
EXTENSIONS OF SPECIAL 3-FIELDS

STEVEN DUPLIJ AND WEND WERNER

Abstract. We investigate finite field extensions of the unital 3-field, consisting of the
unit element alone, and find considerable differences to classical field theory. Furthermore,
the structure of their automorphism groups is clarified and the respective subfields are
determined. In an attempt to better understand the structure of 3-fields that show up here
we look at ways in which new unital 3-fields can be obtained from known ones in terms of
product structures, one of them the Cartesian product which has no analogue for binary
fields.

1. Introduction

Algebraic structure which is based on composing more than two elements can be traced
back to early work of Dörnte [8] and Post [18] and has later shown an increase in interest,
see for instance [3, 4, 5, 6, 9, 11, 12, 15, 16], and especially in physical model building
[1, 2, 7, 17, 13, 14]. On many occasions, such a theory substantially profit from embedding
objects into a larger structure in which such seemingly unconventional algebraic structure
can be reduced to more conventional concepts. For a typical example see the brief discussion
of ternary commutative groups in [10].

In cases where multiple algebraic operations of this kind are present (for example, the 3-
fields investigated here) such an approach, however, is less successful, and the theory requires
rather novel techniques. Our principal definition in the following is

Definition 1.1. A set R equipped with two operations R3 Ñ R, called ternary addition
and ternary multiplication, is a called a 3-ring, iff for each r, r1,2,3, s1,2 P R

(1) there are additive and, respectively, multiplicative querelements r P R and pr so that
r ˆ̀ r ˆ̀ r1 “ r1 as well as rprr1 “ r1,

(2) s1s2pr1 ˆ̀ r2 ˆ̀ r3q “ s1s2r1 ˆ̀s1s2r2 ˆ̀s1s2r3, and
(3) both operations are associative (i.e. no brackets are needed for multiple applications

of these operations)

R is called commutative, if the order of factors and summands can be permuted in any
possible way, and unital iff there is an element 1 P R with 11r “ r for all r P R.

A (unital) 3-field K is a (unital) 3-ring iff for each k P K there is pk P K so that kpkk1 “ k1

for all k1 P K.

In a 3-ring (or, more generally, in a commutative 3-group), the presence of a multiplicative
unit alone allows to introduce a binary product of commutative groups

x ¨ y “ x1y, (1.1)

which has the property that applying it twice on three factors results in the original ternary
product. Similarly, for a 3-ring R, a zero element 0 is defined by requiring that

0xy “ x0y “ xy0 “ 0 for all x, y P R. (1.2)
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Such an element is uniquely determined and as in the case of a 1-element for the multipli-
cation, it allows for reducing ternary addition of R to a binary one.

The fields we will investigate in the following will come equipped with a ternary addition
(and no zero element), and a multiplication that possesses a unit so that, right from the
outset, we will assume multiplication to be binary. We then have

Theorem 1.2 ([10] Theorems 3.4, 6.1). A unital 3-field F embeds into a binary field K (with
its inherited ternary addition and binary multiplication) if for each y P F zt1u the equation

x` y ´ xy “ 1 (1.3)

has the only solution x “ 1. Whenever F is finite this happens if and only iff F “ t1u.

Let us explain some of the basic features of the theory that will be used in the following
(details are in [10]).

To each unital 3-field F belongs a uniquely determined (binary) local ring UpF q into
which it embeds as the subset UpF q˚ of units in such a way that the ternary sum of F
coincides with the binary sum of UpF q applied twice. (And, conversely, the units of any
local ring U with residual field F2 form a unital 3-field, with its inherited structure.) We
have UpF q “ QpF q Y F , where the binary non-unital ring QpF q consists of all mappings
(pairs) qa,b : f ÞÝÑ f ˆ̀a ˆ̀ b, a, b P F , with addition and multiplication coming from pointwise
operations on the set of mappings F Ñ F . We will frequently make use of the fact that each
q P QpF q has a unique representation in the form q “ q1,f , f P F . As we will consider every
unital 3-field F to be naturally embedded into the binary ring UpF q so that the querelement
f from F becomes ´f .

Remark 1.3. It is for this reason that we no longer will formally distinguish between the
binary and ternary sums and write + throughout.

Any ternary morphism φ : F1 Ñ F2 canonically extends to a binary morphism Qpφq :
QpF1q Ñ QpF2q (and hence to a binary morphism Upφq : UpF1q Ñ UpF2q) via φpqa,bq “
qφpaq,φpbq. The kernel of Qpφq is a binary ideal in UpF1q, and we will address these binary
ideals of UpF1q as the (ternary) ideals of F1. We also will formally write a short exact
sequence of unital 3-fields as

0 ÝÑ J ÝÑ F ÝÑ F0 ÝÑ 0, (1.4)

with the understanding that we actually are dealing with unital 3-fields F1, F and F0, a short
exact sequence of binary rings,

0 ÝÑ UpF1q ÝÑ UpF q ÝÑ UpF0q ÝÑ 0, (1.5)

and the ideal J Ď QpF1q arising as the kernel of the second arrow.
Using analogous definitions for unital 3-rings, the quotient of a unital 3-ring by an ideal J

of UpRq is a unital 3-field iff for any proper ideal J0 of UpRq for which J Ď J0 it follows that
J0 XR “ H. Note that this condition is automatically satisfied when R already is a 3-field.

The basic examples are the prime fields TFpnq “ t2k ´ 1 | k “ 1, . . . , 2n´1u Ď Z{2n and
TFp8q, the ternary field of quotients of the unital 3-ring 2Z ` 1. As unital 3-fields, they
are generated by the element 1. Since the unit of each unital 3-field F generates a uniquely
determined prime field Pn inside F , the number of elements in this subfield, the characteristic
χpF q “ 2n´1 of F , is well-defined.

Extensions of 3-fields are a much more complicated subject than its binary counterpart.
The present investigation is a first attempt at a deeper understanding. The next section
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deals with products which exist thanks to the absence of a zero element. In some cases, they
provide 3-field extensions. The final section is devoted to 3-field extensions of t1u, which are
numerous and follow only in some cases the paths of Galois theory.

2. Products of 3-fields

2.1. Cartesian Products. Since unital 3-fields are supposed to be proper, for each pair
of unital 3-fields F1,2, all elements of the Cartesian product F1 ˆ F2 posses a multiplicative
inverse so that F1 ˆ F2 is itself a unital 3-field, under pointwise operations. For the same
reason, however, there is no canonical embedding of one of these fields into F1 ˆ F2. (There
is an exception in characteristic 1, though: In this case

ι1 : F1 Ñ F1 ˆ F2, ι1pfq “ pf, 12q (2.1)

is an embedding with π1ι1 “ IdF1 .)

Theorem 2.1. Let F be a unital 3-field. Then the following are equivalent:

(1) F is the Cartesian product of two 3-fields F1,2.
(2) There are Q1,2 Ď QpF q so that as a binary ring, QpF q “ Q1 ‘Q2.

