z
_ 9 re-2 s e
=1 (g5 ) sl g 8,5, (8 = 5) (5
Combining this with ([6.12)), we prove the equation (6.I6]). The proof of the
equation ([6.I7) is similar. O

Definition 6.3. For £ € C, we let R{ be the minimal closed ideal of F (A, ¢)
such that [R{] = R{ and contains the following elements

(6.18) (x;fh)oa;;h (¢ —q¢H (A~ E(hip)) foricl,
(6.19) (x;”h) ) x4+ 2reh(g; — ¢ ) E(hip) foriel,
(6.20) (=) ;nj o¥, fori,j € Iwith a; <0,
where
!
(6.21) E(hip) = (%) * exp <<_q—r£8F () hm) _1> 1
Define
(6.22) Vin(€,0) = Fr(A,0)/RY.
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Definition 6.4. Let ¢ € Z,. We let RS be the minimal closed ideal of
Vi.n(£,0) such that [R5] = RS and contains the following elements

rl/r;
(6.23) <:El:th) _1 xfh forie I.
Define
(624) L@Ji(& 0) = %,ﬁ(£7 0)/R§

It is immediate from Propositions 23] [5.12] and Definitions 2.6, 6.3,
that

Proposition 6.5. For ¢ € C, there is a surjective vertex algebra homomor-
phism from V(£,0) to V; (¥, O)/hVg n(£,0) such that

(6.25) hi — hip, xi — :EM foriel.

If ¢ € Z4, then (620) defines a surjective vertex algebra homomorphism
from Lg(¢,0) to Lg (¢,0)/hLg 5 (¢,0).

The main purpose of this section is to prove the following results.

Theorem 6.6. Let £ € C. Then V;(¢,0) is an h-adic quantum vertex
algebra. Moreover, if £ € Z,, then Lg,h(ﬁ 0) is also an h-adic quantum
verter algebra. Furthermore, the quantum Yang-Baxter operators of both

Vin(£,0) and Ly (€,0) satisfy the relations (5.19), (5.20), (6.21)) and (5.22).
We start with some technical results.

Lemma 6.7. Let W be a topologically free C[[h]]-module,

= Z Bz ™ L e W((2))

meZ
and f(z) =1 ,a;z" € C[z], such that a, = 1. Suppose that
Sing, 2R f(2/h)B(z) =0  for some k € Z.
Then By, € Spangyy {Bi| k <i <k +n} forallm > k. Moreover, if 3; = 0
for all k < i < k +n, then Sing, 2B(2) =0
Proof. Notice that
0 = Sing, A" f(z/h) Z z~m1 Zalh Brntkti-

m>0

It follows that

n—1
Bm4n = — Z aif" " By for m > k.
i=0
By using induction on m, we complete the proof. O
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Lemma 6.8. Let V' be an h-adic nonlocal vertex algebra, and let u,v € V,
f2) = (g aiz")/ (3270 bj27) € C(2). Suppose
(6.26) b ma n B f (21 = 22)/B) Y (1w, 21)Y (v, 20) € E(V).
Then we have that
Sing, ¢, yh" "™ f(2/R)Y (u, z)v = 0.

Proof. Let U = {Y(u,2) | ue V} C E(V). From (B4]), we get an h-adic
nonlocal vertex algebra homomorphism V' — (U) defined by u — Y (u, z).
Then from (6.26]), we have that

R f(z/R)Y (Y (u, z)v, 29)
=" f((z1 — 22) /1) Ye (Y (u, 22),2) Y (v, 22)
= (h"_mf((zl — zg)/h)Y(u, 21)Y (v, 2’2)) P
Notice that
(h”_mf((zl — zg)/h)Y(u, 21)Y (v, zg)) P———
€ Hom(V, V((22))[[2]]) + F" End V[[25, 2]]  for all n >0,
and that f(z,R)Y (Y (u, 2)v, 22)1 € V[[z, 271, 25]]. It follows that
R f(z/R)Y (Y (u, 2)v, 29)1
= (""" f((z1 — 22)/R) Y (u, 21)Y (v, 22)1) |2y =2042 € V][22, 2]].
Setting zo = 0, we get that
" f(z/R)Y (u, z)v = (h"_mf(z/h)Y(Y(u, z)v,zg)l) |zo=0 € V[2]]-
Therefore, Sing, ¢, ;7" ™™ f(2/h)Y (u, z)v = 0. O
Combining Lemmas and equations (6.11), (6.9]), we have that

Lemma 6.9. In the h-adic quantum vertex algebra Fr(A,l), we have that

(6.27) Sing, (z — riaijh)YT(xii’h, z)x;h =0, ifay <0,
(6.28) Sing, 2~ !(z — riaiih)YT(xfh, z):nfh =0,

(6.29) Sing, Yr (x5, 2)a;, =0, ifi# ],

(6.30) Sing, z(z + 2T€h)YT(a::h, z)x; ;= 0.

We have that
Proposition 6.10. Fori € I, we define A;(z) to be
Sing, YT(th, z)x, — (6 — g ™ (lz_1 — E(hip)(z +2rth) ™).
Then Ai(z) = 0 in Vj;(¢,0). Moreover, we have that

Yo (2, 20) Ve (€5 22) = g 0 Gigin(21 — 22) Yo (25, 22) Yo (275, 21)

(6.31) —— 2 — <zl—15 <Z—2> — Y, (B(hip), 22) 270 <w>> .

qi — ¢; 21 21
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Proof. Let

Ai(z) = YT(:UZ’FH,z)a;i_fZ — (¢ —q;H™? (1271 = E(hip)(z + 2reh) 1) .

It is easy to see that A;(z) = Sing, A;(z). From (630), we have that

Sing, z(z + 2rfh)A;(z) = 0. Then it follows from Lemma [6.7] that

1
Ai(2) = Sing, A;(2) € @ Clz"[[A]] (Res. 2" Ai(2)) .
n=0

Recall from (618) and (6.19) that Res, 2" A;(z) = 0 for n = 0, 1. Therefore,
Ai(z) = 0in Vy4(£,0).
From [Li6l (2.25)], we have that

2510 (222 Ya(afy, 20) e (7, 22)
ZO 9 J?

