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RELATIVE HOMOLOGICAL RINGS AND MODULES

PARISA POURGHOBADIAN, KAMRAN DIVAANI-AAZAR AND AHAD RAHIMI

Abstract. The study of rings and modules with homological criteria is fundamental to com-

mutative algebra. Consider a commutative Noetherian ring R with identity (which need not be

local) and a proper ideal a of R. In this paper, we develop a relative analogue of the theory

of homological rings and modules. Specifically, we introduce the notions of a-relative regular,

a-relative complete intersection, and a-relative Gorenstein rings and modules. By demonstrating

some interactions between these types of rings and modules, we extend some classical results.
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1. Introduction

Throughout this article, the word “ring” stands for a commutative Noetherian ring with identity.

Let a be a proper ideal of a ring R. In the following, we will refer to a ring (resp. module)

having a homological criterion as a “homological ring” (resp. “homological module”). The theory

of homological rings and modules traces back to 1954, when Auslander, Buchsbaum, and Serre

established a celebrated homological criterion for regular local rings. Since the 1960s, the study

of homological conjectures has been a significant research area in commutative algebra. Recently,

Yves André [An] made a significant breakthrough in these conjectures by using the theory of

perfectoid spaces. Homological rings and modules are the focus of most of these conjectures.

Cohen-Macaulay modules are the most significant homological modules, and there are various

generalizations of them in the literature, including the notion of relative Cohen-Macaulay modules.

The theory of relative Cohen-Macaulay modules was first introduced by Hellus and Schenzel

[HeSc] and Rahro Zargar and Zakeri [RZ2]. A finitely generated R-moduleM is said to be a-relative

Cohen-Macaulay if Hi
a (M) = 0 for all i 6= cd(a,M), where cd(a,M) denotes the cohomological

dimension of M with respect to a; that is, the largest integer i for which Hi
a (M) 6= 0. The
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study of relative Cohen-Macaulay modules has been pursued by several authors; see, for instance,

[HeSt1, Sc1, Sc2, R, JR, Ra2, RZ1, CH, Ra1, DGTZ1, DGTZ2].

Several subclasses of Cohen-Macaulay rings that have been a subject of research for many years

are also homological. These are regular, complete intersection, and Gorenstein rings, which satisfy

the following implications: regular ring ⇒ complete intersection ring ⇒ Gorenstein ring.

The aim of this paper is to establish a relative theory of regular, complete intersection, and

Gorenstein rings and modules. We uncover various interactions among these types of rings and

modules, which expand some of the existing outcomes in the classical theory. We demonstrate that

certain results for homological modules do not hold for relative homological modules, as evidenced

by several counterexamples. The paper is organized as follows:

Section 2 provides several additional findings on a-relative Cohen-Macaulay modules, as shown

in Propositions 2.9, 2.11, and 2.12. Then, we introduce the concepts of a-relative regular modules,

a-relative complete intersection rings, and a-relative Gorenstein modules and compare them in

Theorem 2.19.

Section 3 focuses on a-relative Gorenstein modules. Firstly, we introduce the notion of a-relative

injective dimension of R-modules to characterize a-relative Gorenstein modules. We establish that

a finitely generated R-module M with M 6= aM is a-relative Gorenstein if and only if M is a-

relative maximal Cohen-Macaulay and the a-relative injective dimension of Hcd(a,R)
a (M) is zero;

see Theorem 3.2. In Theorem 3.5, we present a technique for constructing a-relative Gorenstein

rings. We also provide some counterexamples to illustrate that the analogues of certain results for

Gorenstein rings do not hold for a-relative Gorenstein modules.

In Section 4, we investigate a-relative regular modules. We begin by assuming that a is contained

in the Jacobson radical of R, and M is a non-zero finitely generated R-module. If M is a-relative

regular, we establish in Theorem 4.1 that

pdR(M/aM) = pdRM + cd (a, R) .

Then, in Theorem 4.4, we demonstrate that M is a-relative regular if and only if

grade(a,M) = grade(a, R) = µ(a),

where µ(a) denotes the minimum number of generators of a. Lastly, we establish the invariance of

the category of a-relative regular modules under certain equivalences and dualities of categories in

Propositions 4.8 and 4.9.

2. Relative Cohen-Macaulay modules

Proposition 2.9 states that for any two nonzero finitely generated R-modules M and N , if

the ideal a is contained in the Jacobson radical of R and N is a-relative Cohen-Macaulay with

cd(a, N) = ara(a, N), then we have

grade(a,M) ≤ grade(AnnRN,M) + cd(a, N).

Proposition 2.11 provides a criterion for a-relative Cohen-Macaulay R-modules in terms of associ-

ated primes, assuming a is contained in the Jacobson radical of R. Next, in Proposition 2.12, we

show that if R admits a faithful a-relative Cohen-Macaulay module of finite projective dimension,
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then R is a-relative Cohen-Macaulay. Lastly, after defining the notions of a-relative regular mod-

ules, a-relative complete intersection rings and a-relative Gorenstein modules, we compare them

in Theorem 2.19.

For each non-negative integer i, the i-th local cohomology module of an R-module M is defined

as follows:

Hi
a (M) = lim

−→
n∈N

ExtiR
(
R/an,M

)
.

To begin, we recall the definition of relative Cohen-Macaulay modules.

Definition 2.1. Let a be a proper ideal of R and M a finitely generated R-module. Then M is

said to be a-relative Cohen-Macaulay if either M = aM or M 6= aM and grade(a,M) = cd(a,M).

To prove Proposition 2.9, we need the following preparatory results.

Lemma 2.2. Let a be an ideal of R, M an a-relative Cohen-Macaulay R-module with M 6= aM

and set c = cd(a,M). Then

(i) SuppR(H
c
a(M)) = SuppR(M/aM).

(ii) Mp is an aRp-relative Cohen-Macaulay Rp-module and cd(aRp,Mp) = c for every p ∈

SuppR(M/aM).

(iii) Mp is a Cohen-Macaulay Rp-module for every minimal element p of SuppR(M/aM).

Proof. (i) It is obvious, since for every finitely generated R-module L, it is known and straight-

forward to verify that ⋃

i∈N0

SuppR(H
i
a(L)) = SuppR(L/aL).

(ii) The flat base change theorem [BS, Theorem 4.3.2] implies an Rp-isomorphism Hj
aRp

(Mp) ∼=

Hj
a(M)p for every prime ideal p of R and all j ≥ 0. Hence, as M is a-relative Cohen-Macaulay, it

follows that Hj
aRp

(Mp) = 0 for every prime ideal p of R and all j 6= c. Let p ∈ SuppR(M/aM).

