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Linear embeddings of random complexes
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Abstract

For X ∼ X(n; 1, n−α1 , n−α2 , ...) in the multiparameter random simplicial complex model we
establish necessary and sufficient strict inequalities on the αi’s to linearly embed the complex
into R

2d.

1 Introduction

Recall the multiparameter random simplicial complex model introduced by Costa and Farber [5].
Given n ∈ N and a sequence of probabilities p = (pi)i≥0 we sample X ∼ X(n;p) starting with
the ground set [n]. We first include each element of the ground set as a vertex independently
with probability p0, from here we include each edge between exisiting vertices with probability
p1, and then each triangle whose boundary is included with probability p2, and so on. This
model interpolates between the clique complex model, introduced first by Kahle [11], which is the
case where p1 can vary but all other pi’s are 1 and the Linial–Meshulam–Wallach d-dimensional
model [12,15] where pd can vary, pi = 1 for i < d and pi = 0 for i > d (note that the d = 1 case for
Linial–Meshulam–Wallach is the Erdős–Rényi random graph).

Here we establish thresholds for linear embeddings of random simplicial complexes in Euclidean
space. Recall that a linear map from a simplicial complex ∆ into Euclidean space R

d is a map
φ : ∆ → R

d that is determined linearly by the image of vertices. That is, the image of any face
σ ∈ ∆ under φ is the convex hull in R

d of the image of the vertices of σ. We say that ∆ embeds
linearly in R

d if there is an injective linear map φ : ∆ →֒ R
d.

Perhaps the most well known situation concerning linear embeddings of simplicial complexes is
graph planarity. A graph G is planar if and only if it admits a linear embedding into R

2. We could
take this as a definition of planar graphs, but it turns out that when it comes to planar graphs it
doesn’t matter if we characterize them by existence of linear embeddings or existence of topological
embeddings. The result that a graph is planar if and only if it can be drawn in the plane with all
edges as straight-line segments is known as Fáry’s theorem. The analogous statement for higher
dimensions was first demonstrated to be false by Brehm [3] who gave a triangulation of the Möbius
strip on nine vertices that does not linearly embed in R

3. Results and discussion in [6] examine
certain cases of equivalence or nonequivalence of topological and linear embeddings.

In between linear embeddings and topological embeddings are PL-embeddings (piecewise-linear
embeddings). A simplicial complex is PL-embeddable in R

d if it admits a subdivision that is linearly
embeddable in R

d. It is known that PL-emdeddability is strictly weaker than linear embeddability
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in general. Brehm and Sarkaria [4] disproved a conjecture of Grünbaum that PL-embeddability of
a d-complex in 2d-dimensional space implies linear embeddability. A result of Matoušek, Tancer,
and Wagner [14] establishing complexity results on PL-embeddings of simplicial complexes gives
another proof that PL-embeddability does not imply linear embeddability by demonstrating that
the two decision problems are not in the same complexity class. Here as a corollary to the main
result we give a proof of this same nonequivalence via the probabilistic method by establishing
threshold results for linear embeddability of random complexes and contrasting them with known
threshold results for PL-embeddability, see the concluding remarks for a precise statement on this.

We consider multiparameter random complexes in a sparse regime where each pi = n−αi for
some fixed αi ∈ [0,∞] (with αi = ∞ corresponding to pi = 0). Furthermore, we assume that
p0 = 1. This is a convenience for the proofs, but by a straightforward but perhaps somewhat
tedious application of large deviation inequalities on the number of vertices the natural extension
of the main result also holds when p0 is allowed to depend on n provided that p0n → ∞ as n → ∞.

To state our main result we first introduce some notation. For α = (α1, α2, ...) we denote
X(n; 1, n−α1 , n−α2 ...) by X(n;n−α). For each s ≥ 1 we let vs denote the vector of binomial

coefficients vs =
(

( s
i+1

)

)

i≥1
. By linearity of expectation the expected number of (s − 1)-simplices

in X(n, n−α) is
Θ(ns−α ·vs).

Our main result establishes a threshold in α for embeddability in even dimensions.

Theorem 1. Fix d ≥ 1 we have the following for random simplicial complexes in the multiparameter
model X ∼ X(n;n−α). If d + 1 − α ·vd+1 < 1 then with high probability X linearly embeds in R

2d

while if d + 1 − α ·vd+1 > 1 with high probability X does not linearly embed in R
2d.

Stated another way, our main result says if the α is selected so that the expected number of
d-faces is at most n1−ε for some ε > 0 then the random complex will embed in R

2d with high
probability, while an average number of d-faces of order at least n1+ε implies that the random
complex will not embed in R

2d. Somewhat surprisingly then the threshold to embed a random
complex in R

2d turns out to only depends on the d-skeleton of the random complex.

