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ASYMPTOTIC CHOW STABILITY OF SYMMETRIC REFLEXIVE TORIC

VARIETIES

KING-LEUNG LEE

Abstract. In this note, we study the asymptotic Chow stability of reflexive toric varieties. We
provide examples of symmetric reflexive toric varieties that are not asymptotic Chow semistable.
On the other hand, we also show that any weakly symmetric reflexive toric varieties which have
regular triangulation (special) are asymptotic Chow polystable.

After that, we provide other criteria that can show a symmetric reflexive toric variety is
asymptotic Chow polystable. In particular, we give two examples that are asymptotic Chow
polystable, but not special. We also provide some examples of special polytopes, mainly in 2
or 3 dimensions, and some in higher dimensions.

1. introduction

In GIT theory, in the construction the Moduli space, we focus on those varieties that are as-
ymptotic Chow semistable ([MFK94],[GKZ94]). Also, Chow stability has many relations with other
stabilities in Kähler geometry (See [RT07], [Yot17] for example), so it is important to study the Chow
stability of singular varieties. However, unlike the smooth case, which is related to the constant scalar
curvature manifolds ([Don01], [Mab04], [Mab06], [RT07], see also the survey paper [PS10] for ex-
ample), in general, K stablity or existance of cscK cannot imply Chow stability. Moreover, there is
only very few examples of Chow polystable of singular varieties. In general, it is very difficult to
show that a variety is asymptotic Chow semistable. However, by the work of Futaki [Fut04] and
Ono [Ono13], we can determine the asymptotic Chow polystability of toric varieties. We first recall
the main theorem we used in [Ono13] (see also [LLSW19]).

Theorem 1.1 ([Ono13]). Let P be a integral convex polytope of a toric variety XP , and let G <
SL(n,Z) be the biggest finite group acting on P by multiplication. A n dimensional toric variety XP

is asymptotic Chow semistable iff for any k ∈ N, and for any convex G invariant function f on kP ,
we have

1

V ol(kP )

∫

kP

fdV ≤
1

χ(kP ∩ Zn)

∑

v∈kP∩Zn

f(v).

(As a remark, in the original literature, he used concave functions instead of convex functions, so
the direction of inequality in this note is different.)

In this note, we mainly focus on symmetric reflexive toric varieties. One of the reasons is inspired
by [BS99], which show that if a polytope is symmetric and reflexive, then it admits a Kähler Einstein
metrics. With the result of [Don02], we can see that symmetric and reflexive implies K stability. So
it is natural to ask if it is true for Chow stability. The second reason is, in this note, we defined a
invariant called Chow-Futaki invariant, which is

CFP (a, k) :=
1

χ(kP ∩ Zn)

∑

kp∈kP∩Zn

a(p)−
1

V ol(P )

∫

P

a(x)dV.

As a rephrase of the corollary 4.7 in [Ono13], we can see that if P is asymptotic Chow semistable,
then this invariant will vanish for all k >> k0 and for all affine function a. We can see that symmetric
polytopes satisfy this criteria, so it is natural to study symmetric polytopes. Also, by claim 4.3. in
[LLSW19], there is an example which a symmetric non reflexive polytope is not asymptotic Chow
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semistable. On the other hand, by the results in [LLSW19], with the fact that P
2 and P

1 × P
1 are

asymptotic Chow polystable, we can see that all 2 dimensional symmetric reflexive toric varieties
are asymptotic Chow polystable. So this is natural to study symmetric reflexive polytopes.

However, in general, symmetric and reflexive is not enough, and a counter example is given by
example 3.9. Notice that this is not an isolated example. Indeed we can construct many examples
using proposition 3.7.

Therefore, to ensure asymptotic Chow polystabilities, we need more conditions on symmetric
reflexive polytopes. One of the sufficient conditions is given by the following:

Definition 1.2 (Definition 4.3). Let P be an n dimensional integral convex polytopes on R
n. We

say P has regular boundary if for any k, there exists a triangulation of ∂kP which every ”triangle”
is isomorphic (up to a translation and a subgroup of SL(n− 1,Z) < SL(n,Z)) to

Tn−1 := conv{(0, ..., 0), e1, ..., en−1},

the standard (n − 1) dimensional simplex, (i.e., the intersection between different T i
n−1 are at the

boundary) such that for any point p ∈ ∂kP , the number of simplex intersection with p ≤ n!, and this
is the sub-triangulation of each face.

Also, we define:

Definition 1.3 (Definition 4.5). an integral convex polytopes on R
n is called special if it is reflexive,

weakly symmetric and have regular boundary.

And one of our main theorem is given by:

Theorem 1.4 (Theorem 6.1). Let P be a special polytope, then P is asymptotic chow polystable.

Notice that this condition is not necessary, as theorem 8.1 gives another sufficient criteria to show
when a toric variety P is asymptotic chow polystable. The statement of the theorem is the following:

Theorem 1.5 (Theorem 8.1). Let P be a integral polytope which 0 ∈ P 0 such that all the Futaki-
Ono invariant vainish, and we have a triangulation on kP by n simplexes and a triangulation on
∂kP by (n-1) simplexes, we denote n(p; k) be the number of n simplex attach the p ∈ kP under the
first triangulation, and m(p;k) be the number of (n-1) simplex attach to p ∈ ∂kP under the second
triangulation.

Suppose n(p; k) ≤ (n+ 1)! for all p 6= 0 and
(n

2

)

m(p; k) < ((n+ 1)!− n(p; k))

for all k large and for all p ∈ ∂kP , then P is asymptotic Chow polystable.

As a concrete example, we have:

Corollary 1.6 (Corollary 8.4). D(X8) and D(X9) are asymptotic Chow polystable.

This example shows that there are non special symmetric reflexive polytopes that are asymptotic
Chow polystable.

In the last section, we provide examples which are asymptotic Chow polystable, mainly on di-
mension 3, and have two class of examples for higher dimensional. Notice that besides D(X8) and
D(X9), the remaining examples are special. Also, the corresponding varieties of the examples are
given in the appendix.
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2. Chow stability of toric variety and criteria

Recall that by Fataki, Ono ([Fut04], [Ono13], [OSY12], and also see [LLSW19]), a toric variety
XP is Asymptotic Chow semistable if there exists C such that for any k ≥ C, and for any convex G
invariant function f for the corresponding polytopes kP , we have

(1)
1

V ol(kP )

∫

kP

fdV ≤
1

χ(kP ∩ Zn)

∑

kp∈kP∩Zn

f(p),

and XP is polystable if the equality holds only when v is affine. (In [Ono13] and [LLSW19], the
inequality is in opposite side as the input are concave functions.) Here G < SL(n,Z) is the biggest
group fixing P , which is a discrete group.

Notice that if there exists a C
∗ action acting on XP , the toric variety corresponding to P , then

it corresponds to an affine function on P (See Donaldson toric variety). So we can define

Definition 2.1. Let P be a integral convex polytopes. Then we define Futaki-Ono invariant of an
affine function v(x) = a1x1 + · · ·+ anxn + a0 is given by

FOP (a, k) :=
1

χ(kP ∩ Zn)

∑

kp∈kP∩Zn

a(p)−
1

V ol(P )

∫

P

a(x)dV.

