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Abstract

This article is devoted to deduce the expression of the Green’s function

related to a general constant coefficients fractional difference equation

coupled to Dirichlet conditions. In this case, due to the points where

some of the fractional operators is applied, we are in presence of a implicit

fractional difference equation. Such property makes it more complicated

to calculate and manage the expression of the Green’s function. Such

expression, on the contrary to the explicit case where it follows from finite

sums, is deduced from series of infinity terms. Such expression will be

deduced from the Laplace transform on the time scales of the integers.

Finally, we prove two existence results for nonlinear problems, via suitable

fixed point theorems.
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1 Introduction and Preliminaries

Considering integrals and derivatives of arbitrary orders allows modeling
many real phenomena in which the value that the solution takes at a given
instant depends on the value of the solution in all the previous moments of
the process. Thus, fractional calculus became very useful in several fields as
viscoelasticity, neurology and control theory [14, 15, 16, 18, 19, 21]. During the
last decades, a lot of authors studied fractional difference equations and there
has been a progress made in developing the basic theory in this field. We refer
to the reader the monographs [12, 17] for more details. We use the standard
notation Na = {a, a+ 1, a+ 2, . . . } for a ∈ R, and [c, c+n0]Nc

= [c, c+n0]∩Nc,
for c ∈ R and n0 ∈ N1.

In [5] Atici and Eloe proved that for all (t, s) ∈ [υ−2, υ+b+1]Nυ−2×[0, b+1]N0 ,
the following function

G0(t, s) =
1

Γ (υ)







t(υ−1)(υ+b−s)(υ−1)

(υ+b+1)(υ−1) − (t− s− 1)
(υ−1)

, s < t− υ + 1,

t(υ−1)(υ+b−s)(υ−1)

(υ+b+1)(υ−1) , t− υ + 1 ≤ s,

is the related Green function to the Dirichlet problem

−∆υy (t) = h(t+ υ − 1), t ∈ [0, b+ 1]N0 ,

y (υ − 2) = y (υ + b+ 1) = 0,

with υ ∈ R, 1 < υ < 2 and b ∈ N. Moreover, they proved that G0(t, s) > 0 for
all (t, s) ∈ [υ − 1, υ + b]Nυ−1 × [0, b+ 1]N0 .

Using previous expression and constructing Green’s function as a series of
functions, in [8], by using the spectral theory is ensured, for a suitable range of
values of the nonconstant function a(t), the positiveness of the Green’s function
related to the following Dirichlet problem

−∆υy (t) + a (t+ υ − 1) y (t+ υ − 1) = h (t+ υ − 1) ,

y (υ − 2) = y (υ + b+ 1) = 0,

for t ∈ [0, b+ 1]N0 , where υ ∈ R with 1 < υ < 2 and b ∈ N, b ≥ 5.
A similar approach has been done in [7] for the following problem with mixed

conditions:

−∆υy (t) + a (t+ υ − 1) y (t+ υ − 1) = h (t+ υ − 1) ,

y (υ − 2) = ∆βy (υ + b+ 1− β) = 0,

with 1 < υ ≤ 2 and 0 ≤ β ≤ 1.
Using another approach in [2, 3, 4] the general expression of several linear

n-th order initial value problems is obtained. They use R0(f(t))(s) the Laplace
transform on the time scale of integers [6, 10], which is defined by the following
expression:

Rt0(f(t))(s) =

∞
∑

t=t0

(

1

s+ 1

)t+1

f(t).
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Recently, in [9] the authors considered the problem

−∆υy(t) + α∆µy(t+ υ − µ− 1) = h(t+ υ − 1), (1)

y (υ − 2) = y (υ + b + 1) = 0, (2)

for t ∈ I ≡ [0, b + 1]N0 , where µ, υ ∈ R such that 0 < µ < 1 and 1 < υ < 2;
∆υ and ∆µ are the standard υ-th and µ-th order Riemann–Liouville fractional
difference operators, respectively; α is a real constant and h : I → R.

By using the Laplace transformR0(f(t))(s) they obtained the general expres-
sion of equation (1) and deduced the explicit expression of the Green’s function
related to problem (1)–(2). It was proven that such Green’s function has some
symmetric properties and is positive on [υ − 1, υ + b]Nυ−1 × [0, b + 1]N0 for all
α ≥ 0 and υ−µ− 1 > 0, which improved the results given in [5]. Moreover, the
authors deduced some strong positiveness conditions on the Green’s function
that allow them to construct suitable cones where to deduce the existence of
solutions of related nonlinear problems. We point out that, in such case, the
fact that the fractional operator ∆µ is defined on the points t+ υ − µ− 1 gives
us a explicit equation. Such property gives us the expression of the Green’s
function as a combination of finite sums.