2 Preliminaries

Recall that a d-complex ∆ is alway embeddable in R
2d+1. A generic set of points in R

m is one
where for any k there is no affine subspace of Rm containing more than k + 1 of the points and for
any two disjoint subsets A and B of the point set each of size at most m, the affine subspace of
dimension |A|− 1 spanned by the points in A and the affine subspace of dimension |B|− 1 spanned
by the points in B intersect as an affine subspace of dimension |A|+ |B| − 2−m, if this quantity is
nonnegative and don’t intersect at all otherwise. If we place the points of a d-complex ∆ in R

2d+1

generically then it will be an embedding as two d-dimensional subspaces generically don’t intersect
in R

2d+1.
Observe that any set of points in R

m are moved to generic position by an arbitrarily small
perturbation. The proof of the sparse side of Theorem 1 will give a generic embedding of our
random complex in R

2d, and we will rule out the existence of a generic embedding on the dense
side of the claimed threshold. If there is no generic embedding of our finite simplicial complex there
is no embedding at all as a small perturbation of an embedding will still be an embedding.
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The proof for the sparse side will follow a collapsibility argument. We will prove a linear
embedding analogue of a result of Horvatić from [10] about PL-embeddability. A face of a simplicial
complex is said to be free if it is properly contained in only one other face. The removal of a free
face and the face that properly contains it is called an elementary collapse, and a complex is d-
collapsible if there is a sequence of elementary collapse on the complex that leave behind only faces
of dimension at most d − 1. Theorem 3.2 of [10] implies that a d-complex which is d-collapsible
PL embeds in R

2d. We’ll prove on the sparse side that if a stronger collapsibility property holds
for a d-complex it will linearly embed in R

2d and then show that with high probability our random
complex satisfies that strong collapsibility property.

For the dense side we make use of Radon’s Theorem. Recall that Radon’s Theorem states that
for any set of d+2 points in R

d there is a partition into two sets A and B so that the convex hull of
A intersects the convex hull of B. For the dense side we start with a generic embedding of the points
into R

2d and then generate the complex and count how many sets of 2d + 2 points, in expectation,
have a Radon partition (A,B) with the simplex on A and the simplex on B both included in
the complex. We show that the expected number of such point sets is large and then prove a
concentration of measure inequality that survives multiplication by the number of combinatorially
distinct ways to place the n points in R

2d (the number of order types).
Both for the proof of the sparse side and later for the proof of the concentration inequality on

the dense side, we need the following lemma that gives basic facts about the f -vector of a random
complex in the multiparameter model.

Lemma 2. For any s ≥ 2 if s − α ·vs < 1 then s + 1 − α ·vs+1 < 0, and for s ≥ 3 if s− α ·vs > 1
then s− 1 − α ·vs−1 > 1.

Proof. Fix ε > 0 and suppose that s − α ·vs = 1 − ε. We maximize s + 1 − α ·vs+1 subject to
this constraint and the constraints that the αi’s are all nonnegative. Obviously if one of the αi’s
is infinity so that α · vs+1 = ∞ there is nothing to prove, so we may assume all the relevant αi’s
are finite. The region of the hyperplane determined by s − α ·vs = 1 − ε in the first orthant is a
simplex on s− 1 vertices in R

s−1. By the simplex method we only have to check s + 1 −α ·vs+1 at
the vertices of this simplex. Moreover we may assume that αs = 0. At the vertices of the feasible
region exactly one of the αi’s is nonzero. Let αj−1 6= 0 for some j ∈ {2, ..., s} with the rest of the
αi’s in this range being 0. So we have that s− αj−1

(s
j

)

= 1 − ε. Now

s + 1 − αj−1

(

s + 1

j

)

= s + 1 − αj−1

((

s

j

)

+

(

s

j − 1

))

= s− αj−1

(

s

j

)

+ 1 − αj−1

(

s

j − 1

)

= 1 − ε + 1 − αj−1

(

s

j − 1

)

= 1 − ε + 1 − αj−1

(

s

j

)

(( s
j−1

)

(s
j

)

)

= 2 − ε− (s− 1 + ε)
j

s− j + 1

3



Now we have to verify that this is negative, as j
s+1−j is an increasing function and j ≥ 2, we have

2 − ε− (s− 1 + ε)
j

s− j + 1
≤ 2 − ε− (s− 1 + ε)

2

s − 1

The righthand side is negative provided that

2 − ε < 2

(

s− 1 + ε

s− 1

)

And this holds clearly since the right hand side is bigger than 2.
For the other part, we minimize s− 1−α ·vs−1 subject to s−α ·vs = 1 + ε. As before it suffices

to check in the cases that a single αj−1 6= 0 for some j ∈ {2, ..., s} with the rest of the αi’s being
zero and so s− αj−1

(

s
j

)

= 1 + ε. We have

s− 1 − αj−1

(

s− 1

j

)

= s− 1 − αj−1

((

s

j

)

−

(

s− 1

j − 1

))

= s− 1 − αj−1

(

s

j

)

+ αj−1

(

s− 1

j − 1

)

= −1 + (1 + ε) + αj−1

(

s

j

)(

j

s

)

= −1 + (1 + ε) + (s− 1 − ε)

(

j

s

)

Again it suffices to check in the case that j = 2 as that’s what makes final expression above the
smallest. So we check

ε + (s− 1 − ε)

(

2

s

)

> 1

However our assumption that s−α ·vs = 1+ε gives that ε is at most s−1 and the above expression
attains a minimum at ε = 0 where we just have to check that

2

(

s− 1

s

)

> 1

and this holds for s ≥ 3 as required.

