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CORDES-NIRENBERG TYPE RESULTS FOR NONLOCAL

EQUATIONS WITH DEFORMING KERNELS

DISSON DOS PRAZERES, AELSON SOBRAL, AND JOSÉ MIGUEL URBANO

Abstract. We derive Cordes-Nirenberg type results for nonlocal el-

liptic integro-differential equations with deforming kernels comparable

to sections of a convex solution of a Monge-Ampère equation. Under

a natural integrability assumption on the Monge-Ampère solution, we

prove a stability lemma allowing the ellipticity class to vary. Using a

compactness method, we then derive Hölder regularity estimates for the

gradient of the solutions.

1. Introduction

The fully nonlinear elliptic integro-differential Isaacs equation

I[u(x), x] := inf
α

sup
β

Lαβu(x) = f(x), x ∈ Ω, (1)

where

Lαβu(x) :=

∫

Rn

(u(x+ y) + u(x− y)− 2u(x))Kα,β(x, y)dy,

appears naturally in competitive stochastic games when two players are al-

lowed to choose from different strategies at every step in order to maximize

the expected value u(x) at the first exit point of the domain Ω ⊂ R
n. For

arbitrary index sets A and B, the kernels {Kα,β(x, y)}α∈A,β∈B are nonneg-

ative functions measuring the frequency of jumps in the y direction at the

point x. Further applications and motivations related to nonlocal equations

can be found, for example, in [1, 3, 16].

The large applicability of this type of models reinforces the relevance of

seeking qualitative properties for their solutions. In this paper, we obtain

Cordes-Nirenberg type results for solutions of (1), with f ∈ L∞(Ω). We

argue through an approximation method, associating (1) to a constant coef-

ficients equation. We are particularly interested in the case where the level
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sets of the kernels Kα,β are comparable to sections of a convex solution φ of

a Monge-Ampère equation, as in [10]. Setting vφ : Rn → R as

vφ(y) := φ(y)− φ(0) −Dφ(0) · y,

we note that, due to convexity, vφ ≥ 0, and define the sections Sφ
r of φ as

Sφ
r :=

{

vφ < r2
}

.

We will study equation (1) for kernels of the particular form

Kα,β(x, y) = (2− σ)
bα,β(x, y)

vφ
n+σ
2 (y)

, with bα,β : Ω× R
n →

[

Λ−1,Λ
]

(2)

for constants Λ ≥ 1 and σ ∈ (1, 2). Our main result states that if

sup
α∈A,β∈B

(x,y)∈Ω×R
n

|bα,β(x, y)− b(y)| < η, (3)

for a small enough η and b ∈ L∞(Rn), then solutions of (1) are of class

C1,α0

loc (Ω), where α0 is to be specified further.

The regularity theory for fully nonlinear nonlocal elliptic equations was

initiated by Caffarelli and Silvestre in their seminal paper [7]. They treat

the case corresponding to φ = |.|2 and a translation-invariant operator, and

develop a nonlocal version of the ABP estimate, establish a Harnack inequal-

ity and derive Hölder regularity estimates. Additional regularity assump-

tions on the kernels lead to Hölder gradient regularity through a standard

cut-off and integration by parts technique. This theory was the starting

point for many other developments in the nonlocal setting. For example,

an anisotropic scenario was considered in [6, 17] and the case of a general

convex φ ∈ C2(Rn) satisfying

γ ≤ det(D2φ) ≤ Γ in R
n, (4)

for 0 < γ ≤ Γ < ∞, was the object of [10]. In this case, since the sections of

φ are comparable to ellipsoids (see Fritz John’s lemma, in [13]), the kernels

can be very degenerate and improved estimates that take into account the

deformation of the sections of φ, which is driven by the Monge-Ampère

equation, are required.

As in the local case, a natural extension is to develop an approximation

theory that allows for the inclusion of coefficients in the operator. In general,

dealing with x−dependant equations can be rather challenging since the

dependence could break off the effect of the operator. The case φ = |.|2
was again dealt with by Caffarelli and Silvestre, who were able to prove in

[8] that if two nonlocal operators are close in an appropriate sense, then

the solutions of the corresponding equations have the same regularity. To

prove Hölder gradient regularity for the solutions, however, the kernels of
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the constant coefficient operators needed to have a fair amount of regularity,

a restriction that would be removed by Kriventsov in [15] by means of an

approximation argument. Putting it bluntly, our paper is to [10] what [8] was

to [7]. Alternative regularity results are also available in different scenarios

and we steer the interested reader to, e.g., [2, 11, 14, 18, 19].

The heart of the matter in proving gradient Hölder regularity in [8] is to

understand what kind of equation functions of the form

wλ(x) =
1

λ1+α
[u− l](λx) (5)

solve, for an affine function l, and capture their behaviour as λ approaches

zero. The first issue is to somehow force a fair scaling behaviour of the

operator, so that (5) still satisfies an elliptic equation in the same class as

that of the equation satisfied by u. The second issue is purely nonlocal: in

order to apply compactness arguments, one needs to extend previous Hölder

regularity results for solutions with certain growth at infinity since this be-

haviour is always expected. Therefore, finding suitable weights that control

the growth of the solutions is crucial. The weights must be comparable to

the kernels at infinity, so that we can assure the operator is well-defined at

the solutions. In [8], since the order of the equation is greater than 1, the

weights have the form

W(y) :=
1

1 + |y|n+σ
,

and so the solutions could have growth comparable to ζαc = |.|1+αc , for any

αc satisfying αc < σ − 1. This is due to the fact that

‖ζαc‖L1(Rn,W) :=

∫

Rn

|y|1+αcW(y)dy < ∞.

The main novelty in our problem, with a general convex φ ∈ C2(Rn)

satisfying (4), is that the setting changes in both issues described above.

Foremost, scalings of the form (5) still satisfy an elliptic equation, but in

a different class as the original one. More precisely, we need to scale the

kernels (3) as

bα,β(λ−, λ−)

v
n+σ
2

φλ

, where φλ = λ−2φ(λ−),

and it is crucial that, although the ellipticity class changes, the φλ still satisfy

(4), with the same bounds. Secondly, since growth at infinity is unavoidable,

one needs to beware the choice of the weights. The reasonable alternative

is to choose

Wφ(y) :=
1

1 + vφ(y)
n+σ
2

,
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since it controls the behaviour of (2) at infinity, and so, for some α1 < σ−1,

we need

‖ζα1
‖L1(Rn,Wφ)

< ∞. (6)

If scalings were not in use, the basic setting would be then settled to develop

the theory. However, because scaling is imperative in our case, we need to

choose scaled weights Wφλ
and find an exponent αλ < σ − 1 such that

‖ζαλ
‖L1(Rn,Wφλ

) < ∞. (7)

We stress that all these ingredients need to be uniform in λ, and so a cautious

analysis needs to be performed so that estimates do not degenerate as λ goes

to zero.