Proof. If F “ F1ˆF2 then qpa1,a2q,pb1,b2q P QpF1ˆF2q acts by qpa1,a2q,pb1,b2qpf1, f2q “ pa1` b1`

f1, a2 ` b2 ` f2q establishing the binary ring isomorphism

Z : QpF1 ˆ F2q Ñ QpF1q ‘QpF2q, qpa1,a2q,pb1,b2q ÞÑ pqa1,b1 , qa2,b2q . (2.2)

Assuming QpF q “ Q1 ‘ Q2 as rings, both Qi are ideals of QpF q and hence yield 3-fields
Fi “ F {Qi with corresponding quotient maps πi. Then πpfq “ pπ1pfq, π2pfqq defines an
injective morphism F Ñ F1 ˆ F2 of 3-fields. Because π´1

1 pf1q “ f 0
1 ` Q1 for some f 0

1 P F
and π2pf

0
1 `Q1q “ F2, π is surjective. �

The above result and its proof can easily be extended to infinite products
ś

iPI Fi of 3-
fields, and this is the product in the categorical sense: Whenever, for a 3-field G, there are
morphisms ψi : G Ñ Fi there is a unique mapping ψ : G Ñ

ś

iPI Fi which can be shown to
be a 3-field morphism.

Note also that QpF q “ QpF1q ‘QpF2q is not related to a similar decomposition of UpF q,
since

rQpF1q ‘QpF2qs Y rF1 ˆ F2s ‰ rQpF1q Y F1s ‘ rQpF2q Y F2s (2.3)

Observe that modifying a construction from [10] in order to create direct sums is futile:
Letting, for an odd number of finite 3 fields F1, . . . , Fn (odd, in order to have a unit and,
possibly, invertibility),

n
à

i“1

Fi “

#

pfiq P
n
à

i“1

UpFiq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

B pfiq “ 1

+

(2.4)

where B : UpF q Ñ F2 denotes the natural grading for the unital 3-field F , it turns out that
pfiq possesses an inverse iff pfiq

N “ p1, . . . , 1q and it follows that the set of invertible elements
within

Àn
i“1 Fi equals

Śn
i“1 Fi.
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2.2. Semi-direct Products and Unitization of Algebras. We will base the notion of
a semi-direct products of 3-fields on the concept of a split short exact sequence of unital
3-fields 0 Ñ J Ñ F Ñ GÑ 0.

Definition 2.2. The unital 3-field F is the (internal) semi-direct product of the ideal J Ď
QpF q and the subfield G iff G is the image of an epimorphism π : F Ñ G with Ker π “ J
and right inverse ι : GÑ F .

More abstractly, semi-direct products are connected to algebras over 3-fields. Recall [10]

Definition 2.3. Let A be a binary ring and F a unital 3-field. We call A a binary algebra
over F , iff F acts on A in such a way that, for all f, f1,2,3 P F and a, a1,2 P A,

(1) fpa1 ` a2q “ fa1 ` fa2

(2) pf1 ` f2 ` f3qa “ f1a` f2a` f3a
(3) pf1f2qa “ f1pf2aq
(4) 1Fa “ a

Similarly, we will call A a 3-algebra over F iff A is a 3-ring (with addition coming from an
underlying commutative 3-group) equipped with a binary product so that, for all f, f1,2,3 P F
and a, a1,2 P A,

fpa1 ` a2 ` a3q “ fa1 ` fa2 ` fa3 (2.5)

while axioms (2)-(4) for a binary algebra are left untouched.

Note that we do not assume A to be unital.

Example 2.4. QpF q is an F -algebra where the action of F is given by f1q1,f “ qf1,f1f ,
whenever q1,f P QpF q and f1 P F .

Example 2.5. More generally, if the morphism of unital 3-fields π : F Ñ G possesses the
right inverse σ : GÑ F , the ideal J “ KerQpπq is a G-algebra with G-action g.j “ σpgqj.

We will also need the fact that a binary F -algebra A becomes a binary module over the
local ring UpF q by letting

q1,fa “ a` fa, f P F, a P A. (2.6)

In case A is a 3-algebra, QpF q can only act on QpAq via

q1,fqa,b “ qa,b`fa`fb. (2.7)

Semi-direct products for unital 3-fields will be related to the unitization of an algebra over
a unital 3-field. There are two variants, one with purely binary operations, and another one
for which addition becomes ternary.

Definition 2.6. Let A be an algebra over the unital 3-field F . Then the binary unitization
of A is defined on the additive direct sum

A``F “ UpF q ‘ A (2.8)

with multiplication
pu1, a1qpu2, a2q “ pu1u2, u1a2 ` u2a1 ` a1a2q. (2.9)

Ternary unitization is based on the additively written commutative 3-group A`F “ F ‘ A
and a binary product which is equal to the one in the binary case.

It is straightforward to check that A``F is a binary unital ring, and A`F is a unital 3-ring.
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Theorem 2.7. The unitization A` of a nilpotent algebra A over the unital 3-field F is a
unital 3-field, and it follows that A` is a semi-direct product with canonical quotient map
A` Ñ F and natural split F Ñ F ‘ 0.

Proof. Since A` always is a unital 3-ring we still have to show that each element pf, aq has
an inverse. But, due to nilpotency of A,

p1, aq´1
“

˜

1,
N
ÿ

ν“1

p´1qνaν

¸

(2.10)

for N large enough, and hence pf, aq´1 “ f´1p1, f´1aq´1. �

Corollary 2.8. For a finite unital 3-field F0 a subfield F of F0, and an ideal J Ď QpF0q

equipped with the natural action of F , A`F is a unital 3-field.

There are infinite unital 3-fields F for which QpF q is not nilpotent so in order to find
3-fields among unitizations we need to define invertibility before unitization.

Definition 2.9. An algebra A over a unital 3-field F is called a Q-algebra iff for each a P A
there is a# P A such that aa# “ a` a#.

Example 2.10. The simplest example is an algebra A over the 3-field TFp0q “ t1u. Equiv-
alently, A is a binary ring such that a ` a “ 0 for all a P A and, at the same time, a
(binary) algebra over GFp2q. If also a2 “ 0 for all a P A, A`TFp0q is a unital 3-field in which

p1, aq´1 “ p1, aq for all a P A. If the product of A vanishes identically and if we select a basis
B for the vector space A, we find

A`TFp0q – TFp1q|B| (2.11)

This example also covers the case in which F acts trivially on A, i.e. fa “ a, for all f P F ,
a P A.

Example 2.11. Each nilpotent algebra A over the unital 3-field F is a Q-algebra with

a# “ ´
N
ÿ

ν“1

aν , (2.12)

where aN`1 “ 0.

Lemma 2.12. An algebra A over a unital 3-field F is a Q-algebra if and only if A`F is a
unital 3-field.

Proof. Suppose A is a Q-algebra. We must prove that each element is invertible, and, as in
the proof of Theorem 2.7, it suffices to show p1, qq´1 exists. But it follows from the definition
of q# that p1, qqp1, q#q “ p1, 0q.

Conversely, if p1, qq has inverse pf, qq it follows that f “ 1 and q ` q ` qq “ 0 so that q
provides the #-element, providing A with the structure of a Q-algebra. �

Theorem 2.13. Let F be a unital 3-field. There exists a bijective correspondence between
the unitization of Q-algebras A over F and semi-direct products of 3-fields J ¸ F :

(1) For each Q-algebra A over F , the mapping πA,F : A`F Ñ F , pf, aq ÞÑ f establishes
the short exact sequence of unital 3-fields

0 ÝÑ A ÝÑ A`F ÝÑ F ÝÑ 0 (2.13)

which is split by σA,F : f ÞÑ pf, 0q and so, A`F “ A¸ F .
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(2) Conversely, each split exact sequence 0 Ñ J Ñ F0 Ñ F Ñ 0 naturally defines the
structure of a Q-algebra over F on J and it follows that F0 “ J ¸ F is isomorphic
to J`F .