Then (i) yields that Hc
aRp

(Mp) 6= 0. Therefore,

grade(aRp,Mp) = c = cd(aRp,Mp),

and so Mp is an aRp-relative Cohen-Macaulay Rp-module.

(iii) Let p be a minimal element of SuppR(M/aM). Since p is minimal over a + AnnRM , it

follows that

Rad(aRp +AnnRp
Mp) = pRp,

and so Grothendieck’s non-vanishing theorem [BS, Theorem 6.1.4] asserts that

dimRp
Mp = cd(pRp,Mp) = cd(aRp +AnnRp

Mp,Mp) = cd(aRp,Mp).

Hence,

grade(a,M) ≤ grade(aRp,Mp)

≤ depthRp
Mp

≤ dimRp
Mp

= cd(aRp,Mp)

≤ cd(a,M)

= grade(a,M).

Thus depthRp
Mp = dimRp

Mp, and so Mp is a Cohen-Macaulay Rp-module. �
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Lemma 2.3. Let a be a proper ideal of R and M a nonzero finitely generated R-module. Consider

the following conditions:

(i) M is a-torsion.

(ii) cd(a,M) = 0.

(iii) AssRM ∩ V(a) 6= ∅.

(iv) AssRM ⊆ V(a).

Then (i) ⇒ (ii), (i) ⇔ (iv) and (iv) ⇒ (iii) hold. If a is contained in the Jacobson radical of R,

then (ii) ⇒ (i) holds. Also, (iii) ⇒ (ii) holds provided that M is a-relative Cohen-Macaulay. So,

these four conditions are equivalent when a is contained in the Jacobson radical of R and M is

a-relative Cohen-Macaulay.

Proof. The implications (i) ⇒ (ii), (i) ⇔ (iv), and (iv) ⇒ (iii) are known and clear.

Now, suppose that a is contained in the Jacobson radical ofR and (ii) holds. Set M̃ =M/Γa(M).

Then, H0
a(M̃) = 0 and Hi

a(M̃) ∼= Hi
a(M) = 0 for all i > 0. As we mentioned in the proof of Lemma

2.2(i), for every finitely generated R-module L, one has
⋃

i∈N0

SuppR(H
i
a(L)) = SuppR(L/aL).

Hence, SuppR(M̃/aM̃) = ∅, and so M̃ = aM̃ . Thus M = Γa(M) by Nakayama’s lemma, and so

(i) holds.

Finally, assume that M is a-relative Cohen-Macaulay and (iii) holds. Let p ∈ AssRM ∩ V(a).

Then

grade(aRp,Mp) ≤ depthRp
Mp = 0.

Now, by Lemma 2.2(ii), the Rp-module Mp is aRp-relative Cohen-Macaulay and

cd(a,M) = cd(aRp,Mp) = grade(aRp,Mp) = 0,

and so (ii) holds. �

Definition 2.4. Let M be a finitely generated R-module and a an ideal of R with M 6= aM .

(i) Let c = cd (a,M). A sequence x1, x2, . . . , xc ∈ a is called a-relative system of parameters,

a-s.o.p, of M if

Rad
(
〈x1, x2, . . . , xc〉+AnnRM

)
= Rad (a+AnnRM) .

(ii) Arithmetic rank of a with respect toM , ara (a,M), is defined as the infimum of the integers

n ∈ N0 such that there exist x1, x2, . . . , xn ∈ R satisfying

Rad
(
〈x1, x2, . . . , xn〉+AnnRM

)
= Rad (a+AnnRM) .

Clearly, if x1, x2, . . . , xc ∈ R is an a-s.o.p of M , then for all t1, . . . , tc ∈ N, every permutation of

xt11 , . . . , x
tc
c is also an a-s.o.p of M . One may easily check that cd (a,M) ≤ ara (a,M). Obviously,

ara (a, R) = ara (a).

Let M be a d-dimensional finitely generated module over a local (R,m) and x1, . . . , xd ∈ m. It

is evident that x1, . . . , xd is a system of parameters of M if and only if x1, . . . , xd is an m-relative

system of parameters of M . In spite of the fact that M always admits an m-relative system of

parameters, this is not true for a general ideal a. In this regard, we have the following:
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Lemma 2.5. (See [DGTZ2, Lemma 2.2].) Let M be a finitely generated R-module and a an ideal

of R with M 6= aM . Then a contains an a-s.o.p of M if and only if cd (a,M) = ara (a,M).

Lemma 2.6. (See [DGTZ2, Lemma 2.4 and Theorem 2.7].) Let a be an ideal of R, M a finitely

generated R-module with M 6= aM and c = cd (a,M). Assume that cd (a,M) = ara (a,M) and

x1, . . . , xc ∈ a. Consider the following conditions:

(i) x1, . . . , xc is an a-s.o.p of M .

(ii) cd
(
a,M/〈x1, x2, . . . , xi〉M

)
= c− i for every i = 1, 2, . . . , c.

Then (i) implies (ii). Additionally, if a is contained in the Jacobson radical of R, then (i) and (ii)

are equivalent.

Lemma 2.7. (See [DGTZ2, Theorem 3.3].) Let M be a finitely generated R-module and a an

ideal of R with cd (a,M) = ara (a,M). Consider the following conditions:

(i) M is a-relative Cohen-Macaulay.

(ii) Every a-s.o.p of M is an M -regular sequence.

(iii) There exists an a-s.o.p of M which is an M -regular sequence.

Then (i) and (iii) are equivalent. Furthermore, if a is contained in the Jacobson radical of R, then

all three conditions are equivalent.

In light of Lemma 2.7, one may wonder whether every a-relative Cohen-Macaulay module has

an a-s.o.p. The following example shows that this is not the case.

Example 2.8. Let k be a field and S = k[[x, y, z, w]]. Consider the elements f = xw − yz,

g = y3 − x2z, and h = z3 − y2w of S. Let R = S/〈f〉, and a = 〈f, g, h〉/〈f〉. Then R is a local

complete intersection ring of dimension 3, cd(a, R) = 1, and ara(a) ≥ 2; see [HeSt2, Remark 2.1(ii)].

As cd(a, R) 6= ara(a), by Lemma 2.5, R possesses no a-s.o.p. Since H0
a(R) = 0, it follows that R is

a-relative Cohen-Macaulay.

The next result concerns the vanishing of certain Ext modules.

Proposition 2.9. Let a be an ideal of R contained in its Jacobson radical and M and N two

nonzero finitely generated R-modules. Assume that N is a-relative Cohen-Macaulay and cd(a, N) =

ara(a, N). Then ExtiR(N,M) = 0 for all i < grade(a,M)− cd(a, N).