Unlike in [8], a regularizing effect on the kernels of the equation occurs

through the scaling procedure. More precisely, the following convergence

holds true (see proposition 5), locally uniformly in R
n:

vφλ
(y)

λ→0−−−−→ D2φ(0)y · y.
Furthermore, if condition (6) is true, then (7) becomes stable and we are

able to prove a stability result that allows the kernels to vary (see Lemma

3). Now, the fact that the family {φλ}λ∈(0,1] satisfies (4) becomes convenient

again, since it makes Hölder estimates from [10] uniform in the parameter

λ. Therefore, we make way to import the regularity theory valid for a nice

equation with kernels comparable, up to a rotation, to that of the fractional

Laplacian, and we may use Kriventsov’s results from [15]. We prove, as

a consequence, C1,α0 regularity estimates for solutions of (1) with kernels

satisfying only (2), (3) and (6), for

α0 < min{α1, α∗},
where α∗ is the exponent obtained in [15] and α1 is from (6). In particular,

if our equation does not have x−dependence, we slightly improve the gra-

dient regularity from [10] since we demand only (6) for the kernels (this is

automatically true in the setting φ = |.|2).
Moreover, as an additional technical difficult, we do not assume any sort

of symmetry on the kernels. The aftermath is that many computations in

the paper, such as in Proposition 3 and Lemma 3, need to be cautiously

done. Condition (6) is once again instrumental in assuring the estimates

are steady with respect to the parameter λ. It is also important to mention

that all of our estimates are uniform with respect to the parameter σ, which

satisfies σ ≥ σ0 > 1 + α1, with α1 from (6).

The paper is organized as follows: in section 2, after some preliminaries,

we introduce the definitions to be used in the remainder of the paper and

our main assumptions. In section 3, we present the stability result and the
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approximation lemma. By applying an iteration procedure, we derive, in

section 4, the gradient regularity estimates for solutions of (1).

2. Preliminaries, definitions and main assumptions

We gather in this section some definitions and auxiliary results, in addi-

tion to stating our main assumption. We start with a simple lemma that

will be instrumental in the sequel.

Lemma 1. Let Ψ1,Ψ2 ∈ C2(Rn) be two convex functions such that

λ1 < det(D2Ψ1), λ2 > det(D2Ψ2),

for 0 < λ1, λ2 < ∞ and define vΨi(z) := Ψi(z) − Ψi(0) − DΨi(0) · z for

i = 1, 2. For every r > 0, there exists a constant C = C(r,Ψ1,Ψ2) such that

vΨ1
(z) ≤ CvΨ2

(z), ∀z ∈ Br.

Proof. Given r > 0, consider the C2 auxiliary function f : Rn → R defined

by

f(z) := vΨ1
(z)− CvΨ2

(z),

where

C = max
z∈Br

{

λmax(D
2Ψ1(z))

λmin(D2Ψ2(z))

}

≥
(

λ1

λ2

)1/n

.

Then

D2f(z) = D2vΨ1
(z)− CD2vΨ2

(z)

= D2Ψ1(z)− CD2Ψ2(z)

≤ (λmax(D
2Ψ1(z))− Cλmin(D

2Ψ2(z)))Id ≤ 0

so f is a concave function in Br and, therefore, it stays below any tangent

hyperplane. In particular,

f(z) ≤ f(0) +Df(0) · z = 0, ∀z ∈ Br.

�

We next define the appropriate notion of solution to our problem.

Definition 1 (Viscosity solution). Let f be a bounded and continuous func-

tion in R
n. We say a function u : Rn → R, upper semicontinuous in Ω, is

a viscosity subsolution in Ω of the equation

I[u(x), x] = f,

and we write I[u(x), x] ≥ f , if, whenever x0 ∈ Ω, N ⊂ Ω is a neighbourhood

of x0, and ϕ ∈ C2(N ) satisfies

ϕ(x0) = u(x0) and ϕ(y) > u(y), ∀y ∈ N\{x0},
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then, if we choose as test function τ such that

τ :=

{

ϕ in N

u in R
n\N,

we have I[τ(x), x](x0) ≥ f(x0).

A supersolution is defined analogously and a solution is a function that is

both a viscosity subsolution and a viscosity supersolution.

The definition of the extremal operators is basically the same as is [10].

These operators are important to define the uniform ellipticity condition

with respect to some class L. Here, L is a set of linear operators L of the

form

L[u](x) =

∫

Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy,

for some kernel K.

We say that a nonlocal operator I is elliptic with respect to some class L
if

M−
L [w](x) ≤ I[(u+ w)(x), x](x) − I[u(x), x](x) ≤ M+

L [w](x), (8)

where

M−
L [w](x) := inf

L∈L
L[w](x), M+

L [w](x) := sup
L∈L

L[w](x).

In [10], in order to obtain the ABP estimate, a Harnack inequality and

Hölder regularity results, the kernels needed to be in the class L0
φ(σ), which

is the class of linear operators with kernels K satisfying

(2− σ)
1/Λ

vφ(y)
n+σ
2

≤ K(y) ≤ (2− σ)
Λ

vφ(y)
n+σ
2

, (9)

for some Λ ≥ 1. It is known that for the class defined by (9) the extremal

operators have the simple form

M−
L0
φ(σ)

[u](x) = (2− σ)

∫

Rn

1
Λδ

+(u, x, y) − Λδ−(u, x, y)

vφ(y)
n+σ
2

dy

and

M+
L0
φ(σ)

[u](x) = (2− σ)

∫

Rn

Λδ+(u, x, y) − 1
Λδ

−(u, x, y)

vφ(y)
n+σ
2

dy,

where δ(u, x, y) = u(x+y)+u(x−y)−2u(x), δ+(u, x, y) denotes its positive

part and δ−(u, x, y) its negative part. We would like to point out that if

γ = Γ = 1 in equation (4) then Pogorelov’s result (a proof can be found in

[12, Theorem 4.18]) states that φ is a quadratic polynomial. Then vφ(y) =

Ay · y, for a matrix A satisfying det(A) = 1. Equations with kernels in this

form were studied in [4] in a different setting related to a nonlocal version
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of the Monge-Ampère equation. The interested reader may also appreciate

[9], for a different approach, and the more recent contribution in [5].

The requirement that u ∈ L1(Rn,W), for some weight W, allows u to

have a certain growth at infinity. For example, in the classical case of [8],

for operators with kernels satisfying the inequality (9) with φ = |.|2, the
natural choice would be

W(y) =
1

1 + |y|n+σ0
,

simply because this weight controls the tails of the kernels at infinity, and

so the integrals are not singular for σ ≥ σ0.

Therefore, a natural choice for the weight in our setting is

Wφ(y) =
1

1 + vφ(y)
n+σ0

2

, (10)

in order to bound the tails of the kernels K satisfiying (9).

The weight Wφ satisfies three properties that will play an important role

in our analysis. We next state and prove them.

Proposition 1. Assume K is a function that satisfies

K(y) ≤ Λ
(2− σ)

vφ(y)
n+σ
2

.

Then for each r > 0, there exists a constant Cr such that

K(y) ≤ CrWφ(y), for y 6∈ Sφ
r .

Proof. Notice that for a kernel K satisfying the assumed bound, we have

K(y) ≤ Λ
(2− σ)

vφ(y)
n+σ
2

= Λ(2 − σ)
1 + vφ(y)

n+σ0
2

vφ(y)
n+σ
2

Wφ(y)

= Λ(2 − σ)

(

1

vφ(y)
n+σ
2

+ vφ(y)
σ0−σ

2

)

Wφ(y)

≤ Λ(2 − σ0)

(

1

rn+σ
+ rσ0−σ

)

Wφ(y)

≤ 2Λ(2 − σ0)max
{

1
rn+2 ,

1
r2−σ0

}

Wφ(y)

= CrWφ(y),
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for every y 6∈ Sφ
r , with Cr = C(Λ, σ0, r, n). �

Proposition 2. The weight Wφ is not singular, i.e., for each r > 0, there

exists a constant Cr such that

sup
z∈Br(y)

Wφ(z) ≤ CrWφ(y).