Proof. By the definition of A`F and Lemma 2.12, πA,F and σA,F are morphisms of unital
3-fields giving rise to the split exact sequence 0 Ñ AÑ A`F Ñ F Ñ 0.

In order to prove the second statement, denote by σ : F Ñ F0 the right inverse to the
quotient morphism π : F0 Ñ F . Example 2.5 shows J is a Q-algebra over F , and the
mapping

J`F ÝÑ F0, pf, qq ÞÝÑ σpfq ` q (2.14)

is an isomorphism of unital 3-fields. �

Example 2.14. Let F be a subfield of F0 and J an ideal of UpF0q. For each q “ q1,f P J ,
q# “ q1,f´1 is in J since q# “ ´qq#´ q. It follows that J is a Q-algebra over F and so F ˙J
is a unital 3-field.

Example 2.15. Let F0 be a unital 3-field with unital subfield F1 and let F “ F0 ˆ F1. Then
QpF q “ QpF0q ‘QpF1q and π2pf0, f1q Ñ f1 is a surjective morphism with kernel

J “
 

q “ qp1,1q,pg0,g1q P QpF q
ˇ

ˇ 0 “ Qpπ2qpqq “ q1,f1

(

“ QpF0q ‘ t0u (2.15)

π2 has the left inverse σ : F1 Ñ F , σpf1q “ pf1, f1q which produces an action of diagF1ˆF1 –

F1 on J given by

pf1, f1qq1,f0 “ f1q1,f0 “ q1,f1`f1f0´1 (2.16)

J is a Q-algebra over F1 with q#1,f0 “ q1,f´1
0

, and the morphism Φ : J`F1
Ñ F0 ˆ F1,

Φpf1 ‘ q1,f0q “ pf1, f1 ` q1,f0q “ pf1, 1` f0 ` f1q (2.17)

is an isomorphism.

2.3. Creating a 3-field action. We complement the above with an intrinsic characteriza-
tion of the binary rings QpF q, this time without using the action of a unital 3-field. First an
observation: The ring structure of QpF q uniquely determines the underlying unital 3-field.

Proposition 2.16. Fix a unital 3-field F1,2 are unital 3-fields and suppose Ψ : QpF1q Ñ

QpF2q is a binary ring morphism. Define Φ : F1 Ñ F2 through Ψpq1,f q “ q1,Φpfq. Then Φ is
a unital 3-field morphism which is an automorphism whenever Ψ is.

Proof. Using the involved definitions, one checks that Φ respects addition and multiplication
of F . Furthermore, 0 “ Ψpq1,1q “ q1,Φp1q, and so Φ is unital. If Ψ is an automorphism and

Ψ´1pq1,aq “ qp1, pΦpaqq then, necessarily pΦ “ Φ´1. �

Definition 2.17. A commutative (binary) ring Q is called a Q-ring iff

(1) There exists a 2-unit τ P Q so that τq “ q ` q for all q P Q.
(2) For each q P Q exists a unique #-element q# P Q with q#q “ q ` q#.

The morphisms between Q-rings are those ring morphisms that map the respective τ -
elements onto each other and respect the #-involution.

We note some consequences of these axioms:

(1) A Q-ring is never unital, since we would have 1# “ 1` 1# and so 1 “ 0.
(2) τ# “ τ and τn “ 2n´1τ
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(3) There might be more than one 2-element: two such elements τ1,2 have to satisfy
pτ1 ´ τ2qx “ 0 for all x P Q.

(4) Similarly, q#1,2 P Q are #-elements for q P Q iff pq#1 ´ q#2 qpq ´ 1q “ 0, within the
unitization of Q. As we will see below, this determines the element q# uniquely.

Theorem 2.18. Q is a Q-ring, iff there is a unital 3-field F such that Q “ QpF q.

Proof. Suppose Q “ QpF q. Then, letting τ “ q1,1 and q#1,f “ q1,f´1 , we have turned QpF q
into a Q-ring. Conversely, whenever F is a Q-ring, define ternary addition ˆ̀ as well as
binary multiplication ˆ̂ by

f1 ˆ̀f2 ˆ̀f3 “ f1 ` f2 ` f3 ´ τ, f ˆ̂g “ τ ´ f ´ g ` fg (2.18)

Then the querelement of f P F for ˆ̀ is f “ τ ´ f , the distributive law holds since

f ˆ̂ pf1 ˆ̀f2 ˆ̀f3q “ 2τ ´ 3f ´ f1 ´ f2 ´ f3 ` ff1 ` ff2 ` ff3 “ f ˆ̂f1 ˆ̀f ˆ̂f2 ˆ̀f ˆ̂f3, (2.19)

also τ ˆ̂f “ τ ` f ´ τf “ f “ f , and f# ˆ̂f “ f ` f# ´ ff# “ 0 “ τ . �

Corollary 2.19. For a nilpotent ring Q there exists a unital 3-field F with Q “ QpF q iff Q
contains a 2-unit τ .

Example 2.20. In the simplest case, when the product on a binary ring R of characteristic
2 vanishes, each element τ P R can serve as a 2-element, while r# “ ´r. For the resulting
unital 3-field F pRqτ we have

r ˆ̀s ˆ̀ t “ r ` s` t` τ r ˆ̂s “ r ` s` τ, (2.20)

and whatever the choice of τ P R, the mapping Φτ : r ÞÝÑ r ` τ provides an isomorphism
between F pRq0 and F pRqτ .

Example 2.21. The rings of pairs Qpnq “ t2k P Z{2n | k “ 0, . . . , 2n´1 ´ 1u for the 3-fields
TF pnq “ t2k ´ 1 P Z{2n | k “ 1, . . . , 2n´1u are Q-rings, with τ “ 2 and, taking the inverse
inside Z{2n,

q# “
q

q ´ 1
. (2.21)

Similarly, Qp8q “ tp{q | p “ 2r, q “ 2s` 1, r, s P Zu is a Q-ring with τ “ 2 and

pp{qq# “
p

p´ q
. (2.22)

Note that in these examples, τ is unique.

Example 2.22. If A is a Q-algebra over the unital 3-field F , the ideal QpF q‘A of the binary
unitization A``F is (still a Q-algebra over F but also) a Q-ring, with τ “ pq1,1, 0q. The map

Ψ : QpA`F q ÝÑ QpF q ‘ A, qp1,0q,pf,aq ÞÝÑ pq1,f , aq , (2.23)

establishes an isomorphism.
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3. 3-field extensions of t1u

It could be argued that an extension of a 3-field F0 should be any unital 3-field F arising
in a short exact sequence

0 ÝÑ J ÝÑ F ÝÑ F0 ÝÑ 0, (3.1)

where J is (identified with) an ideal of UpF q. In this case, F “ F0 ˆ F1 would qualify as an
extension of F0, and the projection onto F0 leads to the short exact sequence

0 ÝÑ QpF1q ˆ 0 ÝÑ F0 ˆ F1 ÝÑ F0 ÝÑ 0. (3.2)

We will nonetheless follow the established notion and call the unital 3-field F an extension
of the unital 3-field F0 in case F0 embeds into F .

In the present situation the structure of all subfields is more complex: Since t1u being
a subfield of a unital 3-field F is equivalent to χpF q “ 1, these extensions coincide with
all unital 3-fields of characteristic 1. The extensions we will consider here belong to the
following class.