3 Sparse side

For the sparse side we will prove a certain collapsibility condition on our random complexes that
implies the complex is embeddable. For X a d-complex, we associate a (d+ 1)-uniform hypergraph
H whose hyperedges are the d-faces of X. If H has no 2-core then X will embed in R

2d. By 2-core
we mean a subhypergraph of H in which every vertex is contained in at least two hyperedges. If H
has no 2-core then there is a sequence of vertex deletions obtained by removing a vertex of degree
at most 1, along with the hyperedge that contains it, that removes all the vertices. We will say the
pure part of X has no 2-core to mean that the associated hypergraph has no 2-core. Recall that
the pure part of a d-complex is the subcomplex generated by the downward closure of the d-faces.
The next theorem shows that the absences of a 2-core in dimension d implies embeddability in
dimension 2d.
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Theorem 3. For d ≥ 1, if X is a finite d-complex and the pure part of X has no 2-core then X
linearly embeds into R

2d.

Proof. If we can embed the pure part of X into R
2d generically then this embedding can be extended

to an embedding of the entire complex. Indeed if the vertices of X are mapped into R
2d generically

then the only faces of X that might intersect one another in their interior are pairs of d-faces, each
pair of which could possibly intersect at a single point. Therefore once we have placed the points
into R

2d generically so that the pure part of X embeds, the lower dimensional faces can be added
without obstructing the embedding.

Let f1, ..., fk be an ordering of the d-faces of X obtained by removing vertices of degree one
(called free vertices) with fk as the first d-face removed and f1 as the last face removed. We
show that if we have embedded f1 ∪ · · · ∪ fℓ then we may extend the embedding to include fℓ+1.
Obviously f1 as a d-simplex embeds into R

2d. Now suppose we have embedded f1 ∪ · · · ∪ fℓ. When
fℓ+1 is added to X it comes with a new vertex that belongs to fℓ+1 but not to any other fi’s we’ve
embedded so far by how the ordering is defined. Thus

(f1 ∪ · · · ∪ fℓ) ∩ fℓ+1

contains at most d vertices. If the intersection contains less than d vertices then we place all but
one of the new vertices of fℓ+1 in R

d generically with the rest of the embedding. Now we fill in
the convex hull of these d vertices of fℓ+1. By general position this will be compatible with the
embedding as everything we are adding is of dimension at most d − 1. Now we want to add the
last vertex and the simplex fℓ+1 attaching it along the (d− 1)-simplex on the first d-vertices. Call
this (d − 1)-simplex σ. We take an arbitrary affine d-space through σ in R

2d, call this space K.
Now K will intersect the complex we have embedded so far only at σ and at some finite number of
points. Therefore there is some thickening of σ within K that avoids all the finitely many points of
intersection with the rest of the complex. This can be obtained by thickening σ by half the distance
to the nearest of the finitely many points. Now put the new vertex v inside this this thickening and
take the convex of v and σ and we have extended the embedding to include v∪σ = fℓ+1. Therefore
inductively the pure part of X can be embedded in R

2d generically and this enough to conclude
that all of X can be embedded in R

2d.

By Theorem 3 we want to prove a collapsibility result about X ∼ X(n;n−α). This is a different
type of collapsibility than is studied in [13] and [16]. Here we are collapsing (vertex, d-simplex)-
pairs and these other papers deal with collapsing ((d − 1)-simplex, d-simplex)-pairs. The overall
strategy though is the very similar: we prove that there are no large obstructions to collapsibility,
and that local obstructions to collapsibility are too dense to appear in this sparse regime. We start
with a definition.

Definition 4. For X a d-complex, associate a graph G(X) whose vertices are the d-simplices of X
with σ adjacent to τ exactly when σ∩τ 6= ∅. We say that a subcomplex Y of X is weakly connected
if for any σ and τ in Y there is a path within G(X) between σ and τ . The weakly connected
components in X are the maximal weakly connected subcomplexes.

We could also refer to weak connectivity as path connectivity but we use weak connectivity to
contrast with strong connectivity from the other papers in the literature on collapsibility. Clearly
a minimal 2-core of X is weakly connected. We first rule out large weakly connected components
as that will rule out large minimal 2-cores.
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Lemma 5. Fix d ≥ 1 and ε > 0, for vector α so that d+ 1−α ·vd+1 = 1− ε there is some constant
L = L(d, ε) so that with high probability X ∼ X(n;n−α) contains no weakly connected subcomplex
on more than L vertices.