Proof. We proceed by induction on c = cd(a, N). If c = 0, then by Lemma 2.3, we conclude that

SuppRN ⊆ V(a), and so the claim in this case follows by Rees’ theorem; see e.g. [M, Theorem

16.6].

Next suppose that c > 0, and let x1, . . . , xc ∈ a be an a-s.o.p of N . Set N = N/x1N . Then

Lemma 2.6 implies that cd(a, N) = c− 1, and x1, . . . , xc is an N -regular sequence by Lemma 2.7.

As grade(a, N) = grade(a, N)− 1, it turns out that N is an a-relative Cohen-Macaulay R-module.

One can easily check that x2, . . . , xc ∈ a is an a-s.o.p of N , and so cd(a, N) = ara(a, N) by Lemma

2.5. From the short exact sequence

0 −→ N
x1−→ N −→ N −→ 0,

one obtains the exact sequence

· · · −→ ExtiR(N,M) −→ ExtiR(N,M)
x1−→ ExtiR(N,M) −→ Exti+1

R (N,M) −→ · · · .
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Let i < grade(a,M)−c be an integer. Then i+1 < grade(a,M)−(c−1), and so Exti+1
R (N,M) = 0

by the induction hypothesis. Thus, the map ExtiR(N,M)
x1−→ ExtiR(N,M) is surjective, and so

ExtiR(N,M) = 0 by Nakayama’s lemma. �

The following corollary provides a lower bound for the vanishing of generalized local cohomology

modules. Recall that, for an ideal a of R and two R-modules N and M , the i-th generalized local

cohomology module of N and M with respect to a is defined by

Hi
a(N,M) = lim

−→
n∈N

ExtiR(N/a
nN,M);

see [H].

Corollary 2.10. Let a be an ideal of R contained in its Jacobson radical and M and N two

nonzero finitely generated R-modules. Assume that N is a-relative Cohen-Macaulay and cd(a, N) =

ara(a, N). Then Hn
b(N,M) = 0 for every ideal b of R and all n < grade(a,M)− cd(a, N).

Proof. By the proof of [DH, Theorem 2.5], there is the following Grothendieck spectral sequence

Ep,q
2 := Hp

b(Ext
q
R(N,M)) =⇒

p
Hp+q

b (N,M).

So, for each non-negative integer n, there exists a chain

0 = H−1 ⊆ H0 ⊆ · · · ⊆ Hn = Hn
b(N,M) (∗)

of submodules of Hn
b(N,M) such that Hp /Hp−1 ∼= Ep,n−p

∞ for all p = 0, 1, . . . , n. Let p and n be

two integers such that

0 ≤ p ≤ n < grade(a,M)− cd(a, N).

Then Extn−p
R (N,M) = 0 by Proposition 2.9. This implies that Ep,n−p

∞ = 0, because Ep,n−p
∞ is a

subquotient of Ep,n−p
2 . Therefore, from the chain (∗), we can deduce that Hn

b(N,M) = 0. �

Next, we present a new characterization of a-relative Cohen-Macaulay modules in the case that

a is contained in the Jacobson radical of R.

Proposition 2.11. Let a be an ideal of R contained in its Jacobson radical and M a nonzero

finitely generated R-module. Then the following are equivalent:

(i) M is a-relative Cohen-Macaulay;

(ii) cd(a, R/p) = grade(a,M) for all p ∈ AssRM .

Proof. (i) ⇒ (ii) First, assume that cd(a,M) = 0. Then grade(a,M) = 0. On the other hand,

[DNT, Theorem 2.2] yields that

0 ≤ cd(a, R/p) ≤ cd(a,M) = 0

for all p ∈ AssRM .

Next, suppose that cd(a,M) > 0. Then by Lemma 2.3, we deduce that AssRM = AssRM \V(a).

Therefore, by [DGTZ1, Lemma 3.3], we conclude that

cd(a, R/p) = cd(a,M) = grade(a,M)

for all p ∈ AssRM .
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(ii) ⇒ (i) Set N =
⊕

p∈AssR M

R/p. Then we can easily see that SuppRN = SuppRM . Hence, by

[DNT, Theorem 2.2], we deduce that

cd(a,M) = cd(a, N) = max{cd(a, R/p) | p ∈ AssRM} = grade(a,M),

as desired. �

When a local ring (R,m) admits a nonzero Cohen-Macaulay module of finite projective dimen-

sion, it follows that R is Cohen-Macaulay by the Peskine-Szpiro intersection theorem. We now

present a partial relative analogue of this result.

Proposition 2.12. Let a be a proper ideal of R. Assume that R admits a faithful a-relative

Cohen-Macaulay module M of finite projective dimension. Then R is a-relative Cohen-Macaulay.

Proof. Set c = cd(a, R). For every finitely generated R-module N , [BH, Proposition 1.2.10(a)]

implies that

grade(a, N) = inf{depthNp | p ∈ V(a)}.

SinceM is faithful, it follows that SuppRM = SpecR, and so cd(a,M) = c by [DNT, Theorem 2.2].

Let p ∈ V(a). As pdRM <∞, it follows that pdRp
Mp <∞, and so by the Auslander-Buchsbaum

formula, we get that depthMp ≤ depthRp. Therefore, grade(a,M) ≤ grade(a, R). Now, we have

c = grade(a,M)

≤ grade(a, R)

≤ cd(a, R)

= c,

and so grade(a, R) = cd(a, R), as desired. �

Definition 2.13. Let a be a proper ideal of R.

(i) A finitely generated R-module M is called a-relative regular if eitherM = aM orM 6= aM

and a can be generated by an M -regular sequence of length cd(a, R) which is also an

R-regular sequence.

(ii) Let R denote the a-adic completion of R. We say that R is a-relative complete intersection

if there exist a ring T , a proper ideal b of T , and elements x1, x2, . . . , xℓ ∈ b such that:

(1) x1, x2, . . . , xℓ is both a part of a b-s.o.p of T and a T -regular sequence.

(2) T is b-relative regular, T/〈x1, x2, . . . , xℓ〉 ∼= R, and bR = aR.

(iii) A finitely generated R-module M is called a-relative Gorenstein if ExtiR(R/a,M) = 0 for

all i 6= cd(a, R).

(iv) A finitely generatedR-moduleM is called a-relative maximal Cohen-Macaulay if grade(a,M) =

cd(a, R).

Note that if there exists an a-relative regular R-module M with M 6= aM , it implies that the

ideal a is a complete intersection. In particular, the ring R is a-relative regular if and only if a is a

complete intersection. Therefore, if there exists an a-relative regular R-module M with M 6= aM ,

it follows that the ring R itself is a-relative regular.

