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INTEGRAL POINTS ON VARIETIES WITH INFINITE ÉTALE FUNDAMENTAL GROUP

NIVEN T. ACHENJANG AND JACKSON S. MORROW

ABSTRACT. We study integral points on varieties with infinite étale fundamental groups. More pre-
cisely, for a number field F and X/F a smooth projective variety, we prove that for any geometrically
Galois cover ϕ : Y → X of degree at least 2dim(X)2, there exists an ample line bundle L on Y such
that for a general member D of the complete linear system |L |, D is geometrically irreducible and
any set of ϕ(D)-integral points on X is finite. We apply this result to varieties with infinite étale fun-
damental group to give new examples of irreducible, ample divisors on varieties for which finiteness
of integral points is provable.

1. Introduction

The main goal of this work is to provide new examples of irreducible divisors D on varieties X
over a number field F for which any set of D-integral points on X is finite.

We begin our discussion of integral points on varieties with the work of Siegel [Sie14]. To state
his results, let F be a number field, let S be a finite set of places of F containing the Archimedean
places, let C be an affine curve over F embedded in affine space Am

F , and let C̃ be the projective
closure of C. Siegel proved that if #(C̃ \C) > 2 over F, then C has finitely many points in Am(OF,S).
More generally, this result states that for a smooth projective curve C̃ of genus g(C̃) over F, effective
divisors D1, . . . ,Dq on C̃, and D =

∑q
i=1Di, any set of D-integral points on C̃ is finite if 2− 2g(C̃)−

q is negative.
In [CZ02], Corvaja and Zannier provided a new proof of Siegel’s theorem using the Schmidt

subspace theorem. Soon after, the same authors [CZ04] extended their proof technique to show
that for X a smooth projective surface over F and D =

∑q
i=1 Di where q > 4 and Di are distinct

irreducible divisors such that no three share a common point and pairs of them are subject to
certain intersection product constraints, any set of D-integral points on X is not Zariski dense.
In the higher dimensional setting, the works of Autissier [Aut09, Aut11], Corvaja–Levin–Zannier
[CLZ09], and Levin [Lev09] proved that for X a smooth projective variety of dimension n over F, if
D1, . . . ,Dq are ample divisors such that at most n of them contain a given point and D =

∑q
i=1 Di,

then any set of D-integral points on X is not Zariski dense once q is large enough relative to n.
Morally, these results assert that once a divisor D has enough irreducible components which are
in general position, any set of D-integral points on X is not Zariski dense.

A natural follow-up question to these results is:

Question 1.1. For which smooth projective F-varieties X, do there exist (geometrically) irreducible
divisors D on X for which one can prove non-density or finiteness of D-integral points on X?

As mentioned above, Siegel’s theorem asserts that for a smooth projective curve C of genus > 1

and any irreducible effective divisor D on C, any set of D-integral points on C is finite. The most
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famous answer to Question 1.1 is supplied by Faltings [Fal91, Corollary 6.2] where he proves that
for A an abelian variety over F and D an ample divisor on A, any set of D-integral points on A is
finite. Vojta [Voj96, Voj99] extended these results to the semi-abelian setting.

In [Fal02], Faltings constructed a class of irreducible divisors D on P2 for which P2 has finitely
many D-integral points. These divisors D are realized as the branch locus of a suitably generic
projection X → P2 from a smooth surface X to P2 and when D is sufficiently singular, Faltings
showed that D decomposes into many irreducible components in the Galois closure of X → P2.
The interest in these divisors stems from the fact that finiteness of the D-integral points on P2

cannot be deduced by embedding the relevant varieties into semi-abelian varieties, even after
a finite extension of P2 which is unramified outside of D. Therefore, these examples provide
genuinely new instances of finiteness of integral points. In [Lev09, Section 13], Levin removed an
ampleness condition from Faltings construction, which provided some improvements on Faltings
result. Additionally, Zannier [Zan05] continued the study of integral points on the complement in
Pn of the branch locus of a generic projection and proved results concerning the dimension of the
Zariski closure of these integral points.

Main contributions. Our main contribution is an answer to Question 1.1 when the variety X has
a geometrically Galois cover of sufficiently large degree. We refer the reader to Section 2.1.2 for
our conventions regarding (geometrically) Galois covers and to Definition 2.3 for the definition of
arithmetically hyperbolic.