_ 22— 2 _
— 20 < - > Las e Gign(21 — 22) Yo (€53, 22) Yo (2, 21)

_ Z2 + 20 _
=2z] ls ( o > Y, <YT(x:h, zo):njﬁ, ZQ) )

Taking Res,,, we get that
Yo (2, 20)Ye (€55, 22) = oy 2 Gigin(21 — 22) Y (€55, 22) Ve (27, 21)

= RGSZO 21_15 < YT <Y7’(x2_ﬁ7 ZO)‘T‘;R? 22)

_ ~1
=Res,, 2, 0

(¢ — q-_l)_1 (zo_l — Y. (E(hip), 22) (20 + 2r€h)_1)

z _ 29 — 2rlh
<—2> — Y, (E(hip), 22) 2716 <72 )) ,
21 21

where the third equation follows from the first statement. O

22 + 2’0> Y, <SingzO Y (zf, 20)Z; 1, Zg)
)

=5ij(qi —q; ") <2’1_1

For any positive integer k and i1, ..., € I, we set
+
(6.32) Y;'lv---vik (2’1, e ,Zk)
= T fuin(za—2) | Yel@l p2)Ve(al o 20) - Vol )
1<a<b<k

It is immediate from equations (6.11]) and (€.9) that
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Lemma 6.11. For any positive integer k, i1,...,ix € I and o € S, we
have that

(633) Y;j:(l),,,,,ia(k) (z0(1)7 s 7Zo(k)) = H Cia,ib Y;:lt,ﬂk (Zl, I ,Zk),
1<a<b<k
o(a)>o(b)

where

(6.34) Cij = —(—1)%.

(21,.. ., 2) € EM(FL(A,0)).

Lemma 6.12. Let i,j € I with a;; < 0 and k € N. Then in F;(A,{), we
have that

Moreover, YijE -
1yeensl

(6.35) Sing., ., Yr(zi,z1) o Yo(aky, z)ad,

k
€Clert,... 27 A <(xih)0 x;th> .
Moreover, we define Yljck(z) to be

VE (2 +ri((k = Dag + aig)hy 2 + (b — 2)ai + aj)h, ..., 2 + riaijh, 2) .

RV

Then we have that

k _
(6.36) Y, <<:L'fh>0 :E;Eﬁ, z> = ckYszk(z) for some ¢, € C[[h]]™.

Proof. We prove the lemma by using induction on k. From equations (G.1T])
and (6.9]), we have that

H fiin (21 — 22 — ri((a — Dai; + aij) ) | fijn(z1 — 22)Ysr (‘T?,:h? Zl) Yiik(@)
1<a<k

:Y;-i:whj (Zl, 29 + T‘Z((k‘ — 1)aii + aij)h, 29 + ’r’z((k‘ — Q)Gii + aij)h, ooy 22 + riaijh, Z2)
lies in 8,22) (Fr(A,£)). Notice that
fijn(z1 — 22) H fiin (21 — 22 — ri((a — D)ay; + ag;)h)

1<a<k

qi—k—aij/2e(z1_22)/2 _ qf+aij/2e—(z1—22)/2.

and that (qi_k_a”/2e(zl—z2)/2 - qura”/ze_(zl_”)/z) /(21 —22—ri(kai+a;)h) €
(C[[Zl,ZQHX. Then
(Zl — 29 — ri(k‘aii + aijh)) Y- (l‘;-lfh, 21) Z;t,k(’@)
=dy(z1 — zg)YifM (21, 22 + ri((k — D)ag + agg)h,
29 + Tz((k — 2)a,~,~ + aij)h, oo, 20+ riaijh, 22)
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lies in Eéz)(FT(A,K)) for some di(z) € C[[z,h]]*. From induction assump-

tions (6.35]), (6.36) and Lemmas 6.7, [6.8, we complete the proof of (6.35)
for k4 1.

From induction assumption (6.36]) and (3.4]), we have that

(z = ri(kas; + aij) L)Y <Y (xi:h, z) <<a;fch>z a:th> ,22>

:ck(z — ri(lmii + aij)ﬁ)Yg (Y(xffh, 22), Z> z;‘fk(ZQ)

=cy, ((z1 —z —ri(kay + ai;h)) Yr <:th, zl) Yljck(zg))
=crdi(2)Y; (22 + 2,22 + 1i((k — Dag + ag)h,
29 + Tz((k — 2)a,~,~ + aij)h, oo, 20+ riaijh, 22).

z1=22+z2

By multiplying (z — r;(ka;; + a;;)h) ™! and taking Sing, on both hand sides,
we get that

k
(6.37) Y <Singz Y <$,ih z) <$fn)0 T Z2>
=(z — ri(kai; + az’j)h)_lck-I—lYijF,k—f—l(Z?)’

where cp11 = cpdi(ri(kay + a;j)h). Then from the induction assumption
(635]), we complete the proof of (6.33]) for k£ + 1. Notice that both ¢, and
dy(ri(kasi + a;j)h) are invertible in C[[h]]. We have that ¢y is invertible.
By taking Res, on both hand sides of ([6.37]), we complete the proof of (6.30])
for k 4+ 1. Therefore, we complete the proof of the lemma. O

Similarly, we have that
Lemma 6.13. Leti € I and k € N. Then in F.(A,{), we have that

(6.38) Sing,, ., zl_l e zk_lYT(:th, 21) YT(:th, zk)xfh
k
e Clrt, .., 2z ()] <(xi:h)_1 xih> :
Moreover, there is ¢, € C[[h]]*, such that
k
Y, <(xfh)_1 xfh, z) = c;CYZjEZ (z + kriaih, z + (k — V)riazh, ..., 2) .

It is immediate from Lemma that
Proposition 6.14. Fori,j € I with a;; <0, we let
ij(zl, cev s Zmy)
= SingZhZQ’.__’Zmﬁ Yr(ﬂffh, Zl)YT(xizﬁ, 29) - YT($Z:.|7:h7 zmij)x;fh.
Then Q;';(zl, ooy Zmy;) = 0 V 5(€,0).

And it is immediate from Lemma [6.13] that
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Proposition 6.15. For ¢ € Z, we let
Mz':t(zlv s 7zré/n)

-1 —1 + + + +
22z, F1 T g Yr(xz‘,hv Zl)YT(xz‘,hv z9) YT(‘Ti,hv Zre/r; )i

)

= Singzl,
Then M (z, . .. s zre/r) = 0 i Ly (£,0).
Combining Propositions [6.10] [6.14] and [6.15] we have that

Proposition 6.16. R{ is the minimal closed ideal of Fy(A,l) such that
[R{] = RS, and contains all coefficients of A;(2) fori € I and all coefficients
of Qf‘;(zl, ey Zmy;) for i, j € T with a;; < 0. Moreover, if £ € Z, then RS
is the minimal closed ideal of Vj (¢, 0) such that [R5] = R and contains all
coefficients of Mii(zl, ooy Zpppr,) fori €1

Theorem is immediate from Lemma [B.3] Proposition [6.16] and the
following three technical results.

