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Linear extensions and shelling orders

Davide Bolognini∗ and Paolo Sentinelli†

Abstract

We prove that linear extensions of the Bruhat order of a matroid

are shelling orders and that the barycentric subdivision of a matroid

is a Coxeter matroid, viewing barycentric subdivisions as subsets of

a parabolic quotient of a symmetric group. A similar result holds for

order ideals in minuscule quotients of symmetric groups and in their

barycentric subdivisions. Moreover, we apply promotion and evacua-

tion for labeled graphs of Malvenuto and Reutenauer to dual graphs of

simplicial complexes, introducing promotion and evacuation of shelling

orders.

1 Introduction

A pure simplicial complex is shellable if its facets admit a total order,
called shelling order, such that each facet can be added gluing it along a
subcomplex of codimension 1. Shellability is one of the most studied combi-
natorial properties of simplicial complexes. Its pivotal role in combinatorics
and commutative algebra is due to the fact that a shellable simplicial complex
is also Cohen–Macaulay over every field. It is combinatorial because there
exist both shellable and non-shellable triangulations of the same topological
space (for non-shellable triangulations of spheres and balls see e.g. [2]).

Examples of shellable simplicial complexes are vertex-decomposable ones
(see e.g. [16, Theorem 3.33]), boundaries of simplicial polytopes [24, Theorem
8.11], order complexes of Bruhat intervals in parabolic quotients of Coxeter
groups [6] and of Bruhat intervals in their complements [20], order complexes
of face posets of electrical networks [15], among others.

A subclass of vertex-decomposable simplicial complexes are independence
complexes of matroids (see for instance [16, Theorem 13.1]), for which a
shelling order is given by the lexicographic order of the facets. The set
of facets of a pure k-dimensional simplicial complex on n vertices can be

identified with a subset of the set S
(k)
n of Grassmannian permutations, which
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can be endowed with the Bruhat order. Therefore, if X ⊆ S
(k)
n is the set

of bases of a matroid, we view X as a poset with the induced order, so we
can speak about the Bruhat order of the matroid X (also called Gale order).
Inspired by the fact that the lexicographic order is a linear extension of X,
we state in Theorem 3.4 that all the linear extensions of X are shelling orders.
Actually we prove this result for the larger class of simplicial complexes with
the quasi-exchange property, introduced in [19]; this class includes also order

ideals of S
(k)
n , see Corollary 3.5. Since there are shellable simplicial complexes

for which no linear extension is a shelling order (we checked it for the so-called
Hachimori’s complex, see e.g. [7, Example 4.5] for a list of facets), this result
provides a structural connection between shellings orders of matroids and
linear extensions of their Bruhat orders. Nevertheless, as expected, there
are shelling orders of matroids which are not linear extensions, also up to
relabeling (see Example 3.10).

Coxeter matroids generalize, via the maximality property, standard ma-
troids. By extending maximality property to different contexts, in [8] we gen-
eralized flag matroids to P -flag matroids and in [9] matroids to χ-matroids,
where P is any finite poset and χ a one-dimensional character of a finite
group. In this paper, we provide another connection between matroids and
Coxeter matroids involving barycentric subdivisions of simplicial complexes
(Theorem 4.1).

The interpretation of the facets of a pure simplicial complex X as ele-

ments of S
(k)
n allows us to view the facets of the barycentric subdivision B(X)

of X as permutations in Sn obtained by acting with Sk on the elements of
X. In Definition 4.3 we introduce a notion of flag shellability for subsets of

the barycentric subdivision B(S
(k)
n ). Flag shellability of B(X) coincides with

shellability of the order complex of the face poset of X. In Theorem 4.5 we

prove that the linear extensions of order ideals of B(S
(k)
n ) are flag shelling