Proof. If ε > 1 a simple first moment argument shows that there are no d-faces at all with high
probability, so we assume ε ≤ 1. The idea is to show that for L large, but constant independent
of n, if Y is any weakly connected subcomplex on L vertices there is some δ > 0 so that the dot
product of the f -vector of Y denoted (L, fY ), with fY as the f -vector omitting the number of
vertices, with the vector (1, α) := (1, α1, ..., αd) satisfies

(L, fY ) · (1, α) = L− fY · α < −δ.

If we have this then the expected number of weakly connected subcomplexes with L vertices in X
is at most

(

n

L

)

22
L

n−α ·fY ≤ 22
L

nL−α ·fY ≤ 22
L

n−δ = o(1).

The 22
L

is simply a trivial upper bound on the number of simplicial complexes on L vertices.
Now we verify the claimed bound on L − fY · α. Suppose that Y is a weakly connected d-

complex, then by taking a spanning tree on G(Y ) we can find an ordering σ1, ..., σK on the d-faces
of Y so that for each 2 ≤ k ≤ K, σk ∩ (σ1 ∪ · · · ∪ σk−1) is nonempty. Let β = d + 1 − α ·vd+1, this
is the value of the dot product of the f -vector of σ1 with (1, α). Throughout the process of adding
the σi’s β will denote the value of f0 − f1α1 − · · · − fdαd as the f -vector changes. We keep track
of how β changes as we add the σi’s in their given order. Specifically we want to argue that if L
is large enough, that β eventually becomes negative. We immediately see that if we add a σi that
doesn’t contain any vertices that aren’t already in σ1 ∪ · · · ∪ σi−1 that β cannot increase, so only
have to consider how it changes when we add a face that includes new vertices. Suppose adding σi
adds t new vertices to Y , then the effect adding σi on β is adding to it at most the quantity

γ(t) := t− α1

((

t

2

)

+ g(t, d, 1)

)

− α2

((

t

3

)

+ g(t, d, 2)

)

− · · · − αd−1

((

t

d

)

+ g(t, d, d − 1)

)

where g(t, d, k) is the number of k-dimensional faces in the d-simplex containing at least one vertex
from a fixed subset of size t and at least one vertex outside that set, so

g(t, d, k) =

(

d + 1

k + 1

)

−

(

t

k + 1

)

−

(

(d + 1) − t

k + 1

)

So we maximize (over α, not over t) γ(t) subject to α ≥ 0 and d − α ·vd+1 = −ε. Similar to the
proof of Lemma 2 it suffices to check when exactly one entry of (α1, ..., αd) is nonzero. Set j so
that αj 6= 0 and αi = 0 for i ∈ {1, ..., d}, with i 6= j and d − αj

(d+1
j+1

)

= −ε. In this case then for
any t ∈ {1, ..., d},

γ(t) = t− αj

((

t

j + 1

)

+

(

d + 1

j + 1

)

−

(

t

j + 1

)

−

(

(d + 1) − t

j + 1

))

= t− αj

(

d + 1

j + 1

)

+ αj

(

(d + 1) − t

j + 1

)
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We want to verify that this is always negative and bounded away from zero. Since we’ve assumed
that

αj =
d + ε
(d+1
j+1

) ,

it suffices to prove that for all t ∈ {1, ..., d} and j ∈ {1, ..., d}

t
(d+1
j+1

)

−
((d+1)−t

j+1

)
≤

d
(d+1
j+1

) .

This is equivalent to showing that

t

d
≤

(

d+1
j+1

)

−
(

(d+1)−t
j+1

)

(d+1
j+1

) .

We prove this as the following claim:

Claim 6. For any n, t ∈ {1, ..., n − 1}, and k ∈ {2, ..., n}

t

n− 1
≤

(n
k

)

−
(n−t

k

)

(

n
k

)

Proof. The righthand side of the inequality is the probability that a uniform random k-element
subset of {1, ..., n} contains at least one element of a fixed subset of {1, ..., n} of size t. Obviously
that probability gets larger as k increases. So it suffices to verify the inequality when k = 2.

(

n
2

)

−
(

n−t
2

)

(n
2

) ≥
t

n− 1

<=>
n(n− 1) − (n− t)(n− t− 1)

n(n− 1)
≥

t

n− 1

<=>
n2 − n− (n2 − nt− n− nt + t2 + t)

t
≥ n

<=>
2nt− t2 − t

t
≥ n

<=> 2n − t− 1 ≥ n

<=> n− 1 ≥ t

and we have assumed that t ≤ n− 1 so we have the claim

It follows that for every σi that includes a new vertex β decreases by at least some fixed positive
constant depending on d and ε, and β never increases. Thus β can be made arbitrarily negative by
setting L arbitrarily large. This is sufficient for the first moment argument covered at the beginning
of the proof to hold.