We can rephrase corollary 4.7 in [Ono13] as the following:

Lemma 2.2 (corollary 4.7, [Ono13]; also [Fut04]). Suppose P is Asymptotic Chow semistable. Then
there exists C such that for any k ≥ C, and for any affine function a on kP , we have

FOP (a, k) = 0.

Recall that

Definition 2.3. An integral convex polytopes P is symmetric if there is exactly one fix point (which
must be 0) of the symmetric group G < SL(n,Z) acting on P .

In particular, any G invariant affine function on a symmetric polytopes must be constant, hence
it must vanish. so we define the following:

Definition 2.4. A polytopes P is weakly symmetric if for any k, and for any affine function a on
kP ,

FOP (a, k) = 0.

Remark 2.5. Notice that this condition is stronger than assume FOP (a, k) = 0 for all k large.
There are two questions arise.

(1) It is easy to see that P is symmetric implies P is weakly symmetric. But is the opposite
true?

(2) If P is not weakly symmetric, does this imply P is not asymptotic Chow semistable?

Notice that the K stability version is not true, as there are non symmetric K stable toric variety,
namely, the toric Del Pezzo surface of degree 1. However, it is not weakly symmetric and not
asymptotic Chow semistable (See [LLSW19], the section of X1).

Lemma 2.6. An weakly symmetric integral polytopes P is (asymptotic ) Chow semistable if for any
k ∈ N (k ≥ C for some fix C), and for any convex function f which min

x∈kP
f(x) = f(0) = 0, we have

1

V ol(kP )

∫

kP

fdV ≤
1

χ(kP ∩ Zn)

∑

kv∈kP∩Zn

f(v),

Proof. For any convex function f , there exists an affine function ak such that

min
x∈kP

(f(x)− a(x)) = f(0) = 0.
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Now,

1

χ(kP ∩ Zn)

∑

kp∈kP∩Zn

f(p)−
1

V ol(P )

∫

P

f(x)dV =
1

χ(kP ∩ Zn)

∑

kp∈kP∩Zn

(f−a)(p)−
1

V ol(P )

∫

P

(f−a)(x)dV.

Result follows. �

3. Some special class of toric varieties

3.1. Product class. The first class of polytopes is in the form of P1 × · · · × Pr, where P1, · · · , Pr

and Chow stable.

Lemma 3.1. Let P1, P2 are bounded convex sets. Then for any f is a convex function on P1 × P2,
fP2

(x) :=
∫

P2
f(x, y)dVy is a convex function on P1

Proof. Consider fP2
(tx1 + (1− t)x2), where 0 ≤ t ≤ 1.

fP2
(tx1 + (1− t)x2) =

∫

P2

f(tx1 + (1− t)x2, y)dVy

≤

∫

P2

tf(tx1, y)dVy +

∫

P2

f((1− t)x2, y)dVy

=tfP2
(x1) + (1− t)fP2

(x2).

�

Proposition 3.2. Let P1, P2 are integral convex polytopes. P1 ×P2 is (asymptotic) chow polystable
(semistable) iff P1 and P2 are (asymptotic) Chow polystable (semistable).

Proof. Suppose for any k ≥ C1 and k ≥ C2 and for any convex function f1, f2 on P1 and P2, we
have

1

V ol(kP1)

∫

kP1

f1(x)dV ≤
1

χ(kP1)

∑

p∈P1

f2(p);

1

V ol(kP2)

∫

kP2

f2(x)dV ≤
1

χ(kP2)

∑

p∈P2

f2(p).

Then for any k ≥ max{C1, C2} , and for any convex function f , we have

1

V ol(kP1 × kP2)

∫

kP1×kP2

f(x, y)dVxdVy

=
1

V ol(kP1)

∫

kP1

1

V ol(kV2)

∫

kP2

f(x, y)dVydVx

=
1

V ol(kP1)

∫

kP1

1

V ol(kV2)
fkP2

(x)dVx (lemma 3.1)

≤
1

V ol(kP2)

1

χ(kP1)

∑

p1∈kP1∩Zn1

fP2
(p1)

=
1

χ(kP1)

∑

p1∈kP1∩Z
n1

(

1

V ol(kP2)

∫

kP2

f(p1, y)dVy

)

≤
1

χ(kP1)

∑

p1∈kP1∩Z
n1

1

χ(kP2)

∑

p2∈kP2∩Z
n2

f(p1, p2)

=
1

χ(k(P1 × P2))

∑

p∈k(P1×P2)∩Z
n1×Z

n2

f(p).

In particular, if C1 = C2 = 1, then this inequality holds for any convex function and any k.

For the opposite, without loss of generality, assume P1 is unstable. Then there exists a sequence
of convex functions fk on kP1 such that for any k large,

1

V ol(kP1)

∫

kP1

fk(x)dV ≥
1

χ(kP1)

∑

p∈kP1∩Z
n1

f(p).
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Then define fk : kP1 × kP2 → R such that

fk(x, y) = fk(x).

Then

1

V ol(kP1 × kP2)

∫

kP1×kP2

fk(x, y)dV =
1

V ol(kP1)

∫

kP1

fk(x)dv ≥
1

χ(kP1)

∑

p∈kP1∩Z
n1

fk(p)

=
1

χ(kP1 × kP2)

∑

p∈kP1∩Z
n1

χ(kP2)fk(p) =
1

χ(k(P1 × P2))

∑

p∈k(P1×P2)∩Z
n1×Z

n2

fk(p).

�

The following class of polytopes may not be chow stable in general. Indeed, we will give a criteria
which this class must not be asymptotic Chow polystable.

As a quick check, we have a computational proof of the following well known fact:

Corollary 3.3. ((P1)n,−K(P1)n) is asymptotic Chow polystable.

Proof. [−1, 1] is asymptotic Chow polystable. A direct consequence of proposition 3.2 implies [−1, 1]n

is asymptotic Chow polystable. �

3.2. Symmetric Double cone type. We now consider a class of examples that can construct
unstable polytopes. Also, it is one of the non trival and easiest class to study.

Definition 3.4. Let P be a n dimensional integral polytopes. Then we define the double cone

D(P ) := Conv{0, ..., 0, 1), (0, ..., 0,−1), (p, 0)|p ∈ P}.

Notice that

kD(P ) = {(p, q) ∈ R
n × R|p ∈ (k − q)P,−k ≤ q ≤ k}.

Lemma 3.5. Suppose P is symmetric, then D(P ) is symmetric.

Proof. If G is the largest group acting on P , then G × Z/2Z acting on D(P ) by

(g,±1) · (p, q) = (g · p,±q).

hence if P is symmetric, then D(P ) is symmetric. �

To given a counter example, first we have the following well known fact.