orders.
Although shellable simplicial complexes are extremely nice from a com-

binatorial point of view, also in this realm weird things may happen: for
instance there exist shellable simplicial complexes such that every possible
shelling order is forced to end with a specific facet (see [21, Appendix F]).
For this reason, it is crucial to know if and how a shelling order can be
rearranged to have a new shelling order. The promotion function was de-
fined on linear extensions of posets (see [23] for a survey and [13], [14] for
recent results and new developments): given a linear extension of a poset,
its promotion is a new linear extension, obtained rearranging the first. By
taking advantage of the generalization given in [18] and by considering the
so-called dual graph of a pure simplicial complex (or, equivalently, its undi-
rected Bruhat graph, see Remark 5.6), in Section 5 we introduce promotion
and evacaution of shelling orders; see Theorems 5.4 and 5.11. The core of
the proof is given by a structural property of shelling orders, which is in-
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teresting by itself, see Proposition 5.3. For simplicial complexes for which
linear extensions are shelling orders, it is natural to ask if the promotion of
shelling orders agrees with promotion of linear extensions: under a suitable
assumption, in Proposition 5.7 we prove that this is the case; this assump-
tion is fulfilled by interesting classes of simplicial complexes, see Corollary
5.8.

2 Notation and preliminaries

In this section we fix notation and recall some definitions useful for the
rest of the paper. We refer to [22] for posets, to [5] for Coxeter groups, and
to [10] for matroids and Coxeter matroids.

Let Z be the ring of integers and N the set of positive integers. For n ∈ N,
we use the notation [n] := {1, 2, . . . , n}. For a finite set X, we denote by |X|
its cardinality and by P(X) its power set, which is an abelian group with
the operation given by symmetric difference A+B := (A \B)∪ (B \A), for
all A,B ⊆ X. We denote by Xn the n-th power under Cartesian product,
by xi the projection of x ∈ Xn on the i-th factor, and we set N(x) := n. For
k ∈ N, k 6 |X|, we define the k-th configuration space of X by

Confk(X) :=
{

x ∈ Xk : xi = xj ⇒ i = j, ∀ i, j ∈ [k]
}

,

and, if < is a total order on X, the k-th unordered configuration space of X
by

Xk
< :=

{

x ∈ Xk : i < j ⇒ xi < xj, ∀ i, j ∈ [k]
}

.

We also set

Conf(X) :=

|X|
⋃

k=1

Confk(X).

Sometimes we write a1 . . . ak ∈ Confk(X) instead of (a1, . . . , ak) ∈ Confk(X).
We consider the symmetric group Sn of order n! as a Coxeter group, with

generators given by simple transpositions S := {s1, . . . , sn−1}, where, in one-
line notation, si := 12 . . . (i + 1)i . . . n, for all i ∈ [n − 1]. The right descent
set of a permutation w ∈ Sn is defined by

DR(w) := {i ∈ [n− 1] : w(i) > w(i+ 1)}.

For J ⊆ [n− 1] define

SJ
n := {w ∈ Sn : i ∈ J ⇒ w(i) < w(i + 1)}.

There is a function P J : Sn → SJ
n defined by mapping a permutation w to

an increasing rearrangement according to J , as described in [5, Section 2.4].
The following example should make clear how to obtain the permutation
P J(w).
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Example 2.1. Let n = 7, J = {1, 2, 4, 6} and w = 4317625. Therefore
we have to rearrange increasingly the blocks 431, 76 and 25. It follows that
P J(w) = 1346725.

If k ∈ [n − 1], the Bruhat order1 6 on the minuscule quotient S
(k)
n :=

S
[n−1]\{k}
n is defined by setting u 6 v if and only if u(i) 6 v(i), for all

1 6 i 6 k (see [5, Proposition 2.4.8]). We let S
(n)
n := S

[n−1]
n = {e}. The

elements of S
(k)
n are called Grassmannian permutations. The Bruhat order

on Sn can be defined by setting

u 6 v ⇔ P [n−1]\{k}(u) 6 P [n−1]\{k}(v), for all k ∈ [n− 1], (1)

for all u, v ∈ Sn (see [5, Theorem 2.6.1]). On the subset SJ
n of Sn we consider

the induced order, and this leads to the definition of Coxeter matroid via
the maximality property.

Definition 2.2. A subset X ⊆ SJ
n is a Coxeter matroid if the induced

subposet {P J (wx) : x ∈ X} ⊆ SJ
n has a unique maximum (equivalently, has

a unique minimum) for all w ∈ Sn.