The aim of this paper is to continue our work in this direction as we consider
the following equation

−∆υy(t) + α∆µy(t+ υ − µ) = h(t+ υ − 1), t ∈ I ≡ {0, 1, . . . , b+ 1} , (3)

coupled to the boundary conditions (2).
Here µ, υ ∈ R such that 0 < µ < 1 and 1 < υ < 2; ∆υ and ∆µ are the

standard υ-th and µ-th order Riemann–Liouville fractional difference operators,
respectively; α is a constant and h : I → R. We point out that even if we use
Laplace transform R0(f(t))(s) to equation (3), we deduce that the sums are not
finite as ones given in [9]. As a result, we study the convergence of the series
and we apply some fixed point to deduce some existence results for a related non
linear problem. We remark that problem (3) coupled to the Dirichlet conditions
(2) has been studied in [13] for the particular case of α = 0.

The paper is organized as follows: After an introduction where we compile
the main concepts and properties the we will use along the paper, we obtain, in
Section 2, the expression of the Green’s function related to problem (1)–(2) for
|α| < 1 (which is the condition that characterizes the convergence of the used
series). In Section 3 we deduce two existence results for nonlinear problems.
Such existence results follow from the expression of the Green’s function by
constructing an operator whose fixed points coincides with the solutions of the
problems that we are looking for. We finalize the paper with two examples that
point out the applicability of the obtained existence results.

First we recall some basic definitions and lemmas, which will be used till the
end of this work.

Definition 1 We define t(υ) = Γ(t+1)
Γ(t+1−υ) , for any t and υ for which the right-

hand side is well defined. We also appeal to the convention that if t + 1 − υ is
a pole of the Gamma function and t+ 1 is not a pole, then t(υ) = 0.
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Definition 2 The υ-th fractional sum of a function f , for υ > 0 and t ∈ Na+υ,
is defined as

∆−υf(t) = ∆−υf (t; a) :=
1

Γ (υ)

t−υ
∑

s=a

(t− s− 1)
(υ−1)

f(s).

We also define the υ-th fractional difference for υ > 0 by ∆υf(t) := ∆N∆υ−Nf(t),
where t ∈ Na+υ and N ∈ N is chosen so that 0 ≤ N − 1 < υ ≤ N .

Lemma 3 ([11, Lemma 2.3]) Let t and υ be any numbers for which t(υ) and
t(υ−1) be defined. Then ∆t(υ) = υt(υ−1).

Lemma 4 ([4, Lemma 2.1])

Rυ−1

(

t(υ−1)
)

(s) =
Γ (υ)

sυ
. (4)

Lemma 5 ([4, Lemma 2.2]) If µ > 0 and m− 1 < µ < m, where m denotes a
positive integer and f is defined on Nµ−m, then

R0

(

∆µ
µ−mf

)

(s) = sµRµ−m (f) (s)−

m−1
∑

k=0

sm−k−1
(

∆k∆
−(µ−m)
µ−m f

)∣

∣

∣

t=0
. (5)

Lemma 6 ([4, Lemma 2.4])

Rυ−2 (f ∗υ−2 g) (s) = (s+ 1)υ−1
Rυ−2 (f) (s)Rυ−2 (g) (s) , (6)

where

f ∗υ−2 g (t) =

t
∑

s=υ−2

f (t− s+ υ − 2) g (s) (7)

is the convolution product of two functions defined on Nυ−2.

Definition 7 The two parameter delta discrete Mittag-Leffler function is de-
fined by

eα,β(λ, t− a) =
∞
∑

k=0

λk
(t− a+ kα+ β − 1)(kα+β−1)

Γ(kα+ β)
,

for α > 0, β ∈ R and t ∈ Na.

Observe that,

eα,β(λ,−1) =

∞
∑

k=0

λk
(kα+ β − 2)(kα+β−1)

Γ(kα+ β)
= 0.

Clearly, if |λ| < 1, then eα,β(λ, 0) =
1

1−λ
. Also,

eα,β(λ, 1) =

∞
∑

k=0

λk
(kα+ β)(kα+β−1)

Γ(kα+ β)
=

∞
∑

k=0

λk(kα+ β) =
αλ

(1− λ)2
+

β

(1 − λ)
.

Remark 8 Using D’Alembert’s Ratio test, one can easily check that the above
function converges for all |λ| < 1 and diverges for |λ| > 1. [20, Theorem 6].
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2 Construction of the Green’s Function

In this section we will construct the Green’s function related to Problem (3)
- (2), following the approach given in [9]. To this end we use the main properties
of the Laplace transform. Since the delta discrete Mittag-Leffler function will
be used, along all the section we assume that |α| < 1, in order to ensure its
convergence by the characterization given in Remark 8.