Definition 3.1. Fix a unital 3-field F as well as natural numbers n1, . . . , nk P N and put

F pn1, . . . , nkq “

#

1`
ÿ

0‰α

εαpx´ 1qα

ˇ

ˇ

ˇ

ˇ

ˇ

εα P F2, px´ 1qnκ “ 0, κ “ 1, . . . , k

+

. (3.3)

Note that by using semi-direct sums we may reduce the number of variables in this exam-
ple: Consider the map xi ÞÝÑ 1 and extend it to an epimorphism πi on F pn1, . . . , nkq,

1`
ÿ

0‰α

εαpx´ 1qα ÞÝÑ 1`
ÿ

0‰α, αi“0

εαpx´ 1qα (3.4)

with image F pn1, . . . , ni´1, ni`1, . . . nkq and kernel consisting of the ideal

Ji “ pxi ´ 1q
ÿ

α

εαpx´ 1qα. (3.5)

The elements of F pn1, . . . , ni´1, ni`1, . . . nkq embed naturally into F pn1, . . . , nkq and act on
Ji by multiplication so that

F pn1, . . . , nkq “ F pn1, . . . , ni´1, ni`1, . . . nkq ˙ Ji (3.6)

A slightly more sophisticated way of writing down these 3-field extensions is obtained in
the following way.

Definition 3.2. Fix a finite Abelian binary group G as well as a local (binary) ring R with
residual field F2 “ t0, 1u. Consider the group algebra RG over R. Then

FG “ tf P RG | fp0q P R
˚
u (3.7)

is called the ternary group algebra of G over the 3-field R˚.

Theorem 3.3. FG is a 3-field, extending R˚, and, in case R “ t0, . . . , 2n ´ 1u “

Up1, 3, . . . , 2n ´ 1q, each finite unital field extensions of the unital 3-field t1, 3, . . . , 2n ´ 1u
which is contained in an extension generated by a single elements is isomorphic to one of
these fields.
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3.1. Extensions of characteristic 0, generated by a single element. We are going to
consider extensions of F0 “ TFp0q “ t1u, with prime field identical to TFp0q, and generated
by a single element.

Theorem 3.4. Any finite unital 3-field F of characteristic 1 which is generated by a single
element x is isomorphic to F0pnP q where nP is the smallest natural number with p1´xqn “ 0.
If pP q “ min ti | ηi ‰ 0u then nP “ rn{ks.

Proof. Consider the polynomial 3-ring F0rxs “ t1`
řn
ν“1 ενpx´ 1qν | εν P F2u for which

UF0rxs is the principal domain F2rxs. Consequently, whenever F is generated by a single
element, there is a polynomial P P QF0rxs “ t

řn
ν“0 ενpx´ 1qν | εν P F2u such that F “

F0rxs{xP y. The polynomial P cannot be of the form

P “ px´ 1qn

˜

1` px´ 1qk `
N
ÿ

ν“k`1

πνpx´ 1qν

¸

, πν P F2, (3.8)

because then x1` px´ 1qk `
řN
ν“k`1 πνpx´ 1qνy would be strictly larger than xP y, intersect

F0rxs and thus contradict [10][Theorem 1]. So, P “ px´1qn for the smallest n with px´1qn “
0 within the 3-field F . �

Any attempt at creating a theory related to classical Galois theory has to deal with a
number of obstacles, one of them, for example, the less useful factorization of polynomials:
In F0p4q, for example, the polynomial 1 ` px ´ 1q ` px ´ 1q3 “ r1` px´ 1qs r1` px´ 1q3s
vanishes at 1 when using the right hand representation, while it takes the value 1 when 1 is
plugged into 1` px´ 1q ` px´ 1q3.

Proposition 3.5. The ideals of F0pnq are

Ik “

#

ÿ

νěk

ενpx´ 1qν

ˇ

ˇ

ˇ

ˇ

ˇ

εν P F2

+

, k “ 1, . . . , n´ 1 (3.9)

Consequently, F0pnq never is a Cartesian product of 3-fields.

Proof. Since the ring UF0pnq “
 
řn´1
ν“0 ενpx´ 1qν

ˇ

ˇ εi P F2

(

is principal, for each proper
ideal I in QF0pnq the ideal

ă I, F0pnq ą“
!

ÿ

qip1` riq
ˇ

ˇ

ˇ
qi P I, ri P QF0pnq

)

Ď I` I (3.10)

is the same as I and so I “ă P0 ą, with P0 P QF0pnq. Since each P P QF0pnq can be written
P “ px´ 1qsp1` Rq, p1` Rq invertible, 1 ď s ď n´ 1, it follows that the ideals of QF0pnq
are precisely those of the form Ik “ă px´ 1qk ą. But Is X It “ Imaxts,tu, Is ` It “ Imints,tu

and, by applying Theorem 2.1, we conclude that F0pnq never is a proper Cartesian product
of 3-fields. �

Whether or not F0pnq can be written as a semi-direct product is a slightly more delicate
question, and we will return to it elsewhere.

Lemma 3.6. Denote by ϕn : F0pnq Ñ F0pnq the Frobenius morphism P ÞÝÑ P 2, by F0pnq
2

its image, and, for k ě 2 let µn,k : F0pnq Ñ F0pkq be defined by

µn,k

˜

1`
n´1
ÿ

i“1

εipx´ 1qi

¸

“ 1`
k´1
ÿ

i“1

εipx´ 1qi. (3.11)
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(1) ϕn and µn,k are morphisms,

Kerϕn “ Irn{2s, and Kerµn,k “ Ik (3.12)

(2) The product on Kerϕn vanishes identically so that p1` P1qp1` P2q “ 1` P1 ` P2.

Proof. (1) Both maps are well-known (and easily seen to be) morphisms. Furthermore, the
image of %n can naturally be embedded into F0pnq. �

The additive structure of F0pnq is most transparent on UF0pnq, which is a (binary) vector
space with basis

 

px´ 1qk
ˇ

ˇ k “ 0, . . . , n´ 1
(

. The multiplicative structure of these fields
is the following.

Theorem 3.7. Each element f P F0pnq has a uniquely defined factorization f “ γα0
0 . . . γαKK

where

γk “ 1` px´ 1q2k`1 0 ď 2k ` 1 ď n´ 1, (3.13)

and it follows that the multiplicative group underlying F0pnq is isomorphic to the direct prod-
uct Cn,0ˆ . . .ˆCn,Kn of the cycles Cn,k of the γk, with Kn “ max tk | 2k ` 1 ď n´ 1u, and
Cn,k – Z{2spn,kq, spn, kq “ min t2t | 2tk ě nu. Consequently, with respect to its multiplicative
structure,

F0pnq –
ź

0ď2k`1ďn

`

Z{2spn,kq
˘rpn,kq

, (3.14)

Proof. The cases n “ 2 is trivial, and the elements of F0p3q are γk0 , k “ 0, . . . , 3. If the
statement is true for F0pnq, f P F0pn`1q has a uniquely defined factorization f “ gγα0

0 . . . γαKK
where g P t1` εpx´ 1qn | ε “ 0, 1u, the multiplicative kernel of the canonical morphism
π : F0pn ` 1q Ñ F0pnq. If n is odd, this already proves the claim; in case n is odd and
g ‰ 1 we must have g “ p1` px´ 1q`q2

m
, ` odd, and the statement of the result follows for

n` 1. �

3.2. Intermediate Fields. We start with slightly generalizing Corollary 2.19.

Theorem 3.8. Suppose Q is a nilpotent ring with 2-unit τ and let F be the unital 3-field
with QpF q “ Q.