Lemma 3.6 (See [Ehr77], or [BDLD+05]). Let P be a convex integral polytope with dim ≥ 2. then
the number of point

χ(kP ) := |kP ∩ Z
n| = V ol(P )kn +

1

2
V ol(∂P )kn−1 + p(k),

where p(k) is a polynomial in k of degree n− 2 which depends on P only. And for n = 1,

χ(kP ) = V ol(P )k + 1;

for n = 2, we have the Pick theorem (see [Pic99]):

χ(kP ) := |kP ∩ Z
n| = V ol(P )k2 +

1

2
V ol(∂P )k + 1.

In particular, for k large,

χ(kP )− V ol(kP ) =
V ol(∂P )

2
kn−1 + p(k) > 0.

Proposition 3.7. Let P be a n dimensional integral polytopes. Suppose V ol(P ) ≥ (n+ 2)(n + 1),
then D(P ) is not asymptotic Chow semistable.
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Proof. For kD(P ), denote the point in kD(P ) be (p, q), where p ∈ R
n, q ∈ R. Consider the following

function:

f(p, q) =

{

0 if |q| ≤ k − 1
t if |q| = (1− t)(k − 1) + tk = k − 1 + t, 0 ≤ t ≤ 1

Then
∑

p∈kD(P )

f(p) = 2.

Let V ol(P ) = (n+ 2)(n+ 1)(1 + δ) for some δ ≥ 0 .
∫

kD(P )

f(x)dV = 2

∫ 1

0

t(1− t)nV ol(P )dt = 2V ol(P )

∫ 1

0

tn(1− t)dt = 2V ol(P )

(

1

n+ 1
−

1

n+ 2

)

=2
V ol(P )

(n+ 1)(n+ 2)
= 2 + 2δ

for some fix δ > 0. Therefore,

1

V ol(kD(P ))

∫

kD(P )

f(x)dV =
2 + 2δ

V ol(D(P ))kn+1

and
1

χ(kD(P ))

∑

p∈kD(P )

f(p) =
2

χ(kD(P ))
.

1

χ(kD(P ))

∑

p∈kD(P )

f(p)−
1

V ol(kD(P ))

∫

kD(P )

f(x)dV

=
2

χ(kD(P ))
−

2 + 2δ

V ol(kD(P ))

<
2

V ol(kD(P ))
−

2 + 2δ

V ol(kD(P ))

=
−2δ

V ol(kD(P ))

≤0.

�

Example 3.8 (Claim 4.3 in [LLSW19]). Let P = [−a, a] for a > 3, then D(P ) is not Chow stable
by previous proposition.

The question is, suppose P is symmetric and reflexive, is it enough to show that P is asymptotic
Chow semistable? The answer is no.

Example 3.9. Consider P = [−1, 1]6 = ((P1)6, O(2, 2, 2, 2, 2, 2)), then

V ol(P ) = 26 = 64 > 56 = 8× 7 = (6 + 2)(6 + 1).

Indeed, as 2x − (x+ 2)(x+ 1) is increasing when x ≥ 6, so for all n ≥ 6,

2n − (n− 2)(n− 1) ≥ 64− 56 = 8 > 0,

which implies that D([−1, 1]n) is not asymptotic Chow semistable for all n ≥ 6.

Remark 3.10. This cut a vertex technique obviously holds for any polytopes. Namely, let p be a
d dimensional polytopes, then we cut a cone from the vertex such that there is no interior integral
point until length 1, and let the base to be Qp, which is (d − 1) dimension. If V ol(Qp) ≥ d(d + 1),
then P is not asymptotic Chow stable.

Beside, for (Pn, O(n+1)) and ((P1)n, O(2, · · · , 2)), if we cut the cone, it must be a n dimensional
simplex, hence Qp is a n− 1 dimensional simplex for all p, and the volume of Qp is

V ol(Qp)
1

(n)!
< (n+ 2)(n+ 1),

which is expected as we know that they are asymptotic Chow polystable .
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In the next section, we will define a more restrictive type of polytopes, which is asymptotic Chow
polystable.

4. special polytopes

We first recall some definition in toric geometry.

Definition 4.1. A integral polytopes P is reflexive if the boundary is given by the equations

n
∑

i=1

aixi = ±1,

where ai ∈ Z. Or equialvently, there exists exactly one interior point (0, ..., 0).

Definition 4.2. A integral polytopes P is symmetric if there is exactly one fix point of the symmetric
group G acting on P .

notice that if P is reflexive, then the fix point is 0, and G < SL(n,Z) acting on P as a multipli-
cation. We now add one extra restriction on the symmetric reflexive polytopes.

Definition 4.3. Let P be an n dimensional integral convex polytope on R
n. We say P has a

regular boundary if for any k, there exists a triangulation of ∂kP which every ”triangle” is integrally
isomorphic of

Tn−1 := conv{(0, ..., 0), e1, ..., en−1},

the standard (n − 1) dimensional simplex, (i.e., the interseciton between different T i
n−1 are in the

boundary) such that for any point p ∈ ∂kP , the number of simplex intersection with p, denoted as
n(p), satisfies

n(p) ≤ n!,

and this triangulation is a sub-triangulation of each face.
Here integrally isomorphic means one of the object is obtained from another object by an integral

rigid motion, i.e., the multiplication of a matrix A ∈ SL(n,Z) and translation of v ∈ Z
n.

Remark 4.4. If two object P1, P2 are integral isomorphic , then for all k, kP1 has same number of
integral points as kP2. Indeed, integral isomorphism is obtained by a bijection map ϕ : Zn → Z

n,.
So for each compact object U ⊂ R

n, the map ϕ : U ∩ Z
n → ϕ(U ∩ Z

n) is a bijection.

Definition 4.5. An integral convex polytope on R
n is called special if it is reflexive, weakly symmetric

and has regular boundary.

Example 4.6. Suppose P is a two dimensional symmetric reflexive polytope, then it is special.

Proof. The boundary of P is a loop, hence every point must connect with 2 segment, hence the
boundary has regular triangulation. �

Remark 4.7. The two dimensional symmetric reflexive polytopes are X3 := Conv{(−1,−1), (1, 0), (0, 1)},
X4 := Conv{(±1, 0), (0,±1)}, X6 := Conv{(0,±1), (±1, 0), (1,−1), (−1, 1)}, X8 := Conv{(±1,±1)},
X9 := Conv{(−1,−1), (2,−1), (−1, 2)}.

Example 4.8. D(X3), D(X4) and D(X6) are special. However, D(X8), D(X9) is symmetric and
reflexive only, and they are not special. the reason is, the face of D(X8) is given by the triangle
Conv{(−1, 0), (0, 0), (1, 0), (0, 1)}, which for any k, for the point (0, 0,±k), there must be 2 simplex
attaching the vertex for each face, and there are 4 face, hence

n(0, 0,±k) = 8.

Similarly, we can see that for any triangulation for D(X9),

n(0, 0,±k) = 9
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5. Chow stability of special polytopes

We now consider what the individual assumptions can be provided. we first start with reflexive.

Lemma 5.1. Let P is a reflexive polytopes. then for all k ∈ N,

kP ∩ Z
n =

k
⋃

i=0

(∂iP ∩ Z
n).

Proof. Let P be reflexive. (0, ..., 0) ∈ ∂(0P ) by defintion. Notice that for any p = (p1, ..., pn) 6= 0 ∈
kP , there exists α and 0 < cα < k such that

a1,αp1 + · · ·+ an,αpn = cα.