First, from (5), we have

R0 [∆
υy(t)] (s) = sυRυ−2 [y(t)] (s)− sA−B, (8)

where A =
[

∆υ−2y(t)
]

t=0
and B =

[

∆υ−1y(t)
]

t=0
. One can check that

A =
1

Γ(2− υ)
(1− υ)(1−υ)y(υ − 2) = y(υ − 2) (9)

and
B = (1− υ)y(υ − 2) + y(υ − 1).

Denote by Y1(t) = y(t+ υ − µ). Then,

Rµ−1 [Y1(t)] (s) =

∞
∑

t=µ−1

(

1

s+ 1

)t+1

Y1(t)

=

∞
∑

t=υ−1

(

1

s+ 1

)t−υ+µ+1

y(t)

= (s+ 1)υ−µ

∞
∑

t=υ−1

(

1

s+ 1

)t+1

y(t)

= (s+ 1)υ−µ

[

∞
∑

t=υ−2

(

1

s+ 1

)t+1

y(t)−

(

1

s+ 1

)υ−2+1

y(υ − 2)

]

= (s+ 1)υ−µRυ−2 [y(t)] (s)− (s+ 1)1−µy(υ − 2). (10)

Next, from (5), we have

R0 [∆
µy(t)] (s) = sµRµ−1 [y(t)] (s)−

[

∆µ−1y(t)
]

t=0
. (11)

Using (10) and (11), we obtain

R0 [∆
µY1(t)] (s)

= sµRµ−1 [Y1(t)] (s)−
[

∆µ−1Y1(t)
]

t=0

= sµ
[

(s+ 1)υ−µRυ−2 [y(t)] (s)− (s+ 1)1−µy(υ − 2)
]

−
[

∆µ−1Y1(t)
]

t=0
.

(12)
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Now, consider

[

∆µ−1Y1(t)
]

t=0
=

[

∆−(1−µ)Y1(t)
]

t=0

=





1

Γ(1− µ)

t−(1−µ)
∑

s=µ−1

(t− s− 1)(1−µ−1)Y1(s)





t=0

=





1

Γ(1− µ)

t−(1−µ)
∑

s=µ−1

(t− s− 1)(1−µ−1)y(s+ υ − µ)





t=0

=
1

Γ(1− µ)
(−µ)(−µ)y(υ − 1)

= y(υ − 1) = B − (1 − υ)A. (13)

Using (9) and (13) in (12), we deduce

R0 [∆
µY1(t)] (s)

= sµ(s+ 1)υ−µRυ−2 [y(t)] (s)− sµ(s+ 1)1−µA−B + (1− υ)A

= sµ(s+ 1)υ−µRυ−2 [y(t)] (s) +
[

(1− υ)− sµ(s+ 1)1−µ
]

A−B. (14)

Denote H1(t) = h(t+ υ − 1). Then,

R0 [H1(t)] (s) =

∞
∑

t=0

(

1

s+ 1

)t+1

H1(t)

=

∞
∑

t=υ−1

(

1

s+ 1

)t−υ+1+1

h(t)

= (s+ 1)υ−1
∞
∑

t=υ−1

(

1

s+ 1

)t+1

h(t)

= (s+ 1)υ−1
∞
∑

t=υ−2

(

1

s+ 1

)t+1

h(t)− h(υ − 2)

= (s+ 1)υ−1Rυ−2 [h(t)] (s)− h(υ − 2). (15)

By applying R0 to each side of (3) and employing (8), (14) and (15), we obtain

− [sυRυ−2 [y(t)] (s)− sA−B]

+ α
[

sµ(s+ 1)υ−µRυ−2 [y(t)] (s) +
[

(1 − υ)− sµ(s+ 1)1−µ
]

A−B
]

= (s+ 1)υ−1Rυ−2 [h(t)] (s)− h(υ − 2).

Rearranging the terms gives us

(

sυ − αsµ(s+ 1)υ−µ
)

Rυ−2 [y(t)] (s)

=
(

s+ α(1 − υ)− αsµ(s+ 1)1−µ
)

A+(1−α)B−(s+1)υ−1Rυ−2 [h(t)] (s)+h(υ−2).