For example, if J = [n− 1] \ {k}, then a Coxeter matroid is a matroid of
rank k on the set [n] (see [10, Section 1.3]). For J = ∅ a Coxeter matroid is a
flag matroid (see [10, Section 1.7]). In Section 4 we prove that some Coxeter
matroids for J = [n − 1] \ [k] can be realized as barycentric subdivisions of
independence complexes of matroids.

The k-th configuration space of [n] can be identified with the quotient

S
[n−1]\[k]
n , i.e., as sets,

Confk([n]) ≃ S[n−1]\[k]
n .

Then it makes sense to consider on Confk([n]) the Bruhat order.
On [n]k< ⊆ Confk([n]) we consider the induced order; this poset is iso-

morphic to S
(k)
n with the Bruhat order. Then, as posets,

[n]k< ≃ S(k)
n .

For example, in [8]4< we have 3456 6 4568 and 2568 
 3478. We also
repeatedly use the identification

[n]k< ≃ {X ⊆ [n] : |X| = k},

where [n]0< := {∅}. Then, identifying U :=
n
⋃

k=0

[n]k< with P(X), it makes

sense to write x∩y, x∪y and the symmetric difference x+y, for all x, y ∈ U .

1The Bruhat order on a minuscule quotient of Sn is also known as Gale order.
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Since Conf([n]) ≃
⋃n

i=1 S
[n−1]\[i]
n , for k ∈ [n] we have a function P (k) :

Conf([n]) → [n]k< obtained by gluing the functions P [n−1]\{k} : S
[n−1]\[i]
n →

S
(k)
n for all i ∈ [n]. Notice that x 6 y in the Bruhat order of Confk([n]) if

and only if P (i)(x) 6 P (i)(y) in [n]i< for all i ∈ [k]. For example, 3125 6

4251 in Conf4([5]). On the other hand, 3152 
 4215 in Conf4([5]), since
P (3)(3152) = 135 
 124 = P (3)(4215).

By our identifications, a matroid of rank k on the set [n] is a subset of [n]k<,

and a Coxeter matroid in the quotient S
[n−1]\[k]
n is a subset of Confk([n]). We

have defined a matroid by the maximality property, which is equivalent to
the exchange property (see [10, Theorem 1.3.1]):

Definition 2.3 (Exchange property). A set X ⊆ [n]k< is a matroid if and
only if for all A,B ∈ X and a ∈ A \ B, there exists b ∈ B \ A such that
A+ {a, b} ∈ X.

Let M ⊆ [n]k< be a matroid and i ∈ [n − 1]. Then {P (i)(x) : x ∈ M}
is a matroid, called the shift of M to [n]i< (see [10, Section 6.12.1]). The
underlying flag matroid of M is the union of cosets

⊎

x∈M x(Sn)S\{sk}, where
(Sn)S\{sk} is the parabolic subgroup of Sn generated by S \ {sk} (see [10,
Section 6.6]).

Example 2.4. Let M := {13, 34} ⊆ [4]2<. Then the shift of the matroid
M to [4]3< is the matroid {123, 134}. The underlying flag matroid of M is
{1324, 3124, 1342, 3142, 3412, 4312, 3421, 4321} ⊆ Conf4([4]) ≃ S4.

In general, for I, J ⊆ [n − 1], the shift of a Coxeter matroid M ⊆ SJ
n to

SI
n is the Coxeter matroid {P I(x) : x ∈ M}.

3 Linear extensions of pure simplicial complexes

Let k, n ∈ N be such that k 6 n. We identify a pure simplicial complex
X of dimension k− 1 on n vertices with the set of its facets. Since any facet
of X corresponds to a subset of [n] of cardinality k, we can view the X as
a subset of [n]k<. On the other hand, any subset of [n]k< provides a pure
simplicial complex of dimension k − 1 on n vertices. Therefore, matroids of
rank k on the set [n] are pure simplicial complexes of dimension k − 1.

Definition 3.1. An element L ∈ Conf([n]k<) is a linear extension if Li < Lj

in the Bruhat order implies i < j, for all i, j ∈ [N(L)].

For example, (357, 268, 468) ∈ Conf([8]3<) is a linear extension. We pro-
vide now the definition of shelling order.