Proof.

Wφ(z) =
1

1 + vφ(z)
n+σ0

2

=
1 + vφ(y)

n+σ0
2

1 + vφ(z)
n+σ0

2

Wφ(y)

=
1 + (vφ(y)− vφ(z) + vφ(z))

n+σ0
2

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 1 + (|vφ(y)− vφ(z)|+ vφ(z))
n+σ0

2

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 1 + 2
n+σ0

2 (|vφ(y)− vφ(z)|
n+σ0

2 + vφ(z)
n+σ0

2 )

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 2
n+σ0

2

(

1 +
|vφ(y)− vφ(z)|

n+σ0
2

1 + vφ(z)
n+σ0

2

)

Wφ(y)

≤ C(n, σ0)
(

1 + ρ(r)
n+σ0

2

)

Wφ(y)

= CrWφ(y),

for every z ∈ Br(y), with Cr = C(σ0, r, n) and where ρ is the modulus of

continuity of vφ.

�

It is important to notice that the modulus of continuity of vφ is the same

as that of φ, since D2φ = D2vφ. Therefore, the constant Cr is the same for

any solution Ψ in the Monge-Ampère class

γ < det(D2Ψ) < Γ.

The next statement guarantees that the test functions in Definition 1 are

suitable for our operators. These computations have already been made in

[10] but we need to assure here they are invariant with respect to solutions

of the Monge-Ampère equation.
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Proposition 3. Let g : Rn → R be a function such that g ∈ C2(Br(x)),

‖g‖L1(Rn,Wφ)
≤ M and

∣

∣g(y)− lDg(x)(y)
∣

∣ ≤ M |y − x|2, y ∈ Br(x),

where lDg(x)(y) := g(x) +Dg(x) · (y − x). Then, there exists a constant C

such that

|g(x)| ≤ CM (11)

and

|L[g](x)| ≤ CM, ∀L ∈ L0
φ(σ). (12)

Proof. Observe that, for y ∈ Br(0), we have

|δ(g, x, y)| = |2g(x) − g(x+ y)− g(x− y)|

= |2g(x) − g(x+ y)− g(x− y)− lDg(x)(x+ y) + lDg(x)(x+ y)|

≤
∣

∣g(x− y)− lDg(x)(x− y)
∣

∣+
∣

∣g(x+ y)− lDg(x)(x+ y)
∣

∣

≤ 2M |y|2.

Using the reverse triangle inequality and multiplying both sides by the

weight Wφ, we obtain

2|g(x)|Wφ(y) ≤ 2M |y|2Wφ(y) + |g(x+ y)|Wφ(y) + |g(x− y)|Wφ(y).

Since Wφ(y) ≤ 1 and |y| ≤ r, integrating over Br(0), we reach

2|g(x)|
∫

Br

Wφ(y)dy ≤ 2Mr2|Br|+
∫

Br

|g(x + y)|Wφ(y)dy

+

∫

Br

|g(x − y)|Wφ(y)dy.

We now bound the two integrals on the right-hand side using Proposition 2.

To uniformly bound
∫

Br

Wφ(y)dy

from below (independently of scalings of the form λ−2vφ(λx)), we use Lemma

1 to get

1 + vφ(y)
n+σ0

2 = 1 +

[

vφ(y)

|y|2
]

n+σ0
2

|y|n+σ0 ≤ C(r, φ, n),

thus obtaining (11).
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To prove (12), we start by choosing η, depending on the modulus of

continuity of φ, such that Sφ
η ⊂ Br(0). Then, if L ∈ L0

φ(σ), we have
∣

∣

∣

∣

∣

∫

Sφ
η

δ(g, x, y)K(y)dy

∣

∣

∣

∣

∣

≤ (2− σ)ΛM

∫

Sφ
η

|y|2 1

vφ(y)
n+σ
2

dy

≤ (2− σ)ΛMC

∫

Sφ
η

|y|2|y|−n−σdy

≤ (2− σ)ΛMC

∫

Br

|y|2|y|−n−σdy

= (2− σ)ΛMC|∂B1|
∫ r

0
s2s−n−σsn−1ds

= C1(Λ, n, C, r)M

The constant C = C(r, φ) is from Lemma (1), which turns out to be invariant

by scalings of the form λ−2φ(λx).

Now we estimate the integral at infinity. Let us separate it in three parts.
∫

Rn\Sφ
η

|g(x+ y)|K(y)dy ≤ Cη

∫

Rn\Sφ
η

|g(x+ y)|Wφ(y)dy

≤ Cη

∫

Rn\Sφ
η

|g(x+ y)| sup
z∈B1(x+y)

Wφ(z)dy

≤ CηC1

∫

Rn\Sφ
η

|g(x + y)|Wφ(x+ y)dy

≤ C(η, n, σ0, ρ(1)) ‖g‖L1(Rn,Wφ)

≤ C(η, n, σ0, ρ(1))M.

where C1 is the constant from Proposition 2 and ρ stands for the modulus

of continuity of φ.

We may assume that the kernels are symmetric (but see Remark 1 at the

end of this section) and apply a similar reasoning to get
∫

Rn\Sφ
η

|g(x − y)| sup
z∈B1(x−y)

Wφ(z)dy ≤ C(η, n, σ0, ρ(1))M.

Finally, using (11), we can estimate
∫

Rn\Sφ
η

2|g(x)|K(y)dy ≤ CM

∫

Rn\Sφ
η

1

vφ(y)
n+σ
2

dy.



NONLOCAL EQUATIONS WITH DEFORMING KERNELS 11

Notice that we can show that the quantity
∫

Rn\Sφ
η

1

vφ(y)
n+σ
2

dy

is finite employing the elementary layer-cake formula [12, Lemma A.36] and

the fact that |Sφ
r | ≈ rn (depending only on the bounds of the Monge-Ampère

equation), as shown in [13]. Indeed,

∫

Rn\Sφ
η

1

vφ(y)
n+σ
2

dy = (n+ σ)

∫ ∞

0
tn+σ−1

∣

∣

∣

∣

∣

(Rn\Sφ
η ) ∩

{

1

vφ(y)
1

2

> t

}∣

∣

∣

∣

∣

dt

= (n+ σ)

∫ ∞

0
tn+σ−1

∣

∣

∣
(Rn\Sφ

η ) ∩ S 1

t

∣

∣

∣
dt

= (n+ σ)

∫ 1

η

0
tn+σ−1

∣

∣

∣
(Rn\Sφ

η ) ∩ S 1

t

∣

∣

∣
dt

≤ C(n+ σ)

∫ 1

η

0
tn+σ−1 1

tn
dt

= C
(n+ σ)

σ

1

ησ
.

Putting all estimates together, we obtain that

|L[g](x)| =
∣

∣

∣

∣

∫

Rn

δ(g, x, y)K(y)dy

∣

∣

∣

∣

≤ CM.

�

We need to impose an integrability assumption on the solution φ ∈ C2(Rn)

of the Monge-Ampère equation.

[A1] The function ζ : Rn → R defined by ζ(y) = |y|1+α1 satisfies

ζ ∈ L1 (Rn,Wφ) , (13)

for some α1 < σ0 − 1.

A simple example of a function in R
2 satisfying the assumption is

φ(y1, y2) = y21 + y22 +
1

2
sin(y1).

Proposition 4. Let assumption [A1] be in force and let φλ(x) = λ−2φ(λx).