(1) Q1 ù 1 ` Q1 Ď F establishes a one-to-one correspondence between the subrings Q1

of Q with τ P Q1 and the unital 3-subfields F 1 of F .
(2) The unital 3-subfield F0 is generated by elements 1` q1, . . . , 1` qn iff QpF0q is gen-

erated by τ “ q1,1 and q1, . . . , qn.
(3) The automorphisms Φ of F leaving the subfield F 1 pointwise fixed correspond to the

automorphisms QΦ, leaving Q1 “ QpF 1q pointwise fixed.

Proof. (1) If F0 is a unital 3-subfield of F , the unit of F0 must equal the one in F , and QpF0q

is a subring containing ζ “ q1,1 which has the property that ζq “ q ` q for all q P QpF0q.
Note that 1`QpF0q “ F0.

Conversely, assume that Q Ď QpF q with τ P Q and define F1 “ tf P F | q1,f P Qu. We
have 1 P F1 since τ P Q and ´1 P F1 because 0 P Q. It follows similarly that for all f, g P F1,

1` f ` g P F1, f ` g ` gf P F1, (3.15)

and that there is f̆ with 1` f ` f̆ “ ´1. From this, and the nilpotency of Q it follows that
F1 is unital 3-field such that F1 “ 1`Q.
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(2) The subring Q0 generated by τ and q1, . . . , qn consists of the elements kτ `
ř

α εαq
α,

k P N0. Note that due to nilpotency, this ring is of finite characteristic. Then 1 ` Q0 is
a unital 3-field, consisting of elements k `

ř

α εαq
α, k odd, and resolving the brackets in

k`
ř

α εαp1`qq
α shows that 1`Q0 is the unital 3-field generated by 1 and 1`q1, . . . , 1`qn.

Conversely, if F0 is generated by 1, 1 ` q1, . . . , 1 ` qn, QpF0q contains τ, q1, . . . , qn and thus
the binary ring Q0, generated by these elements. By the first part of this proof, F0 “ 1`Q0,
and so Q0 “ QpF0q.

(3) This follows from the involved definitions. �

Remark 3.9. The last theorem can be easily generalized to Q-rings and their Q-subrings,
where a Q-subring Q1 of the Q-ring Q is defined by the requirement that τ P Q1 and that
Q1 is invariant under the #-operation.

Corollary 3.10. For each ideal J of the finite unital 3-field F the subalgebra 1` J a unital
subfield.

Proof. For ζ “ q1,1 P QpF q we have ζ “ qpq ´ 1q´1 P J . �

Corollary 3.11. For a unital 3-subfield F of F0pnq which is generated by polynomials
P1, . . . , Pg there exist natural numbers n1, . . . , ng such that F – F0pn1, . . . , ngq.

Example 3.12. The smallest subfields, those of order 2, are generated by polynomials

1` px´ 1qkp1` P1q “
`

1` px´ 1qk
˘

p1` P1q ´ P1 (3.16)

with 2k ě n. We call k the lower degree of the subfield. As we will see, the automorphisms
which are constant on such a field are of the form ΨP with P0 “ px´ 1q ` px´ 1q`p1` P1q

with ` ě n´k`1 so that AutF0pnq cannot distinguish between subfields of the same degree
in terms of fixed point subgroups. On the other hand, all elements of AutF0pnq preserve k,
and, since

Ψp1` P1q “ pΨpP q ´ 1qΨpx´ 1q´k ´ 1 “ px´ 1qkp1`Q1q, (3.17)

Example 3.13. The subfield of squares, F0pnq
2 “

 

f P F0pnq | f “ 1`
ř

νě1 ηνpx´ 1q2ν
(

is
isomorphic to all subfields generated by a polynomial of the form f0 “ 1` px´ 1q2f1,

We will need

Lemma 3.14. Fix a natural number α, write α “
řnα
ν“0 αν2

ν, αν “ 0, 1, and let

Nα “

#

nα
ÿ

ν“0

εναν2
ν

ˇ

ˇ

ˇ

ˇ

ˇ

εν “ 0, 1

+

. (3.18)

Then
“

1` px´ 1qk
‰α
“ 1`

ÿ

nPNα

px´ 1qkn. (3.19)

Conversely, given N Ď t1, . . . , n ´ 1u, then PN “ 1 `
ř

νPNpx ´ 1qν “ p1 ` px ´ 1qkqα iff
N Ď kN and

N “

#

ÿ

ν

εν2
ν

ˇ

ˇ

ˇ

ˇ

ˇ

k2ν P N, εν “ 0, 1

+

X t1, . . . , n´ 1u. (3.20)

Proof. We have

p1` px´ 1qkqα “
nα
ź

ν“0

`

1` px´ 1qk2ν
˘αν

, (3.21)
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and each subset N 1 Ď tν | αν “ 1u corresponds to exactly on of the summands px´ 1qkn of
1`

ř

nPNα
px´ 1qkn, where n “

ř

νPN 1 2
ν (and with n “ 0 for the empty set). �

We start with a ‘local’ version Theorem 3.4.

Lemma 3.15. The unital 3-subfield generated by P “ 1` px´ 1qkp1` Pkq P F0pnq is given
by

xP y “

#

1`
ÿ

0ăkiďn´1

ηipx´ 1qkip1` Pkq
i

ˇ

ˇ

ˇ

ˇ

ˇ

ηi P F2

+

“: F1 (3.22)

and is isomorphic to

x1` px´ 1qky “

$

&

%

1`
ÿ

0ăiďpn´1q{k

ηipx´ 1qki

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ηi P F2

,

.

-

. (3.23)

Proof. By (a slight modification of) Lemma 3.14 the elements of xP y belong to F1, and
since F1 is a unital 3-field, xP y Ď F1. By Theorem 3.4, the isomorphism class of xP y is
determined by the minimal number nP with pP ´ 1qnP “ 0. This number is the same for P
and 1 ` px ´ 1qk hence xP y – x1 ` px ´ 1qky are both of cardinality 2nP´1. Since also F1 is
of this cardinality, F1 “ xP y. �

Theorem 3.16. F Ď F0pnq is a subfield iff there are natural numbers g1, . . . , gk ď n ´ 1,
k ď n´ 1, with

F – F0pn; g1, . . . gkq :“ x1` px´ 1qg1 , . . . , 1` px´ 1qgky “

“

#

1`
ÿ

1ďν1g1`...`νkgkďn´1

εν1ν2...νkpx´ 1qν1g1`...`νkgk

ˇ

ˇ

ˇ

ˇ

ˇ

εν1...νk P F2

+

“: Gpn; g1, . . . , gkq.