In the following immediate observation, the connection between classical homological modules

and relative homological modules is revealed.
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Observation 2.14. Let (R,m) be a local ring and M a finitely generated R-module.

(i) R is regular if and only if R is m-relative regular.

(ii) R is complete intersection if and only if R is m-relative complete intersection.

(iii) M is Gorenstein if and only if M is m-relative Gorenstein.

(iv) M is maximal Cohen-Macaulay if and only if M is m-relative maximal Cohen-Macaulay.

(v) M is Cohen-Macaulay if and only if M is m-relative Cohen-Macaulay.

Theorem 2.19 is the main result of this section. To prove it, we need the following four lemmas.

From Definition 2.13, we have the following immediate result:

Lemma 2.15. Let a be a proper ideal of R and R denote the a-adic completion of R. Then R is

an a-relative complete intersection if and only if R is an aR-relative complete intersection.

Lemma 2.16. Let a be an ideal of R, f : R −→ T a flat ring homomorphism and M a finitely

generated R-module with M 6= aM . We have the following inequalities, with equality when f is

faithfully flat.

(i) grade(a,M) ≤ grade(aT,M ⊗R T ).

(ii) cd (a,M) ≥ cd (aT,M ⊗R T ).

Proof. (i) For every non-negative integer i, there is a natural T -isomorphism

ExtiT (T/aT,M ⊗R T ) ∼= ExtiR(R/a,M)⊗R T.

In particular, ExtiT (T/aT,M ⊗R T ) 6= 0 implies that ExtiR(R/a,M) 6= 0, and so

grade(a,M) ≤ grade(aT,M ⊗R T ).

If f is faithfully flat, then ExtiT (T/aT,M ⊗R T ) 6= 0 if and only if ExtiR(R/a,M) 6= 0, and so

grade(a,M) = grade(aT,M ⊗R T ).

(ii) The flat base change theorem yields a natural T -isomorphism

Hi
aT (M ⊗R T ) ∼= Hi

a (M)⊗R T

for all i ≥ 0. In particular, Hi
aT (M ⊗R T ) 6= 0 implies that Hi

a (M) 6= 0, and so cd (a,M) ≥

cd (aT,M ⊗R T ). If f is faithfully flat, then Hi
aT (M ⊗R T ) 6= 0 if and only if Hi

a (M) 6= 0, and so

cd (a,M) = cd (aT,M ⊗R T ). �

Lemma 2.17. Let a be an ideal of R contained in its Jacobson radical and R denote the a-adic

completion of R. Let M be a finitely generated R-module.

(i) If M is a-relative regular, then M ⊗R R is aR-relative regular.

(ii) M is a-relative Gorenstein if and only if M ⊗R R is aR-relative Gorenstein.

Proof. Let c = cd (a, R) and ψ : R −→ R denote the natural ring monomorphism. Since a is

contained in the Jacobson radical of R, it follows that R is a faithfully flat R-algebra. Clearly, we

may and do assume that M 6= aM , and so M ⊗R R 6= (aR)(M ⊗R R). By Lemma 2.16(ii), one

has cd (aR,R) = cd (a, R).

(i) Assume that M is a-relative regular. Then, a has generators x1, x2, . . . , xc which form

both an M -regular sequence and an R-regular sequence. This immediately yields that aR =
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〈ψ(x1), ψ(x2), . . . , ψ(xc)〉R. Clearly, ψ(x1), ψ(x2), . . . , ψ(xc) is both an M ⊗R R-regular sequence

and an R-regular sequence. Thus, M ⊗R R is aR-relative regular.

(ii) For every non-negative integer j, in view of the faithfulness of ψ and the existence of the

natural R-isomorphism

ExtjR(R/a,M)⊗R R ∼= Extj
R
(R/aR,M ⊗R R),

it turns out that ExtjR(R/a,M) = 0 if and only if Extj
R
(R/aR,M ⊗R R) = 0. This completes the

proof (ii). �

Lemma 2.18. Let a be a proper ideal of R. If R is a-relative regular, then cd (a, R) = pdR(R/a).

Proof. Let c = cd (a, R). Assume that R is a-relative regular. Then, there is an R-regular sequence

x1, x2, . . . , xc that generates a. So,

pdR(R/a) = pdR
(
R/〈x1, x2, . . . , xc〉

)
= c.

�

It is now time to present the main result of this section.

Theorem 2.19. Let a be a proper ideal of R.

(i) Suppose that a is contained in the Jacobson radical of R. If R is a-relative regular, then it

is a-relative complete intersection.

(ii) Suppose that a is contained in the Jacobson radical of R. If R is a-relative complete

intersection, then it is a-relative Gorenstein.

(iii) Every a-relative Gorenstein moduleM withM 6= aM is a-relative maximal Cohen-Macaulay.

(iv) Every a-relative maximal Cohen-Macaulay module is a-relative Cohen-Macaulay.

Proof. (i) By Lemmas 2.17(i) and 2.15, we may and do assume that R is a-adically complete. So,

the claim is immediate by the definition.

(ii) In view of Lemmas 2.15 and 2.17(ii), we may and do assume that R is a-adically complete.

So, there are a ring T , a proper ideal b of T and x1, x2, . . . , xℓ ∈ b which form both a part of a

b-s.o.p of T and a T -regular sequence such that T is b-relative regular, T/〈x1, x2, . . . , xℓ〉 ∼= R and

bR = a.

Set c = cd(b, T ). As T is b-relative regular, the ideal b can be generated by a T -regular sequence

of length c. Hence c ≤ grade(b, T ) ≤ c, and so grade(b, T ) = c. The fact that T is b-relative regular,

also implies that pdT (T/b) = c by Lemma 2.18. Thus, ExtiT (T/b, T ) = 0 for all i 6= c. By Lemma

2.6, we have

cd(a, R) = cd(b, T/〈x1, x2, . . . , xℓ〉) = cd(b, T )− ℓ = c− ℓ. (†)

Clearly, R/a ∼= T/b. Since x1, x2, . . . , xℓ is a T -regular sequence, by [M, §18, Lemma 2(i)], we have

a T -isomorphism

ExtnR(R/a, R)
∼= Extn+ℓ

T (T/b, T ) (‡)

for all n ≥ 0. Now, (†) and (‡) imply that ExtiR(R/a, R) = 0 for all i 6= cd(a, R), and so R is

a-relative Gorenstein.