But p ∈ Z
n implies cα∈Z, hence p ∈ ∂cαP ∩ Z

n. �

Also, we have the following.

Lemma 5.2. Let P be reflexive n dimensional polytopes, then

V ol(∂P )

n
= V ol(P )

Proof. Let ∪r
i=1 = Qi = ∂P , where Qi are faces of P . Then define

C(Qi) := Conv{(0, ..., 0), Qi} = {tx ∈ P |x ∈ Qi, 0 ≤ t ≤ 1}.

Then

P =
r
⋃

i=1

C(Qi),

and

V ol(P ) =
r

∑

i=1

V ol(C(Qi)).

The assumption that P is reflexive implies the height is 1 for any C(Qi), so

V ol(P ) =
r

∑

i=1

V ol(C(Qi)) =
r

∑

i=1

V ol(Qi)

n
=

V ol(∂P )

n
.

�

Lemma 5.3. Suppose f : P → R be a G invariant convex function such that

min
p∈P

f(x) = f(0) ≥ 0.

Then

Ff (t) :=

∫

t∂P

f(tx)dσP

is convex, where σ∂P |x = d(lQi
)|x for x ∈ Qi, the defining boundary function of the face Qi ⊂ ∂P .

Proof. First, we have a map ϕ : ∂P × [0, 1] → P defined by

ϕ(x, t) = tx.

Notice that this map is surjective, ϕ(x, 0) = 0 and ϕ|∂P×(0,1] is bijective. Hence any function f on
P can be represented by the function

g(x, t) := f ◦ ϕ(tx)

Notice that f(0) is the minimum, so f(x) ≥ 0. We find a (decreasing) sequence of smooth G invariant
convex function fi with fi(0) ≥ 0, converges to f . Denote Q = ∂P . We define gi : Q× [0, 1] → R by

gi(x, t) := fi ◦ ϕ(x, t)).

Now, by convexity, and f(0) is minimum, f is increasing along the segment {(tx, t)|0 ≤ t ≤ 1}, so it
implies

dgi
dt

(x, t) ≥ 0.
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Also, convexity of fi implies
d2gi
dt2

(x, t) ≥ 0

As
∫

tQ

fi(tx)dσQ = tn−1

∫

Q

gi (x, t) dσQ,

We now compute the second derivative of Fi. for n ≥ 3, the second derivative of Fi is given by:

d2

dt2

∫

tQ

fi(x, t)dσQ

=
d2

dt2
tn−1

∫

Q

gi(x, t)dσQ

=
d

dt

(

(n− 1)tn−2

∫

Q

gi (x, t) dσQ + tn−1

∫

Q

dgi
dt

(x, t) dσQ

)

=(n− 1)(n− 2)tn−3

∫

Q

gi (x, t) dσQ

+ 2(n− 1)tn−2

∫

Q

dgi
dt

(x, t) dσQ + tn−1

∫

Q

d2gi
dt2

dσQ

≥0,

so all Fi are convex. Thus F is convex.
Also, for n = 2,

F ′′

i (t) = 2(n− 1)

∫

Q

dgi
dt

(x, t) dσQ + t

∫

Q

d2gi
dt2

dσQ,

Finally, for n = 1, F (t) = f(−ta) + f(tb) for P = [−a, b], so

F ′′

i (t) = a2f ′′(−ta) + b2f ′′(tb) ≥ 0.

So F ′′

i (t) ≥ 0 for all i which implies F (t) is convex. �

As a remark, when we put f(x) = c, then Fc(t) = cV ol(∂P )tn−1, in which we can see if c < 0
and n ≥ 3, Fc is not convex on [0, 1].

Corollary 5.4. Suppose P is symmetric, then for all k ∈ R, for all G invariant convex function
f : kP → R with min

x∈kP
f(x) = f(0) = 0, we have

∫

kP

f(x, t)dV ≤
1

2
F (0) + F (1) + ...+ F (k − 1) +

1

2
F (k),

where

F (t) :=

∫

t∂P

f(x, t)dσ∂P .

Also, equality hold if and only if f = 0.

Proof. Now
∫

kP

f(tx)dV =

∫ 1

0

∫

t∂kP

f(tx)dσdt =

∫ 1

0

Ff,kP (t)dt.

By Lemma 5.3, F (t) is convex, hence by trapezoid rule, we have
∫

kP

f(x, t) ≤
1

2
F (0) + F (1) + ...+ F (k − 1) +

1

2
F (k).

�

The final lemma is a property of regular boundary:

Lemma 5.5. Let P have a regular boundary, then for any k, and for any convex function f , we
have

∫

∂kP

f(x)dσ ≤
∑

v∈∂kP

f(v).
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Proof. Let n be the dimension of P , then its boundary can be triangulated by the (n-1) simplex
Tn−1. Let the vertex point of Tn−1 p := (p0, ..., pn−1) and mp, then convexity implies

∫

Tn−1

f(x)dσ ≤ V ol(Tn−1)
n−1
∑

i=0

f(pi)

n
=

n−1
∑

i=0

f(pi)

n!
.

Therefore, if we denote n(p) to be the number of simplex touch the point p, then the regular boundary
assumption means n(p) ≤ n!, and hence

∫

∂kP

f(x)dσ =
∑

α

∫

Tα

n−1

f(x)dσ ≤
∑

α

n−1
∑

i=0

f(pαi )

n!
=

∑

p∈∂kP∩Zn

n(p)f(p)

n!

≤
∑

p∈∂kP∩Zn

n!f(p)

n!
=

∑

p∈∂kP∩Zn

f(p).

�

6. Chow stabilities of special polytopes

We now show that a special polytope is asymptotic Chow polystable.

Theorem 6.1. Let P be a special polytope, then P is asymptotic Chow polystable.

Proof. First, denote χ(kP ) := #{kP ∩ Z
n}, then

1

V ol(kP )

∫

kP

cdV =
1

χ(kP )

∑

p∈kP∩Zn

c,

so we only need the show the inequality for all G invariant convex non negative function f ≥ 0. And
we can assume

min
x∈kP

f(x) = f(0) ≥ 0.

As P is symmetric, for any non-negative convex function, by corollary 5.4

∫

kP

f(x)dV ≤
1

2
f(0) +

k−1
∑

r=1

∫

∂rP

f(x)dσ +
1

2

∫

∂kP

f(x)dσ.

Lemma 5.5 implies

∫

kP

f(x)dV ≤
1

2
f(0)+

k−1
∑

r=1

∑

∂rP∩Zn

f(p)+
1

2

∑

∂kP∩Zn

f(p) =
k

∑

r=0

∑

p∈∂rP∩Zn

f(p)−
1

2
f(0)−

1

2

∑

p∈∂kP∩Zn

f(p).

Therefore, lemma 5.1 implies

∫

kP

f(x)dV ≤
∑

kP∩Zn

f(p)−
1

2
f(0) −

1

2

∑

p∈∂kP∩Zn

f(p).