Lemma 6.17. Fori,j € I, we have that
S7(21)(Ai(22) @ hjpn)

—Ai(22) ® hjp + Sing,, (A,'(Zg) ®1® (e”% - 1) (T.lr+(—zl) + T?.’+(zl)>) ,
Sr(z1)(hjn @ Ai(z2))

i © Ai(z) + Sing,, (19 Ai(z) @ (1— 7237 ) (72 (—0) + 75 (1))
Sr(21)(Ai(22) ® 25,)

+,+
9 T, z
= Sing,, (Ai(Zg) ® x;.'fh ® exp ((ezz Ber 1) log £+7(1)> ) ,

Tji (—21)
Sr(z1) (7, ® Ai(22))
+,+
22 75 (—21)
=Sing,, |25, ® Ai(z) ®e 1—e %1 )]log L —= .
€2 ( i,k ( 2) Xp << > g T];I;,-l—(zl)

Proof. From the relations (3.12)), (5:20) and (613]), we have that
Sr(z1) <Singzg Yo (xfy, z2)a, @ hj,h)
=Sing,, Y;%(22) 57 (21) 77 (21 + 20) (¢, © a7, @ hyjp)
=Sing,, Y7?(22)52%(21) (x;rh ® x; , ® hjn
t+af, @ o, 0100 (f(—a —2) + 7 (@ + ) )
=Sing;, Y2 (22) <xz+h @ @ hjp
+of,®,018 (e@% -1) (e + 7))
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= Sing,, YT($Z_h, 22);, ® hjp+ Sing.,

90
<YT(x;'fh, 2)T;, ®1® (ez2 71— 1) (Tl’+(—21) + Tz'zj’Jr(Zl))) :

ji
From the relations (3.16), (5.19) and (6.16]), we have that
5:(2) (47O F(O)hen ® hyn)

:q_rza®1—rE%F <a ®1+ %) S(2)(hin ® hjn)
= TR (9614 5 ) i 1016 (50

—75(2)))

0
— TOF O hip @ hp+101® q—M%F <_> (15i(=2) — 1ij(2))

0z

:q—réaF(a)hiﬁ ® hj,h 111 <1 o q—27’5%) (T,lj+(—z) + T.2.’+(z)> .

Ju v

Then by using Lemma [B.2] we get that

5.) (0 (<" F@an) ) 16050 )

=exp <<—q_MaF(a)hi7ﬁ) _1> 1® hjﬁ

+ exp <<—q_7’mF(8)h,~7h)_1> 101® (q_%{% — 1) (leZ-’Jr(—z) + TZ-Qj’Jr(z)) .

Hence, we have that

Sr(21) (Ai(22) @ hyp) = Sing,, Y7 (¢, 22)x7;, @ hjp + Sing,,,

R
<Singz2 YT(th, )T, ®1® (ezz 221 _ 1) (7-,1;+(_Zl) 4 Ti2j7+(21)))

ji
1
R (L@ hjnzy ' — B(hin) @ hjn(ze + 2rth) ™)
i 4
29 + 2rfh)~! —2re52
P BT gy @1e (6 1) () + 2 )
G- j j
1
(6.39)
R
=A;(z2) ® hjp + Sing,, Ai(22) ®1® (ez2 921 — 1) (T].li’""(_zl) + T%7+(Zl))
1 . _ 2
+ —— Sing,, (1 ®1® 2 1 <622 921 _ 1) (lei7+(_z1) + 72'2j’+(21))>
i 4
1 0 — 1 1+ 2,+
_ S E(h: 1Q — (L1 (=
qz—qz_l lngzg ( ( 17h)® X Z2—|—2’f’€h (T]z ( Zl)+T2] (21))
29 + 2rlh) ™! —2r¢-2-
+ %E(}li,ﬁ) ®1® <q T - 1) (i (=2) + 7571 (20)).
i 4
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Notice that
Sing, 27! (eza% — 1) =0,
Sing, (z + 2r¢h)~! (ez% - 1) = (q—27‘faz - 1) (2 + 2reh) ™!
Combining these equations and ([6.39]), we get that
Sr(21) (Ai(z2) @ hjn)
=A;i(22) ® hj; + Sing,, 4;(22) ®1® <e226% — 1) <Tj12-’+(—21) + Ti2j’+(2:1)) .

Therefore, we complete the proof of the first equation. The proof of the rest
equations are similar. O

Similar to the proof of Lemma [6.17] we have the following two results.

Lemma 6.18. Fori,j,k € I such that a;; <0, we have that

S, (2) (Qiij(zl, e Zm) ® hk,h)

:Q;‘;(zl, oy Zmy) @ g £ Singzl’m,Zm” (ij(zl, ey Zmy) ® 1

mij
® (T]i]:t(_ + Z (Tk;z —Z — Za,) + T?];i(z + Za))> > ,
ST(Z) (hk,h ® Qlj(zl, - 7Zmij)>
=hn ® Q35(21, - - 2m,;) F Sing., ., (1 ® Qi (21, 2myy)
mij
® <T]2];i( +Tk] +Z< Z—G-Za)—I-T;Z?i(z—za))))’
ST(Z) <Q;§(z1’ ; Zm”) @ :Ek h) - Slngzlv 2 (Q’:S(Zh . 7Zmij) & 3379771
mij
® T];i( Z)_IT]#]?E(Z) Tl;:t( 5 Za)—lTi:EE(Z + Za)) ’
a=1
Sr(2) (:ci,h ® Q5 (21, .- ,zmij)> = Sing., ..z, (azz,h ®QE (21, s 2m,;)
mij
®T;l7ci(— 17';335 Hle —2+ 24) 17'];55(2—%)),

Lemma 6.19. For any £ € Z4 and i,j € I, we have that

ST(Z) (Mii(zl, o ,ng/n.) (039 hj,h) = Mii(zl, L. ’ZT’Z/m) (4 hjﬁ
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. -1 -1
:l: Slngzlvn"zrf/ri zl T ZT’Z/T’@

rl/r;+1

<Mii(zl, e Zpp)r) @1 ® Z (T]-li’i(—z — 2q) + Tfj’i(z + Za)) ) )
a=1

Sr(2) (hjﬁ ® Mii(zl, ... ,ZM/”)) =hjp® Mii(zl, .. ,ng/ri)

. -1 —1
:F Slngzlvn"zrf/ri zl T ZT’Z/T’@
ré/r;+1
1,4+ 2,4+
a=1
S M=* € ) =8;i -1,
T(Z) ( 7 (217 cee 727‘5/7‘1') ® ‘Tj,h) - lngzl,...,zﬁ/f.@. 21 ZM/H
ré/r;+1
+ -1 _+
Ml;t(21,...7zrg/ri)®x§7h® H 7';17 (—Z—Za) 1Tij76(2+2a) 5
a=1
Sr(z) (x5 ® M*(z )) = Si ey
T 7,h 7 1y--- 7z7“f/7“i - lngzl,...,zrg/ri Zl zr(/ri
ré/r;+1
7:|: - :l:y
T ® MHE(z, ... s Zrt ) ® H T (=2 + 2a) lTji (z—2zq) |,
a=1

where z./p, 41 = 0.