Theorem A. Let X be a smooth projective F-variety of dimension n > 2. Suppose that ϕ : Y → X is a
geometrically Galois cover of degree at least 2n2. Then, there exists an ample line bundle L on Y such that
for a general member D of the complete linear system |L |, D is geometrically irreducible, ϕ(D) is ample,
and X \ϕ(D) is arithmetically hyperbolic; in particular, any set of ϕ(D)-integral points on X is finite.

Abelian varieties of dimension > 2 have geometrically Galois covers of such degree, and more
generally varieties with infinite or large étale fundamental group (Definition 2.6) possess such cov-
ers. We provide more examples of such varieties in Example 2.9 and Example 2.11. As a corollary
to Theorem A, we have the following.

Corollary B. Let X be a smooth projective F-variety of dimension n > 2 with infinite étale fundamental
group. Then, there exist infinitely many irreducible, ample divisors D on X such that X \D is arithmetically
hyperbolic; in particular, such that any set of D-integral points is finite. If moreover X(F) 6= ∅, then there
are infinitely many such D which are geometrically irreducible.

Our methods are founded in Diophantine approximation, and hence Vojta’s dictionary [Voj87]
allows us to deduce Nevanlinnan analogues of our arithmetic results.

Theorem C. Let X be a complex smooth projective variety of dimension n > 2. Suppose that ϕ : Y → X

is a Galois cover of degree at least 2n2. Then, there exists an ample line bundle L on Y such that for a
general member D of the complete linear system |L |, D is irreducible, ϕ(D) is ample, and any holomorphic
morphism C → X \ϕ(D) is constant.

Corollary D. Let X be a complex smooth projective variety of dimension n > 2 with infinite fundamental
group. Then, there exist infinitely many irreducible, ample divisors D on X such that any holomorphic
morphism C → X \D is constant.
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The proofs of Theorem A, Theorem C, and our subsequent corollaries reduce to showing a
purely algebro-geometric statement. To state this, let F denote an algebraic closure of F, and for X
a smooth projective F-variety of dimension n, let XF denote the base change of X to Spec(F). Our
main results will follow if we can show that for A ⊂ Aut(XF) a finite set of automorphisms of
X which acts freely on X(F), there exists an effective, ample divisor D on X such that any point
of X(F) is contained in at most n of the divisors σ(D), as σ varies over A. We refer the reader to
Corollary 3.5 for the precise statement. Once we have proved this, our results follow from work of
Levin [Lev09] and Heier–Levin [HL20] and properties of varieties with infinite étale fundamental
group.

Organization. In Section 2, we establish conventions and recall relevant background on integral
points and varieties with infinite and large étale fundamental group. We prove our main results,
Theorem A and Theorem C, in Section 3.

Acknowledgements. We thank Bjorn Poonen for sketching the argument presented in Proposition 3.4
and for helpful comments. We also thank Levent Alpöge, Lea Beneish, Aaron Levin, and Bjorn
Poonen for helpful comments on a first draft. During the preparation of this article, N.T.A. was
supported by MIT’s Dean of Science Fellowship, and J.S.M. was supported by NSF MSPRF grant
DMS-2202960. We thank the referee for their valuable comments and for pointing out an error in
a previous version.

2. Conventions and Preliminaries

In this section, we establish conventions we use throughout the work and recall some defini-
tions and concepts from algebraic geometry, integral points, and varieties with infinite and large
étale fundamental group.

2.1. Fields and algebraic geometry. We will use F to denote a number field and F ′/F to denote a
finite extension of F. Let MF denote the set of places of F. We also let K denote an arbitrary field
of characteristic zero. As usual, the notation F or K will refer to an algebraic closure of F or K,
respectively. A K-variety is a geometrically integral separated scheme of finite type over Spec(K).
For K ′/K, we will let XK ′ denote the base change of X to Spec(K ′).

2.1.1. Fundamental groups. Fix an embedding K →֒ C. In this work, we will need two kinds of
fundamental groups, namely the topological fundamental group associated to the complex ana-
lytification of X and the étale fundamental group of X.

For K a field of characteristic zero, X a smooth projective K-variety, and a geometric base point
x : Spec(K) → XK, we will write πét

1 (XK, x) to denote the étale fundamental group of XK. We will
largely ignore the base change and the base point notation and simply denote this as πét

1 (X). When
X is a smooth projective complex variety with x : Spec(C) → X(C) a base point, we can consider
the topological fundamental group of the complex analytification, and we denote this fundamen-
tal group as πtop

1 (X(C), x). As before, we will normally ignore the base point from considerations.