ASYMPTOTIC CHOW STABILITY OF SYMMETRIC REFLEXIVE TORIC VARIETIES 11

Therefore,

1

V ol(kP )

∫

kP

f(x)dV

=
1

χ(kP )

∫

kP

f(x)dV +

(

1

V ol(kP )
−

1

χ(kP )

)
∫

kP

f(x)dV

≤
1

χ(kP )





k
∑

r=0

∫

∂rP

f(x)dσ −
1

2
f(0)−

1

2

∑

p∈∂kP∩Zn

f(p)





+

(

1

V ol(kP )
−

1

χ(kP )

)∫

kP

f(x)dV

≤
1

χ(kP )

k
∑

r=0

∑

p∈∂rP

f(p)−
1

2χ(kP )



f(0) +
∑

p∈∂kP∩Zn

f(p)





+

(

1

V ol(kP )
−

1

χ(kP )

)
∫

kP

f(x)dV (Lemma 5.5)

=
1

χ(kP )

∑

p∈kP

f(p)−
1

2χ(kP )



f(0) +
∑

p∈∂kP∩Zn

f(p)





+

(

1

V ol(kP )
−

1

χ(kP )

)∫

kP

f(x)dV (Lemma 5.1)

So we only need to show

−
1

2χ(kP )



f(0) +
∑

p∈∂kP∩Zn

f(p)



+

(

1

V ol(kP )
−

1

χ(kP )

)∫

kP

f(x)dV ≤ 0,

that is,

(2)

(

1

V ol(kP )
−

1

χ(kP )

)
∫

kP

f(x)dV ≤
1

2χ(kP )



f(0) +
∑

p∈∂kP∩Zn

f(p)





Now, we can triangulate kP by Cα := conv{(0, ..., 0), Tα
n−1}, wehre ∪αT

α
n−1 is the regular triangula-

tion on ∂kP . V ol(Cα) =
k

n(n− 1)!
=

k

n!
, and by convexity,

∫

kP

f(x)dV ≤
∑

α

V ol(Cα)
∑

i

f(0) + f(pα0 ) + · · ·+ f(pαn−1)

n+ 1

=
∑

p∈∂kP

kn(p)f(p)

(n!)(n+ 1)
+

V ol(∂kP )

V ol(Cn−1)

k

n!(n+ 1)
f(0) ≤

∑

p∈∂kP

kf(p)

n+ 1
+ V ol(∂kP )

k

n(n+ 1)
f(0)

Therefore, in order to show equation (2), it suffices to show that we have

(

1

V ol(kP )
−

1

χ(kP )

)





∑

p∈∂kP

kf(p)

n+ 1
+ V ol(∂kP )

k

(n+ 1)n
f(0)



 ≤
1

2χ(kP )



f(0) +
∑

p∈∂kP∩Zn

f(p)



 ,

or,
[(

χ(kP )− V ol(kP )

V ol(kP )

)(

k

n(n+ 1)
V ol(∂kP )

)

−

(

1

2

)]

f(0) ≤

(

1

2
−

(

k

n+ 1

)(

χ(kP )− V ol(kP )

V ol(kP )

))

∑

p∈∂kP

f(p)

By assumption, f(0) = min
p∈kP

f(p) = 0, so we only need to show

0 ≤

(

1

2
−

(

k

n+ 1

)(

χ(kP )− V ol(kP )

V ol(kP )

))

.
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By Lemma 3.6, χ(kP ) = V ol(P )kn+
1

2
V ol(∂P )kn−1+r(k), where r(k) = an−2k

n−2+· · ·+a1k+1

is a polynomial, and ai depends on P only.

χ(kP )− V ol(kP )

V ol(kP )
=

V ol(∂P )

2kV ol(P )
+ r(k)k−n.

Using Lemma 5.2,
(

k

n+ 1

)(

χ(kP )− V ol(kP )

V ol(kP )

)

=
k

n+ 1

(

V ol(∂P )

kV ol(P )
+ r(k)

k−n

V ol(P )

)

=
k

n+ 1

(

n

k
+ r(k)

k1−n

V ol(P )

)

=
n

2(n+ 1)
+ r(k)

k1−n

V ol(P )
.

Therefore, there exists C such that

|r(k)k1−n|

V ol(P )
=

1

V ol(P )
|an−2k

−1 + ...+ a1k
2−n + k1−n| <

1

2(n+ 1)

for all k ≥ C, and hence
(

k

n+ 1

)(

χ(kP )− V ol(kP )

V ol(kP )

)

≤
n

2(n+ 1)
+

|r(k)k1−n|

V ol(P )
<

1

2
,

which shows our theorem. �

Example 6.2 (See also [LLSW19]). By example 4.6 and remark 4.7, all 2 dimensional symmet-
ric reflexive polytopes are special, which are Xi for i = 3, 4, 6, 8, 9, hence the above varieties are
asymptotic chow polystable.

7. regular triangulation of n simplex

To find higher dimensional examples, we first need to know how to triangulate a polytopes in
higher dimensions. In general it may be very difficult, but at least, we can triangulate a polytopes
of kP by the following:

(1) triangulate P into simplex;
(2) For kP , we first enlarge the triangulation on P , then kP is triangulated by enlarge simplexes

kTn, then we further triangulate every enlarged n simplex kTn into simplexes.

So we need to know how to triangulate a simplex kTn := Conv{(0, ..., 0), kei|i = 1, ..., n}. where
ke1 = (k, 0, ..., 0), ..., ken = (0, ..., 0, k).

Lemma 7.1. There exists a triangulation of Rn such that n(p) = (n+1)! for all p ∈ Z
n. Moreover,

this triangulation can triangulate kTn such that

n(p) =
(n+ 1)!

(k + 1)!
for all p ∈ ((n− k) skeleton)o ∩ Z

n.

Proof. Let α ∈ {0, 1}n − (0, ..., 0), and consider all the hyperspace α · x = p. Notice that any in-
tersection of n of the hyperspace is an integral point. Then we have a triangulation of Rn, except
we don’t know if each ”triangle” has the smallest area. To do so, notice that this triangulation is
translation invariant, so it is sufficient compute n(p) for p = (0, ..., 0).

Let a0 = 0, and let (a1, ..., an) is a generic point near (0, ..., 0). Then we have

aσ(0) > aσ(1) > · · · > aσ(n),

where σ ∈ Sn is an element in the symmetric group of {0, ..., n}. Hence there are (n+ 1)! element.
Notice that if σ(i) > σ(j) and σ′(i) < σ′(j), then the plane xi + xj = 0 separate this two points.
Therefore,

n(p) ≥ (n+ 1)!.
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But n(p) is a constant and the volume of any integral polytope is at least
1

(n+ 1)!
, hence we prove

the first part.

For the second part, notice that the group Sn+1 acts on this triangulation in R
n. So without loss

of generality, we may consider the points in (n− k) skeleton is in a1 = · · · = ak = 0 = a0. hence the
group fixing the points are Sk+1, which implies

n(p) =
(n+ 1)!

(k + 1)!

for p ∈ ((n− k) skeleton)o ∩ Z
n. �

O

Figure 1. triangulation of 2 simplex and rectangle.