(iii) Let M be an a-relative Gorenstein module with M 6= aM . Then ExtiR(R/a,M) 6= 0 if and

only if i = cd(a, R). This means that grade(a,M) = cd(a, R).
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(iv) Let M be an a-relative maximal Cohen-Macaulay R-module. Then grade(a,M) = cd(a, R).

Now, we have

cd(a, R) = grade(a,M) ≤ cd(a,M) ≤ cd(a, R),

and so grade(a,M) = cd(a,M). �

We conclude this section with the following three examples. The first example provides a relative

Cohen-Macaulay R-module, which is not relative Gorenstein.

Example 2.20. Let k be a field and G the following cyclic graph:

y2

x1 x2

y1

Then the edge ideal ofG in the polynomial ring S = k[x1, x2, y1, y2] is I(G) = 〈x1x2, x2y1, y1y2, y2x1〉.

Set a = 〈y1, y2〉. It is routine to see that I(G) = 〈x1, y1〉 ∩ 〈x2, y2〉 is a minimal primary decompo-

sition of I(G), and so

AssS(S/I(G)) = {〈x1, y1〉, 〈x2, y2〉}.

Since a is not contained in any member of AssS(S/I(G)), it follows that grade(a, S/I(G)) ≥ 1. On

the other hand, one has

cd(a, S/I(G)) = max{cd(a, S/〈x1, y1〉), cd(a, S/〈x2, y2〉)} = 1.

Hence, the S-module S/I(G) is a-relative Cohen-Macaulay. But, S/I(G) is not a-relative maximal

Cohen-Macaulay, because cd(a, S) = 2. Consequently, S/I(G) is not a a-relative Gorenstein.

The following two examples show that there are plenty of relative Gorenstein and relative regular

R-modules.

Example 2.21. Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Set m = 〈x1, . . . , xn〉

and a = 〈xp1

1 , . . . , x
pn

n ,m1, . . . ,mr〉, where r, p1, . . . , pn ∈ N and mj
′s are monomials in S. By

[Bo, Proposition 28], we have ExtiS(S/a, S) = 0 for all i 6= n. Notice that Rad(a) = m. Hence,

Hi
a(S) = Hi

m(S) for all i ≥ 0, and so cd(a, S) = n. Consequently, S is a-relative Gorenstein.

Example 2.22. Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Set a = 〈xp1

1 , . . . , x
pℓ

ℓ 〉,

where 1 ≤ ℓ ≤ n and p1, . . . , pℓ ∈ N. Then, obviously, S is a-relative regular.

3. Relative Gorenstein modules

In this section, we delve deeper into the study of relative Gorenstein modules. We begin by

providing a characterization of relative Gorenstein modules in Theorem 3.2. We then establish a

class of relative Gorenstein rings in Theorem 3.5. However, we also present some counterexamples

to address some natural questions about relative Gorenstein modules.

It is well known that a d-dimensional local ring (R,m) is Gorenstein if and only if it is Cohen-

Macaulay and Hd
m(R)

∼= ER(R/m) if and only if ExtiR(R/m, R) = 0 for all i > d. We now

extend this characterization to relative Gorenstein modules over arbitrary rings. To do so, we first

introduce the following definition:
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Definition 3.1. Let a be a proper ideal of R and M an R-module. The a-relative injective

dimension of M is defined by a− idRM = sup{i ∈ N0 | ExtiR(R/a,M) 6= 0}.

It is worth mentioning that m − idRM = idRM for any finitely generated module M over a

local ring (R,m).

Theorem 3.2. Let a be an ideal of R, M a finitely generated R-module with M 6= aM and set

c = cd(a, R). Then the following are equivalent:

(i) M is a-relative Gorenstein;

(ii) M is a-relative maximal Cohen-Macaulay and a− idR
(
Hc

a (M)
)
= 0;

(iii) M is a-relative maximal Cohen-Macaulay and ExtiR(R/a,M) = 0 for all i > c.

Proof. Let N be an a-relative maximal Cohen-Macaulay R-module. Then Hi
a (N) = 0 for all

i 6= c. Thus by [RZ2, Proposition 2.1], one has

ExtiR(R/a,H
c
a(N)) ∼= Exti+c

R (R/a, N) (∗)

for all i ≥ 0.

(i) ⇒ (ii) As M 6= aM and M is a-relative Gorenstein, by Theorem 2.19(iii), we see that M is

a-relative maximal Cohen-Macaulay, and ExtcR(R/a,M) is the only non-vanishing Ext module of

R/a and M . Thus from (∗), we conclude that a− idR
(
Hc

a (M)
)
= 0.

(ii) ⇒ (i) Since M is a-relative maximal Cohen-Macaulay, we have grade(a,M) = c. Hence,

ExtiR(R/a,M) = 0 for all i < c. On the other hand, as a− idR
(
Hc

a (M)
)
= 0, by (∗), we conclude

that ExtiR(R/a,M) = 0 for all i > c. Therefore, M is a-relative Gorenstein.

(i) ⇔ (iii) is obvious by Theorem 2.19(iii) and the definition. �

Recall that over a local ring R, a Gorenstein module is a maximal Cohen-Macaulay module of

finite injective dimension. The fact that for a finitely generated R-module M and a maximal ideal

m of R, all local cohomology modules Hi
m (M) are Artinian, enables us to record the following

corollary.

Corollary 3.3. Let (R,m) be a local ring of dimension d and M a nonzero finitely generated

R-module. Then the following are equivalent:

(i) M is Gorenstein.

(ii) M is maximal Cohen-Macaulay and Hd
m (M) is an Artinian injective R-module.

In order to present the next result, we need the following definition; see [PDR, Definition 3.1].

Definition 3.4. Let a be a proper ideal of R and c = cd(a, R). Assume that R is a-relative

Cohen-Macaulay. The a-relative dualizing module of R is defined by

Ωa = HomR(H
c
a(R),

⊕

m∈MaxR

ER(R/m)).

This section’s final main result is now ready to be presented.

Theorem 3.5. Let R be a complete semi-local ring, a an ideal of R contained in its Jacobson

radical and set c = cd(a, R). Assume that R is a-relative Cohen-Macaulay and Ωa can be identified

with an ideal b of R. If Hc
a(R/b) = 0, then the ring R/b is (a+ b)/b-relative Gorenstein.
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Proof. Set T = R/b. From the exact sequence

0 −→ b −→ R −→ T −→ 0, (∗)

we deduce the exact sequence

· · · −→ Hi
a(R) −→ Hi

a(T ) −→ Hi+1
a (b) −→ · · · .