Next we show that small subcomplexes on at most L vertices are too sparse to be 2-cores. To
that end we prove the following lemma.
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Lemma 7. If α satisfies d + 1 − α ·vd+1 < 1 and Y is a d-complex so that for every subcomplex
Y ′ ⊆ Y ,

〈f0(Y
′), f1(Y

′), ..., fd(Y ′)〉 · 〈1,−α1, ...,−αd〉 > 0

then Y has a vertex in at most one d-face, in particular Y does not contain a 2-core.

Proof. Suppose Y is a d-complex satisfying the inequality for α so that d + 1 − α ·vd+1 < 1. For a
vertex w let degi(w) denote the number of i-dimensional faces containing w, then

∑

w∈Y

(

1 −
1

2
deg1(w)α1 −

1

3
deg2(w)α2 − · · · −

1

d + 1
degd(w)αd

)

= f0(Y )−α1f1(Y )−· · ·−αdfd(Y ) > 0.

Therefore there is some w so that

d
∑

i=1

1

i + 1
degi(w)αi < 1.

We want to show that w does not belong to at least two d-simplices. Suppose that w is
contained in at least two d-simplices, then the link of w contains two (d− 1)-simplices σ and τ . If
|σ ∩ τ | = m ≤ d− 1 then

d
∑

i=1

1

i + 1
degi(w)αi ≥

d
∑

i=1

1

i + 1

(

2

(

d

i

)

−

(

m

i

))

αi

The assumption that d + 1 − α ·vd+1 < 1 gives us that

d
∑

i=1

(

d + 1

i + 1

)

αi > d.

Combining the previous three inequalities then there must be some 0 ≤ m ≤ d so that

d
∑

i=1

(

d + 1

i + 1

)

αi >

d
∑

i=1

d

i + 1

(

2

(

d

i

)

−

(

m

i

))

αi

We next prove the following claim. Doing so contradicts our assumption that w belongs to at
least two d-simplices, so w can be taken to be our vertex of degree at most 1 and we then apply
the same argument to Y \ {w} and repeat until all the simplices have been deleted by removing
free or isolated vertices verifying that Y does not contain a 2-core.

Claim 8. For any d ≥ 1, i ∈ {1, ..., d} and m ∈ {0, ..., d − 1},

(

d + 1

i + 1

)

≤
d

i + 1

(

2

(

d

i

)

−

(

m

i

))

8



Proof. Clearly we just have to check m = d− 1.

d

i + 1

(

2

(

d

i

)

−

(

d− 1

i

))

−

(

d + 1

i + 1

)

≥ 0

<=> d

(

2
d!

(d − i)!
−

(d− 1)!

(d− 1 − i)!

)

−
(d + 1)!

(d− i)!
≥ 0

<=> d (2d! − (d− 1)!(d − i)) − (d + 1)! ≥ 0

<=> d! (2d− (d− i)) ≥ (d + 1)!

<=> d + i ≥ d + 1

<=> i ≥ 1.

The claim is verified.

With the previous lemmas we are ready to prove the sparse side of Theorem 1

Proof of sparse side of Theorem 1. Suppose that d + 1 − α · vd+1 < 1. We show that with high
probability X ∼ X(n;n−α) is at most d-dimensional and the pure d-part of X has no 2-core. If
this holds then by Theorem 3, X will be embeddable in R

2d. From Lemma 2, d + 1 − α · vd+1 < 1
implies that d+2−α·vd+2 < 0 and the expected number of (d+1)-faces is O(nd+2−α·vd+2) = o(1), so
X is d-dimensional with high probability. Additionally Lemma 5 implies that with high probability
there is some L so that all minimal 2-cores in X have at most L vertices.

However, the possibility of small cores is handled by Lemma 7 and a first moment argument.
By Lemma 7 for any Y that is a d-dimensional 2-core there is a subcomplex Y ′ ⊆ Y so that

〈f0(Y
′), f1(Y

′), ..., fd(Y ′)〉 · 〈1,−α1, ...,−αd〉 ≤ 0

However if equality holds, then by some small perturbation of α we could get a contradiction
to Lemma 7 and so we actually have a strict inequality. Now as we have ruled out minimal 2-
cores on more than L vertices if we can show that X does not contain any subcomplexes Y on
at most L vertices so that 〈f0(Y ), f1(Y ), ..., fd(Y )〉 · 〈1,−α1, ...,−αd〉 < 0 we will be done. Let F
be the family of such subcomplexes. As F is finite there is some δ > 0 so that for all Y ∈ F
〈f0(Y ), f1(Y ), ..., fd(Y )〉 · 〈1,−α1, ...,−αd〉 < −δ. By linearity of expectation the expected number
of complexes in F that are subcomplexes of X is at most

|F|L!n−δ

because the number of copies of Y in X for Y ∈ F in expectation is at most

(

n

f0(Y )

)

n−f1(Y )α1−f2(Y )α2−···−fd(Y )αd < n−δ.