6



This implies that

Rυ−2 [y(t)] (s) =

(

s+ α(1 − υ)− αsµ(s+ 1)1−µ
)

(sυ − αsµ(s+ 1)υ−µ)
A+

(1− α)

(sυ − αsµ(s+ 1)υ−µ)
B

−
(s+ 1)υ−1

(sυ − αsµ(s+ 1)υ−µ)
Rυ−2 [h(t)] (s) +

1

(sυ − αsµ(s+ 1)υ−µ)
h(υ − 2). (16)

Denote Z(t) = y(t+ n(υ − µ)). Then,

Rυ−2 [Z(t)] (s) =

∞
∑

t=υ−2

(

1

s+ 1

)t+1

Z(t)

=
∞
∑

t=(n+1)υ−nµ−2

(

1

s+ 1

)t−nυ+nµ+1

y(t)

= (s+ 1)nυ−nµ

∞
∑

t=(n+1)υ−nµ−2

(

1

s+ 1

)t+1

y(t)

= (s+ 1)nυ−nµR(n+1)υ−nµ−2 [y(t)] (s). (17)

Note that using (4) and (17), we obtain

s

sυ − αsµ(s+ 1)υ−µ
=

1

sυ−1

1
[

1− α
(

s+1
s

)υ−µ
]

=
1

sυ−1

∞
∑

k=0

αk

(

s+ 1

s

)kυ−kµ

=

∞
∑

k=0

αk(s+ 1)kυ−kµ 1

s(k+1)υ−kµ−1

=
∞
∑

k=0

αk(s+ 1)kυ−kµ
R(k+1)υ−kµ−2

[

t((k+1)υ−kµ−2)
]

(s)

Γ((k + 1)υ − kµ− 1)

=

∞
∑

k=0

αk
Rυ−2

[

(t+ k(υ − µ))((k+1)υ−kµ−2)
]

(s)

Γ((k + 1)υ − kµ− 1)

= Rυ−2

[

∞
∑

k=0

αk (t+ k(υ − µ))((k+1)υ−kµ−2)

Γ((k + 1)υ − kµ− 1)

]

(s)

= Rυ−2 [eυ−µ,υ−1(α, t− υ + 2)] (s). (18)

Similar to (17), we have

Rυ−1 [Z(t)] (s) = (s+ 1)nυ−nµR(n+1)υ−nµ−1 [y(t)] (s). (19)
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Moreover, using (4) and (19) we obtain

1

sυ − αsµ(s+ 1)υ−µ
=

1

sυ

∞
∑

k=0

αk

(

s+ 1

s

)kυ−kµ

=

∞
∑

k=0

αk(s+ 1)kυ−kµ 1

s(k+1)υ−kµ

=

∞
∑

k=0

αk(s+ 1)kυ−kµ
R(k+1)υ−kµ−1

[

t((k+1)υ−kµ−1)
]

(s)

Γ((k + 1)υ − kµ)

=

∞
∑

k=0

αk
Rυ−1

[

(t+ k(υ − µ))((k+1)υ−kµ−1)
]

(s)

Γ((k + 1)υ − kµ)

= Rυ−1

[

∞
∑

k=0

αk (t+ k(υ − µ))((k+1)υ−kµ−1)

Γ((k + 1)υ − kµ)

]

(s)

= Rυ−2

[

∞
∑

k=0

αk (t+ k(υ − µ))((k+1)υ−kµ−1)

Γ((k + 1)υ − kµ)

]

(s)

− (s+ 1)1−υ

[

∞
∑

k=0

αk (t+ k(υ − µ))((k+1)υ−kµ−1)

Γ((k + 1)υ − kµ)

]

t=υ−2

= Rυ−2

[

∞
∑

k=0

αk (t+ k(υ − µ))((k+1)υ−kµ−1)

Γ((k + 1)υ − kµ)

]

(s)

= Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s). (20)

Denote Z1(t) = y(t+ n(υ − µ)− µ+ 1). Then,

Rυ−2 [Z1(t)] (s) =

∞
∑

t=υ−2

(

1

s+ 1

)t+1

Z1(t)

=
∞
∑

t=(n+1)(υ−µ)−1

(

1

s+ 1

)t−n(υ−µ)+µ−1+1

y(t)

= (s+ 1)nυ−(n+1)µ+1
∞
∑

t=(n+1)(υ−µ)−1

(

1

s+ 1

)t+1

y(t)

= (s+ 1)nυ−(n+1)µ+1R(n+1)(υ−µ)−1 [y(t)] (s). (21)
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Note that using (4) and (21), we obtain

sµ(s+ 1)1−µ

sυ − αsµ(s+ 1)υ−µ

=
sµ(s+ 1)1−µ

sυ
1

1− αsµ−υ(s+ 1)υ−µ

=
sµ(s+ 1)1−µ

sυ
1

[

1− α
(

s+1
s

)υ−µ
]

=
sµ(s+ 1)1−µ

sυ

∞
∑

k=0

αk

(

s+ 1

s

)kυ−kµ

=

∞
∑

k=0

αk(s+ 1)kυ−(k+1)µ+1 1

s(k+1)υ−(k+1)µ

=
∞
∑

k=0

αk(s+ 1)kυ−(k+1)µ+1R(k+1)υ−(k+1)µ−1

[

t((k+1)υ−(k+1)µ−1)
]

(s)

Γ((k + 1)υ − (k + 1)µ)