2.1.2. Galois covers. Let X be a normal projective K-variety. We say that a K-variety Y is a finite

étale cover of X if there exists a finite étale morphism Y → X. For our purposes, a Galois cover of X

refers to the data of a projective normal variety Y defined over a finite extension K ′/K and a finite
étale cover Y → XK ′ such that there exists a finite group G and an action α : G× Y → Y where the
induced morphism α× pr2 : G× Y → Y ×XK ′ Y is an isomorphism. These conditions imply that
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the action morphism α on Y(K) is free. Similarly, a geometrically Galois cover of X is the data of a
projective normal variety Y defined over K and a finite étale cover Y → X such that YK → XK is
a Galois cover. Note that, in contrast with our notion of Galois covers, we require the morphism
Y → X to be defined over K, but allow for automorphisms defined over an extension of K.

2.2. Integral points and arithmetic hyperbolicity. Since our results are primarily concerned with
integral points on varieties, we briefly recall the construction of (D, S)-integral points on a normal
projective F-variety X where D is an effective Cartier divisor and S ⊂ MF is a finite set of places
of F containing the Archimedean ones. Roughly speaking, (D, S)-integral points correspond to
scheme-theoretic OF,S-integral points on X \D. More precisely, a subset R ⊂ X(F) \D is defined to
be a collection of (D, S)-integral points if there exist a global Weil function (λD,v)v∈MF

for D such
that for all v ∈ MF \ S, λD,v(P) 6 0 for all P ∈ R. We will normally ignore the finite set of places
S from the notation and simply refer to (D, S)-integral points as D-integral points. We refer the
reader to [Voj87, Section 1.4] for the definition of global Weil functions and further discussion on
integral points.

We will also use the notion of arithmetically hyperbolic from [HL20], which we recall below.

Definition 2.3. Let X be a normal projective F-variety and D be an effective Cartier divisor. We say
that X \D is arithmetically hyperbolic if for every number field F ′/F and every finite set of places
S of F ′ containing the Archimedean ones, the sets of F ′-rational (D, S)-integral points on X are
always finite.

2.4. Varieties with infinite and large étale fundamental group. To begin this section, we prove
a lemma about the existence of Galois covers with arbitrarily large degree for a normal projective
K-variety such that XK has infinite étale fundamental group.

Lemma 2.5. Let X be a smooth projective K-variety such that XK has infinite étale fundamental group and
X(K) 6= ∅. For any d > 1, there exists a geometrically Galois cover Y → X (defined over K) of degree > d.

Proof. Since XK has infinite étale fundamental group, there exists a finite étale cover X ′ → XK ′ of
degree > d defined over some finite extension K ′/K, which corresponds to a quotient of πét

1 (X)

of cardinality > d. By taking Galois closures (see e.g. [Sta15, Tag 0BN2]) we may assume that
X ′ → XK ′ is Galois. Then, [Har00, Proof of Lemma 5.2(1)] (see also [Cu]) shows how to construct a
finite étale cover Z → X, defined over K, which is a K-form of X ′

K
→ XK, and so is a geometrically

Galois of degree > d. �

A natural class of varieties with infinite étale fundamental group are provided by varieties with
large étale fundamental group in the sense of Kollar [Kol93]. We recall the definition below.

Definition 2.6. Let X be a normal projective K-variety. The étale fundamental group of X is large

if for any closed positive-dimensional integral subvariety Y of X with normalization f : Ỹ → Y, the
image of the induced map πét

1 (Ỹ) → πét
1 (X) is infinite.

Clearly, a variety with large étale fundamental group has an infinite étale fundamental group,
and hence we have an immediate corollary of Lemma 2.5.

Corollary 2.7. Let X be a smooth projective K-variety such that XK has large étale fundamental group and
X(K) 6= ∅. For any d > 1, there exists a geometrically Galois cover Y → X (defined over K) of degree > d.

Below, we describe examples of varieties with large étale fundamental group.
4
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Relation to topological fundamental group of complex analytification. After fixing base points x ∈ X(C),
we have the group homomorphism

ιX : π
top
1 (X(C), x) → πét

1 (X, x)

which identifies the étale fundamental group with the profinite completion of the topological one.
Let X̃ denote the topological cover of X(C) corresponding to ker(ιX).