(3.24)

Proof. In order to see that F0pn; g1, . . . , gkq is unital 3-subfield it suffices to show that it is
a unital 3-subring. But this is obvious, and it follows that F0pn; g1, . . . , gkq is contained in
Gpn; g1, . . . , gkq. By Lemma 3.15,

1` px´ 1qµgi`νgj “

“ p1` px´ 1qµgiqp1` px´ 1qνgjq ´ p1` px´ 1qµgiq ´ p1` px´ 1qνgjq (3.25)

is contained in F0pn; g1, . . . gkq, and similarly, 1`px´1qν1g1`...`νkgk P F0pn; g1, . . . , gkq. Using
induction over the number of elements in tεν1,...,νk “ 1u with the induction step of adjoining
1` px´ 1qxµ,gy to 1`

ř

1ďxg,νyďn´1 ενpx´ 1qxν,gy being established by

1` px´ 1qxµ,gy `
ÿ

1ďxg,νyďn´1

ενpx´ 1qxν,gy “

“ 1`
`

1` px´ 1qxµ,gy
˘

`

¨

˝1`
ÿ

1ďxg,νyďn´1

ενpx´ 1qxν,gy

˛

‚, (3.26)

one shows that, conversely, Gpn; g1, . . . , gkq Ď F0pn; g1, . . . , gkq. �
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Let F Ď F0pnq be a subfield. We call the semigroup

ExF “ tα P Z{n | 1` px´ aqα P F u (3.27)

the exponents of F . The proof of the following results rest on

Lemma 3.17. Suppose S is a sub-semigroup of the additive semigroup Z{n and N0 one of
its subsets. Then

(1) there are uniquely determined elements s1 ă . . . ă sk P S with

sκ`1 “ minSz tz1s1 ` . . .` zκsκ | zi P Z{nu (3.28)

S “ tz1s1 ` . . .` zksk | zi P Z{nu (3.29)

Equivalently, none of the si divides sj.
(2) The sub-semigroup SpN0q generated by N0 can be constructed inductively by letting

s1 “ minN0 and sn`1 “ minN0z tz1s1 ` . . . znsn | z1, . . . zn P Nu as long as the latter
set is not empty. If M is the index before this happens,

SpN0q “ z tz1s1 ` . . . zMsM | z1, . . . zM P Nu (3.30)

Corollary 3.18. The set of isomorphism classes of subfields of F0pnq is order isomorphic
to the set of sub-semigroups of the additive semigroup Z{n. Furthermore, two subfields F1,2

of F0pnq are isomorphic iff ExF1 “ ExF2.

3.3. The group of automorphisms and the global involution. For the following it is
important to observe that the elements of

QF0pnq “

#

n´1
ÿ

i“1

εi px´ 1qi

ˇ

ˇ

ˇ

ˇ

ˇ

εi P F2

+

(3.31)

are in 1-1 correspondence with unital endomorphisms Φ of F0pnq: Each such Φ is uniquely
determined by the polynomial PΦ “ QΦpx ´ 1q P QF0pnq and, conversely, any polynomial
P “ 1 ` P0 P F0pnq “ 1 ` QF0pnq provides a unital endomorphisms ΦP , defined for Q “

1`Q0px´ 1q P F0pnq by

ΦP p1`Q0px´ 1qq “ 1`Q0 ˝ P0 mod px´ 1qn. (3.32)

This map is well-defined because the ideal generated by px´ 1qn for the ternary polynomial
ring F0rxs within

QF0rxs “

#

N
ÿ

i“1

εi px´ 1qi

ˇ

ˇ

ˇ

ˇ

ˇ

N P N, εi P F2

+

(3.33)

is invariant under composition with polynomials in px´ 1q from the right. It is additive and
respects multiplication because

ΦP pp1`Q0px´ 1qq p1`R0px´ 1qqq “

“ 1` pQ0px´ 1q `R0px´ 1q `Q0px´ 1qR0px´ 1qq ˝ P0 “

“ ΦP p1`Q0px´ 1qqΦP p1`R0px´ 1qq (3.34)

Since ΦQ ˝ ΦP “ ΦQ˝P we have shown the first part of
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Theorem 3.19. The mapping Φ ÞÝÑ QΦpx´1q establishes an isomorphism between the ring
of unital endomorphisms of F0pnq with respect to composition of maps and QF0pnq, equipped
with composition of polynomials in the variable px´ 1q.

Under this identification, a polynomial P corresponds to an automorphism of F0pnq iff
there is a polynomial Q P F0pnq such that P0 ˝Q0 “ P0 ˝Q0 “ px´ 1q which is equivalent to

QΦpx´ 1q “ px´ 1q `
n´1
ÿ

i“2

εkpx´ 1qk. (3.35)

Proof. We still have to show the final statement. For arbitrary n “ α0`α12`. . .`αN2N P N,
αν P F2 and any polynomial P0 “

řn´1
i“1 εkpx´ 1qk

P n
0 “

˜

n´1
ÿ

i“1

εkpx´ 1qk

¸α0
˜

n´1
ÿ

i“1

εkpx´ 1q2k

¸α1

. . .

˜

n´1
ÿ

i“1

εkpx´ 1q2
N

¸αN

, (3.36)

with some of the factors of highest order potentially equal to zero. Accordingly, for no
polynomial Q0, Q0 ˝ P0 has px ´ 1q as lowest term if P0 doesn’t, and any polynomial P0

giving rise to an automorphism must have px ´ 1q as lowest term. 1 (This could also be
shown by using the ideal structure of F0pnq.)

For the converse, we represent ΦP with P0 “ px´ 1qkp1` P1q as a matrix with respect to
the basis px´ 1qν , ν “ 1, . . . , n´ 1, of UpF0pnqq. Writing

ΦP rpx´ 1qνs “ px´ 1qνp1` P1q
ν (3.37)

as row vectors, it turns out that the resulting matrix is upper triangular with 1’s on the
main diagonal so that ΦP must be invertible. �

Using the multinomial identity

pa1 ` . . . amq
n
“

ÿ

i1`...`im“n

n!

i1! . . . im!
ai11 . . . a

im
m (3.38)

we find for the polynomial P0 “ px´ 1q `
řn´1
ν“2 ενpx´ 1qν

P k
0 “

ÿ

i1`...in´1“k

k!

i1! . . . in´1!
ε2 . . . εn´1px´ 1qi1`2i2`...`pn´1qin´1 “ (3.39)

“

n´1
ÿ

`“k

¨

˝

ÿ

i1`2i2`...`pn´1qin´1“`

k!

i1! . . . in´1!
ε2 . . . εn´1

˛

‚px´ 1q` (3.40)

On the other hand, over F2, and with n “
řN
ν“0 nν2

ν ,

pa1 ` . . . amq
n
“

N
ź

ν“0

`

a2ν

1 ` . . .` a2ν

m

˘nν
(3.41)

and

P k
0 “

N
ź

ν“0

`

px´ 1q2
ν

` . . .` εµpx´ 1q2
νµ . . .` εmpx´ 1q2

νm
˘nν

(3.42)

1Note that this is different for polynomials P of the form 1 `
ř

kě1 εkx
k, since large powers of the

polynomial x might contain a constant term. For example, in F0p5q, x
5 “ x4 ` x ´ 1, and also px ` x2 `

x4q ˝ p1` x` x2q “ x.
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Corollary 3.20. The coefficients of AP “ pα
P
k`q are

αPk` “
ÿ

i1`2i2`...`pn´1qin´1“`

k!

i1! . . . in´1!
ε2 . . . εn´1, (3.43)

for k “ 1, . . . , n´ 1, ` “ k, . . . , n´ 1.