By [PDR, Theorem 3.5(ii)], Hi
a(b)

∼= Hi
a(Ωa) = 0 for all i 6= c. So, as R is a-relative Cohen-

Macaulay and Hc
a(T ) = 0, from the above exact sequence, we conclude that Hi

a(T ) = 0 for all

i 6= c − 1. As T 6= aT , it turns out that T is aT -relative Cohen-Macaulay and cd(aT, T ) = c − 1.

Hence, ΩaT
∼= Ext1R(T, b) by [PDR, Theorem 3.7].

Next, by [PDR, Theorem 3.5(iii)], we have

HomR(b, b) ∼=
∏

m∈MaxR

R̂m
∼= R.

In particular, AnnR(b) = 0. This implies that HomR(T, b) = 0. So, applying the functor

HomR(−, b) to the exact sequence (∗) yields the exact sequence

0 −→ b −→ R −→ Ext1R(T, b) −→ 0.

Thus,

T ∼= Ext1R(T, b)
∼= ΩaT .

Therefore, [PDR, Lemma 3.3(ii)] implies that

ExtiT (T/aT, T )
∼= ExtiT (T/aT,ΩaT ) = 0

for all i 6= c− 1, and so the ring T is aT -relative Gorenstein. �

According to Bass’s theorem, a local ring (R,m) is Cohen-Macaulay if it possesses a nonzero

finitely generated module of finite injective dimension. Moreover, a local ring (R,m) is Gorenstein

if it possesses a nonzero cyclic R-module of finite injective dimension. This might lead us to guess

that a ring R is a-relative Cohen-Macaulay (resp. a-relative Gorenstein) if it admits a nonzero

finitely generated (resp. cyclic) module M of finite a-relative injective dimension. As we will see

in the following example, this is not the case.

Example 3.6. Let k be a field, S = k[x1, x2, y1, y2] and m = 〈x1, x2, y1, y2〉. Let a be the edge

ideal of the cycle graph C4, given in Example 2.20. So, a = 〈x1x2, x2y1, y1y2, y2x1〉. We observed

in Example 2.20 that a = 〈x1, y1〉 ∩ 〈x2, y2〉. This yields the exact sequence

0 −→ S/a −→ S/〈x1, y1〉 ⊕ S/〈x2, y2〉 −→ S/m −→ 0, (∗)

which immediately implies that dimS(S/a) = 2. Taking into account the long exact sequence of

local cohomology modules induced by (∗), yields that H0
m(S/a) = 0 and H1

m(S/a)
∼= S/m 6= 0.

Hence, depthS(S/a) = 1. Thus, by [Ly, Theorem 1] and the Auslander-Buchsbaum formula, we

deduce that

cd(a, S) = pdS(S/a) = 3.

As S is Cohen-Macaulay, we get

grade(a, S) = dimS − dimS(S/a) = 2.

Thus, S is not a-relative Cohen-Macaulay. On the other hand, we have a− idS S ≤ pdS(S/a) = 3.



RELATIVE HOMOLOGICAL ... 13

We need the following lemma for our next example.

Lemma 3.7. Let (R,m) be a local ring and a a proper ideal of R such that pdR(R/a) <∞. Then

a− idRM = pdR(R/a) for every nonzero finitely generated R-module M .

Proof. Let M be a nonzero finitely generated R-module. As pdR(R/a) < ∞, by [M, §7, Lemma

1(iii)], it turns out that

pdR(R/a) = sup{i ∈ N0 | ExtiR(R/a, N) 6= 0}

for every nonzero finitely generated R-module N . In particular, pdR(R/a) = a− idRM . �

When (R,m) is a d-dimensional local ring, vanishing of the Ext modules ExtiR(R/m, R) for all

i > d implies that R is Gorenstein. This might suggest that if a is a proper ideal of R and M a

finitely generated R-module such that ExtiR(R/a,M) = 0 for all i > cd(a, R), then M is a-relative

Gorenstein. While this is not the case by Example 3.6, we also give the following simpler example.

Example 3.8. Let (R,m) be a local ring and x1 ∈ m a nonzero-divisor on R. Set a = 〈x1〉. Then

pdR(R/a) = 1. Let M be any nonzero finitely generated R-module which is annihilated by x1.

Then, by the choice of M and Lemma 3.7, we have ExtiR(R/a,M) 6= 0 for i = 0, 1. So, although

ExtiR(R/a,M) = 0 for all i > 1 = cd(a, R), the R-module M is not a-relative Gorenstein.

Our next example requires the following lemma.

Lemma 3.9. Let a an ideal of R and M a finitely generated R-module with M 6= aM . Let x ∈ a

be a nonzero-divisor on M . Then a− idRM = a− idR(M/xM).

Proof. Set M =M/xM . The short exact sequence

0 −→M
x

−→ M −→M −→ 0

yields the exact sequence

· · · −→ Exti−1
R (R/a,M) −→ ExtiR(R/a,M)

x
−→ ExtiR(R/a,M) −→ ExtiR(R/a,M) −→

−→ Exti+1
R (R/a,M)

x
−→ Exti+1

R (R/a,M) −→ · · · . (†)

Let n be a non-negative integer. Assume that ExtjR(R/a,M) = 0 for all j > n. Then from (†), we

conclude that ExtjR(R/a,M) = 0 for all j > n. Hence, a− idRM ≤ a− idRM .

Next, assume that ExtjR(R/a,M) = 0 for all j > n. Then for every j > n, from (†), we see that

the zero map

ExtjR(R/a,M)
x

−→ ExtjR(R/a,M)

is surjective, and so ExtjR(R/a,M) = 0. Thus, a − idRM ≤ a − idRM . Therefore, a − idRM =

a− idR(M/xM). �

Let a be an ideal of R and M an a-relative Gorenstein R-module. One may guess that if x ∈ a

is a nonzero-divisor on M , then the R-module M/xM is also a-relative Gorenstein. The following

example demonstrates that this is not true.
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Example 3.10. Let c ≥ 1 be an integer. Let a be an ideal of R that is generated by an R-regular

sequence x1, x2, . . . , xc. Then, clearly, R is a-relative Gorenstein. Now, Lemma 3.9 implies that

a− idR(R/〈x1〉) = a− idRR,

while

grade(a, R/〈x1〉) = grade(a, R)− 1 = a− idR R− 1.

Hence, the R-module R/〈x1〉 is not a-relative Gorenstein.

A local ring (R,m) is Gorenstein if and only if R is Cohen-Macaulay and it possesses an irre-

ducible parameter ideal. Accordingly, for a proper ideal a of R, we may expect that R is a-relative

Gorenstein if and only if R is a-relative Cohen-Macaulay and there exists an a-s.o.p x1, x2, . . . , xc

such that the ideal 〈x1, x2, . . . , xc〉 is irreducible. However, as the following example shows, this is

not the case.