8. A sufficient condition of Chow stabilities on toric varieties

Theorem 8.1. Let P be a integral polytope which 0 ∈ P 0 such that all the Futaki-Ono invariant
vainish, and we have a triangulation on kP by n simplexes and a triangulation on ∂kP by (n-1) sim-
plexes, we denote n(p; k) be the number of n simplex attach the p ∈ kP under the first triangulation,
and m(p; k) be the number of (n-1) simplex attach to p ∈ ∂kP under the second triangulation.

Suppose n(p; k) ≤ (n+ 1)! for all p 6= 0 and
(n

2

)

m(p;k) < ((n+ 1)!− n(p; k))

for all k large and for all p ∈ ∂kP , then P is asymptotic Chow polystable.

Proof. First, we can write

1

V ol(kP )

∫

kP

f(x)dV =
1

χ(kP )

∫

kP

f(x)dV +

(

1

V ol(kP )
−

1

χ(kP )

)∫

kP

f(x)dV.

Now,
∫

kP

f(x)dV ≤
∑

p∈kP

n(p; k)f(p)

(n+ 1)!
≤

∑

p∈kP

f(p)−
∑

p∈∂kP

(n+ 1)!− n(p;k)

(n+ 1)!
f(p).

Also, using the triangulation of ∂kP , and cone with origin,
∫

kP

f(p)dV ≤
∑

p∈∂kP

m(p;k)kf(p)

(n)!(n+ 1)
+ V ol(kP )

f(0)

(n+ 1)
.

Also,

χ(kP )− V ol(kP ) =
V ol(∂(P ))kn−1

2
+O(kn−2) =

nV ol(P )kn−1

2
+O(kn−2)
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By symmetric, we may assume f(0) = 0,

1

V ol(kP )

∫

P

f(x)dV

≤
1

χ(kP )





∑

p∈kP

f(p)−
∑

p∈∂kP

(n+ 1)!− n(p; k)

(n+ 1)!
f(p)





+

(

nk−1

2χ(kP )
+

O(k−2)

χ(kP )

)





∑

p∈∂kP

m(p;k)kf(p)

(n)!(n+ 1)
+ V ol(kP )

f(0)

(n+ 1)





=
1

χ(kP )

∑

p∈kP

f(p) +
1

(n+ 1)!χ(kP )

((n

2
+O(k−1)

)

m(p; k)− ((n+ 1)!− n(p; k))
)

∑

p∈∂kP

f(p)

Therefore, if
((n

2
+O(k−1)

)

m(p;k)− ((n+ 1)!− n(p; k))
)

≤ 0,

then the inequality holds. Therefore, if for all k, for all p ∈ ∂kP

n

2
m(p; k) < ((n+ 1)!− n(p; k)),

then it is asymptotic Chow polystable. �

Remark 8.2. Indeed, by consider kP , there is always an integral point p0 ∈ kP . also we can replace
0 by this point p0. So this criteria is general enough to talk about any P .

8.1. D(X8) and D(X9). As D(X8) and D(X9) are not special, we have to triangulate the whole
polytopes and compute the inequality directly.

Notice that the only way to triangulate D(X8) and D(X9) into simplex is the following: We
triangulate X8 and X9 by:

O

Then we connect any small triangle to (0, 0, 1) and (0, 0,−1) to get 3-simplex. Therefore, we can
triangulate D(X8) into 16 simplexes and D(X9) into 18 simplexes. Then by triangulation of each
simplex, we have a triangulation of kD(X8) and kD(X9).

As a consequence of Lemma 7.1, we have:

Lemma 8.3. For kD(Xi), under the above triangulation,

n(p)







= i if p = (0, 0,±k);
≤ 24 if p ∈ kD(Xi)

o

≤ 12 if p ∈ ∂kD(Xi)

Moreover, the triangulation on kT2 combining with the induced triangulation on D(Xi) onto ∂kD(Xi)
gives

m(p)

{

= i if p = (0, 0,±k);
≤ 6 if otherwise

As a remark, in here nkP (0, ..., 0) = 2i, also for the triangulation of ∂kDi, n(p) = 4 for p ∈ ∂kP
intersect with the red line.

Corollary 8.4. D(X8) and D(X9) are asymptotic Chow polystable.
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Proof. For p ∈ ∂kP that p 6= (0, · · · ,±1), n(p; k) ≤
(n+ 1)!

2
and m(p; k) ≤ n!, then the inequality

becomes

n(n!) ≤ (n+ 1)!

which is true. Also, at p = (0, ..., 0,±1), we have

n(p; k) = m(p;k) = i,

then we need

(n+ 1)! >
(n+ 2)

2
i,

that is,

1 >
(n+ 2)i

2(n+ 1)!
,

if n = 3, then it becomes

1 >
5i

48
,

hence this inequality holds for i < 9. Therefore, by Lemma 8.3 and theorem 8.1, D(X8) and D(X9)
are asymptotic Chow polystable. �

9. Examples of stability of symmetric reflexive polytopes

9.1. 1 and 2 dimensional.

Example 9.1. The only 1 dimensional symmetric reflexive polytopes is [−1, 1], which is Chow stable.
(See [LLSW19]).

Example 9.2. Suppose P is a two dimensional symmetric reflexive polytopes, then it is special,
hence it is asymptotic Chow stable. Indeed, by theorem 1.2 and corollary 3.3 in [LLSW19], with the
fact that P2 and P

1 × P
1 (by prop 3.2) is Chow stable, so indeed, all 2 dimensional special polytopes

are Chow stable.
As a remark, they are

X3 := P
2/(Z/3Z), X4 := P

1 × P
1/(Z/2Z), X6 := P

2blow up 3 pts, X8 := P
1 × P

1, X9 := P
2,

and all the line bundle to define the polytopes are −KXi
.

X3 X4 X6 X8 X9

Figure 2. Xi for i = 3, 4, 6, 8, 9.

Notice that in [LLSW19], there are some examples about the non reflexive polytopes which we
will not discuss in detail in this note.

9.2. 3 dimensional. To study the higher dimensional polytopes, we first recall that given a reflexive
polytopes P , we can define a reflexive polytopes P̂ by the following: Let

P̂ := {y ∈ R
n 〈x, y〉 ≥ −1, for all x ∈ P}.

If P is symmetric and reflexive, so is P̂ . For example, D(P ) = ̂̂P × P1. However, the duality may
not share the stability.

By Lemma 7.1, if the face are 2 simplex or a rectangle, then for each face, m(p) = 6 for p ∈ P o ,
m(p) = 3 if p ∈ (∂P )o, and the m(p) = 1 if p is the vertex. For any p ∈ (∂P )o, there are at most 2
faces connected to p, so in order to check if a polytope is special, we only need that there are i ≤ 6
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simplex connecting each vertex under the triangulation on the boundary.

Denote ∆0 be the triangulation of 2 simplex. As in figure 3, if the face are given by Xi, for
i = 3, 4, 6, then n(0) = i, n(p) = 6 for p ∈ P o − {0} , n(p) = 3 if p ∈ (∂P )o, and the n(p) = 2 if p is
the vertex using the rotation of ∆0 as the triangulation.