Then

‖ζ‖L1(Rn,Wφλ)
≤ C

(

n, σ0, α1, φ, ‖ζ‖L1(Rn,Wφ)

)

.
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Proof. We have

‖ζ‖L1(Rn,Wφλ
) =

∫

Rn

|y|1+α1
1

1 + (λ−2vφ(λy))
n+σ0

2

dy

= λ−n−1−α1

∫

Rn

|z|1+α1
1

1 + (λ−2vφ(z))
n+σ0

2

dz

= λ−n−1−α1(A1 +A2 +A3),

where A1, A2, A3 stand for the integrals of |.|1+α1(1+(λ−2vφ(.))
n+σ0

2 )−1 over

the sets Bλ, B1\Bλ and R
n\B1, respectively.

Now,

A1 ≤
∫

Bλ

|z|1+α1dz ≤ C(n)λn+1+α1 ,

and so λ−n−1−α1A1 ≤ C(n). For A2, we have

A2 ≤ λn+σ0

∫

B1\Bλ

|z|1+α1
1

vφ(z)
n+σ0

2

dz.

By Lemma 1, with r = 1, Ψ1 = |.|2 and Ψ2 = φ, we get a constant C(φ)

such that

|z|2
vφ(z)

≤ C(φ), for z ∈ B1.

Then

A2 ≤ C(φ, n)λn+σ0

∫

B1\Bλ

|z|1+α1
1

|z|n+σ0
dz

= C(φ, n)λn+σ0

∫ 1

λ
rα1−σ0dr

≤ C(φ, n)λn+σ0
1

σ0 − 1− α1
[λα1−σ0+1 − 1].

Therefore, we get

λ−n−1−α1A2 ≤ C(φ, n, σ0, α1).

Finally, for A3, we have

λ−n−1−α1A3 ≤ λσ0−1−α1

∫

Rn\B1

|z|1+α1
1

vφ(z)
n+σ0

2

dz.

Therefore, if assumption [A1] holds, we can get a uniform bound (in the

parameter λ) for the term A3.

�
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Remark 1. If the kernels are not symmetric, we control the quantity
∫

Rn\Sφ
η

|g(x− y)| 1

vφ(y)
n+σ
2

dy,

using assumption [A1] and a natural growth condition. Indeed, assuming

g : Rn → R is a function such that

|g(y)| ≤ |y|1+α1 for y ∈ R
n\Sφ

η ,

for some η > 0, we obtain

∫

Rn\Sφ
η

|g(x− y)| 1

vφ(y)
n+σ
2

dy ≤
∫

Rn\Sφ
η

|x− y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(|x|)
∫

Rn\Sφ
η

|y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(η, |x|)
∫

Rn\Sφ
η

|y|1+α1Wφ(y)dy.

In our main theorem, the growth condition stated above will appear naturally

and is, by no means, restrictive.

3. Approximation results

In this section we are going to deliver the key lemma of this paper, con-

sisting in showing that if the operators in our class are close in some suitable

sense then so are their solutions.

We start with a standard result that makes use of the ellipticity structure

to restrict the set of test functions in Definition 1, which is important to

simplify the proof of the stability result. The proof is essentially the same

as in [8] but we include it here for the reader’s convenience.

Lemma 2. In Definition 1, it is enough to consider, as test functions ϕ,

quadratic polynomials and, as neighbourhoods N, balls centered at the touch-

ing point.

Proof. Let ϕ ∈ C2(N ) be a test function that touches u from above at a point

x0 and, for simplicity, assume x0 = 0. Let Pǫ be the following polynomial

Pǫ(x) =
1

2

(

D2ϕ(0) + ǫIn
)

x · x+∇ϕ(0) · x+ ϕ(0).

From Taylor’s expansion,

ϕ(x) = ϕ(0) +∇ϕ(0) · x+
1

2
D2ϕ(0)x · x+ r2(x), with lim

x→0

r2(x)

|x|2 = 0,
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so, given ǫ > 0, there exists µ > 0 such that, if |x| < µ, then
∣

∣

∣

∣

ϕ(x)−
(

ϕ(0) +∇ϕ(0) · x+
1

2
D2ϕ(0)x · x

)∣

∣

∣

∣

≤ ǫ|x|2 (14)

which implies

ϕ(x) ≤ Pǫ(x), ∀x ∈ Bµ.

Then Pǫ ≥ ϕ ≥ u in a neighbourhood Br ⊂ N , with r < µ.

Define

τϕ(x) =

{

ϕ(x) if x ∈ N

u(x) if x 6∈ N.

and

τǫ(x) =

{

Pǫ(x) if x ∈ Br

u(x) if x 6∈ Br.

With 1 denoting the indicator function, we have

τǫ(x) ≤ τϕ(x) + 2ǫ|x|21Br , ∀x ∈ R
n,

which is obvious if x /∈ Br; for x ∈ Br, it follows from (14) that

−ǫ|x|2 ≤ ϕ(x)−
(

ϕ(0) +∇ϕ(0) · x+
1

2
D2ϕ(0)x · x

)

≤ ǫ|x|2.

So we have,

τϕ(x) = ϕ(x)

≥ ϕ(0) +∇ϕ(0) · x+ 1
2D

2ϕ(0)x · x− ǫ|x|2
= Pǫ(x)− 2ǫ|x|2
= τǫ(x)− 2ǫ|x|21Br .

Since Pǫ is a quadratic polynomial such that Pǫ ≥ ϕ ≥ u and ϕ touches u

from above at 0, we have Pǫ(0) = ϕ(0) = u(0). Hence, Pǫ touches u from

above at 0 and so, by the definition of viscosity subsolution, we have

I[τǫ(x), x](0) ≥ f(0).

On the other hand, by uniform ellipticity,

I[τϕ(x), x](0) − I[τǫ(x), x](0) ≥ −M+
L0
φ(σ)

[

2ǫ|x|21Br

]

(0)

= − supL∈L0
φ(σ)

L
[

2ǫ|x|21Br

]

(0)

≥ −2ǫC,

where we have used Proposition 3 in the last inequality. Since

I[τǫ(x), x](0) ≥ f(0),

we have

I[τϕ(x), x](0) ≥ I[τǫ(x), x](0) − 2Cǫ, ∀ǫ > 0.

Consequently, I[τϕ(x), x](0) ≥ f(0). �
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The following is a simple remark concerning the scalings of the solution

of the Monge-Ampère equation.

Proposition 5. Let φ ∈ C2(Rn) satisfy (4) and define φλ(y) = λ−2φ(λy).

Then the function vφλ
(y) converges to vφ0

:= D2φ(0)y · y, locally uniformly

as λ → 0, where φ0(y) = D2φ(0)y · y.

Proof. By Taylor’s expansion,

vφλ
(y) = φλ(y)− φλ(0) −∇φλ(0) · y

= λ−2
(

λ2D2φ(0)y · y + r
(

|λy|2
))

= D2φ(0)y · y + r(|λy|2)
λ2 ,

for y ∈ Bη, with η small enough. Therefore, if λ → 0,

vφλ
(y) −→ D2φ(0)y · y,

locally uniformly. �

We now prove the stability lemma, that will play a key role in the approx-

imating results. We will consider the simpler linear case just to highlight

the main ideas.