If opΦP q “ 2`pΦP q denotes the order of ΦP P AutF0pnq then Φ´1
P “ Φ

opΦP q´1
P . An algorithm

of lower complexity is obtained using matrix products

Corollary 3.21. Let P “ 1` px´ 1q `P1 “
řn
ν“0 ενpx´ 1qν be the polynomial that belongs

to ΦP P AutpF q. Then the coefficients of the polynomial pP “
řn
ν“0 pενpx ´ 1qν for which

Φ´1
P “ Φ

pP can be recursively calculated using

pε0 “ pε1 “ 1 pε` “ pε1ε
p1q
` ` pε2ε

p2q
` ` . . .` pε`´1ε

p`´1q
` (3.44)

Lemma 3.22. Let sn “ ´
řn´1
ν“1px´ 1qν P QF0pnq. Then Rn :“ Φsn has order 2 and

Rn

«

1`
n´1
ÿ

i“1

εipx´ 1qi

ff

“ 1`
n´1
ÿ

i“1

εi
`

px´ 1q#
˘i
. (3.45)

Proof. Since, with respect to multiplication,

sn “ 1` rpx´ 1q ´ 1s´1 (3.46)

it follows that 1`psn´ 1q´1 “ px´ 1q or, sn ˝ sn “ px´ 1q (which is equivalent to observing
that q ÞÑ q# is an involution, Definition 2.9 and Example 2.11). The somewhat more explicit
form for Rn is a consequence of the fact that sn “ px´ 1q#. �

Lemma 3.23. A group G of order 2n has a representation Z{2¸H iff G contains a normal
subgroup H of order n as well as an involution r P GzH.

Proof. The short exact sequence H Ñ G Ñ Z{2 can be split by mapping the non-unit of
Z{2 to r. �

Lemma 3.24. Define

Mn,k : AutF0pnq Ñ AutF0pkq, Mn,kΦpx` Ikq “ Φpxq ` Ik, (3.47)

where 1`
řn´1
ν“1 ενpx´ 1qν ` Ik P F0pnq{Ik is identified with 1`

řk´1
ν“1 ενpx´ 1qν P F0pkq.

(1) Identifying F0pkq with F0pnq{Ik, if Φ “ ΦP with P “ px´ 1q `
řn´1
ν“2 ενpx´ 1qν then

Mn,kΦP “ px´ 1q `
k´1
ÿ

ν“2

ενpx´ 1qν , (3.48)

and KerMn,k is equal to

Γn,k “

#

ΦP P AutF0pnq | P0 “ px´ 1q `
n´1
ÿ

ν“k

ενpx´ 1qν , εν P F2

+

(3.49)

(2) Restricting Mn,k`1 to Γn,k yields an exact sequence

0 ÝÑ Γn,k`1 ÝÑ Γn,k ÝÑ Γk`1,k ÝÑ 0 (3.50)

This sequence splits whenever k ą 2 so that in this case,

Γn,k – Γn,k`1 ¸ F2. (3.51)
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(3) Similarly, ϕn generates the group morphism

%n : AutF0pnq Ñ Aut
`

F0pnq
2
˘

, %npΦq “ Φ|F0pnq2
(3.52)

Identifying the subfield of squares in F0pnq with F0

`X

n
2

\˘

, the effect of %n on the
polynomial P representing Φ “ ΦP can be seen as

%n : AutF0pnq Ñ AutF0

´Yn

2

]¯

, P ÞÑ P |F0pt
n
2

uq
(3.53)

In this picture, ΦP P Ker %n iff P “ px´ 1q `
ř

νěrn{2s
ενpx´ 1qν.

(4) Accordingly, for each k with 2k ď n there is a short exact sequence

Gn,k ÝÑ AutF0pnq ÝÑ Aut
´

pF0pnq
2k
¯

– AutF0

´Y n

2k

]¯

(3.54)

where Gn,k is the normal subgroup of automorphisms for which 1`px´1q2
k

is a fixed
point. The polynomials P0, representing Φ P Gn,k via Φp1` px´ 1qq “ 1`P0px´ 1q,
are characterized by

P0 “ px´ 1q `
ÿ

iąpn´1q{2k

εipx´ 1qi “

px´ 1q ` px´ 1qrpn´1q{2ks

n´1´rpn´1q{2ks
ÿ

i“1

εipx´ 1qi, εi P F2, (3.55)

and it follows that Gn,1 is commutative.

Proof. (1) Because Ik “ Kerµn,k “
 
řn´1
i“k`1 εipx´ 1qi

ˇ

ˇ εi P F2

(

is invariant under substitu-
tion by any polynomialQ0 “ px´1q`

řn
i“2 ηipx´1qi (which also follows from Lemma 3.5, each

Φ P AutF0pnq acts on F0pnq{Kerµn,k “ F0pkq by substitution and an application of µn,k.
The resulting elementMn,kpΦq P AutF0pkq then maps x´1 to µn,kP0 for Φ “ ΦP P AutF0pnq.
Consequently, Mn,k : AutF0pnq Ñ AutF0pkq is a morphism with kernel consisting of auto-

morphisms ΦP P AutF0pnq such that for all Q “ 1`
řk´1
i“1 qipx´ 1qi

µn,kΦP pQq “ µn,k p1`Q0 ˝ P0q “ Q. (3.56)

which shows that P “ 1` px´ 1q `
řn
i“k ηipx´ 1qi.

(2) The short exact sequence is established using (1). Polynomials for elements of
Γn,kzΓn,k`1 are of the form P “ px´1q`px´1qk`

řn´1
i“k`1 εipx´1qi so that Rn R Γn,kzΓn,k`l

if k ą 2. The claim follows from Lemma 3.22 and Lemma 3.23.
(3) %npΦq is a well-defined morphism. Identifying F0ptn{2uq with F0pnq

2 via σnpP q “ P 2,
one has for P “ px´ 1q `

řn´1
ν“2 ενpx´ 1qν

σ´1
n %npΦP qσnpx´ 1q “ σ´1

n P 2
“ px´ 1q `

tn{2u
ÿ

ν“2

ενpx´ 1qν (3.57)

The elements ΦP in the kernel Gn,k of %kn restrict to all polynomials
ř

i2kďn´1 εipx´ 1qi2
k

as

the identity or,
ř

i2kďn´1 εiP0px´1qi2
k
“
ř

i2kďn´1 εipx´1qi2
k
. Equivalently, P 2k

0 “ px´1q2
k
,

showing that P0 “ px´ 1q `
ř

nďi2k εipx´ 1qi. The commutativity of Gn,1 is a consequence
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of the fact that for P0, Q0 P Gn,1 we have

P0 ˝Q0px´ 1q “ Q0px´ 1q `
n´1
ÿ

i“rn{2s

εiQ
i
0px´ 1q “ Q0px´ 1q ` P0px´ 1q (3.58)

�

Corollary 3.25. For each n ě 3,

AutF0pnq – F2 ¸ F2 . . .¸ F2, (3.59)

an pn´ 2q-fold semi-direct product of F2.

Proof. By induction, this is a consequence of Lemma 3.6 (2). �

This last result by itself does not reveal much of the structure of AutF0pnq: Analogous
results hold for each nilpotent Lie groups and, in all likelihood, it is possible to obtain
the former by showing that AutF0pnq is a (nilpotent) Lie group in characteristic 2. More
information can be gained by further investigating the involution that is underlying the proof
of the above result.

Definition 3.26. Let f P F0pnq as well as Φ P AutF0pnq.