Definition 3.2. An element C ∈ Conf
(

[n]k<
)

is a shelling order if i < j
implies that there exists z < j such that |Cz ∩ Cj| = |Cj| − 1 and Ci ∩ Cj ⊆
Cz ∩ Cj, for all i, j ∈ [N(C)].
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A pure simplicial complex X ⊆ [n]k< is said to be shellable if there exists
a shelling order C ∈ Conf

(

[n]k<
)

such that X = {C1, . . . , CN(C)}. It is well

known that, if X ⊆ [n]k< is a matroid, then the lexicographic order on X is
a shelling order (see [4, Theorems 7.3.3 and 7.3.4]) and a linear extension of
the Bruhat order of X.

In the following theorem we prove that for a wide class of simplicial
complexes, including matroids and order ideals in [n]k<, actually any linear
extension of the Bruhat order provides a shelling order. This class is defined
by the following property (see [19, Definition 4.1]).

Definition 3.3. A subset X ⊆ [n]k< has the quasi–exchange property if,
given x, y ∈ X, then i ∈ x \ y and i > max(y \ x) imply that there exists
j ∈ y \ x such that x+ {i, j} ∈ X.

Notice that if i ∈ x, i > max(y \ x) and j ∈ y \ x, then x+ {i, j} < x in
the Bruhat order, for all x, y ∈ [n]k<.

Theorem 3.4. If X ⊆ [n]k< has the quasi–exchange property, then any linear
extension of X is a shelling order.

Proof. If k = n the statement is trivial. So we may assume k < n. Let
h := |X| and L = (L1, . . . , Lh) be a linear extension of X. If h = 1 we have
nothing to show. So let h > 1. Assume that (L1, . . . , Lr) is a shelling order
for r < h and consider the linear extension (L1, . . . , Lr, Lr+1). Let i ∈ [r].
Since L is a linear extension we have that Li � Lr+1. We are going to show
that there exists Lz with z ∈ [r] such that |Lz ∩ Lr+1| = |Lr+1| − 1 and
Li ∩ Lr+1 ⊆ Lz ∩ Lr+1. Let v := max{j ∈ [k] : Lr+1(j) 6= Li(j)}. We have
two cases:

1. Lr+1(v) > Li(v): in this case Lr+1(v) > Li(v) = max(Li \ Lr+1)
and Lr+1(v) 6∈ Li. By the quasi–exchange property, there exists y ∈
Li \ Lr+1 such that Y := Lr+1 + {Lr+1(v), y} ∈ X. Hence Y < Lr+1

in the Bruhat order, i.e. there exists z ∈ [r] such that Y = Lz, since
L is a linear extension of the Bruhat order of X. Therefore Lz has the
required properties.

2. Lr+1(v) < Li(v): in this case Li(v) > Lr+1(v) = max(Lr+1 \ Li)
and Li(v) 6∈ Lr+1. By the quasi–exchange property, there exists y ∈
Lr+1\Li such that Y := Li+{y, Li(v)} ∈ X, and Y < Li in the Bruhat
order. Then i > 1 and there exists j ∈ [i−1] such that Y = Lj , since L
is a linear extension of X. Moreover, if u := max{j ∈ [k] : Lr+1(j) 6=
L1(j)}, then L1(u) < Lr+1(u). In fact, if L1(u) > Lr+1(u), then
Lr+1(u) = max(Lr+1 \ L1) and there exists m ∈ Lr+1 \ L1 such that
M := L1 + {m,L1(u)} ∈ X with M < L1 in the Bruhat order, a
contradiction. So Lr+1(u) > L1(u) = max(L1 \Lr+1). By the previous
case, there exists w ∈ Lr+1\L1 and w′ ∈ L1\Lr+1 such that w′ < w and
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Lr+1+ {w,w′} ∈ X. Assume that, for all j < i, there exist w ∈ Lr+1 \
Lj and w′ ∈ Lj \ Lr+1 such that w′ < w and Lr+1 + {w,w′} ∈ X. By
our inductive assumption, there exists w ∈ Lr+1 \Y and w′ ∈ Y \Lr+1

such that w′ < w and W := Lr+1 + {w,w′} ∈ X; therefore W < Lr+1

in the Bruhat order. This implies that there exists z ∈ [r] such that
W = Lz. Notice that w 6∈ Li; in fact, since Y = Li + {Li(v), y},
if w ∈ Li we have that w = Li(v) 6∈ Lr+1, a contradiction. Then
|Lz ∩ Lr+1| = |Lr+1| − 1 and Li ∩ Lr+1 ⊆ Lz ∩ Lr+1.