Lemma 3. Let Ω be open and bounded, and let φ ∈ C2(Rn) be convex and

satisfy (4). Consider the family of scalings {vφλ
}λ∈(0,1] and assume there

exists a sequence

(λk, uk, fk, bk) ⊂ R× C(Ω) ∩ L1
(

R
n,Wφλk

)

× L∞(Ω)× L∞(Ω× R
n)

such that

• Ik[uk(x), x] :=
∫

Rn

δ(uk, x, y)
bk(x, y)

vφλk
(y)

n+σ
2

dy = fk(x) in the viscosity

sense in Ω;

• uk → u uniformly in Ω and a.e. in R
n;

• |uk(x)| ≤ (1 + ζ(x)) in R
n, for some α1 such that α1 < σ − 1;

• λk → 0;

• fk → f , locally uniformly in Ω;

• bk → b, uniformly in Ω× R
n.

Then,

I[u(x), x](x) =
∫

Rn

δ(u, x, y)
b(x, y)

vφ0
(y)

n+σ
2

dy = f(x), x ∈ Ω,

in the viscosity sense, where φ0 is as in Proposition 5.
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Proof. We do the proof only for supersolutions. To prove that

I[u(x), x](x) ≤ f(x),

we need to show that, given ϕ ∈ C2(x), touching u from below at x, we have

I[τ(x), x](x) ≤ f(x), where

τ(x) =

{

ϕ(x) if x ∈ Nx

u(x) if x 6∈ Nx,

where Nx is a neighborhood of x. By lemma (2), it is enough to consider

as test functions quadratic polynomials p and neighbourhoods Nx = Br(x).

Since uk converges uniformly to u in Ω, for large values of k, we can find xk
and dk such that p + dk touches uk at xk, with xk → x and dk → 0, when

k → ∞. Since Ik[uk(x), x] ≤ fk in the viscosity sense in Ω, if we define

τk(x) =

{

p+ dk in Br(x)

uk in R
n\Br(x),

then Ik[τk(x), x](xk) ≤ fk(xk). Clearly, τk → τ , uniformly in Br(x).

Now, let z ∈ Br/4(x). By the triangle inequality,

|Ik[τk(x), x](z) − I[τ(x), x](z)|

≤ |Ik[τk(x), x](z) − Ik[τ(x), x](z)| + |Ik[τ(x), x](z) − I[τ(x), x](z)|.
From the ellipticity condition, and denoting, by simplicity, φλk

with φk, we

obtain

Ik[τk(x), x](z) − Ik[τ(x), x](z) ≤ M+
L0
φk

(σ)
[τk − τ ](z)

≤ |M+
L0
φk

(σ)
[τk − τ ](z)|

and
Ik[τ(x), x](z) − Ik[τk(x), x](z) ≤ M+

L0
φk

(σ)
[τ − τk](z)

≤ |M+
L0
φk

(σ)
[τ − τk](z)|.

Hence,

|Ik[τk(x), x](z) − Ik[τ(x), x](z)|

≤ max

{

|M+
L0
φk

(σ)
[τk − τ ](z)|, |M+

L0
φk

(σ)
[τ − τk](z)|

}

≤ sup
L∈L0

φk
(σ)

|L[τk − τ ](z)|

≤
∫

Rn

|δ(τk − τ, z, y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy.
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For points y ∈ Br/2, we have z + y ∈ Br(x). Therefore, τ − τk = dk, which

implies δ(dk, z, y) = 0. Plugging this into the above inequality, we get

|Ik[τk(x), x](z) − Ik[τ(x), x](z)|

≤
∫

Rn\Br/2

|δ(τk − τ, z, y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy

≤
∫

Rn\S
φk
µ

|(τk − τ)(z + y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy

+

∫

Rn\S
φk
µ

|(τk − τ)(z − y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy

+2|(τk − τ)(z)|
∫

Rn\S
φk
µ

Λ(2 − σ)

vφk
(y)

n+σ
2

dy,

where we choose µ = µ(r) such that

Sφk
µ ⊂ Br/2, ∀k ∈ N.

Now we apply Propositions 1 and 2 to get
∫

Rn\S
φk
µ

|(τk − τ)(z + y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy

≤ Cµ

∫

Rn\S
φk
µ

|(τk − τ)(z + y)|Wφk
(y)dy

≤ CµC

∫

Rn\S
φk
µ

|(τk − τ)(y + z)|Wφk
(y + z)dy

≤ C ‖τk − τ‖
L1

(

Rn\S
φk
µ ,Wφk

) .

Furthermore, by computations made in the proof of Proposition (3), we

obtain
∫

Rn\S
φk
µ

Λ(2− σ)

vφk
(y)

n+σ
2

dy ≤ n+ 2

σ0µσ0

and so

|Ik[τk(x), x](z) − Ik[τ(x), x](z)|

≤ C1 ‖τk − τ‖
L1

(

Rn\S
φk
µ ,Wφk

) +C2|τk(z)− τ(z)|

+

∫

Rn\S
φk
µ

|(τk − τ)(z − y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy.
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Since uk → u, a.e. in R
n, we get that τk → τ , a.e. in R

n. Therefore, by

Proposition 4, assumption [A1] and the growth assumption we obtain, by

the dominated convergence theorem, that

‖τk − τ‖
L1

(

Rn\S
φk
µ ,Wφk

) −→ 0.

Note that, by the same computations made in Remark 1, we get
∫

Rn\S
φk
µ

|(τk − τ)(z − y)| Λ(2− σ)

vφk
(y)

n+σ
2

dy

≤ C (µ, |z|,Λ)
∫

Rn\S
φk
µ

|y|1+α1Wφk
(y)dy,

= C (µ,Ω,Λ) ‖ζ‖
L1

(

Rn\S
φk
µ ,Wφk

)

≤ C,

where we used assumption [A1], along with Proposition 4, to get a uniform

bound on the weighted norm.

Now, notice that, for every z ∈ Br/4(x), we have τ ∈ C2(B3r/4(z)) and

thus

Ik[τ(x), x](z) → I[τ(x), x](z), uniformly in Br/4(x) when k → ∞.

Therefore, we can combine this with Lemma 1, Proposition 4 and assump-

tion [A1] to get

|δ(τ, z,−)|
∣

∣

∣

∣

∣

bk(z,−)

vφk
(−)

n+σ
2

− b(z,−)

vφ0
(−)

n+σ
2

∣

∣

∣

∣

∣

∈ L1(Rn),

uniformly in z. Since

bk(z, y)

vφk
(y)

n+σ
2

−→ b(z, y)

vφ0
(y)

n+σ
2

, a.e. ∈ R
n,

we get, again using the dominated convergence theorem, that

|Ik[τ(x), x](z) − I[τ(x), x](z)|

≤
∫

Rn

|δ(τ, z, y)|
∣

∣

∣

∣

∣

bk(z, y)

vφk
(y)

n+σ
2

− b(z, y)

vφ0
(y)

n+σ
2

∣

∣

∣

∣

∣

dy −→ 0.

We thus obtain

Ik[τk(x), x](z) → I[τ(x), x](z), (15)

uniformly in Br/4(x).

Finally, we have

|Ik[τk(x), x](xk)− I[τ(x), x](x)| ≤ |Ik[τk(x), x](xk)− I[τ(x), x](xk)|
+|I[τ(x), x](xk)− I[τ(x), x](x)|
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and, using (15)) and the continuity of I[τ(x), x], we obtain

|Ik[τk(x), x](xk)− I[τ(x), x](x)| → 0,

when k → ∞. Since xk → x and fk → f locally uniformly,

I[τ(x), x](x) = lim
k→∞

Ik[τk(x), x](xk) ≤ lim
k→∞

fk(xk) = f(x),

and therefore I[τ(x), x](x) ≤ f(x). �

We are now ready for the approximation lemma. It plays an important

role in the subsequent analysis.