=

∞
∑

k=0

αk
Rυ−2

[

(t+ k(υ − µ)− µ+ 1)((k+1)υ−kµ−1)
]

(s)

Γ((k + 1)υ − kµ)

= Rυ−2

[

∞
∑

k=0

αk (t+ k(υ − µ)− µ+ 1)((k+1)υ−kµ−1)

Γ((k + 1)υ − kµ)

]

(s)

= Rυ−2 [eυ−µ,υ−µ(α, t− υ + 2)] (s). (22)

Using (18), (20) and (22) in (16), we deduce

Rυ−2 [y(t)] (s) =
[

Rυ−2 [eυ−µ,υ−1(α, t− υ + 2)] (s)

+ α(1 − υ)Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)

− αRυ−2 [eυ−µ,υ−µ(α, t− υ + 2)] (s)
]

A

+ (1− α)Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)B

− (s+ 1)υ−1Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)Rυ−2 [h(t)] (s)

+Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)h(υ − 2),

which, by (6) can be written as

Rυ−2 [y(t)] (s) =
[

Rυ−2 [eυ−µ,υ−1(α, t− υ + 2)] (s)

+ α(1 − υ)Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)

− αRυ−2 [eυ−µ,υ−µ(α, t− υ + 2)] (s)
]

A

+ (1− α)Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)B

−Rυ−2 [eυ−µ,υ(α, t− υ + 1) ∗υ−2 h] (s)

+Rυ−2 [eυ−µ,υ(α, t− υ + 1)] (s)h(υ − 2).
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Apply to each side the inverse of Rυ−2, we obtain

y(t) =
[

eυ−µ,υ−1(α, t− υ + 2) + α(1 − υ)eυ−µ,υ(α, t− υ + 1)

− αeυ−µ,υ−µ(α, t− υ + 2)
]

A+ (1− α)eυ−µ,υ(α, t− υ + 1)B

− eυ−µ,υ(α, t− υ + 1) ∗υ−2 h+ eυ−µ,υ(α, t− υ + 1)h(υ − 2).

Thus, using (7), we have

y(t) =
[

eυ−µ,υ−1(α, t− υ + 2) + α(1 − υ)eυ−µ,υ(α, t− υ + 1)

− αeυ−µ,υ−µ(α, t− υ + 2)
]

A+ (1− α)eυ−µ,υ(α, t− υ + 1)B

−
t

∑

s=υ−2

eυ−µ,υ(α, t− s+ υ − 2− υ + 1)h(s) + eυ−µ,υ(α, t− υ + 1)h(υ − 2).

That is,

y(t) =
[

eυ−µ,υ−1(α, t− υ + 2) + α(1 − υ)eυ−µ,υ(α, t− υ + 1)

− αeυ−µ,υ−µ(α, t− υ + 2)
]

A+ (1− α)eυ−µ,υ(α, t− υ + 1)B

−

t
∑

s=υ−1

eυ−µ,υ(α, t− s− 1)h(s). (23)

Using y(υ − 2) = 0 in (23), we have

0 =
[

eυ−µ,υ−1(α, 0) + α(1− υ)eυ−µ,υ(α,−1)

− αeυ−µ,υ−µ(α, 0)
]

A+ (1− α)eυ−µ,υ(α,−1)B

−

υ−2
∑

s=υ−1

eυ−µ,υ(α, t− s− 1)h(s).

That is,

0 =

[

1

(1− α)
−

α

(1− α)

]

A.

Using y(υ + b+ 1) = 0 in (23) and taking A = 0, we have

0 = (1− α)eυ−µ,υ(α, b + 2)B −
υ+b+1
∑

s=υ−1

eυ−µ,υ(α, υ + b− s)h(s),

10



or

B =
1

(1− α)eυ−µ,υ(α, b + 2)

υ+b+1
∑

s=υ−1

eυ−µ,υ(α, υ + b− s)h(s)

=
1

(1− α)eυ−µ,υ(α, b + 2)

υ+b
∑

s=υ−1

eυ−µ,υ(α, υ + b− s)h(s). (24)

Using (24) and A = 0 in (23), we obtain

y(t) = (1−α)eυ−µ,υ(α, t−υ+1)

[

1

(1− α)eυ−µ,υ(α, b + 2)

υ+b
∑

s=υ−1

eυ−µ,υ(α, υ + b− s)h(s)

]

−

t
∑

s=υ−1

eυ−µ,υ(α, t− s− 1)h(s).

Rearranging the terms, we obtain

y(t) =
eυ−µ,υ(α, t− υ + 1)

eυ−µ,υ(α, b + 2)

υ+b
∑

s=υ−1

eυ−µ,υ(α, υ + b− s)h(s)

−

t
∑

s=υ−1

eυ−µ,υ(α, t− s− 1)h(s).