7. ¢»-COORDINATED MODULES

In this section, we recall the construction of A-adic nonlocal vertex alge-
bras and their ¢-coordinated modules introduced in |Li7].

First, we fix an associate ¢(z1,2) = z1€*, which is a particular associate
of the additive formal group Fy(z1,22) = z1 + 22. Let V be a nonlocal
vertex algebra. Recall from [Li7] that a ¢-coordinated V -module is a vector

space W equipped with a linear map Yg}(',z) : V. — E(W), satisfying the
condition that Yg}(l,z) = 1y and that for u,v € V, there exists positive
integer k such that

(7.1) (1= 20/20)"Y 5 (u, 21) Vi (v, 22) € ED(W),
(7.2) (1= 22/20"Y3 (w20 Vi (0, 20))

=(1- e_zo)kY‘?}(Y(u, 20)v, 22).

21=22€%0

Then we have that

Lemma 7.1. Let V be a nonlocal vertex algebra, and let (W, Yv?}) be a ¢-
coordinated V -module. Suppose

dai@bi@fi(z), Y a;®B;®gi(z) eVRVeC(),
i>1 j>1
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such that

(73) Z Lzl,zzfi(eZI_Z2)Y(ai7ZI)Y(bia22)
i>1
= ey 95(€7 )Y (0, 22)Y (85, 21).
i>1

Then we have that

Z LZ1,szi(Zl/Z2)Yv(€(ai7 Zl)Yv(Ié(bia 22)
i>1

= "ty 95 (21 ) 2) Vi (0, 22) Vi By, 21).

j>1
Proof. By letting the both hand sides of (7.3)) act on 1, we get that
(7.4) Z LZl’Zin(ezl_ZQ)Y(ai, Z1 — Zg)bi
i>1
=D tan95(€ )T (a2 — 21) ;.
Jj=z1

Let k be a positive integer such that (i,j > 1)
(7.5) 2°fi(e?), 2hgi(e®) € Clll]l,  2*Y(ai, 2)bi,  2*Y(ay,2)B; € V2.
By multiplying (21 — 22)%* on both hand sides of (7.4)), we get that

>~ (1= =) e ™)) (51 = 22)"Y (ai, 21 — 22

i>1

(7.6) =) <(2’1 - 22)k9j(ezl_zz)> els1722)0 ((21 — )Y (0, 20 — 21)53‘) :
Jj=1

From (7.5), we can take zo = 0 in (7.6]):

22k Zfi(ez)Y(ai, 2)b; = Z zkgj(ez)ezazkY(ozj, —2)p;.

i>1 j>1

Since 2" is invertible, we get that

(7.7) D Fle)Y (ai, 2)bi = Y g5(e”)e*?Y (ay, —2)B;.
i>1 i>1

From (Z5]), we get that

(21— 22)" > file™ )Y (as, 20)Y (bi, 22)

i>1
- z1=22+20
= Z zgfi(ezo)zng (Y(ai,22),20) Y (bs, 22)
i>1
= Z 2 £i(e)2hY (Y (ai, 20)bi, 22)
i>1
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where the last equation follows from (3.4]). We note that the condition (7.3])
shows that

D FileP )Y (a5, 21)Y (b, 22) € EG(V).

1>1

Combining these relations, we get that

7" (Z fz'(ezlZZ)Y(%Zl)Y(bi,Zz))
z1=22+20

i>1
= Z 26 fi(€)z5Y (Y (ai, 20)bi, 22)
i>1
Then we have that

Z fi(e®)Y (Y (aj, 20)bi, 22)

i>1

i>1

= (Z fi(e®72)Y (ai, 21)Y (bi, Zz)) € E(V)[=oll-
z1=22+20

Acting on 1 and taking z9 — 0, we get that
Z fi(€)Y (a4, 20)b; € V[[20]].

i>1

Viewing log(1 + z9) as an element in C[[zg]], we get that

(7.8) D £ill + 20)Y (a;, log(1 + 20))b; € V[z0]].
i>1

We replace k with a larger one if necessary so that (i,j7 > 1):
(1 — 22/21)kY$(ai,zl)YVT}(bi,ZQ), (1 — zg/zl)kY‘?}(aj,zg)Yv?}(Bj,zl) c 5(2)(W)
From the weak associativity of ¢-coordinated modules (7.2]), we get that

(7.9) ((1 — z/zl)ka?}(auZl)Yv@(bivz)) 1=z, 70)
=(1- e_zo)kY‘?;(Y(ai, 20)bi, 2),
(7.10) ((1 — 2/20)"Y 5 (g, 2) Y5 (B), 21)) L:d)(%_zo)

:(1 - e—Zo)kY‘?;(Y(aj’ _ZO)ij zl)'
From the equation (7I0) and [Li7, Remark 2.8], we have that

(1= 2/20" Y (05, 2)Yi0 (81, )

21:(1)(2720)

= (0w sibts i) ., )
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= ((1 — —Zo) Y¢ (Y(Ozj,—z(])ﬁj,zl)) 1= (z.70)
=(1— e )Y (Y (0, —20) 8, (2, 20))
(7.11) =(1—e7%) Yv?}(ezoaY(aj, —20)5;, %),

where the (ZII]) follows from [Li7, Lemma 3.7]. Combining this with equa-
tions (7.7)) and (7.9), we get

((1 . 2/2’1)%2fi(zl/z)YV?;(ai’Zl)YV(g(bi’Z))

i1 z1=¢(2,20)
=3 (0=t s/a) (1= /s 60))]
i>1 0
(7.12)
=(1— e )3 fi(e*) Y (Y (ai, 20)bi, 2)
i>1
=(1— e Y g ()Y (Y (@), ~20)5;. 2)
j>1
—Z (( (1—-2/z) gj(zl/z)> ((1 — z/z1)kYV?}(aj,Z)ng}(ﬁj,%))) 1=6(2.20)
5>1 .

= ((1 —2/2)* > gi(21/2) Y (g, 2) Vi (B, a))

Jj=1

z21=¢(2,20)
Notice that
(1 —29/21)? Zfz 21/22)Y, az,zl)Yﬁé(bi,@) ceBm),

i>1

1 — 2’2/21 Zg] 21/2’2 aj,Zg)YV?;(ﬂj,Zl) c 5(2)(W)

j>1
Then we get from [Li7, Remark 2.8] that
(1= 22/21)% Y filz1/22) Yy (i, 21) Vi (bi, 22)

i>1

=(1— 22/21)% Y~ gj(z1/22) Vi (s, 22) Vi (B, 21).