Lemma 4. Assume σ ≥ σ0 > 1 + α1 and φ ∈ C2(Rn) is a convex function

satisfying (4) and assumption [A1]. Let φ0 be the function from Proposition

5. Given M > 0, a modulus of continuity ρ and ǫ > 0, there exist a small

η > 0, λ > 0 and a large R0 > 0 such that, if

• −η < inf
α∈A

sup
β∈B

∫

Rn

δ(w,−, y)
bαβ(−, y)

vφλ
(y)

n+σ
2

dy < η, in the viscosity sense

in Sφ0

1 ;

• for every α and β, b(y) − η < bαβ(x, y) < b(y) + η, ∀x ∈ Sφ0

1 ,

∀y ∈ R
n;

• |w(y) − w(x)| ≤ ρ(|y − x|), ∀x, y ∈ BR0
;

• |w(x)| ≤ M(1 + ζ(x)), ∀x ∈ R
n,

then, there exist a function w0 : R
n → R such that

• |w0(x)| ≤ M (1 + ζ(x)), ∀x ∈ R
n;

•
∫

Rn

δ(w0,−, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0, in the viscosity sense in Sφ0

1 ;

• |w − w0| < ǫ in Sφ0

1 .

Proof. Suppose, by contradiction, the lemma is false. Then, there exist

sequences Rk, ηk, wk, λk, bk such that

Rk → ∞, ηk → 0, λk → 0 and bk → b uniformly in Sφ0

1 × R
n

and

−ηk <

∫

Rn

δ(wk, x, y)
bk(x, y)

vφλk
(y)

n+σ
2

dy < ηk

in the viscosity sense in Sφ0

1 but

sup |wk − w0| ≥ ǫ in Sφ0

1 , (16)
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for all w0 solution of
∫

Rn

δ(w0, x, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0.

By Proposition 5,

vφλk
(x) −→ D2φ(0)x · x = vφ0

(x),

locally uniformly and thus almost everywhere in R
n. On the other hand, the

wk have a uniform modulus of continuity in BRk
, where Rk → ∞, so, up to

subsequences, wk → w uniformly on compacts and thus almost everywhere

in R
n. By Lemma 3, we pass to the limit to get

∫

Rn

δ(w, x, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0 in Sφ0

1 .

Since wk → w uniformly in Sφ0

1 , for k sufficiently large we have a contradic-

tion with (16). �

4. Regularity for variable coefficients

This section is devoted to the proof of the main theorem of the paper.

Theorem 1. Let σ ≥ σ0 > 1, let φ ∈ C2(Rn) be a convex function satisfying

(4) and assumption [A1], and let u be a viscosity solution to (1) in Sφ
2 . There

exists 0 < η ≪ 1 such that if

sup
α∈A,β∈B

(x,y)∈Sφ
2
×Rn

|bα,β(x, y)− b(y)| < η,

for b ∈ L∞(Rn), then u ∈ C1,α0(Sφ
1 ) and the following estimate holds

‖u‖
C1,α0

(

Sφ
1

) ≤ C

(

‖u‖L∞(Rn) + ‖f‖
L∞

(

Sφ
2

)

)

,

for 0 < α0 < min{α∗, α1}, where α1 is from assumption [A1] and α∗ is from

Theorem 3. The constant C depends only on n,Λ, σ0, α∗, γ and Γ.

The idea is to iterate the approximation lemma (Lemma 4) to quotients

of the form
[u− l](λ−)

λ1+α0
,

where l is an affine function and λ > 0 and α0 are to be chosen in the sequel.

To assure that Lemma 4 can be applied for every small enough λ, the first

step is to grant a modulus of continuity to solutions that grow at infinity.

This is done using a standard technique.
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Theorem 2. Assume σ > σ0 > 1 and w ∈ C
(

Sφ
2

)

satisfies, for M > 0 and

ζ from [A1],

|w(x)| ≤ M(1 + ζ(x)), x ∈ R
n,

and solves

M+
L0
φ(σ)

w ≥ −C0, M−
L0
φ(σ)

w ≤ C0

in the viscosity sense in Sφ
2 . Then, there exists α > 0 and a radius ρ such

that w ∈ Cα
(

Sφ
ρ

)

and

‖w‖
Cα

(

Sφ
ρ

) ≤ C∗



sup
Sφ
2

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)





for some universal constant C∗.

Proof. Define w(x) = 1

Sφ
2

(x)w(x) and notice that for x ∈ Sφ
1 ,

Lw(x) =

∫

Rn

δ(w, x, y)K(y)dy

= Lw(x) +

∫

Rn

(w(x+ y)1
Sφ
2

(x+ y)−w(x + y))K(y)dy

+

∫

Rn

(w(x − y)1
Sφ
2

(x− y)− w(x− y))K(y)dy

= Lw(x) −
∫

Rn\Ω+

w(x+ y)K(y)dy −
∫

Rn\Ω−

w(x− y)K(y)dy,

where

Ω+ = {y ∈ R
n : x+ y ∈ Sφ

2 } and Ω− = {y ∈ R
n : x− y ∈ Sφ

2 }.

Now, if d = dist(∂Sφ
1 , ∂S

φ
2 ), we have

Bd(0) ⊂ Ω+,Ω−.

Therefore, from the growth assumption for w, we can estimate
∣

∣

∣

∣

∣

∫

Rn\Ω+

w(x+ y)K(y)dy

∣

∣

∣

∣

∣

≤ C

∫

Rn\Bd

|y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(d) ‖ζ‖L1(Rn,Wφ)
.

The same computations are valid for the other term and we get

M+
L0
φ(σ)

w(x) ≥ M+
L0
φ(σ)

w(x)− C ‖ζ‖L1(Rn,Wφ)
≥ −(C0 + C ‖ζ‖L1(Rn,Wφ)

),
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for x ∈ Sφ
1 . The same calculations apply to M−

L0
φ(σ)

leading to

M−
L0
φ(σ)

w(x) ≤ C0 + C ‖ζ‖L1(Rn,Wφ)
,

for x ∈ Sφ
1 . We now apply a scaled version of [10, Theorem 6.2], to get

the existence of α ∈ (0, 1) and a small radius ρ, depending on λ,Λ, σ0 and

dimension, such that

‖w‖
Cα

(

Sφ
ρ

) ≤ C∗

(

sup
Rn

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)

.

Since w = w in Sφ
2 , we also have

‖w‖
Cα

(

Sφ
ρ

) ≤ C∗



sup
Sφ
2

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)



 .

This constant C∗ depends on the constant τ from [10, Proposition 3.1], the

norm of the normalization mapping of the section Sφ
γρ/2,Λ, σ0 and dimension,

where γ stands for the standard engulfing constant and ρ is the constant

from [10, Theorem 5.1]. �

Remark 2. We will apply the theorem above for the scaled family {φλ},
with λ ∈ (0, 1]. Since we need uniform estimates, we must assure that the

estimate above does not degenerate as λ varies in the interval (0, 1]. From

Proposition 4 we can uniformly bound the quantity ‖ζ‖L1(Rn,Wφλ
). On the

other hand, the quantity dλ = dist(∂Sφλ
1 , ∂Sφλ

2 ) is uniformly bounded above

and below away from zero. We can also bound uniformly the norm of the

normalization mapping of Sφλ

γρ/2 by making use of [12, Corollary 4.7].