That is,

y(t) =

t
∑

s=υ−1

[

eυ−µ,υ(α, t− υ + 1)

eυ−µ,υ(α, b+ 2)
eυ−µ,υ(α, υ + b− s)− eυ−µ,υ(α, t− s− 1)

]

h(s)

−

υ+b
∑

s=t+1

[

eυ−µ,υ(α, t− υ + 1)

eυ−µ,υ(α, b + 2)
eυ−µ,υ(α, υ + b− s)

]

h(s).

Theorem 9 Assuming that |α| < 1, we have that Problem (3) - (2) has a unique
solution if and only if

eυ−µ,υ(α, b+ 2) 6= 0.

Denote by
I1 = {(t, s) : υ − 1 ≤ s ≤ t ≤ υ + b+ 1},

and
I2 = {(t, s) : υ − 1 ≤ t+ 1 ≤ s ≤ υ + b}.

Then, the expression for the related Green’s function, when |α| < 1, is given by

G(t, s) =

{

eυ−µ,υ(α,t−υ+1)
eυ−µ,υ(α,b+2) eυ−µ,υ(α, υ + b− s)− eυ−µ,υ(α, t− s− 1), (t, s) ∈ I1,

eυ−µ,υ(α,t−υ+1)
eυ−µ,υ(α,b+2) eυ−µ,υ(α, υ + b− s), (t, s) ∈ I2.

11



3 Existence of Solutions of Nonlinear Problems

In this section we will apply the following Krasnosel’skii–Zabreiko fixed point
theorem to obtain nontrivial solutions of

−∆υy(t) + α∆µy(t+ υ − µ) = f(t+ υ − 1, y(t+ υ − 1)), t ∈ I, (25)

coupled to the boundary conditions (2).
Here we assume that f : [υ− 1, υ+ b]Nυ−1 ×R → R is a continuous function.

Theorem 10 Let X be a Banach space and F : X → X be a completely con-
tinuous operator. If there exists a bounded linear operator A : X → X such that
1 is not an eigenvalue and

lim
‖y‖→∞

‖F (y)−A(y)‖

‖y‖
= 0,

then F has a fixed point in X.

We will apply Theorem 10 to a nonlinear summation operator whose kernel
is G(t, s). The arguments are in the line to the ones used in [13].

In this context, let the Banach space (X, ‖ · ‖) be defined by

X := {h : [υ − 2, υ + b+ 1]Nυ−2 → R},

with norm
‖h‖ := max

t∈[υ−2,υ+b+1]Nυ−2

|h(t)| .

Clearly, y ∈ X is a fixed point of the completely continuous operator F :
X → X defined by

(Fy) (t) :=

υ+b
∑

s=υ−1

G(t, s)f(s, y(s)), t ∈ [υ − 2, υ + b+ 1]Nυ−2 .

We now apply Theorem 10 to the operator F defined in (3) and to an asso-
ciated linear operator in establishing solutions of (25)–(2).

Theorem 11 Assume that |α| < 1 and f : [υ − 1, υ + b]Nυ−1 × R → R is
continuous and

lim
|r|→∞

f(t+ υ − 1, r)

r
= m

for all t ∈ I.
If

|m| < d :=
1

max
t∈[υ−2,υ+b+1]Nυ−2

υ+b
∑

s=υ−1

|G(t, s)|

,

then the boundary value problem (25)–(2) has a solution y, and moreover, y 6≡ 0
on [υ − 2, υ + b+ 1]Nυ−2 , when f(t, 0) 6= 0 for at least one t ∈ I.

12



Proof.

Corresponding to (25)–(2), we consider the following linear equation

−∆υy(t) + α∆µy(t+ υ − µ) = my(t+ υ − 1), t ∈ I, (26)

coupled to the boundary conditions (2). We define a completely continuous
linear operator A : X → X by

(Ay) (t) := m

υ+b
∑

s=υ−1

G(t, s)y(s), t ∈ [υ − 2, υ + b+ 1]Nυ−2 .

Clearly, solutions of (26)–(2) are fixed points of A, and conversely.
First, we show that 1 is not an eigenvalue of A. To see this, we consider two

cases: (a) m = 0 and (b) m 6= 0.
For (a), if m = 0, since the boundary value problem (26)–(2) has only the

trivial solution, it is immediately that 1 is not an eigenvalue of A.
For (b), if m 6= 0 and (26)–(2) has a nontrivial solution, then ‖y‖ > 0. And

so, we have

‖y‖ = ‖(Ay)‖

= max
t∈[υ−2,υ+b+1]Nυ−2

∣

∣

∣

∣

∣

m

υ+b
∑

s=υ−1

G(t, s)y(s)

∣

∣

∣

∣

∣

= |m| max
t∈[υ−2,υ+b+1]Nυ−2

∣

∣

∣

∣

∣

υ+b
∑

s=υ−1

G(t, s)y(s)

∣

∣

∣

∣

∣

≤ |m| ‖y‖ max
t∈[υ−2,υ+b+1]Nυ−2

υ+b
∑

s=υ−1

|G(t, s)|

< d ‖y‖
1

d

= ‖y‖ ,

a contradiction. Again, 1 is not an eigenvalue of A.
Our next claim is that

lim
‖y‖→∞

‖F (y)−A(y)‖

‖y‖
= 0.