7>1

Combining this with equation (7.12]) and [Li7, Lemma 5.8], we get that

(2220) 710 ( > Zfz 21/22)Y; (ai,zl)Yg}(bi,m)

— 22
2220

(220)16 (i%ol) S 051 /)i (g 22) Vi (B, 1)
j=>1
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2(1
=216 < 20 ) Zf, 14 20) Yy (Y (ai, log(1 + 20))bi, 22).

1>1
Taking Res., on both hand sides, we get that

> filz/2) Vi (ai, 20) Yy (b 22) = > gi(21/2)Y,

i>1

—Reszo 2] 15 <M>

21

(e, 22)Yi By, 1)

j>1

Z fill + 20) Y% W (Y(ag,log(1 + 20))b;, 22) = 0,
i>1

where the last equation follows from (7.8]). We complete the proof O

Proposition 7.2. Let (W, Yvﬁ) be a ¢-coordinated module of a nonlocal
vertex algebra V. Let

daieb®fi(z), Y ;@B ®g(z)eVaVeVaC),
i>1 7j>1
and Z%EV

k>0

be finite sums, such that

Z Loy 2o fi(€7 7)Y (ai, 21)Y (b, 22)

i>1
= g (€7 T2)Y (g, 22)Y (B, 21)

j=1

z
k>0 1

8’“ _ z9
(7.13) => Y( yk,zQ)kla P (=),

Then we have that

D ey filz ) 22) Vi (ai, 21) Vi (b, 22)

i>1

=ty mgi(21/2) Vi (0, 22) Y (B, 21)

Jj1

8 k z92

Proof. For any integer i > 0, we set b_; = a_; =;, a_; = f_; = 1 and

f-i(2) = g-i(2) = 2% (—z%> zti € C(z).

It is straightforward to verify that

LW¢MWﬂwmgwm>l<a)3@)

82’2 Z1
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— _ 1 82 -1 Z9
Lzlvz2f—i(621 22) - L227z1g—i(621 22) - 58—2321 4 <z_1> .
Then the equation (Z.I3)) is equivalent to
Dt il )Y (ag, 21)Y (b, 22)
1€EZ
= Z L22,21gj(621_zz)y(aja 22)Y(/8j7 21)7
JEL
and the equation (7.I4]) is equivalent to
Z Lo o fil21 ) 22) Vi (ai, 21) Vi (bi, 22)
1€Z
= tnam9i(21/22) Vil (0, 22) Y55 (85, 21).
JEZL
Therefore, this proposition follows immediate from Lemma [Tl O

Let V be an h-adic nonlocal vertex algebra. A ¢-coordinated V-module
is a topologically free C[[h]]-module W equipped with a C[[A]]-linear map

Y;}(-, x): V — Ey(W), such that (W/R"W, Yv?}n) is a ¢-coordinated V /A" V-
module, where ngn VIRV — E(W/R"W) is the C[[A]]-linear map induced
from Y‘?}. As an immediate fi-adic analogue of Proposition [7.2] we have that

Proposition 7.3. Let V' be an h-adic nonlocal vertex algebra, and let (W, YV?})
be a ¢-coordinated V-module. Suppose that

Y a®bi®fiz), Y a;®p®g(z) € VEVRVEC(:)[H],

i>1 j=1
and ka eV,
k>0
such that

Z Loy 20 fi(€7T22)Y (i, 21)Y (b, 22)

i>1

- Z L227219j(eZ1_22)Y(O‘j7 zZ)Y(Bja z1)

j=1
1 6’“ V)
=S Vw8 (2)).
kz>0 k! 9z 1 21

Then we have that

> Loy o fi(21 ) 22) Vi (i, 21) Vi (bi, 22)
i>1

- Z lzg,2195 (21/22)}/1/(3'(&% ZQ)YV(I#;(BJ‘? Zl)

j>1
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=y vy (Vs 22) 75 ( 822>k5<z—i>-

k>0
Let Z%(21,22) : En(W)RER(W)RC(2)[[A]] — End(W)[[2£!, 25! be the
C[[h]]-module map defined by
Z%(z21,22)(a(2) @ b(2) ® f(2)) = f(z1/22)a(21)b(22).

Recall from [Li7] that a subset U of £,(W) is said to be h-adically Sriq-local
if for any a(z),b(z) € U, there is A(z) € (CU ® CU ® C(z)) [[h]], such that

a(z1)b(z2) ~ Z%(22, 21) (A(2)) -

Let U be an h-adically Siig-local subset of &,(W). For a(z),b(z) € U,
the locality implies that for any positive integer n, there is positive integer
k,, such that

(1 — z1/20) " mn (alz1))mn (b(22)) € E@(W/RW).
The following is a partial h-adic analogue of [Li7, Definition 4.4]:

Y (a(2), 20)b(=) = Y al2)7b(2)z "

nel

— 1£1 (1-— eé)_k” <(1 — zl/z)k”a(zl)b(z))

n>0

z1=2z€%0 ’
We have the partial h-adic analogue of [Li7, Theorem 4.8]:

Theorem 7.4. Let U be an h-adic Syig-local subset of Ex(W'). Then there
is a minimal h-adically Syrig-local subset (U) 6 C En(W) containing U and
1w, such that

(1) (U) is topologically free and [(U),] = (U),.

(2) (U), is Yg‘z’ closed, that is, for a(z),b(z) € (U),, a(x)nb(z) € (U),.
Then ((U) Yg, lw) carries the structure of an h-adic weak quantum vertex
algebra and W' is a faithful ¢-coordinated (U),-module with Yy (a(z), 20) =
a(zo) for a(z) € (U),.

The following result is a partial h-adic analogue of [JKLTT, Theorem
2.21]:

Proposition 7.5. Let W be a topologically free C[[h]]-module, and let V C
En(W) be an h-adic Syrig-local subset such that V = (V). Suppose that

Z i(2) ®bi(2) ® fi(z ZO‘J 2) ® Bj(2) @ gj(2) € VRVEC(2)[[A]],

i>1 j>1
and Z%(z) eV
k>1
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such that the following relation holds on W :

D b mfilz/2)ai(20)bi(22) = > ey 95(21/ 22) s (22) B5(21)

i>1 j>1
1 a\* z
et ! ) 1
Then we have that
Nt File )Y (ai(2), ) Y (bi(2), 22)
i>1
=) e g5 (€ )Y (0(2), 22) YE (B (2), 21)

j>1
1 0F z
_ ¢ -1 2
=) Y (’Yk(z)vzé)ga—z]gzl 0 <Z> :

k>1

Now we start to determine the category of ¢-coordinated V; (¢, 0)-modules.