Corollary 3.5. Let X ⊆ [n]k< be an order ideal or a matroid. Then any
linear extension of X is a shelling order.

Proof. Clearly any matroid has the quasi-exchange property. Moreover by
[19, Theorem 4.11] any order ideal of [n]k< has the quasi-exchange property.
So the result follows by Theorem 3.4.

Remark 3.6. Recall that there exist matroids which are not order ideals,
for example the non-representable ones. Analogously, by the maximality
property of matroids, non-principal order ideals are not matroids.

Remark 3.7. In a private communication, J. A. Samper pointed out to us that
the statement of Corollary 3.5 for matroids can be deduced by combining [1,
Theorem 1.3] and [19, Theorem 4.14].

We formalize now a notion of isomorphism between shelling orders. A
permutation σ ∈ Sn induces a function

σ : Conf
(

[n]k<

)

→ Conf
(

[n]k<

)

,

defined by σ(X) =
(

(P (k) ◦ σ)(X1), . . . , (P
(k) ◦ σ)(Xk)

)

, for all X ∈ Conf
(

[n]k<
)

,
where σ : [n]k< → Confk([n]) is the function defined by σ(x) = (σ(x1), . . . , σ(xk)),
for all x ∈ [n]k<.

Definition 3.8. Two elements A,B ∈ Conf
(

[n]k<
)

are isomorphic if there
exists σ ∈ Sn such that σ(A) = B.

Essentially, two shelling orders are isomorphic if they are the same up
to relabeling. For example, all shelling orders in Conf2

(

[n]k<
)

are isomor-
phic; on the other hand, the shelling orders A1 := (123, 124, 125), A2 :=
(123, 124, 135) and A3 := (123, 124, 145) are pairwise not isomorphic in
Conf3

(

[5]3<
)

.
In the following example we observe that there exist linear extensions of

a matroid which are not isomorphic to a lexicographic order.
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Example 3.9. The Bruhat interval [12, 24] = {12, 13, 14, 23, 24} ⊆ [4]2<
is a matroid and it has two linear extensions: the lexicographic order and
L := (12, 13, 23, 14, 24). Since the linear extension L is a shelling order, σ(L)
is a shelling order; it is different from the lexicographic order, for all σ ∈ S4.

In the following example we show that there exist shelling orders of a
matroid not isomorphic to any linear extension.

Example 3.10. The tuple C := (12, 23, 13, 14, 24) is a shelling order for the
matroid [12, 24] ⊆ [4]2< and σ(C) is not a linear extension, for all σ ∈ S4.

4 Barycentric subdivisions and flag shellability

The barycentric subdivision of a simplicial complex is the order complex
of its face poset; see for instance [11]. Let X ⊆ [n]k< and FX be the face poset
of X; we denote by MC(FX) the set of maximal chains of FX . There exists
an injective function B : MC(FX) → Confk([n]) defined as follows. Let c ∈
MC(FX); then c corresponds to a flag {x1} ⊂ {x1, x2} ⊂ . . . ⊂ {x1, . . . , xk}
of subsets of the facet {x1, . . . , xk}< ∈ X, where {x1, . . . , xk}< ∈ [n]k< is the
tuple obtained by ordering x1, . . . , xk. Hence we set

B(c) := (x1, . . . , xk) ∈ Confk([n]).

Therefore maximal chains in FX with maximum x = (x1, . . . , xk) ∈ X ⊆
[n]k< are in bijection with permutations of the set {x1, . . . , xk}. We introduce
a new definition of barycentric subdivision B(X) of X as a union of cosets of
the symmetric group Sk, viewing elements of [n]k< as permutations:

B(X) :=
⊎

x∈X

{xσ : σ ∈ Sk} ⊆ Confk([n]).