Example 3.11. Let (R,m) be a d-dimensional Cohen-Macaulay local ring which is not Gorenstein.

Since R is not Gorenstein, it has no irreducible parameter ideal. Let x1, x2, . . . , xd ∈ m be a

system of parameters of R. As R is Cohen-Macaulay, x1, x2, . . . , xd is an R-regular sequence. Set

a = 〈x1, x2, . . . , xd〉. Then R is a-relative Gorenstein, while there is no irreducible ideal generated

by an a-s.o.p of R.

For a local ring (R,m) and a nonzero finitely generated R-moduleM of finite injective dimension,

it is known that idRM = depthR. As a consequence, we may conjecture that if a is an ideal

of R and M a finitely generated R-module with M 6= aM such that a − idRM < ∞, then

a− idRM = grade(a, R). The following example shows that this is not the case as well.

Example 3.12. Let (R,m) be a regular local ring and a a nonzero proper ideal of R such that

cd(a, R) 6= pdR(R/a). Then Lemma 3.7 implies that a − idRR 6= cd(a, R). More precisely, let k

be a field and consider the formal power series ring R = k[[x, y]]. Then, R is a regular local ring

with the unique maximal ideal m = 〈x, y〉. Let a = 〈xy, x2〉. One has

AssR(R/a) = {〈x〉,m}.

As m ∈ AssR(R/a), it follows that depthR(R/a) = 0, and so by Lemma 3.7 and the Auslander-

Buchsbaum formula, we get that

a− idR R = pdR(R/a) = 2.

On the other hand,

Rad(a) = 〈x〉 ∩m = 〈x〉.

Thus, we have

1 ≤ grade(a, R)

≤ cd(a, R)

= cd(〈x〉, R)

= 1.

Therefore, R is a-relative Cohen-Macaulay and grade(a, R) = 1. Consequently, a − idR R 6=

grade(a, R).



RELATIVE HOMOLOGICAL ... 15

Definition 3.13. A finitely generatedR-module C is called semidualizing if it satisfies the following

conditions:

(i) the homothety map χR
C : R −→ HomR (C,C) is an isomorphism, and

(ii) ExtiR (C,C) = 0 for all i > 0.

Definition 3.14. Let C be a semidualizing module of R.

(i) The Auslander class AC (R) is the class of all R-modules M for which the natural map

γCM :M −→ HomR (C,C ⊗R M) is an isomorphism, and

TorRi (C,M) = 0 = ExtiR (C,C ⊗R M)

for all i ≥ 1.

(ii) The Bass class BC (R) is the class of all R-modules M for which the evaluation map

ξCM : C ⊗R HomR (C,M) −→M is an isomorphism, and

ExtiR (C,M) = 0 = TorRi
(
C,HomR (C,M)

)

for all i ≥ 1.

Notation 3.15. Let a be a proper ideal of R and n a non-negative integer.

(i) CMn
a (R) stands for the full subcategory of a-relative Cohen-Macaulay R-modules M with

cd (a,M) = n.

(ii) Ga (R) stands for the full subcategory of a-relative Gorenstein R-modules.

Let a be a proper ideal of R, C a semidualizing module of R and n a non-negative integer. By

[PDR, Theorem 6.3], there is an equivalence of categories:

AC (R)
⋂
CMn

a (R)
C⊗R−

//

BC (R)
⋂
CMn

a (R).
HomR(C,−)

oo

The following example illustrates that CMn
a (R) cannot be replaced by Ga(R) in the above

equivalence of categories.

Example 3.16. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring with a dualizing

module ωR. Then ωR is a semidualizing module of R and it is m-relative Gorenstein. On the other

hand, it is easy to see that ωR ∈ BωR
(R). Hence ωR ∈ BωR

(R)
⋂

Gm(R), while

HomR(ωR, ωR) ∼= R /∈ AωR
(R)

⋂
Gm(R).

Thus, the functors

AωR
(R)

⋂
Gm(R)

ωR⊗R−
//

BωR
(R)

⋂
Gm(R)

HomR(ωR,−)
oo

do not induce an equivalence of categories.

Let (R,m) be a Cohen-Macaulay local ring with a dualizing module ωR and MCM(R) denote

the full subcategory of maximal Cohen-Macaulay R-modules. There is a well-known duality of

categories:

MCM(R)
HomR(−,ωR)

//

MCM(R).
HomR(−,ωR)

oo
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One might expect that MCM(R) can be replaced by Ga(R) in the above duality of categories.

However, the following example shows that this is not true as well.

Example 3.17. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring with a dualizing mod-

ule ωR. Then ωR is m-relative Gorenstein, while HomR(ωR, ωR) ∼= R is not m-relative Gorenstein.

Hence, the functor

Gm(R)
HomR(−,ωR)

//

Gm(R)
HomR(−,ωR)

oo

does not induce a duality of categories.

4. Relative regular modules

Theorem 4.1 generalizes Lemma 2.18 to relative regular modules, provided that a is contained in

the Jacobson radical of R. A characterization of relative regular modules is given in Theorem 4.4.

We also establish the fact that every relative regular module is relative Gorenstein in Proposition

4.6. In Propositions 4.8 and 4.9, we demonstrate that relative regular modules remain invariant

under certain equivalences and dualities of categories.

Theorem 4.1. Let a be an ideal of R contained in its Jacobson radical and M a nonzero a-relative

regular R-module. Then pdR(M/aM) = pdRM + cd (a, R).

Proof. Set c = cd (a, R). As M is nonzero and a is contained in the Jacobson radical of R, it

follows that M 6= aM . So, a has generators x1, x2, . . . , xc which form both an M -regular sequence

and an R-regular sequence. In particular, a = 0 if and only if c = 0. Since the claim holds trivially

if a = 0, we may assume that c > 0. By induction on c, we may assume that c = 1. Set R = R/〈x1〉

and M = M/〈x1〉M . Then M is an aR-relative regular R-module. For every R-module N , from

the short exact sequence

0 −→ M
x1−→M −→M −→ 0,

we get the following exact sequence

· · · −→ ExtiR(M,N)
x1−→ ExtiR(M,N) −→ Exti+1

R (M,N) −→ Exti+1
R (M,N) −→ · · · . (∗)

Let n be a non-negative integer. If pdRM = n, then from (∗), we deduce that ExtjR(M,N) = 0

for all j > n+ 1. Thus,

pdR(M) ≤ pdRM + 1.

Next, suppose that pdR(M) = n. Then for every j > n− 1, from (∗), we conclude that the map

ExtjR(M,N)
x1−→ ExtjR(M,N)

is surjective, and so ExtjR(M,N) = 0 by Nakayama’s lemma. Hence,

pdRM ≤ pdR(M)− 1.