Definition 7.6. Let ¢/ € C. Define Mf to be the category consisting of
topologically free Cl[[A]]-modules W, equipped with fields 1/)i7q(z),yfq(z) €
En(W) that satisfy the following relations:
(7.15) [Yiq(21),jq(22)]
9
=[r;ai;] Mzz@) alha!

—Mzzai_ [ —
5 [rﬂqZZ% (Lzmzq T lmad (1= 22/21)%

q22 Jzo

(7.16) [iq(21), yj(22)]

+
=+ yj,q(22)[7“iaij]qzz3§_2

(7.17) (1 — 20/21)% (1 — =22y 21) %

( —rlzo 622 . Mzg%) 1+ Z2/Zl :
2 2 — 2Z2/Zl

< (5, E0)Y7 (2) = a9 (21 27, (22D, (1)) = 0,
(T18) 12y 20 figg (21, 2) 07, (20)07 o (22) = Cijtz 2y Fig(22, 20054 (22) 7, (21),

where
(7.19) fijq(21,22) = tay z0(21 = ¢ 22) (21 — 22) 9, gijql2) =
For an object (W, wi,q(z),yfq(z)) of M?, we set

(7.20) Uy = {qpi,q(z),y;fq(z) ( ie 1}.

Then it is immediate from equations (Z.I5]), (C.I10), (717) and (7I]]) that
Uw is an h-adically Siig-local subset of &,(WW).
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Definition 7.7. Let ¢ € C. Define RZ’ to be the full subcategory of MZ’
consisting of objects (W, 1 4(2), yfq (z)) such that

Yirg (2195 4(22) = 2,20 95 (21/ 22) 5 o (22)yi1 (1)

e () ren(222)
(7.22) <<y;'fq(z)):> " yh () =0, ifay <0,

Proposition 7.8. Let (W, w,q(z),yfq(z)) be an object of R(f. Then W
becomes a ¢-coordinated V5 (¢,0)-module such that
Viv(hin, 2) = ¥ig(2), Yip(aiy,2) =ui(2), i€l
On the other hand, let (W, YV?}) be a ¢-coordinated Vy ;(£,0)-module. Then
(W, Yy (hin, 2). Vi (25, 2))
is an object of Rf.

Proof. Let (W, wi,q(z),yfq(z)) be an object of RZ’. Then it is an object of

./\/lf. Recall the f-adically Siig-local subset Uy (see (Z20) for details).
From Theorem [7.4], we get an fi-adic nonlocal vertex algebra (Uw) 4, and W

becomes a ¢-coordinated (Uw ) 4-module with module action Yvﬁ(a(z), 20) =
a(z) for a(z) € (Uw),. From Proposition and equations (.I5]), (C16]),

([T17), (718), we get that (W, Yg¢(¢i7q(zl),z), Yg¢(yffq(zl), z)) is an object of
M. (see Definition [5.T)). By using Proposition [5.4] we get an h-adic nonlocal
vertex algebra homomorphism ¢ : I (A, £) — (Uw), such that

p(hin) =big(2), e(xi,) =yi,(2), i€l
Since (W, w,q(z),yfq(z)) be an object of R(f. We apply Proposition to
([721)) and get that
YW, (2), 20)YE (054(2), 22) = ta m Giin(21 — 22)YE (7, (2), 22)YE (07 (2), 21)

== ) (710 (2) - 38 (Bl ) 76 (220 ).

21
Let the both hand sides act on 1y, and take Sing,, Res., 25 1 we get that
Sing,,, Yg(b(y:q(z),zl)y;q =0;i(qi —q; )™ (1W21_1 — 0;,4(2) (21 +2rCR)71)
Combining this with (7.22]) and Definition [6.3, we get that ¢ factor through
Vi.1n(£,0). Therefore, W becomes a ¢-coordinated Vj 5 (¢, 0)-module such that
(tel):
Vi (hins 20) = Y (@(hin), 20) = Yy (Wig(2), 20) = i g(20),

Yiv (i 20) = Y (0(23,), 20) = Yy (0ig(2) %, 20) = i, (20).
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On the other hand, let (W, Yv?}) be a ¢-coordinated Vj ;(¢,0)-module.

)

From Proposition [7.3] and equations (6.6), (6.7), (G11), (69), (6.31), we

have that
Y32 (hiy 21)s Y (hj o 22)]

- —7*522% 7“522% 22/21

= lrita) o 18] o (12077 — a0 ) T,
Y% (i, 1), Vi (%, 22)]

_ ¢ (.t —rlz2 ‘Z 2\ 14+ 22/21

= :l:YW(iU]’ﬁa z2)[riaij]qz2 8(22 <L21722 Oz9 LZ2,21q ED) m7

(1—22/21)% (1 — q 22 /1)

X <nyq(z1)yj_,q(Z2) - LZQ,zlgij,q(a/zz)yj_,q(@)y;fq(a)) =0,
oo figia (21, 22)Yig (€5, 2) Vi (255, 22)

= Cijtay i Fia(z2: 20 Yip (a5, 2) Vi (235, 21),
and

Vi (@ 20) Y (07 22) = Loy 2 Gigig(21/ 22) Vi (25, 22) Vi (2, 21)

S ()
s (5(2) - ()

<Y <exp <<—q—er 9) hi,h)_1> 1, z) 5 <q—‘:fz2> )
- f]q_l <5 C_;) B (Y hin2)) 6 <Q‘:%>> .

From Definition [6.3] we also have that

6 (( £\ + oot N\ Lyt
0:YW<<xiﬁ) xjﬁ,z): <YW(xi7h,z))o Yy (255, 2)

0

for 4,5 € I with a;; < 0. Therefore, (W, ngé(hi’ﬁ, z),YV?}(a:ffh, z)) is an object
of RY. O

8. QUANTUM AFFINIZATION ALGEBRAS

Let U.(§) be the unital associative algebra over C[[h]] topologically gen-
erated by the elements (L)) subject to relations (Q1)-(Q6). Then Ux(g)
is naturally a quotient algebra of U!(g), and U} (g) is naturally a quotient

algebra of L{,{(@) We call a Z/{;{(@)—module W a restricted module if W is
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topologically free and
brg(2), ) ,(2) € Ex(W).