In particular, the barycentric subdivision of [n]k< is Confk([n]).
The standard way to subdivide barycentrically a matroid in [n]k< provides

a simplicial complex in a suitable [m]k<, which is almost never a matroid.
The following theorem shows that barycentric subdivisions of matroids, in
our interpretation, are Coxeter matroids.

Theorem 4.1. A simplicial complex X ⊆ [n]k< is a matroid if and only if
the barycentric subdivision B(X) ⊆ Confk([n]) is a Coxeter matroid.

Proof. Let B(X) be a Coxeter matroid; then X = {P (k)(y) : y ∈ B(X)} is
the shift of B(X) to [n]k< and so it is a matroid (see [10, Lemma 6.12.1]).

Conversely, B(X) is the shift to Confk([n]) of the underlying flag matroid
of X, so it is a Coxeter matroid (see [10, Lemmas 6.6.1 and 6.6.2]).
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Example 4.2. An interval [x, y] ⊆ [n]k< is a matroid and its barycentric
subdivision is the interval [x, ykyk−1 . . . y1] ⊆ Confk([n]), which is a Cox-
eter matroid. In general, it is proved in [12] that any Bruhat interval of a
parabolic quotient of a finite Coxeter group is a Coxeter matroid.

We now provide a notion of shellability for subsets of Confk([n]), which
agrees with the standard notion in case of barycentric subdivisions.

For y ∈ Y ⊆ Confk([n]) let us define

P (y) := {P (1)(y), . . . , P (k)(y)}

and the simplicial complex ∆(Y ) whose set of facets is {P (y) : y ∈ Y }.

Definition 4.3. We say that a set Y ⊆ Confk([n]) is flag shellable if ∆(Y )
is shellable.

Let Y = {a, b, . . .} ⊆ Confk([n]). We say that (a, b, . . .) is a flag shelling
order for Y if (P (a), P (b), . . .) is a shelling order for ∆(Y ).

Example 4.4. Consider the set Y = {132, 435} ⊆ Conf3([5]). Then ∆(Y ) =
{{1, 13, 123}, {4, 34, 345}}; hence it is not flag shellable. On the other hand,
Y = {142, 143} ⊆ Conf3([4]) is flag shellable, because ({1, 14, 124}, {1, 14, 134})
is a shelling order.

We observe that, if X ⊆ [n]k<, then the simplicial complex ∆(B(X)) is
the order complex of the face poset FX . Therefore, according to Definition
4.3, the barycentric subdivision B(X) is flag shellable if and only if the
order complex of FX is shellable. The following theorem is the analogue of
Corollary 3.5 for order ideals of Confk([n]).

Theorem 4.5. Let Y ⊆ Confk([n]) be an order ideal; then any linear exten-
sion of Y is a flag shelling order.

Proof. Let h := |Y | and L := (L1, . . . , Lh) be a linear extension of Y . If
h = 1 the result is trivial. Let h > 2 and assume (L1, . . . , Lh−1) is a flag
shelling order. Let i ∈ [h − 1]. We have that Lh 6= (1, 2, . . . , k) and Li �
Lh, since L is a linear extension. Notice that there exists r ∈ DR(Lh)
such that P (r)(Li) 6= P (r)(Lh). In fact, if P (r)(Li) = P (r)(Lh) for all r ∈
DR(Lh), then Lh = Li, by [5, Corollary 2.6.2], a contradiction. Hence let
j := min{r ∈ DR(Lh) : P (r)(Li) 6= P (r)(Lh)}. If j < k we have that
Lhsj ∈ X, because Lh > Lhsj ∈ Confk([n]) and X is an order ideal, and
then there exists z ∈ [h−1] such that Lhsj = Lz. Moreover P (j)(Lh) 6∈ P (Li)
and |P (Lz)∩P (Lh)| = |P (Lh)| − 1. Therefore (L1, . . . , Lh) is a flag shelling
order for Y . If j = k then the result follows analogously, by considering
Lz = P [n−1]\[k](Lhsj) ∈ Confk([n]), since P [n−1]\[k] is order preserving (see
[5, Proposition 2.5.1]) and then Lz 6 Lhsj < Lh.
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Although principal order ideals in Confk([n]) are Coxeter matroids by [12,
Theorem 6.3], the result of Theorem 4.5 is not true for all Coxeter matroids
in Confk([n]), as the following example shows.