Therefore,

pdR(M) = pdRM + 1,

as required. �

To present the next main result, we need the following two lemmas.
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Lemma 4.2. Let a be an ideal of R contained in its Jacobson radical. If R is a-relative regular,

then every a-relative maximal Cohen-Macaulay R-module is a-relative regular.

Proof. Set c = cd(a, R). Assume that R is a-relative regular. So, there is an R-regular sequence

x1, . . . , xc that generates a. Let M be an a-relative maximal Cohen-Macaulay R-module. Then,

by Theorem 2.19(iv), it turns out that cd(a,M) = c. Now, from the definition, it is obvious that

x1, . . . , xc is an a-s.o.p of M . Therefore, x1, . . . , xc is an M -regular sequence by Lemma 2.7, and

so M is a-relative regular. �

In what follows, µ(a) stands for the minimum number of generators of an ideal a.

Lemma 4.3. Let a be a proper ideal of R. Then R is a-relative regular if and only if grade(a, R) =

µ(a).

Proof. Set c = cd(a, R). First, assume that R is a-relative regular. Then a can be generated by

an R-regular sequence x1, . . . , xc. So, c ≤ grade(a, R) ≤ c and µ(a) ≤ c. On the other hand, as

Hi
a (M) = 0 for all i > µ(a), it follows that c ≤ µ(a). Thus, grade(a, R) = µ(a).

Conversely, suppose that grade(a, R) = µ(a). Then

µ(a) = grade(a, R) ≤ c ≤ µ(a),

and so grade(a, R) = c. Now, [BH, Exercise 1.2.21] yields that a can be generated by an R-regular

sequence of length c. Thus, R is a-relative regular. �

Theorem 4.4. Let a be an ideal of R contained in its Jacobson radical and M a nonzero finitely

generated R-module. Then the following are equivalent:

(i) M is a-relative regular;

(ii) grade(a,M) = grade(a, R) = µ(a).

Proof. Set c = cd(a, R).

(i) ⇒ (ii) Assume that M is a-relative regular. Then a can be generated by an M -regular

sequence x1, . . . , xc of length c. Hence,

c ≤ grade(a,M) ≤ cd(a,M) ≤ µ(a) ≤ c,

and so grade(a,M) = µ(a). Since M is a-relative regular, by the definition, it follows that R is

also a-relative regular. So, grade(a, R) = µ(a) by Lemma 4.3.

(ii) ⇒ (i) Assume that

grade(a,M) = grade(a, R) = µ(a).

The equality grade(a, R) = µ(a) yields that R is a-relative regular by Lemma 4.3. Hence, R is

a-relative Cohen-Macaulay by Theorem 2.19, and so

grade(a,M) = grade(a, R) = c.

Thus M is a-relative maximal Cohen-Macaulay, and so M is a-relative regular by Lemma 4.2. �

A local ring (R,m) is regular if and only if dimR = pdR(R/m). So, one may guess that if a is a

proper ideal of R, then R is a-relative regular if and only if cd (a, R) = pdR(R/a). The following

example indicates that this is not the case.
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Example 4.5. Let k be a field, S = k[x1, x2, y1, y2] and a = 〈x1x2, x2y1, y1y2, y2x1〉. In Example

3.6, we observed that

cd(a, S) = pdS(S/a) = 3.

On the other hand, a can not be generated by an S-regular sequence of length 3, because grade(a, S) =

2. Hence, S is not a-relative regular.

Next, we show that every a-relative regular R-module is a-relative Gorenstein.

Proposition 4.6. Let a be a proper ideal of R and M an a-relative regular R-module. Then

ExtiR(R/a,M) ∼=




M/aM if i = cd(a, R)

0 if i 6= cd(a, R).

In particular, M is a-relative Gorenstein.

Proof. Set c = cd(a, R). Clearly, we may assume thatM 6= aM . Hence, the ideal a has generators

x1, x2, . . . , xc, which form both anM -regular sequence and an R-regular sequence. As x1, x2, . . . , xc

is an M -regular sequence, we see

c ≤ grade(a,M) ≤ cd(a,M) ≤ c,

and so grade(a,M) = c. In particular, ExtiR(R/a,M) = 0 for all i < c. From the definition,

it follows that R is a-relative regular, and so Lemma 2.18 implies that pdR(R/a) = c. So,

ExtiR(R/a,M) = 0 for all i > c. Thus M is a-relative Gorenstein.

Finally, [BH, Lemma 1.2.4] yields that

ExtcR(R/a,M) ∼= HomR(R/a,M/〈x1, x2, . . . , xc〉M)

= HomR(R/a,M/aM)

∼=M/aM.

�

Notation 4.7. Let a be a proper ideal of R. Let Ra (R) denote the full subcategory of a-relative

regular R-modules.

Proposition 4.8. Let a be a proper ideal of R. Assume that R is a-relative regular. For every

semidualizing module C of R, there is an equivalence of categories:

AC (R) ∩ Ra (R)
C⊗R−

//

BC (R) ∩ Ra (R) .
HomR(C,−)

oo

Proof. Set c = cd(a, R). Because of the equivalence

AC (R)
C⊗R−

//

BC (R) ,
HomR(C,−)

oo

it is enough to show that a finitely generated R-module N ∈ AC (R) belongs to Ra (R) if and only

if C ⊗R N belongs to Ra (R).

Let M ∈ AC (R) be a finitely generated R-module. As R is a-relative regular, the ideal a

can be generated by an R-regular sequence x = x1, . . . , xc. By [AbDT, Lemma 3.2(ii)], x is an
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M -regular sequence if and only if it is a C ⊗R M -regular sequence. Thus, M ∈ Ra (R) if and only

if C ⊗R M ∈ Ra (R). �

Proposition 4.9. Let J denote the Jacobson radical of a complete semi-local ring R. Assume that

R is J-relative regular. Then there is a duality of categories:

RJ (R)

HomR(−,ΩJ)
//

RJ (R) .
HomR(−,ΩJ)

oo

Proof. Let MCMJ(R) stands for the full subcategory of J-relative maximal Cohen-Macaulay R-

modules. Proposition 4.6 and Theorem 2.19(iii) yield that RJ (R) \ {0} ⊆ MCMJ(R). On the

other hand, as R is J-relative regular, Lemma 4.2 implies that MCMJ(R) ⊆ RJ (R) \ {0}. Thus

RJ (R) = MCMJ(R) ∪ {0}, and so the claim follows by [PDR, Corollary 5.3]. �
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