Z7q

In addition, a Uy(g)-module (resp. U.(g)-module) is said to be restricted, if

it is restricted as a Z/{,{(@)—module. For i1,...,14, € I, we set
(8.1) xi,...,im,q(zlv ey Zm)

+ + +
= H ir,is,q(z“zs) xil,q(zl) : "xim,q(Zm)’

1<r<s<m

where fiq(zl, z9) = (21— qiia” 29)(21 — 22) 7% is defined in (ZI9) and C;; is
defined in ([6.34]). The following result is proved in [CJKT) Proposition 5.8]:
Lemma 8.1. Let W be a restricted UL(§)-module. Then for positive integer

m, and i1,...,0y, €1,

(8.2) xi’m’imq(zl, N = Eém)(W).
Moreover, for o € Sp,, we have
+
$io(1)7"'7io(m)7q(zg(1)7 Tt zg(m))
= H Cir,is ‘/El:'li---,im,q(zl’ ey Zm).
1<r<s<m
o(r)>o(s)

We need the following special case of [CJKT) Theorem 5.17]:

Proposition 8.2. A restricted UL(g)-module is a restricted Uy (g)-module if
and only if

xliwq( Z-ia”z, qiia”ﬂz, s 2,2) =0 fori,j €I with ay < 0.
From the definition of Uy(g), we immediately get that

Lemma 8.3. For each i € I, there is a C-algebra homomorphism from
2i s Un(sle) — Un(g) given by h— r;ih, ¢ — rc/ri, and

(.3) hl,q(omhi%fo), hlvq(m)Hhifii(]?), 2E (n) = 2 (n).

Let d be the derivation of U(g) defined by

0 0 .
(84) 4082 = ~2edly(2), ot ()] = —aai, () foriel,
and let b := @;cCh; 4(0) @ Cc @ Cd. For a Ux(g)-module W and A € h*, we
denote
Wy = {v e W| hao = Ah)v, h € b}
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A Up(g)-module W is called a weight module if W = @ cp«Wy. And a
weight module W for Up(g) is said to be integrable, if x;-tq(m) acts locally
nilpotently for any ¢ € I, m € Z. It is immediate to see that W is integrable
if and only if W is integrable as a Uh(glg)—module through j; for all 4 € I
(see Lemma [83)). Then we get from [DM, Theorem 7, Theorem 8] that

Proposition 8.4. A nontrivial restricted weight Uy (§)-module W of level ¢
1s integrable if and only if

teZ,, and xf”'7i7q(qi2réz,qﬂreqﬂ”z, Tz 2) =0 foriel.

We need another presentation of restricted Uy (g)-modules. A straightfor-
ward calculation shows that

Lemma 8.5. Let £ € C and let W be a restricted Z/{g(@)—module of level €.
Define :%Zq(z) =z (2) and

iq
1
. o\t ol (22" ,
Piq(z) = F (z—) log ———— &7 (2) = a7, (2q7 )¢ (2q72") 7,
0:) e ity e T T

where F(z) is defined in BI5). Then (W, ¢;q(2), Ziq(z)) is an object of
Mfi)

g

On the other hand, let (W, w,q(z),yfq(z)) be an object of Mf. Define
Uiy (2) =y (2) and

L 1

(8-5) ¢:|,:q Z ¢z,q + §¢i,q(0)a
£n>0
where 1; 4(2 Z i q(n)z™",
nez

(8:6) Viy(2) = exp < < ) W”)) ,
(8.7) Uing(2) = Uiy (24" (207™).
Then W becomes a restricted Z/{f( )-module of level ¢ with module action

Gig(2) = Ui (2), wi,(2) = G,(2), i€l
We need the following technical result given in [JKLT3].
Lemma 8.6. Let W be a topologically free C[[h]]-module, and
az) € Hom(W, W&Clz, 2z Y[[R]]), B(z) € En(W),
7(2) € Hom(W, W&C(2)|[R]]),
be such that
[az1), az2)] = 0 = [B(21), B(22)] = [a(z1),7(22)] = [B(21),7(22)],
[a(21), B(22)] = tz),207(22/21).
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Suppose that
A(z)"

n!

exp (A(z)) = )

n>0

is well defined in Hom(W, W[z, z~Y]]) for A(z) = a(z), B(2),7(2) or a(z) +
B(z). Then we have that

exp ((al=) + 8(2))°, ) T
=exp (B(2)) exp (a(z)) exp (Res; 2~ 'y(e7%)/2) .

Let Uy = {gbzq( ), & Zq( z) ‘ i€ I}. From Lemma [R5, we have that Uy

is a A-adically Siig-subset. Then by using Theorem [T.4] we get an h-adic
nonlocal vertex algebra (Uw) .

Lemma 8.7. For ¢ € I, we have that
B (di(2)) = drylza 206, (a7 7).

Proof. Recall the definition of q@ii’q(z) in (83]). From the equation (7.I5), we
get that

(8.8) [0),(21), di,(22)] = [rics]
Let

—rlzo % z2 /zl

14 —_— .
% [T ]q 8 LZ1722q (1 o Z2/Zl)2

We note from (8.6]) and (87) that
(8.9) exp (1,()) = 6, (s )L
By using the relation (B8], we have that
0
e [<Z5 4(21): 64 (22)]
<1

o \? d\? —rlzg 2 22/ 71
— N N () Ozg 21 -
= <22 82'2> F <22 822) [Tzam]qQ% [7’6][]22 622 bzy,204 2 (1 — 22/21)2

o —2 2\ 2 —rizl W/
- (qz2 = q ” 822) [riaii]qZZ% [TE]QZQ 622 lz1,224 T m

_ Tiaii223% —TiaiiZQB% 1 —2T5223% 22/21
=1q 2 —q 2 —q 2 Lzl,Zz (1_22/21)2
o) Ie) 9
D a2y D IO 0
— (q?“z(luZQ Ozg __ q TiQi522 6z2> (1 _ q TLZ2 822) LZl,Zzzl —az 29
1

Notice that Res,, z; ' o <22 23 ) = 0. Then we have that

Res., 22_1 [gij(zl), gy:q (22)]

3}
8—2210g(1 — 22/21) .
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Y 0 _1r% f_
— et} 0z F <Zla—21> Reszz 22 1[¢j’_q(21), ¢i,q(22)]
oz 0 1 —rlz 50 22/ %1
=q o F (Zl (9—2’1> Res., 2 [rla”]q@% [Tg]qzz%LZLqu %2 (1= 23/71)2
o —T’Zzl%F 9 -1 Z2/z1 —
= z 21— | Res., z5 “ria;rle —— =0.
q 1621 2o #9  TitligTtlzy 2o (1 — 22/z1)2

Hence, we get that
(61 4(21), iy (22)]
(et i) (e 1), g (1 /)