Proposition 2.8 ([Kol93, Proposition 2.12.3],[BM22, Proposition 1.3]). Suppose that X is a proper K-
variety. Then the étale fundamental group of X is large if and only if the complex analytic space X̃ does not
contain positive-dimensional compact complex analytic subspaces.

Proposition 2.8 gives us a useful criterion for determining when a proper variety has large étale
fundamental group, and one particularly useful situation to consider is when X̃ is the universal
cover of X(C) i.e., when ιX is injective. We note that this holds when π

top
1 (X(C), x) is linear, and

this result allows us to identify two classes of proper varieties with large étale fundamental group.

Example 2.9. The étale fundamental group of X is large when X is an abelian variety and when X

is the quotient of a bounded symmetric domain in Cn by a torsion-free co-compact lattice of its
biholomorphism group.

Example 2.10. Any variety which admits a finite morphism to a variety with large étale fundamen-
tal group will also have large étale fundamental group.

Example 2.11. Another source of varieties with large étale fundamental groups comes from those
which possess a large local system. Recall from [Bru20], a local system L on X(C) with coefficients
in some field is large if given any non-constant morphism f : Y → X with Y a normal irreducible
complex variety, the local system f∗L has infinite monodromy. Moreover, the étale fundamental
group of a complex variety carrying a large local system is large.

It is well-known (see e.g., [Bru20, Proposition 4.3]) that complex algebraic varieties admitting
a (graded-polarizable) variation of Z-mixed Hodge structure with finite period map have a large
local system, and hence have large étale fundamental group.

3. Proof of Theorem A and Theorem C

In this section, we prove our Theorem A and Theorem C. First, we prove several lemmas con-
cerning the behavior of divisors under the action of a finite collection of automorphisms.

Lemma 3.1. Let X be a projective K-variety, and fix some d ∈ Z>0. There exists an ample line bundle L

on X such that H1(X, L n ⊗IS/X) = 0 for any finite subscheme S ⊂ X of degree at most d (i.e., for which
dimKH

0(S, OS) 6 d) and any n > 1.

Proof. This is essentially [Poo04, Lemma 2.1]. Let X →֒ PN be a closed embedding. For any m > 1,
there is a commutative diagram

H0(PN, O(m)) H0(S, OS)

H0(X, OX(m)) H0(S, OS) H1(X, IS/X(m)) H1(X, OX(m))

(1)

(2)
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with bottom row exact. For m > d− 1 > dimKH
0(S, OS) − 1, [Poo04, Lemma 2.1] tells us that (1)

above is surjective, and so (2) must be surjective as well. By Serre vanishing, there exists a constant
C (depending only on the embedding X →֒ PN) such that H1(X, OX(m)) = 0 if m > C. Combining
this with surjectivity of (2) shows that

H1(X, IS/X(m)) = 0 for all m > max(C,d− 1) =: M.

In particular, if we take L = OX(M), then H1(X, L n ⊗ IS/X) = H1(X, IS/X(nM)) = 0 for all
n > 1. �

Lemma 3.2. Let (R,m) be a noetherian regular local ring, and consider elements f1, . . . , fk ∈ m. Then,
S := R/(f1, . . . , fk) is a regular local ring of dimension dimR− k if and only if

fi 6∈ m2 + (f1, . . . , fi−1)

for all i > 1.

Proof. This is essentially [Ser00, Proposition 22 in Section IV.D.2]. �

Lemma 3.3. Let V be an n-dimensional K-vector space. Implicitly identify V with the affine scheme
A(V) = Spec Sym(V∨). For any k > 1, consider the Zariski closed subset

Zk :=
{
(v1, . . . , vk) ∈ Vk : v1, . . . , vk are K-linearly dependent

}
.

If k 6 n, then codimVk(Zk) = (n+ 1) − k. Otherwise, Zk = Vk.

Proof. The claim is obvious when k > n, so assume k 6 n. For any nonempty I ( {1, . . . , k},
let pI : V

k → V#I denote the projection onto the coordinates contained in I. To each such I, with
#I =: i, we attach the subset

YI :=
{
~v = (v1, . . . , vk) ∈ Vk : pI(~v) 6∈ Zi, but pI∪{j}(~v) ∈ Zi+1 for all j 6∈ I

}
.