Example 4.6. Let Y := {24, 42, 34, 43} ⊆ Conf2([4]). This is the barycen-
tric subdivision of the matroid {24, 34} ⊆ [4]2<, hence it is a Coxeter ma-
troids by Theorem 4.1. It is also a Bruhat interval. We have that ∆(Y ) =
{{2, 24}, {4, 24}, {3, 34}, {4, 34}}. The linear extensions of Y are L1 :=
(24, 34, 42, 43) and L2 := (24, 42, 34, 43); but ({2, 24}, {3, 34}, {4, 24}, {3, 34})
and ({2, 24}, {4, 24}, {3, 34}, {4, 34}) are not shelling orders, and hence L1

and L2 are not flag shelling orders.

In the following example we list the flag shelling orders provided by the
linear extensions of an order ideal of Conf2([4]).

Example 4.7. Let Y := {12, 13, 21, 23, 14} ⊆ Conf2([4]). This is an order
ideal and ∆(Y ) = {{1, 12}, {1, 13}, {2, 12}, {2, 23}, {1, 14}}. The linear ex-
tensions of Y are L1 := (12, 13, 21, 23, 14), L2 := (12, 21, 13, 23, 14), L3 :=
(12, 13, 21, 14, 23), L4 := (12, 21, 13, 14, 23) and L5 := (12, 13, 14, 21, 23).
They correspond to the following shelling orders of ∆(Y ):

1. ({1, 12}, {1, 13}, {2, 12}, {2, 23}, {1, 14}),

2. ({1, 12}, {2, 12}, {1, 13}, {2, 23}, {1, 14}),

3. ({1, 12}, {1, 13}, {2, 12}, {1, 14}, {2, 23}),

4. ({1, 12}, {2, 12}, {1, 13}, {1, 14}, {2, 23}),

5. ({1, 12}, {1, 13}, {1, 14}, {2, 12}, {2, 23}).

Hence L1, L2, L3, L4 and L5 are flag shelling orders of Y .

5 Promotion and evacuation of shelling orders

In this section we introduce promotion and evacuation of shelling orders.
Promotion and evacuation functions, ∂P and ǫP respectively, can be defined
on the set of linear extensions of a finite poset P (see [23]); we consider the
generalizations ∂G and ǫG for a labelled graph G, introduced in [18]. They
coincide with ∂P and ǫP if G is the Hasse diagram of P .

For the following construction see [18]. Let h ∈ N. Given a graph
G = (V,E) such that V = [h], define the track TG = {v1, . . . , vr} ⊆ [h] by:

1. v1 = 1,

2. for i > 2, vi = min{j ∈ [h] : j > vi−1, {vi−1, j} ∈ E} if this minimum
exists, otherwise r = i− 1.
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The promotion of the labelled graph G is the permutation ∂G ∈ Sh defined
by:

1. ∂G(i) = i− 1, if i ∈ [h] \ TG;

2. ∂G(vj) = vj+1 − 1, if j ∈ [r − 1];

3. ∂G(vr) = h.

In order to introduce promotion and evacuation of shelling orders we consider
the so called dual graph of X ⊆ [n]k< (for an overview on dual graphs see [3]).

Definition 5.1. Let X ⊆ [n]k<. The dual graph D(X) of X is the graph
whose vertex set is X and {x, y} is an edge if and only if |x∩ y| = k− 1, for
all x, y ∈ X.

An element C ∈ Conf([n]k<) uniquely determines a simplicial complex
{C1, . . . , Ch} ⊆ [n]k<, where h := N(C). The dual graph of C, denoted by
D(C), is the graph ([h], E), where {i, j} ∈ E if and only if |Ci ∩Cj| = k− 1,
for all i, j ∈ [h]. Let us define a function

∂D : Conf([n]k<) → Conf([n]k<)

by setting ∂DC := ∂D(C)C, where, for a permutation σ ∈ Sh, we let

σC =
(

Cσ−1(1), . . . , Cσ−1(h)

)

.