As |F| and L are constants independent of n the expected number of subcomplexes of F in X is
o(1), so with high probability X contains no element of F and hence no 2-core. Thus with high
probability X embeds in R

2d as it satisfies the assumptions of Theorem 3.
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4 Dense side

The proof for the dense side is based on Radon’s theorem. Recall that Radon’s theorem, originally
proved in [17], states that any set of d+2 points in R

d can be partitioned into two sets whose convex
hulls intersect and if the point set is generic the Radon partition is unique. Thus if we have a linear
embedding of X ∼ X(n;n−α) into R

2d then for any set of 2d + 2 vertices we get from Radon’s
theorem a pair of simplices on those vertices that must be excluded from X. Given an embedding
of n points in R

2d and a simplicial complex X on [n] we say that S ∈
( [n]
2d+2

)

is a Radon match if
in the Radon partition on S into two subsets S1 and S2, the simplex on S1 and the simplex on S2

are both present in X. If X has a Radon match for every embedding of the vertices of X into R
2d

then X is not linearly embeddable in R
2d. Our strategy is to show that with high probability when

X ∼ X(n;n−α) on the dense side of the claimed phase transition every embedding of the vertices
has at least one Radon match. We also will assume throughout that all embeddings have vertices
placed generically in R

2d but it is clear that if there is a linear embedding of X into R
2d then by a

sufficiently small perturbation we have a generic embedding.
Turning the strategy into a proof requires three ingredients. First we need some control on

which type of splits of our (2d+ 2)-sets we see. If, for example, they were all split as 2d+ 1 vertices
in convex position surrounding a single vertex in the interior, we would not expect to see any
Radon partitions just beyond the phase transition. Second, for our purposes any two embeddings
of the n vertices in R

d can be regarded as equivalent if they induce the same Radon partition on all
2(d+2)-subsets. Therefore we need an upper bound on how many nonequivalent embeddings there
are to consider. Third we need an upper bound on the probability that a particular embedding has
no Radon match and this upper bound has to go to zero faster than the number of nonequivalent
embeddings is going to infinity so that we can take a union bound.

For the first point we use the following stronger version of the classical van Kampen–Flores
Theorem.

Theorem 9 (Theorem 6.6 of [2]). Let d ≥ 1. Then for every embedding of d+ 3 points in R
d there

exists two disjoint sets S1 and S2 with |S1| = ⌊(d+ 2)/2⌋ and |S2| = ⌈(d + 2)/2⌉ so that the convex
hull of S1 and S2 intersect.

As a corollary to this we have the following regarding an embedding of n points in R
d

Corollary 10. For any embedding of n points in R
d there are at least

1

d + 3

(

n

d + 2

)

(d+2)-subsets of [n] that split into two sets S1 and S2 with |S1| = ⌊(d+2)/2⌋ and |S2| = ⌈(d+2)/2⌉
so that the convex hull of S1 and S2 intersect.

Proof. By Theorem 9 for any embedding of n points in R
d every subset of size d+ 3 contributes at

least one pair (S1, S2) satisfying the required condition. Such a pair has |S1 ∪S2| = d+ 2, and each
belongs to at most n − (d + 2) (d + 3)-element subsets. Thus the number of such pairs (S1, S2) is
at least

1

n− (d + 2)

(

n

d + 3

)

=
1

d + 3

(

n

d + 2

)

.
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We now turn our attention to bounding the number of embeddings of the vertices we have to
consider. We consider two general position embeddings f, g : [n] → R

d to be equivalent if for every

S ∈
([n]
d

)

the Radon partition of S under the image of f is the same as the Radon partition of S
under the image of g.

For this we are really counting labeled, simple order types of a configuration of n points in R
d.

Recall that the order type of a labeled set of points p1, ..., pn in R
d is the

(

n
d+1

)

-tuple of signs of
determinants of (d + 1) × (d + 1) submatrices of

(

p1 · · · pn
1 · · · 1

)

.

That is the order type is
(

sgn det

(

pi1 · · · pid+1

1 · · · 1

))

1≤i1<···<id+1≤n

By construction then for any set of d+ 2 points in general position the order type of those d+ 2
points determines the Radon partition. Indeed for p1, ..., pd+1, pd+2 we have p1, ..., pd+1 are vertices
of a simplex and for any i, the order type (either −1 or 1) of p1, .., pi−1, pi+1, .., pd+1, pd+2 determines
on which side of the hyperplane through p1, .., pi−1, pi+1, .., pd+1, pd+2 sits. Thus the order type
of p1, ..., pd+1, pd+2 determines which region of the hyperplane arrangement on p1, ..., pd+1 contains
pd+2. This region uniquely determines the Radon partition on p1, .., pd+2. For more background
on order types see the survey of Goodman and Pollack [9]. By simple order types we mean order
types where none of the determinant signs are zero, these are all the order types that have to be
considered for generic point sets.