△0

△3
O

△0

△4
O

△0

△6
O

Figure 3. △0 ⊂ X3, △0 ⊂ X4 and △0 ⊂ X6.

Therefore, if the polytopes which faces are combination of above, then the only possible problem
is the vertex, and which can count it one by one.

Proposition 9.3. The following symmetric reflexive 3 dimensional polytopes are asymptotically
chow polystable.

(1) Xi × [−1, 1] for i=3,4,6,8,9, which indeed are also special. The corresponding varieties are
Xi × P

1.
(2) D(Xi), where i = 3, 4, 6, 8, 9. Notice that X3, X4 and X6 are special, but D(X8), D(X9) are

not, but all of them are asymptotically chow polystable;
(3) Other special polytopes, in which they are

(a) (P3, O(4)) := Conv{(−1,−1,−1), (3,−1,−1), (−1, 3,−1), (−1,−1, 3)} ( tetrahedron )
and its dual,
A3 = Conv{(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ( tetrahedron );

(b) P
3 blowup 4 points, which is a convex set of the points:

(0,−1,−1), (−1, 0,−1), (−1,−1, 0).(2,−1,−1), (2,−1, 0), (2, 0,−1),
(−1, 2,−1), (−1, 2, 0), (0, 2,−1), (−1,−1, 2), (−1, 0, 2), (0,−1, 2),
hence it is a truncated tetrahedron, which the boundary contain 4 X6 and 4 simplex
triangle. each vertex connect to 2 simplex triangle and 2 X6.
It dual is given by

Conv{(±1, 0, 0)(0,±1, 0), (0, 0, .± 1), (−1,−1,−1), (1, 1, 1)},

which is D(X4) glue with two standard 3 simplex, which the faces are all standard 2
simplex.

(c) Conv{(±1, 0, 0), (0,±1, 0), (±1,∓1, 0), (0, 0,±1), (±1, 0,∓1), (0,±1,∓1)}, which is a cuboc-
tahedron, with 8 triangular faces and 6 square faces, and each vertex are connected to 2
2 simplex and 2 square. The action group is S3 which permute the coordinates. Hence
for the surface, each vertex p,

n(p) ≤ 2 + 2 · 2 = 6,

and the remaining is also smaller than 6.
and its dual, which is given by the convex hull of the points:

(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1)

which is a rhombic dodecahedron. Notice that (0, 1, 1), (1, 0, 1), (0,−1,−1), (−1, 0,−1)
has 4 square touched the points, and other are only 3. So when we triangulate the
surface, if we choose the triangulation such that two of the square don’t bisect along
those points, then for any point p in it,

n(p) ≤ 6,

hence it is special.
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9.3. higher dimensional. We know that in high dimensional, not every symmetric reflexive poly-
topes are asymptotic Chow stable, for example D([−1, 1]n) for n ≥ 6. On the other hand, we would
provide two classes of polytope which are special

Example 9.4. Consider An := {[z0, ..., zn+1] ∈ P
n+1|z1...zn+1 = zn+1

0 }. The corresponding poly-
topes, also denoted as An, are given by

An = Conv{(1, ..., 0), (0, 1, ..., 0), ..., (0, ..., 0, 1), (−1,−1, ...,−1)}.

As all the face are simplexes, with all the condimension 2 or above boundry intersect with less than
n, it is asymptotic Chow polystable.

Notice that A2 = X3 in our notation on symmetric reflexive polygons. Also, as a polytope, An is
the dual polytope of the polytope corresponding to (Pn, O(n+ 1)).

Proof. Notice that the surface is given by n piece of Pn−1. So we only need to know how many
simplex will attend to the point in the co-dimension k skeleton.

Let ai = ei and an−1 = (−1, ...,−1), then we can represent any codimensional k piece by the
following: a1 represent the point e1, {a1, a2}represent the segment containing a1, a2, and etc. Also,
as symmetric group Sn+1 act on it, we only need to consider how many face containing the n-
r skeleton {a1...an−r}. But the face containing a1...an−r is represent by the set {an−r+1...an+1}
removing one element. therefore, there is r + 1 face connecting the skeleton containing a1...an−r .
Therefore, lemma 7.1 implies that for any point in p ∈ ∂kP which is in the interior of n− r skeleton,

n(p) =
(n)!

(r)!
(r) =

n!

(r − 1)!
≤ n!.

Therefore, it has regular triangulation. Also, it is symmetric and reflexive, hence it is special, which
implies it is asymptotic Chow polystable. �

Example 9.5. Consider (Pn, O(n+ 1)). The boundary of k(Pn, O(n+ 1)) is defined by

n
⋂

i=1

{xi = −k} ∩ {x1 + · · ·xn = k}.

Up to an Sn+1 action, a point p is in the interior of codimensional r skeleton if

p = (−k, ...,−k, v),

where v ∈ R
n−r such that

−r + v1 + · · ·+ vn−r < k,

vi > −k

for all i = 1, ..., n− k. Hence n(p) = r. So we have the same calculation of An, which implies it is
special, and therefore it is asymptotic Chow polystable.

Example 9.6. Define Dn := Conv{(±1, ..., 0), (0,±1, 0, ..., 0), ..., (0, ..., 0,±1)}. Dn is special for all
n. Notice that D2 = X4 and D3 = D(X4).

Proof. Notice that kDn = Z
n
2 ·kTn, where Z

n
2 = {1,−1}n with the group action to be multiplication,

and the action is multiplication to the corresponding coordinate. Dn is symmetric and reflexive. To
show Dn has regular boundary, p is in the interior of codimension r+1 skeleton if p = (x1, ..., xn) ∈
∂kDn with

xi1 = · · · = xir = 0

for r = 0, ..., n−1. we denotes these points as pr. Hence, similar to the last example, as a consequence
of lemma 7.1, we have

n(pr) =
(n)!

(r + 1)!
(2r) =

(

2

r + 1

)

· · ·

(

2

2

)

n! ≤ n!,

hence it is special. �
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Example 9.7. Notice that D6 is the dual polytope of [−1, 1]6, and thus D6× [−1, 1] (i.e., D6×P
1 as

the corresponding variety) is asymptotic Chow polystable. However, its dual is D([−1, 1]6), therefore
a dual of a asymptotic Chow polystable polytope need not to be asymptotic Chow polystable (or even
semistable).

10. Pictures of 3 dimensional symmetric reflexive polytopes

Finally, we provides the picture of the 3 dimensional symmetric reflexive polytopes mentioned
above.

X3 × [−1, 1] X4 × [−1, 1] X6 × [−1, 1]

X8 × [−1, 1] X9 × [−1, 1]

Figure 4. Xi × [−1, 1]

D(X3) D(X4) D(X6)

D(X8) D(X9)

Figure 5. D(Xi)
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P
3 P

3/(Z/4Z) P
3 blows up 4 points

Dual of P3 blow up 4 points. cuboctahedron Daul of cuboctahedron.

Figure 6. Others special polytopes, red line indicate part of triangulation

Appendix A. From integral polytypes to varieties

In this section, we will briefly explain how we obtain a toric variety from the integral polytope.
then we will write down the corresponding varieties of the toric varieties occurred in this note.