The image of YI
pI
−→ V i is Zariski open in V i, and the fibers of this map are all vector spaces of

dimension i(k− i). Thus, dim YI = dimV i + i(k− i) = i(n+ k− i). One can easily check that this
expression is increasing in i while i 6 (n+ k)/2. Because we require i < k in the formation of YI
(and because k 6 (n+ k)/2), we thus in fact conclude that

dimYI 6 dimY{1,...,k−1} = (k− 1)(n+ k− (k− 1)) = (k− 1)(n+ 1).

That is, each YI is of codimension > (n+ 1) − k in Vk. Unwinding definitions, one sees that

Zk = {(0, . . . , 0)}∪


 ⋃

∅(I({1,...,k}

YI


 ,

from which the claim follows. �

Proposition 3.4. Let X be a smooth projective K-variety, and let A ⊂ Aut(X) be a finite set of automor-
phisms of X which acts freely on X(K). Write k := #A and n := dimX. Then, there exists an ample line
bundle L and a dense open locus U ⊂ |L | of its complete linear system such that for any effective divisor
D ∈ U the intersection

⋂
σ∈A σ(D) ⊂ X is regular of dimension n− k, where if k > n, then we mean that

the intersection is empty.

Proof. Let d = k(n + 1) = #A · (dim(X) + 1), and choose some ample L on X as in Lemma 3.1.
Let |L | denote its complete linear system, so D ∈ |L | denotes an effective divisor on X such that
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L ∼= O(D). Given D ∈ |L |, we let I(D) :=
⋂

σ∈A σ(D) ⊂ X denote the intersection of its translates.
For any (closed) p ∈ X, we let Bp ⊂ |L | be the locus of “bad divisors” D, i.e. those for which
p ∈ I(D), but OI(D),p is not regular local of dimension n− k.

We claim that Bp is of codimension > n+ 1 in |L |. For this, we will first set up some notation.
Each σ ∈ A induces an isomorphism

σ∗ : OX,p
∼= OX,σ−1(p)

of local rings. Let S ′ be
⋃

σ∈A σ−1(p) endowed with its reduced closed subscheme structure; the
points σ−1(p) are distinct as σ ∈ A varies (for fixed p) by assumption. Let IS ′ denote the ideal
sheaf of S ′, and define S to be the closed subscheme with ideal sheaf I 2

S ′ . Note that S and S ′ have
the same underlying set.

We claim that h0(S, OS) = k(n+ 1) = d. Indeed, OS is a skyscraper sheaf supported at σ−1(p)

as σ varies over A with stalks OS,q = OX,q/m2
q, where q = σ−1(p) and mq is the maximal ideal of

OX,q. The K-dimension of the local ring OS,q is

dimK OS,q = dimK(OX,q/mq) + dimK(mq/m2
q) = dimK(K) + dim OX,q = 1+ n,

where n = dimX = dim OX,q = dimK(mq/m2
q) since q is a closed point on the smooth K-scheme

X. Since A acts freely on X(K) and k = #A, we have that h0(S, OS) = k(n+ 1).
By our choice of L , the natural map

F : H0(X, L ) → H0(S, OS) =
⊕

σ∈A

OX,σ−1(p)

m2
σ−1(p)

∼=
⊕

σ∈A

OX,p

m2
p

∼=

(
OX,p

m2
p

)k

is surjective, where the second-to-last isomorphism is induced by the σ∗−1s. By Lemma 3.2, a
nonzero section s ∈ H0(X, L ) cuts out a divisor belonging to Bp if and only if F(s) = (f1, . . . , fk) ∈(

OX,p
m2

p

)k
satisfies fi ∈ mp/m2

p for all i, and fj ∈ m2
p + (f1, . . . , fj−1) for some j. This is the case if and

only if f1, . . . , fk lie in

Z :=

{

(f1, . . . , fk) ∈
(
mp

m2
p

)k

: f1, . . . , fk are K-linearly dependent

}

.

By Lemma 3.3 applied to V = mp/m2
p, Z is of codimension max{(n + 1) − k, 0} in (mp/m2

p)
k.