The following enumeration result of Goodman and Pollack on order types will be sufficient for
our proof. There is also a stronger result for all labeled order types, not just simple ones, due to [1]

Theorem 11. [8, Theorem 1] The number of simple order types for n labeled points in general
position in R

d is at most
nd(d+1)n.

We note that the number of order types is a technically a refinement of the number of embeddings
which induce the same Radon partitions on every (d + 2)-subset of n points. If we have only d + 2
points in general position we have a distinct Radon partition, (A,B), but we can change the order
type by permuting the points relabeling the points in A and the points in B. However the direction
that we need is that the order type determines the Radon partition discussed above. So we have
the following lemma as an immediate corollary to Theorem 11.

Lemma 12. For d ≥ 1 the number of nonequivalent, general position embeddings of n vertices in
R
d is at most

nd(d+1)n.

For the last piece of the proof for the dense side of the phase transition we bound the probability
that for any fixed embedding of the vertices of X we have no Radon matches.

Lemma 13. Fix d ≥ 1 and let π : [n] → R
2d be a general position embedding for n vertices in

R
2d. For d + 1 − α ·vd+1 > 1 the probability that X ∼ X(n;n−α) has no Radon matches under the

mapping into R
2d induced by π is at most

exp(−n1+ε)

11



for some ε > 0 that depends only on α and d.

For the proof we will make use of the following form of Janson’s equality from Theorem 23.13
of [7]:

Theorem 14 (Janson’s Inequality). Let R be a random subset of [N ] such that for each s ∈ [N ],
qs ∈ (0, 1) denotes the probability that s ∈ N is included in R. Let D1, ...,Dn be a family of n
subsets of R. Suppose that Sn is a sum of indicator random variables Sn = I1 + · · · + In where Ii
is the indicator for the event Di. Write i ∼ j is Di ∩Dj 6= ∅ let

∆ =
∑

{i,j}:i∼j

E(IiIj)

then

Pr(Sn = 0) ≤ exp

(

−(E(Sn))2

2∆

)

.

In our case N is all the faces of the simplex on n vertices other than the vertices and R is
the random complex in X(n;n−α). We might hesitate for a moment regarding the independence
assumption as the faces are not included independently in X. However we can instead associate
to σ in the simplex on n vertices qσ = n−α|σ|−1 , in this way each face is set to be either on or off
independently and then the complex X consists of those faces that are switched on and have all
their subfaces switched on as well. Each Di will be a Radon match which corresponds to some
collection of faces all switched on independently.

Proof of Lemma 13. Let Y be the random variable counting the number of evenly split Radon
matches in X ∼ X(n;n−α) under π, i.e. Radon matches for Radon partitions with d + 1 vertices
in each part. By linearity of expectation and Corollary 10 we have

E(Y ) ≥
1

(2d + 3)(2d + 2)2d+2
n2d+2n−2α ·vd+1 = Θ(n2((d+1)−α ·vd+1)).

Under our assumptions then E(Y ) → ∞. Now we use Janson’s inequality to bound the probability
that Y = 0. Observe that Y is a sum of indicator random variables 1(A,B) where A, B is an evenly
split Radon partition of A∪B coming from π, with A the lexicographically smaller of the two sets
with respect to some ordering, and 1(A,B) is the indicator random variable for the event that the
simplex on A and the simplex on B are both included in X. If (A,B) and (A′, B′) don’t share any
edges, i.e. if |A ∩ B′|, |A ∩ A′|, |B ∩ A′|, and |B ∩ B′| are all of size at most 1, then 1(A,B) and
1(A′,B′) are independent. To apply Janson’s inequality then we let

∆ =
∑

{(A,B),(A′,B′)|(A∪B),(A′∪B′) share an edge}

E(1(A,B)1(A′,B′)),

and we compute an upper bound on ∆. If (A,B) and (A′, B′), with A ∩ B and A′ ∩ B′ both
empty, share at least an edge then the intersection of the two pairs is a disjoint union of up to four
nonempty sets A ∩ B′, A ∩ A′, B ∩ A′, and B ∩ B′. Let m1,m2,m3,m4 denote the sizes of these
sets respectively, note that at least one of the mi’s is at least 2 and all of them are at most d + 1.
Given m1, m2, m3, and m4 the probability that A,B,A′, B′ are all included in X is

E(1(A,B)1(A′,B′)) = n−4α ·vd+1−(
∑4

i=1
−α ·vmi

)
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as the simplices in the intersection are counted exactly twice.
Now for each choice of m1,m2,m3,m4 the number of way to pick for sets of d + 1 vertices A,

B, A′, and B′ so that |A∩B| = |A′ ∩B′| = 0 so that |A∩B′| = m1, |A∩A′| = m2, |B ∩A′| = m3,
and |B ∩B′| = m4 is at most

O(n4(d+1)−m1−m2−m3−m4).