Corollary 1. Assume σ > σ0 > 1 and w ∈ C
(

Sφ
2r

)

satisfies

M+
L0
φ(σ)

w ≥ −C0, M−
L0
φ(σ)

w ≤ C0 in Sφ
2r,

with |w| ≤ M(1+ζ) in R
n. Then, there exists α > 0 such that w ∈ Cα

(

Sφ
r/2

)

and

‖w‖
Cα

(

Sφ
rρ

) ≤ C∗



sup
Sφ
2r

|w| + C0 + C ‖ζ‖L1(Rn,Wφ)



 , (17)

for some constant C∗.

Proof. Let w∗ be the following auxiliary function

w∗(x) :=
1

max{1, r1+α1 , rσ}w(rx).
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Then

M+
L0
φr

(σ)
w∗ ≥ −C0, M−

L0
φr

(σ)
w∗ ≤ C0 in Sφr

2 ,

for φr(x) = r−2φ(rx) and |w∗| ≤ M(1+ ζ) in R
n. By the previous theorem,

‖w∗‖
Cα

(

Sφr
ρ

) ≤ C∗



sup
Sφr
2

|w∗|+ C0 + C ‖ζ‖L1(Rn,Wφ)



 .

Rescaling back to w, we get (17), where C∗ has the same dependence as in

the previous theorem, replacing for the norm of the normalization mapping

of the section Sφr

γρ/2.

�

We also need gradient Hölder regularity estimates for solutions of the

limit equation
∫

Rn

δ(u, x, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0, x ∈ Sφ0

1 . (18)

It is interesting to note that we will not make use of the C1,α regularity

results from [10], since our kernels do not necessarily satisfy the assumptions

therein. Instead, due to the regularizing effect of the scalings, we will make

use of the results from [15], after a suitable change of variables.

Theorem 3. Let σ ≥ σ0 > 1. Assume v ∈ C
(

S
φ0

1

)

∩ L1 (Rn,Wφ0
) is a

viscosity solution of
∫

Rn

δ(v, x, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0 in Sφ0

1 ,

where K(y) = b(y)/vφ0
(y)

n+σ
2 ∈ L0

φ0
(σ). Then, there exists α∗ such that

v ∈ C1,α∗

(

Sφ0

1/2

)

and

‖v‖
C1,α∗(S

φ0
1/2

)
≤ C



sup
S
φ0
1

|v|+ ‖v‖L1(Rn,Wφ0)



 ,

where C > 0 is a universal constant.

Proof. We remark that vφ0
(y) = D2φ(0)y · y. Since φ solves (4), we get

that, in particular, the matrix D2φ(0) has only positive eigenvalues, and

so is invertible. Therefore, it may be decomposed in the following form

D2φ(0) = SDSt, where S is an orthogonal matrix and D is diagonal with

the eigenvalues of D2φ(0). Since the eigenvalues are nonnegative, the matrix

D has a square root, which we will denote by B :=
√
D. Then

D2φ(0)y · y = Qy ·Qy,
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where Q := BSt. Notice that

x ∈ Sφ0

1 ⇐⇒ D2φ(0)x · x < 1 ⇐⇒ |Qx| < 1 ⇐⇒ x ∈ Q−1(B1),

that is, Q(Sφ0

1 ) = B1. Now, define w = v◦Q−1. Since v ∈ C(Sφ0

1 ), we obtain

w ∈ C(B1). For the growth condition, we have
∫

Rn

|w(z)| 1

1 + |z|n+σ0
dz =

∫

Rn

|v(Q−1z)| 1

1 + |z|n+σ0
dz

= |det(Q)|
∫

Rn

|v(y)| 1

1 + |Qy|n+σ0
dy

= |det(Q)|
∫

Rn

|v(y)|Wφ0
(y)dy,

that is

‖w‖
L1

(

Rn, 1

1+|.|n+σ0

) = det(Q) ‖v‖L1(Rn,Wφ0)
.

We then obtain that w ∈ C(B1) ∩ L1
(

R
n, 1

1+|.|n+σ0

)

. It is straightforward

to check that the function w solves in the viscosity sense
∫

Rn

δ(w,−, z)
b(y)

|y|n+σ
2

dy = 0 in B1,

where b(y) = b(Q−1y). By [15, Theorem 4.1], there exists α∗ such that

‖w‖C1,α∗(B1/2)
≤ C

(

‖w‖
L1

(

Rn, 1

1+|.|n+σ0

) + ‖w‖L∞(B1)

)

.

Rescalling back to v we obtain

‖v‖
C1,α∗

(

S
φ0
1/2

) ≤ C

(

‖v‖L1(Rn,Wφ0)
+ ‖v‖

L∞
(

S
φ0
1

)

)

,

where C(C, |Q|, |Q−1|). �

We are now ready to deliver the proof of the main theorem in its discrete

version.

Theorem 4. Let σ ≥ σ0 > 1, let φ ∈ C2(Rn) satisfy (4) and assumption

[A1], and let u be a viscosity solution to (1) in Sφ
2R. There exists a small

η > 0 and a large R > 0 such that if

sup
y∈Rn

|bαβ(x, y)− b(y)| < η, ∀α ∈ A,∀β ∈ B, ∀x ∈ Sφ
2R,

‖u‖L∞(Rn) ≤ 1

and

‖f‖
L∞(Sφ

2R)
≤ η,
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then we can find universal constants θ, λ,C2 > 0 and a sequence of linear

functions lk = ak + bk · x such that

sup
B

θλk

|u− lk| ≤ λk(1+α0)

|ak+1 − ak| ≤ λk(1+α0)

|bk+1 − bk| ≤ C2λ
kα0 ,

for every k ∈ N. The exponent α0 satisfies α0 < min{α∗, α1}, where α1 is

from assumption [A1] and α∗ is from Theorem 3.

Proof. We proceed by induction. For step k = 0, take l0 = l1 = 0. Assume

the result holds up to order k and let us show it also holds for k+1. Define

wk(x) =
1

λk(1+α0)
[u− lk](λ

kx), x ∈ R
n

and consider θ so small that

Bθ ⊂ Sφ0

1 .

Observe first that the scaled function

φλk(y) := λ−2kφ(λky), y ∈ R
n

solves the same Monge-Ampère equation

det
(

D2φλk(y)
)

= F (λky) = F (y),

with the right-hand side satisfying the same bounds as F , γ < F < Γ, and

that the level sets of φλk are related with the level sets of φ by

vφ
λk
(y) = λ−2kvφ(λ

ky).

Now wk solves an equation with the same ellipticity constants (but rescaled

kernels), namely

inf
α∈A

sup
β∈B

∫

Rn

δ(wk, x, y)
bαβ(λ

kx, λky)

vφ
λk
(y)

n+σ
2

dy = λk(σ−1−α0)f(λkx)

for x ∈ λ−kSφ
2R = S

φ
λk

2Rλ−k . Since, due to (13),

σ − 1− α0 ≥ σ0 − 1− α0 > α1 − α0 > 0

and λ < 1, we have
∥

∥

∥λk(σ−1−α0)f(λkx)
∥

∥

∥

L∞(λ−kSφ
2R)

≤ ‖f‖
L∞

(

Sφ
2R

) ≤ η.
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Therefore, wk solves

−η < inf
α∈A

sup
β∈B

∫

Rn

δ(wk, x, y)
bαβ(λ

kx, λky)

vφ
λk
(y)

n+σ
2

dy < η (19)

for x ∈ λ−kSφ
2R = S

φ
λk

2Rλ−k .