Since mp/m2
p is of codimension 1 in OX,p/m2

p, we see that Z is of codimension max{n+ 1, k} > n+ 1

in (OX,p/m2
p)

k ∼= H0(S, OS). Now, because F is a linear surjection, its corresponding map on affine
schemes is faithfully flat (e.g. by [Mil17, Proposition 1.70]), so F−1(Z) is of codimension > n+ 1 in
H0(X, L ) as well. Hence, Bp ⊂ |L | is of codimension > n+ 1 as claimed.

To conclude, let B ⊂ X × |L | be (the closure of) the locus of pairs (p,D) with D ∈ Bp, and
consider the projections

X B |L |
p1 p2

Note that p1 is surjective with fibers of dimension 6 dim |L |− (n+ 1), so dimB 6 dim |L |− 1.
Thus, p2 is not surjective, so the locus U = |L | \ p2(B) consisting of divisors D such that I(D) is
regular of dimension n− k is both dense and open. �

Corollary 3.5. Let X be a smooth projective K-variety, and let A ⊂ Aut(XK) be a finite set of geometric
automorphisms of X which acts freely on X(K). Write k := #A and n := dimX > 2. There exists an ample
line bundle L on X and a dense open locus U ⊂ |L | of its complete linear system such that any effective
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divisor D ∈ U is ample, geometrically irreducible, and the intersection
⋂

σ∈A σ(DK) ⊂ XK is regular of
dimension n− k, where if k > n, then we mean that the intersection is empty.

Proof. Choose an ample line bundle L on X as in Lemma 3.1 with d = k(n + 1). Applying the

argument from Proposition 3.4 to XK, we have that the locus V ⊂ |LK|
∼= P

h0(X,L )−1

K
of divisors D

for which I(D) :=
⋂

σ∈A σ(D) ⊂ XK is regular of dimension n− k is open and dense. By definition,

the locus V is Gal(K/K)-invariant, and so it descends to an open dense locus V ⊂ |L | ∼= P
h0(X,L )−1
K

over K. We note that [Har77, Corollary III.7.9] tells us that any D ∈ V is geometrically connected,
and Bertini’s theorem [Jou83, Cor.I.6.11(2)] implies that there is a dense open locus U in V whose
corresponding divisors are smooth. Divisors in U are smooth and geometrically connected; hence,
they are geometrically irreducible and U ⊂ V is the dense open locus sought after. �

We now prove our main theorems, restated below for the reader’s convenience.

Theorem 3.6 (= Theorem A). Let X be a smooth projective F-variety of dimension n > 2. Suppose that
ϕ : Y → X is a geometrically Galois cover of degree at least 2n2. Then, there exists an ample line bundle
L on Y such that for a general member D of the complete linear system |L |, D is geometrically irreducible,
ϕ(D) is ample, and X \ϕ(D) is arithmetically hyperbolic; in particular, any set of ϕ(D)-integral points
on X is finite.

Proof. Let G ⊂ Aut(YF) denote the Galois group of ϕ. By Corollary 3.5, we can find an am-
ple line bundle L on Y such that a general member D of the complete linear system |L | is
ample, geometrically irreducible, and the intersection (in YF) of any dim(Y) + 1 of the divisors
{σ(DF) : σ ∈ G} is empty. Let F ′/F be a finite extension over which all σ ∈ G are defined, and
let ϕF ′ : YF ′ → XF ′ be the base change of ϕ. Since D is ample, σ(DF ′) is as well for all σ ∈ G.
Since ϕ∗

F ′(ϕF ′(DF ′)) =
∑

σ∈G σ(DF ′) and #G > 2n2 = 2dim(YF ′)
2, [HL20, Theorem 1.4] asserts

YF ′ \ϕ
∗
F ′(ϕF ′(DF ′)) is arithmetically hyperbolic. Since ϕF ′ is finite étale, the integral Chevalley–

Weil theorem [Voj87, § 5.1] implies that XF ′ \ϕF ′(DF ′) is arithmetically hyperbolic. To finish, note
that the natural projection f : XF ′ → X is finite étale and that ϕ(D) = f(ϕF ′(DF ′)), so a second
application of integral Chevalley–Weil, this time to f : XF ′ → X, shows that X \ ϕ(D) is arith-
metically hyperbolic. Finally, ampleness of ϕ(D) follows from [Har77, Exercise III.5.7(d)], as
(f ◦ϕF ′)

∗(ϕ(D)) = ϕ∗(ϕ(D))F ′ is ample. �

Corollary 3.7 (= Corollary B). Let X be a smooth projective F-variety of dimension n > 2 with infinite
étale fundamental group. Then, there exist infinitely many irreducible, ample divisors D on X such that
X \D is arithmetically hyperbolic; in particular, such that any set of D-integral points is finite. If moreover
X(F) 6= ∅, then there are infinitely many such D which are geometrically irreducible.