(1) Define conjugations f˚ and Φ˚ by

f˚ “ Rnpfq Φ˚pfq “ Φpf˚q˚, (3.60)

(2) and we denote the 1-eigenspaces of these involutions by

F0pnq1 “ tf P F0pnq | f
˚
“ fu , AutF0pnq1 “ tΦ P AutF0pnq | Φ˚ “ Φu (3.61)

Example 3.27. All elements of Jk with k ě n{2 are contained in F0pnq1, because if f “ px´1qk

then, for k “
ř

n0
αν2

ν

f˚ “ skn “
ź

n0

˜

n´1
ÿ

µ“1

px´ 1qναν2ν

¸

(3.62)

Appendix A. A representation of the truncated Nottingham groups
AutF0p3q – AutF0p7q

The case n “ 2 is trivial, for n “ 3 the polynomials 1` px´ 1q and P pxq “ 1` px´ 1q `
px´ 1q2 give rise to identity as well as to the automorphism with representing matrix

AP “

ˆ

1 1
0 1

˙

(A.1)

If n “ 4, besides the identity, P1 “ 1 ` px ´ 1q ` px ´ 1q2, P2 “ 1 ` px ´ 1q ` px ´ 1q3 and
P3 “ 1` px´ 1q ` px´ 1q2 ` px´ 1q3 correspond to

A1 “

¨

˝

1 1 0
0 1 0
0 0 1

˛

‚ A2 “

¨

˝

1 0 1
0 1 0
0 0 1

˛

‚ A3 “

¨

˝

1 1 1
0 1 0
0 0 1

˛

‚, (A.2)
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which is the cyclic group C4. For n “ 5, Pα “ 1`px´1q`
ř4
i“2 αi´2px´1qi, with pα0, α1, α2q

representing the binary representation of α, produces the matrices

A0 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

A1 “

¨

˚

˚

˝

1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1

˛

‹

‹

‚

A2 “

¨

˚

˚

˝

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

A3 “

¨

˚

˚

˝

1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

˛

‹

‹

‚

(A.3)

A4 “

¨

˚

˚

˝

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

A5 “

¨

˚

˚

˝

1 1 0 1
0 1 0 1
0 0 1 1
0 0 0 1

˛

‹

‹

‚

A6 “

¨

˚

˚

˝

1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

A7 “

¨

˚

˚

˝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

˛

‹

‹

‚

.

(A.4)

As observed earlier, this group is isomorphic to the dihedral group of order 8, i.e. C4 ¸ C2.
Similarly for n “ 6, Pα “ 1 ` px ´ 1q `

ř5
i“2 αi´2px ´ 1qi, with pα0, α1, α2, α3q again the

binary representation of α we have

A0 “

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A1 “

¨

˚

˚

˚

˚

˝

1 1 0 0 0
0 1 0 1 0

0 0 1 1 1

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A2 “

¨

˚

˚

˚

˚

˝

1 0 1 0 0
0 1 0 0 0

0 0 1 0 1

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A3 “

¨

˚

˚

˚

˚

˝

1 1 1 0 0
0 1 0 1 0

0 0 1 1 0

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

(A.5)

A4 “

¨

˚

˚

˚

˚

˝

1 0 0 1 0

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A5 “

¨

˚

˚

˚

˚

˝

1 1 0 1 0

0 1 0 1 0
0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A6 “

¨

˚

˚

˚

˚

˝

1 0 1 1 0

0 1 0 0 0
0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A7 “

¨

˚

˚

˚

˚

˝

1 1 1 1 0

0 1 0 1 0
0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

(A.6)

A8 “

¨

˚

˚

˚

˚

˝

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A9 “

¨

˚

˚

˚

˚

˝

1 1 0 0 1

0 1 0 1 0

0 0 1 1 1
0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A10 “

¨

˚

˚

˚

˚

˝

1 0 1 0 1

0 1 0 0 0

0 0 1 0 1
0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

A11 “

¨

˚

˚

˚

˚

˝

1 1 1 0 1

0 1 0 1 0

0 0 1 1 0
0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‚

(A.7)

A12 “

¨

˚

˚

˚

˚

˝

1 0 0 1 1
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A13 “

¨

˚

˚

˚

˚

˝

1 1 0 1 1
0 1 0 1 0

0 0 1 1 1

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A14 “

¨

˚

˚

˚

˚

˝

1 0 1 1 1
0 1 0 0 0

0 0 1 0 1

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

A15 “

¨

˚

˚

˚

˚

˝

1 1 1 1 1
0 1 0 1 0

0 0 1 1 0

0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

(A.8)

Calculating the cycle graph of this group, it turns out to be G16
3 “ K4¸C4 “ pC4ˆC2q¸C2,

where K4 denotes the Klein 4-group, (Wikipedia, List of small groups).

https://en.wikipedia.org/wiki/List_of_small_groups#List_of_small_non-abelian_groups
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We follow the same procedure in case n “ 7 and obtain

A0 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A1 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 0 0

0 1 0 1 0 0

0 0 1 1 1 1
0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A2 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A3 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 0 0 0

0 1 0 1 0 1

0 0 1 1 0 1
0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.9)

A4 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 1 0 0

0 1 0 0 0 0
0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A5 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 0 0

0 1 0 1 0 0
0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A6 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 1 0 0

0 1 0 0 0 1
0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A7 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 0 0

0 1 0 1 0 1
0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.10)

A8 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 1 0

0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A9 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 1 0

0 1 0 1 0 0
0 0 1 1 1 1

0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A10 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 0 1 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A11 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 0 1 0

0 1 0 1 0 1
0 0 1 1 0 1

0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.11)

A12 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 1 1 0

0 1 0 0 0 0
0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A13 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 1 0

0 1 0 1 0 0
0 0 1 1 1 0

0 0 0 1 0 0
0 0 0 0 1 1

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A14 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 1 1 0
0 1 0 0 0 1

0 0 1 0 1 1

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A15 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 0
0 1 0 1 0 1

0 0 1 1 0 0

0 0 0 1 0 0
0 0 0 0 1 1

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.12)

A16 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 1
0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A17 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 0 1

0 1 0 1 0 0

0 0 1 1 1 1
0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A18 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 0 0 1

0 1 0 0 0 1

0 0 1 0 1 0
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A19 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 1 0 1

0 1 0 0 0 0

0 0 1 0 0 1
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.13)

A20 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 1 1

0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A21 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 0 0 1

0 1 0 1 0 1

0 0 1 1 0 1
0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A22 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 0 1

0 1 0 1 0 0

0 0 1 1 1 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A23 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 1 1

0 1 0 1 0 0

0 0 1 1 1 1
0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.14)

A24 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 1 0 1

0 1 0 0 0 1
0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A25 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 0 1 1
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A26 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 1 1 1

0 1 0 0 0 0
0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A27 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 0 1

0 1 0 1 0 1
0 0 1 1 0 0

0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.15)

A28 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 0 1 1

0 1 0 1 0 1
0 0 1 1 0 1
0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A29 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 1 1

0 1 0 1 0 0
0 0 1 1 1 0

0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A30 “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 1 1 1 1

0 1 0 0 0 1
0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

A31 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1

0 1 0 1 0 1
0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

(A.16)

The cycle graph reveals that AutF0p7q “ G32
6 “ ppC4 ˆ C2q ¸ C2q ¸ C2.
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E A2

A3A6

A7

A1

A4

A5

conj

conj

1

Figure 1. Cycle graph for AutF0p5q “ C4¸C2 “ D4, the Dihedral Group of
order 8, with C2 acting by inversion. The dotted lines indicate conjugation, as
in Definition 3.26.
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A11

A12
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A5
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A1

A9
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A6

A2

A10

1

Figure 2. Cycle graph for AutF0p6q “ ppC4 ˆ C2q ¸ C2q.
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