It follows that

∆ = O

(

max
m1,m2,m3,m4

n4((d+1)−α ·vd+1)−
∑4

i=1(mi−α ·vmi
)

)

where the maximum is taken over all choices of m1,m2,m3,m4 so that each is at most d + 1 and
at least one of them is more than 1. By Janson’s inequality then,

Pr(Y = 0) ≤ exp
(

−Θ
(

nminm1,m2,m3,m4
{
∑

4
i=1

(mi−α ·vmi
)}
))

.

We now need to verify that

min
m1,m2,m3,m4

{

4
∑

i=1

(mi − α ·vmi
)

}

> 1

This follows though since at least one of the mi’s is always at least 2 and they are all always
at most d + 1. So by the second part of Lemma 2 for all allowable choices of m1,m2,m3,m4,
∑4

i=1(mi − α ·vmi
) > 1. As there is a constant bound on the possible values for m1, ...,m4 for d

fixed, we have that there is some ε depending on d so that

Pr(Y = 0) ≤ exp(n1+ε).

Proof of dense side of Theorem 1. Set d ≥ 1. By Lemma 13 there is ε > 0 so that for any embed-
ding π of the vertices of X ∼ X(n;n−α) into R

2d, the probability that X has no Radon matches
with π is at most exp(−n1+ε). Taking a union bound over all nonequivalent embeddings of the
vertices from Lemma 12 we have that the probability that there is an embedding of the vertices
with no Radon match is at most

n2d(2d+1)ne−n1+ε

= o(1).

So with high probability every embedding of X into R
2d has a Radon match, therefore X is not

linearly embeddable in R
2d.

5 Concluding remarks

Theorem 1 establishes a threshold result for linear embeddings in even dimensions. Two impor-
tant special cases are for the Linial–Meshulam–Wallach model where we see that (up to the right
exponent) p = n−d is the threshold for Y ∼ Yd(n, p) to be embeddable in R

2d and for the clique
complex model where we see that p = n−2/(d+1) is the threshold for embeddability of X ∼ X(n, p)
in R

2d. Up to the exponent, this matches the threshold for X to be at least (d + 1)-dimensional
even though we found obstructions to embeddability already in the d-skeleton.
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PL-embeddings of random complexes have also been studied in the past, and together with
a result of Wagner, Theorem 1 gives a new, probabilistic proof of the known result that PL-
embeddablility is a strictly weaker notion than linearly-embeddability for complexes of dimension
larger than 1. Let Yd(n, p) denote the d-dimensional Linial–Meshulam–Wallach model. Wagner’s
result on PL-embeddability is the following

Theorem 15 (Theorem 2 of [18]). The threshold for PL-embeddability of Y ∼ Yd(n, p) into R
2d is

at p = Θ(1/n).

From this and Theorem 1 the following is immediate.

Theorem 16. For 1 < α < d with high probability Y ∼ Yd(n, n−α) is PL-embeddable in R
2d, but

not linearly embeddable in R
2d.

Perhaps the most natural open question is to establish linear embedding thresholds for odd
dimensions. An earlier version of this paper claimed such a threshold, however upon writing this
revision an error was found for the proof in the odd dimensional case. For showing nonembeddability
in R

2d−1 for sparser complexes than those that fail to embed in R
2d, some new ideas would be

required. To explain why we’ll examine the case of embedding the random clique complex in R
3.

For 2/3 < α < 1 we know that X(n, n−α) embeds in R
4 but not in R

2. If we take α = 1− δ for
some small δ and try to use the same proof based on Radon matches to rule out embeddability into
R
3, we could still show that on average a fixed placement of the vertices in R

3 will have Θ(n5−4α)
Radon matches, so that part of the proof would still be consistent with the even dimensional case.
The problem, however, is that we cannot get an upper bound on the probability of no Radon
matches of exp(−n1+ε) in this case, and this was used in the even dimensional case to take a union
bound over the approximately nn order types. The reason we can’t prove such a bound is that if our
random complex happens to have no triangles at all for α = 1−δ then the complex is 1-dimensional
and so it will embed in R

3 generically. The average number of triangles is n3−3α = n−3δ, so the
probability there are no triangles should be roughly exp(−n3δ) (there would be some things to
check here since the triangles aren’t included independently, but this is just a sketch of the idea).
So there is a lower bound that exceed exp(−n1+ε) until δ > 1/3, but at that point we are at the
nonembeddability threshold for R

4 anyway.
Other remaining open problems include establishing sharp threshold results for linear embed-

dability in even dimensions; the main result here establishes thresholds for linear embeddability
only up to the right exponents. Additionally, now that we know that the Linial–Meshulam–Wallach
model has different thresholds for PL-embeddability and for linear embeddability, it would be in-
teresting then to determine PL-embeddability thresholds for entire the multiparameter model.
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