Proof. Since X has infinite étale fundamental group, there exists a Galois cover ϕ : Y → XF ′ of de-
gree at least 2n2, defined over some finite extension F ′/F. Theorem 3.6 guarantees the existence
of infinitely many geometrically irreducible, ample divisors D ′ ⊂ Y such that ϕ(D ′) ⊂ XF ′ is
geometrically irreducible and ample, and such that XF ′ \ϕ(D ′) is arithmetically hyperbolic. Let-
ting f : XF ′ → X denote the natural projection, the integral Chevalley-Weil theorem [Voj87, § 5.1]
tells us that, for any such D ′, X \ f(ϕ(D ′)) is arithmetically hyperbolic as well. As in the proof
of Theorem 3.6, each f(ϕ(D ′)) is ample as a consequence of [Har77, Exercise III.5.7(d)]. Because
f ◦ϕ : Y → X is finite, the infinitely many (geometrically) irreducible, ample D ′ on Y give rise to
infinitely many irreducible, ample divisors f(ϕ(D ′)) on X whose complements are arithmetically
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hyperbolic. Finally, if X(F) 6= ∅, Lemma 2.5 says we can take ϕ to be defined over F (at the expense
of making it geometrically Galois, but not necessarily Galois), and so we directly get geometrically
irreducible divisors, namely ϕ(D ′), defined over F in the above application of Theorem 3.6. �

Theorem 3.8 (= Theorem C). Let X be a complex smooth projective variety of dimension n > 2. Suppose
that ϕ : Y → X is a Galois cover of degree at least 2n2. Then, there exists an ample line bundle L on Y

such that for a general member D of the complete linear system |L |, D is irreducible, ϕ(D) is ample, and
any holomorphic morphism C → X \ϕ(D) is constant.

Proof. The proof of this statement follows identically from the proof of Theorem A except one
needs to replace [HL20, Theorem 1.4] with its Nevanlinnan analogue (cf. [Lev09, Theorem 9.11B.(a)]),
and note that any holomorphic morphism C → Y \ϕ∗(ϕ(D)) is constant if and only if any holo-
morphic morphism C → X \ϕ(D) is constant since ϕ is finite étale. �

Corollary 3.9 (= Corollary D). Let X be a complex smooth projective variety of dimension n > 2 with
infinite fundamental group. Then, there exist infinitely many irreducible, ample divisors D on X such that
any holomorphic morphism C → X \D is constant.

Proof. The proof follows that of Corollary 3.7 except that Theorem 3.6 is replaced with Theorem 3.8.
�

Remark 3.10. While Theorem C and Corollary D contain the assumption that X has dimension
n > 2, the conclusions of these statements hold when X has dimension 1 by Picard’s theorem.

On the other hand, most but not all of the conclusions of Theorem A and Corollary B hold
when X has dimension 1. When X has dimension 1 and infinite étale fundamental group, Siegel’s
theorem tells us that there exist infinitely many irreducible, ample divisors D on X such that X \D

is arithmetically hyperbolic. The divisors D will be geometrically irreducible when they correspond
to a F-rational point of X. If X(F) 6= ∅, there does exist a geometrically irreducible, ample divisor
D on X such that X \D is arithmetically hyperbolic. However, the Mordell–Weil theorem and
Faltings’ theorem tell us that we will have infinitely many F-rational points (hence geometrically
irreducible divisors) only when X is an elliptic curve of positive Mordell–Weil rank over F.

Remark 3.11. The irreducible divisors ϕ(D) we have constructed in the proof of Theorem A cannot
be normal when dim(X) > 2. Suppose that ϕ(D) is normal. Since ϕ is finite étale, ϕ∗(ϕ(D)) is nor-
mal and ample, and hence connected by [Har77, Corollary III.7.9]. Since ϕ∗(ϕ(D)) is normal and
connected, it is irreducible, contradicting its construction from a union of many distinct effective
divisors.
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