A.1. general procedure. Let P be a integral polytope containing (0, ..., 0). Let {p0 = (0, ..., 0), p1, ..., pN}
be all the integral points in P . Then we can define a toric subvariety in P

N by the following equations:
Suppose we have

c1pi1 + · · ·+ crpir = b1pj1 + · · ·+ bspjs ,

and without loss of generality, we may assume

c1 + · · ·+ cr = b1 + · · ·+ bs + a

for some a ≥ 0. Then we have a homogeneous polynomial defined by

zc1i1 · · · zcrir = zb1j1 · · · zbsjs z
a
0 .

Then {zc1i1 · · · zcrir − zb1j1 · · · zbsjs z
a
0 = 0} is a divisor in P

N . and it is a toric subvariety. Notice that the
toric action is given by

(C∗)N−1 ∼= {(λ1, · · · , λN ) ∈ (C∗)N ||λc1
i1

· · ·λcr
ir

= λb1
j1

· · ·λbs
js
}.

By intersecting all these divisors, we can obtain a toric subvariety.
Notic that some of the equations are repeated in (C∗)N , so in the following, we will define the

variety only by those which is different equation in (C∗)N , and the variety is the closeure of this.

A.2. examples.

Example A.1 (An). Denote p0 = (0, ..., 0), pi = ei for i = 1, ..., n and pn+1 = (−1, ...,−1). Then
we have

p1 + · · · pn = (0, ..., 0) = p0,

so the corresponding varieties, also denoted as An, is given by

An = {[z0, · · · , zn+1] ∈ P
n+1|z1 · · · zn+1 = zn+1

0 }.



20 KING-LEUNG LEE

Example A.2 (Dn). Recall that Dn := Conv{±ei}. Denote p0 = (0, ..., 0), p2i−1 = ei, p2i = −ei
for i = 1, ..., n. then p2i−1 + p2i = 0 for i = 1, ..., n gives n equations z2i−1z2i = z20, and it gives a n
codimension subvariety of P2n, hence these equations define Dn.

Dn = {[z0, ..., z2n] ∈ P
2n|z2i−1z2i = z20}.

Given

zc1i1 · · · zcrir = zb1j1 · · · zbsjs z
a
0 ,

we denote

f(z0, ..., zN) = zc1i1 · · · zcrir − zb1j1 · · · zbsjs z
a
0 .

Example A.3 (D(P )). Let P is defined by

{[z0, ..., zN ] ∈ P
N |f1 = · · · = fr = 0}

Then we define f̂i(z0, ..., zN+2) = fi(z0, ..., zN). then by denote pN+1 = (0, ..., 0, 1), pN+2 =
(0, ..., 0,−1), we have a new equation

zN+1zN+2 = z20 .

Then the variety of D(P ) is given by

D(P ) = {[z0, ..., zN+1zN+2] ∈ P
N |f1 = · · · = fr = zN+1zN+2 − z20 = 0}.

In order to define D(P ), we need to know P as a subvariety of PN , so in order to compute all the
examples, we need to write down what Xi is as a subvariety.

Example A.4. As a subvariety of Pi, restricted in (C∗)i ⊂ P
i, Xi are given by:

(1) X3 = A2 = {[z0, z1, z2, z3] ∈ P
3|z1z2z3 = z30},

(2) X4 = D2 = {[z0, z1, z2, z3, z4] ∈ P
4|z1z2 = z20 , z3z4 = z20},

(3) X6 = {[z0, z1, ..., z6] ∈ P
6|z1z4 = z2z5 = z3z6 = z20 , z2z4 = z3z0}, here the last equation

comes from (0, 1) + (−1, 0) = (−1, 1), also, z2z4 = z3z0 can be replaced by z1z3z5 = z30 with
other equations to get the same variety.

(4) X8 = {[z0, z1, ..., z8] ∈ P
8|zrzr+4 = z20 , where r = 1, 2, 3, 4; z1z3 = z2z0, z3z5 = z4z0}, and

(5) X9 = {[z0, z1, ..., z9] ∈ P
9|zrzr+3zr+6 = z30 , where r = 1, 2, 3; z1z3 = z22 , z2z4 = z23 , z2z6 =

z20 , z3z7 = z20}. Another way to write it is using X6 plus 3 points, hence we need two more
relation, namely

{[z0, z1, ..., z9] ∈ P
9|z1z4 = z2z5 = z3z6 = z20 , z2z4 = z3z0, z7z8z9 = z30 , z7z8 = z1z2}.

With this , we can write D(Xi) as a subvarieties of Pi+2. For example,

(1) D(X3) = {[z0, z1, z2, z3, z4, z5] ∈ P
5|z1z2z3 = z30 , z4z5 = z20},

(2) D(X4) = {[z0, z1, ..., z6] ∈ P
6|z1z2 = z20 , z3z4 = z20 , z5z6 = z20},

(3) D(X6) = {[z0, z1, ..., z8] ∈ P
8|z1z4 = z2z5 = z3z6 = z20z2z4 = z3z0, z7z8 = z20},

(4) D(X8) = {[z0, z1, ..., z10] ∈ P
10|zrzr+4 = z20 , where r = 1, 2, 3, 4; z1z3 = z2z0, z3z5 =

z4z0, z9z10 = z20}, and
(5) D(X9) = {[z0, z1, ..., z11] ∈ P

11|zrzr+3zr+6 = z30 , where r = 1, 2, 3; z1z3 = z22 , z2z4 =
z23 , z2z6 = z20 , z3z7 = z20 , z10z11 = z20}.

We already know what Xi ×P
1 are, so we will only write down the equations of the varieties that

we don’t know what it is, in which we denoted as

Example A.5. (1) P1 = Conv{(±1, 0, 0)(0,±1, 0), (0, 0, .± 1), (−1,−1,−1), (1, 1, 1)}, which is
D(X4) glue with two standard 3 simplex, which the faces are all standard 2 simplex,

(2) P2 = Conv{(±1, 0, 0), (0,±1, 0), (±1,∓1, 0), (0, 0,±1), (±1, 0,∓1), (0,±1,∓1)},
(3) P3, which is given by the convex hull of the points:

(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1)

which is a rhombic dodecahedron. Notice that (0, 1, 1), (1, 0, 1), (0,−1,−1), (−1, 0,−1).

(1) P1 = {[z0, z1, ..., z8] ∈ (C∗)8 ⊂ P8|z1z2 = z20 , z3z4 = z20 , z5z6 = z20 , z7z8 = z20 , z1z3z5 = z7z20},
the last equation is deduced from e1 + e2 + e3 = (1, 1, 1).
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(2) P2 is a subvariety of P12, so we need 9 equations. z2r−1z2r = z20 for r = 1, ..., 6, z1z4 = z5z0,
z7z9 = z1z0 and z7z11 = z3z0.

(3) P3 is a subvariety of P14. Following the order above, we have z1z4 = z2z5 = z3 = z6 = z20,
z1z3 = z2z0, z7z9 = z8z10, z11z13 = z12z14, z7z11 = z8z12 = z9z13 = z10z14 = z20 and
z8z11 = z0z1.
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