Let φ0 be the function from Proposition 5 and take R large such that

Sφ0

1 ⊂ Sφ
2R. Then, since φ0 is 2-homogeneous,

S
φ
λk

2Rλ−k = λ−kSφ
2R ⊃ λ−kSφ0

1 = Sφ0

λ−k ⊃ Sφ0

1 ,

so that (19) holds for Sφ0

1 for every k ∈ N. From Corollary 1, wk is Hölder

continuous in S
φ
λk

Rρ . Notice that, by Lemma 1 with Ψ1 = φλk ,Ψ2 = |.|2 and

radius R0, we obtain for large R

BR0
⊂ S

φ
λk

Rρ ,

and so wk is Hölder continuous in BR0
, where R0 is from Lemma 4. We

can now apply Lemma 4 to the function wk, finding h : Rn → R satisfying

h ∈ C(Sφ0

1 ), |h| ≤ (1 + ζ) in R
n,

∫

Rn

δ(h, x, y)
b(y)

vφ0
(y)

n+σ
2

dy = 0,

in the viscosity sense in Sφ0

1 , and |wk −h| < ǫ in Sφ0

1 , for some small ǫ to be

chosen later. By Theorem 3, we obtain

‖h‖
C1,α∗(S

φ0
1/2

)
≤ C2.

Letting l̄(x) = h(0) +∇h(0) · x, we have, by the mean value theorem,

|h(x) − l̄(x)| ≤ [∇h]
Cα∗ (S

φ0
1/2

)
|x|1+α∗

≤ C2|x|1+α∗

for x ∈ Bθ/2.

Since |wk| ≤ 1 in Bθ, we have |h| ≤ 1 + ǫ in Bθ and then |h(0)| ≤ 1 + ǫ.

Also, by C1,α∗ estimates, we have |∇h(0)| ≤ C2. Therefore, we have the
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following estimates

|wk − l̄| ≤ |wk − h|+ |h− l̄|

≤ ǫ(η,R) + C2|x|1+α∗ in B θ
2

|wk − l̄| ≤ |wk − h|+ |h|+ |l̄|

≤ 3ǫ(η,R) + 2 + C2|x| in Bθ\B θ
2

|wk − l̄| ≤ |wk|+ |l̄|

≤ |x|1+α1 + |h(0)| + |∇h(0)| |x|

≤ |x|1+α1 + 1 + ǫ(η,R) +C2|x| in R
n\Bθ.

Let us now fix λ > 0, to be chosen later, such that ǫ ≤ λ1+α∗ . Define

lk+1(x) := lk(x) + λk(1+α0) l̄(λ−kx),

and

wk+1(x) =
1

λ(k+1)(1+α0)
[u− lk+1](λ

k+1x)

=
1

λ1+α0
[wk − l̄](λx).

We have the following estimates for the scaling above:

|wk+1(x)| ≤ λ−1−α0(ǫ+ C2λ
1+α∗ |x|1+α∗) in λ−1B θ

2

|wk+1(x)| ≤ λ−1−α0(3ǫ+ 2 + C2λ|x|) in λ−1Bθ\λ−1B θ
2

|wk+1(x)| ≤ λ−1−α0(λ1+α1 |x|1+α1 + 1 + ǫ+ C2λ|x|) in R
n\λ−1Bθ.

Using the fact that ǫ ≤ λ1+α∗ ≤ 1, we obtain

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗) in λ−1B θ
2

|wk+1(x)| ≤ 5λ−1−α0 + C2λ
−α0 |x| in λ−1Bθ\λ−1B θ

2

|wk+1(x)| ≤ λα1−α0 |x|1+α1 + 2λ−1−α0 + C2λ
−α0 |x| in R

n\λ−1Bθ.



28 D. DOS PRAZERES, A. SOBRAL, AND J.M. URBANO

Notice now that for λ ≤ 1/2, we obtain

Bλ−1θ/2 ⊃ Bθ.

Recalling that α0 < min{α1, α∗}, we have, by the first estimate above,

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗)

≤ λα∗−α0(1 + C2)

≤ 1

in Bθ, as long as λ is chosen such that

λ ≤
(

1

1 + C2

) 1

α∗−α0

.

We will choose λ so small that |wk+1(x)| ≤ |x|1+α1 outside Bθ as well. A

point x ∈ R
n\Bθ must be in one of the sets

Bλ−1θ/2, Bλ−1θ\Bλ−1θ/2 or R
n\Bλ−1θ.

If, for instance, x ∈ Bλ−1θ/2, we have θ ≤ |x| < λ−1θ/2, and so

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗)

≤ λα∗−α0(θ−1−α1 + C2|x|α∗−α1)|x|1+α1

≤ 3θ−1−α1λα1−α0(1 + C2)|x|1+α1

≤ λα∗−α0θ−1−α1 |x|1+α1 + C2λ
α∗−α0 |x|α∗−α1 |x|1+α1

≤
(

λα∗−α0θ−1−α1 + C2θ
α∗−α1 .

.max
{

(

1
2

)α∗−α1 λα1−α0 , λα∗−α0

})

|x|1+α1

≤ |x|1+α1 ,

as long as λ is chosen small such that
(

λα∗−α0θ−1−α1 + C2θ
α∗−α1 max

{

(

1

2

)α∗−α1

λα1−α0 , λα∗−α0

})

≤ 1,

recall that both α∗ − α0 and α1 − α0 are positive and that α∗ − α1 may be

positive or negative.

Now, if x ∈ Bλ−1θ\Bλ−1θ/2, we have λ−1θ/2 ≤ |x| < λ−1θ. By the second

estimate, we obtain

|wk+1(x)| ≤ 5λ−1−α0 + C2λ
−α0 |x|

= 5λα1−α0λ−1−α1 + C2λ
α1−α0λ−α1 |x|

≤ 2λα1−α0 max{5, C2}
(

θ
2

)−1−α1 |x|1+α1

≤ |x|1+α1 ,

as long as we choose λ so small that

2λα1−α0 max{5, C2}
(

θ

2

)−1−α1

≤ 1.
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Finally, if x ∈ R
n\Bλ−1θ, we have |x| ≥ λ−1θ. By the third estimate, we get

|wk+1(x)| ≤ λα1−α0 |x|1+α1 + 2λ−1−α0 + C2λ
−α0 |x|

≤ λα1−α0
(

1 + 2θ−1−α1 + C2θ
−α1
)

|x|1+α1

≤ |x|1+α1 ,

as long as we take λ small such that

λα1−α0
(

1 + 2θ−1−α1 + C2θ
−α1
)

≤ 1.

We choose λ such that all of the above conditions hold and we get

|wk+1(x)| ≤ |x|1+α1 , x ∈ R
n\Bθ,

and so |wk+1| ≤ (1 + ζ) in R
n as desired.

Notice as well that, for x ∈ Bλk+1θ and |wk+1| ≤ 1 in Bθ, we have

|u(x)− lk+1(x)| = λ(k+1)(1+α0)|wk+1(λ
−(k+1)x)|

≤ λ(k+1)(1+α0).

By the definition of lk+1, we have ak+1 = ak + λk(1+α0)h(0) and bk+1 =

bk + λkα0∇h(0) and so the theorem is proven. �

Now, the full regularity estimate of Theorem 1 follows as in [8], using a

covering argument.
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