:LZhZz’Y(Z?/Zl)v

where
,Y(Z) — (qriaiiz% —q —TiiiZ2 5, ) < —27"6,2 . 1) lOg (1 _ Z) )
Since Res, 2z~ logz =0 =Res, 2z~ 8872 Res, 2z~ 1 we get that

Res, z_lfy(e_z) = Res, 27! (q_z”E — qzriE> (q%g% — 1) log (1 - e_z)

1 1
) 8 ) e2® —e 27
—Res, 2! <q—2’“z@ _ q2r2$> <q2reE _ 1) log

z/2
1z -1z
:Resz log i <qzri% _ q—27‘i%) <q—27“£% o 1) Z—l
z/2
e 1 - 1 R SR N P e2% — e 27
P\ z 420 —2rfh z—2rh—2rlh z+ 2Bz — 21k & z/2
_log L) FCridr) ) Fri—rl)
F(—ri)F(r; +1l) F(r; +r0)
By using Lemma [B.6] we get that
~ . F(?"Z + TE) + ¢
E <¢z,q(z)> = <m> <<¢Zq( )+ &; ,q(z))_1> 1w
~ ~ Lygy—
—exp (67,(2)) exp (67,(2)) = o7, (za~F) 67, (2a73) 7,
where the last equation follows from (8.9]). We complete the proof. O
For any positive integer m and i1,...,%, € I, we define
(8.10) RPN CI I
(8.11) = H ;;Z-b’q(za,zb) :%iq(zl) . "aégtm’q(zm).
1<a<b<m
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From the relation (7.I8]), we have that

a?i’m’imq(zl, sy Zm) € Eém)(W).

Then from a similar argument to the proof of Lemma [6.12] we get the
following two results.

Lemma 8.8. Fori,j € I with a;; <0, we have that
~+ AN Jun o+ a;j a;;+2 —aij
:Ei7q(z) . :L'j’q(z) = cxi’m’i’j’q(qi z2,¢; 7 "2 00,q V2, 2)

for some invertible element ¢ € C[[h]].

Lemma 8.9. Suppose that £ € Z,. For any i € I, we have that

) é ré/r; ) R o .
((0)" )" st =t s e
for some invertible element ¢ € C[[h]].
Then we have that

Proposition 8.10. Let W be a restricted Up(g)-module of level £. Then
(W, ¢iq(2), iii’q(z)) is an object ofR(é). On the other hand, let (W, 1; 4(2), yfq(z))
be an object of RZ’. Then W is a restricted Up(§)-module of level £ with the
module action defined by

¢ii,q(z) = Qﬁii,q(z’)a xii,q(Z) = yfq(z) foriel.

Proof. From Lemma B35 we get that W is a restricted L{,{ (g)-module of
level ¢ if and only if (W, d;4(2) :%i:q(z)) is an object of ./\/l(f. Then by a
straightforward calculation, we get that W is a restricted U(g)-module of
level £ if and only if

& (21)2] 4 (22) = Gjig(21/22) 2] ,(22) 3] (21)

0y 29 D N NS BV &
G-t <6 <21> S S R 21 ’

~t aij , @ij+2 —aij . e
xi,--~,i,j7q(qi %545 Zyeer 4y 2, Z) =0, if ai; < 0.

Therefore, the proposition follows immediate from Lemmas R7 and 88 [

Proposition 8.11. Let ¢ € Z,, and let W be a restricted weight Up(g)-
module of level £. Then W is integrable if and only if

o é rl/r; . ‘
(8.12) <<xi’q(2)>_l> i () =0, i€l
Proof. From Proposition 84 and the definition of a?fq(z) (see Lemma [B.0)),
we have that W is integrable if and only if

~+ 2re 2rl—2r;
$i7___,i,q(q Z,q lzv .

Then the proposition follows from Lemma [R.9] and Proposition 8101 O
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Combining Propositions [(.8] and [B.10], we get that

Theorem 8.12. Let ¢ € C. Then the category of restricted Up(g)-modules
of level £ is isomorphic to the category of ¢-coordinated V5 (¢,0)-modules.
To be more precise, let W be a restricted Uy (§)-module of level £. Then W
becomes a ¢-coordinated V5 (¢,0)-module such that

Y¢( hips 2 z) = ¢zq( ); Y¢( i # )—xth(z) 1€1.

On the other hand, let (W, Yv?}) be a ¢-coordinated Vi ;(£,0)-module. Then
W becomes a restricted U(g)-module of level ¢ such that

ig(2) = Yip(hin, 2),  @f,(2) = Vig(ah,2), i€l

A ¢-coordinated Vj ;(¢,0)-module (W, YV?}) is called a weight module if

(hi,h)g acts semi-simply for all i € I, and there exists a C[[A]]-module map
0: W — W, such that

(8.13) 10, Y2 (u, 2)] = z%yj;(u, 2) for u € Viu(£,0).

A ¢-coordinated Ly ;(€,0) is called a weight module if it is a weight module
viewed as a ¢-coordinated Vj ;(£,0)-module. Combining Proposition 8.I1]
with Theorem B.12] we get that

Theorem 8.13. Let ¢ € Z. Then the category isomorphism obtained in
Theorem induces a category isomorphism between the category of re-
stricted integrable Uy (§)-modules of level £ and the category of ¢-coordinated
weight modules of Lg 1(£,0).

Theorem 8.14. Suppose that the GCM A s of finite type. Let ¢ € Z.
Then there is a vertex algebra isomorphism Lg(¢,0) — Lg (¢,0)/hLg 5 (¢,0)
defined by

+ + .
hi = hip, a7 = T, 1€ I.

Proof. Recall from Proposition that there is a surjective vertex algebra
homomorphism @ Ly(€,0) = Ly (£,0)/hLg 1 (£,0) determined by h; — hyp
and x — x y for i € I. It is straightforward to verify that both Ly(¢,0)
and Lg w4, 0)/th n(£,0) are g-modules such that

a;(z).u =Y (a;, z)u for u € Ly(¢,0) and
a;(2).v = Yr(ain, 2)v for v € Ly ;(¢,0)/hLg 1 (¢,0),

where a = h or . Then ¢ is also a surjective g-module homomorphism.
Since the GCM A is of finite type, we get from Remark 2.7] that Ly(¢,0) is
a simple g-module. Then ¢ is either an isomorphism or 0.

Suppose that ¢ = 0. Since Lg(¢,0) is topologically free, we get that
L 1(£,0) = 0. Then Lg ;(¢,0) has only trivial ¢-coordinated modules. From
Theorem [RI3] we get that the Uy(g) has only trivial restricted integrable
modules of level ¢, which contradict to [Lu, Section 4.13]. Therefore, ¢ must
be an isomorphism. O
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