In this direction, let ε > 0 be given. Now, let

lim
|r|→∞

f(t+ υ − 1, r)

r
= m

for all t ∈ I, implies that there exists an N1 > 0 such that, for |r| > N1,

|f(t+ υ − 1, r)−mr| < ε |r| , t ∈ I. (27)

13



Let
N = sup

|r|≤N1, t∈I

|f(t+ υ − 1, r)| ,

and let L ≥ N1 be such that

N + |m|N1

L
< ε.

Next, choose y ∈ X with ‖y‖ > L. Now, for s ∈ [υ − 2, υ + b + 1]Nυ−2 , if
|y(s)| ≤ N1, we have

|f(s, y(s))−my(s)| ≤ |f(s, y(s))|+ |m| |y(s)| ≤ N + |m|N1 < εL < ε ‖y‖ .

On the other hand, if |y(s)| > N1, we have from (27) that

|f(s, y(s))−my(s)| < ε|y(s)| ≤ ε ‖y‖ .

Thus, for s ∈ [υ − 2, υ + b+ 1]Nυ−2 ,

|f(s, y(s))−my(s)| ≤ ε ‖y‖ . (28)

It follows from (28) that, for y ∈ X with ‖y‖ > L,

‖F (y)−A(y)‖ = max
t∈[υ−2,υ+b+1]Nυ−2

∣

∣

∣

∣

∣

υ+b
∑

s=υ−1

G(t, s)[f(s, y(s))−my(s)]

∣

∣

∣

∣

∣

≤ max
t∈[υ−2,υ+b+1]Nυ−2

υ+b
∑

s=υ−1

|G(t, s)| |f(s, y(s))−my(s)|

≤ ε ‖y‖ max
t∈[υ−2,υ+b+1]Nυ−2

υ+b
∑

s=υ−1

|G(t, s)|

= ε ‖y‖
1

d
.

Therefore,

lim
‖y‖→∞

‖F (y)−A(y)‖

‖y‖
= 0.

By Theorem 10, F has a fixed point y ∈ X , and y is a desired solution of (25),
(2). Moreover y 6≡ 0 on [υ − 2, υ + b+ 1]Nυ−2 , when f(t, 0) 6= 0 for at least one
t ∈ I and the proof is complete.

Let us recall the following theorem

Theorem 12 [1] (Leray–Schauder Nonlinear Alternative) Let (E, ‖ · ‖) be a
Banach space, K be a closed and convex subset of E, U be a relatively open
subset of K such that 0 ∈ U , and T : Ū → K be completely continuous. Then,
either

(i) u = Tu has a solution in Ū ; or

14



(ii) There exist u ∈ ∂U and λ ∈ (0, 1) such that u = λTu.

Our second main result in this paper is as follows.

Theorem 13 Assume that |α| < 1 and that the following properties are fulfilled:

(A1) There exist a nondecreasing function ψ : [0,∞) → [0,∞) and g : [υ −
2, υ + b+ 1]Nυ−2 → [0,∞) such that

|f(t+ υ − 1, r)| ≤ g(t+ υ − 1)ψ (|r|) , t ∈ I, r ∈ R.

(A2) There exists L > 0 such that

L

ψ (L) max
t∈[υ−2,υ+b+1]Nυ−2

υ+b
∑

s=υ−1

g(s) |G(t, s)|

> 1.

Then, the boundary value problem (25)–(2) has a solution defined on [υ− 2, υ+
b + 1]Nυ−2 . Moreover, y 6≡ 0 on [υ − 2, υ + b + 1]Nυ−2 , when f(t, 0) 6= 0 for at
least one t ∈ I.

Proof. We first show that F maps bounded sets into bounded sets. For this
purpose, for r > 0, let

Br = {y ∈ X : ‖y‖ ≤ r},

be a bounded subset of X . Then, by (A1), for y ∈ Br,

∣

∣

(

Fy
)

(t)
∣

∣ ≤

υ+b
∑

s=υ−1

|G(t, s)| |f(s, y(s))| ≤ ψ (‖y‖)

υ+b
∑

s=υ−1

g(s) |G(t, s)| ,

implying that

∣

∣

(

Fy
)

(t)
∣

∣ ≤ ψ (r)

υ+b
∑

s=υ−1

g(s) |G(t, s)| .

Thus, F maps Br into a bounded set. Since [υ−2, υ+b+1]Nυ−2 is a discrete set,
it follows immediately that F maps Br into an equicontinuous set. Therefore, by
the Arzela–Ascoli theorem, F is completely continuous. Next, suppose that y ∈
X and y = λFy for some 0 < λ < 1. Then, from (A1), for t ∈ [υ−2, υ+b+1]Nυ−2,
we have

|y(t)| =
∣

∣λ
(

Fy
)

(t)
∣

∣ ≤

υ+b
∑

s=υ−1

|G(t, s)| |f(s, y(s))| ≤ ψ (‖y‖)

υ+b
∑

s=υ−1

g(s) |G(t, s)| ,

implying that
‖y‖

ψ (‖y‖)

υ+b
∑

s=υ−1

g(s) |G(t, s)|

≤ 1.
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It follows from (A2) that ‖y‖ 6= L. If we set

U =
{

y ∈ X : ‖y‖ < L
}

,

then the operator F : Ū → X is completely continuous. From the choice of U ,
then there is no y ∈ ∂U such that y = λFy for some 0 < λ < 1. It follows
from Theorem 12 that F has a fixed point y0 ∈ Ū , which is a desired solution
of (25)–(2).

Obviously, if f(t, 0) 6≡ 0 on [υ − 2, υ + b + 1]Nυ−2 , we have that y 6≡ 0 on
[υ − 2, υ + b+ 1]Nυ−2 .

As a direct consequence of the previous result, we deduce the following corol-
lary:

Corollary 14 Assume that |α| < 1 and condition (A1) in Theorem 13 holds.
Then, if

lim
L→+∞

L

ψ (L)
= +∞

the boundary value problem (25)–(2) has a solution defined on [υ − 2, υ + b +
1]Nυ−2 . Moreover, y 6≡ 0 on [υ − 2, υ + b + 1]Nυ−2 , when f(t, 0) 6= 0 for at least
one t ∈ I.

4 Examples

In this section, we provide two example to demonstrate the applicability of
Theorems 11 and 13.

Example 15 Consider the boundary value problem (25), (2) with a = 0, b = 5,
υ = 1.5, µ = 0.5, α = 0.5 and

f(t+ υ − 1, r) =
r

3π

∣

∣tan−1
(

(t+ υ − 1)2(r + 1)3
)∣

∣+ e(t+υ−1)2
√

|r + 1|.

Clearly,

m = lim
|r|→∞

f(t+ υ − 1, r)

r
=

1

6
for all t ∈ I.

The Green’s function associated with the boundary value problem is given by

G(t, s) =

{

e1,1.5(0.5,t−0.5)
e1,1.5(0.5,7)

e1,1.5(0.5, 6.5− s)− e1,1.5(0.5, t− s− 1), (t, s) ∈ I1,
e1,1.5(0.5,t−0.5)

e1,1.5(0.5,7)
e1,1.5(0.5, 6.5− s), (t, s) ∈ I2,

(29)
where

I1 = {(t, s) : 0.5 ≤ s ≤ t ≤ 7.5},

and
I2 = {(t, s) : 0.5 ≤ t+ 1 ≤ s ≤ 6.5}.
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Since

d =
1

max
t∈[−0.5,7.5]N

−0.5

6.5
∑

s=0.5

|G(t, s)|

= 0.241342 > |m|,

by Theorem 11, the boundary value problem has a non trivial solution defined
on [−0.5, 7.5]N

−0.5.

Example 16 Consider the boundary value problem (25), (2) with a = 0, b = 5,
υ = 1.5, µ = 0.5, α = 0.5 and f(t + υ − 1, r) = (t + υ − 1) 4

√

|r|3 + t+ υ − 1.
Clearly,

|f(t+ υ − 1, r)| ≤ g(t+ υ − 1)ψ (|r|) , t ∈ I, r ∈ R,

where
g(t+ υ − 1) = t+ υ − 1, t ∈ I,

and
ψ (|r|) = 4

√

|r|3 + b+ υ, r ∈ R.

Also, g : [υ−2, υ+b+1]Nυ−2 → [0,∞) and ψ : [0,∞) → [0,∞) is a nondecreasing
function. Thus, the assumption (A1) of Theorem 13 holds.

Now, since

lim
L→+∞

L

ψ (L)
= +∞,

from Corollary 14, we have that the considered problem has at least a nontrivial
solution y.

Notice that, in this case, we can estimate the minimum value of the param-
eter L as 74,395.4. We point out that, from the proof of Theorem 13, this value
of L is the better a priori bound that we have for ‖y‖.
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