Notice that ∂DC is simply obtained from C by changing the positions of
the elements in the track. Moreover C ∈ Confh([n]

k
<) implies ∂DC ∈

Confh([n]
k
<), for all h > 1.

Similarly, we can define

∂H : Conf([n]k<) → Conf([n]k<),

by setting ∂HC := ∂H(C)C, where H(C) = ([N(C)], E) and {i, j} ∈ E if and
only if {Ci, Cj} is an edge of the Hasse diagram of the Bruhat order, for all
i, j ∈ [N(C)].

Example 5.2. Let k = 3 and n = 6. Consider the so-called Björner’s
example (see [4, Exercise 7.7.1]), a 2-dimensional shellable simplicial complex
obtained by adding a suitable facet to the minimal triangulation of the real
projective plane. We consider the shelling order

C := (123, 125, 126, 234, 235, 134, 136, 145, 246, 356, 456);

the dual graph of C is depicted in Figure 1. The dual graph track is TD(C) =
{1, 2, 3, 7, 10, 11} and, in Figure 1, it is denoted by overlined labels. Then
∂D(C) = (1, 2, 6, 3, 4, 5, 9, 7, 8, 10, 11) ∈ S11. We have that

∂DC = (123, 125, 234, 235, 134, 126, 145, 246, 136, 356, 456)
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Figure 1: Dual graph of the Björner’s example. The labeling is given by the
shelling order C of Example 5.2.

and it is not difficult to see that ∂DC is a shelling order. The Hasse track of C
is TH(C) = {1, 2, 3, 7, 9, 10, 11} and then ∂H(C) = (1, 2, 6, 3, 4, 5, 8, 7, 9, 10, 11) ∈
S11. Hence

∂HC = (123, 125, 234, 235, 134, 126, 145, 136, 246, 356, 456).

The Hasse diagram of C is depicted in Figure 2, where the overlined vertices
correspond to the Hasse track. Notice that C is a linear extension and then
∂HC is a linear extension; it is also a shelling order.

Given a graph G = (V,E) such that V = [h], for i ∈ [h − 1] we define a
permutation sGi ∈ Sh by setting

sGi =

{

si, if {i, i + 1} 6∈ E;
e, otherwise,

where si is the simple transposition 12 . . . (i + 1)i . . . h. Then, for C ∈

Confh([n]
k
<) and i ∈ [N(C)− 1], we define sDi C := s

D(C)
i C. By [18, Lemma

1] we have that

∂DC = sDh−1 · · · s
D
1 C, (2)

for all C ∈ Confh([n]
k
<).

The following result essentially states that, if C is a shelling order, then
sDi C is a shelling order, for all 1 6 i 6 N(C)− 1.

Proposition 5.3. Let C ∈ Confh([n]
k
<) be a shelling order, with h > 3. If

|Ch−1 ∩ Ch| < k − 1 then (C1, . . . , Ch, Ch−1) is a shelling order.
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Figure 2: Hasse diagram of the Björner’s example. The labeling is given by
the shelling order C of Example 5.2.

Proof. Consider i < h − 1. For the pair (Ci, Ch−1) we have nothing to
show. For the pair (Ci, Ch), there exists x ∈ Ch \ Ci and j < h such that
Cj = Ch + {x, y}, for some y ∈ [n]. By our assumption, j 6= h − 1 and the
shellability condition on this pair follows.

It remains to verify the shellability condition for (Ch, Ch−1). By the fact
that C is a shelling order and by our assumption, there exists z ∈ Ch \Ch−1

and j < h − 1 such that Cj = Ch + {z, y}, for some y ∈ [n]. Since C
is a shelling order, there exists c ∈ Ch−1 \ Cj and r < h − 1 such that
Cr = Ch−1+ {c, v}, for some v. Since c /∈ Cj = Ch+ {z, y} and c 6= z, hence
c ∈ Ch−1 \ Ch and Cr = Ch−1 + {c, v}, with r < h − 1, and this concludes
the proof.

The statement of the following theorem is the main result of this section.

Theorem 5.4. Let C ∈ Conf([n]k<) be a shelling order. Then the promotion
∂DC is a shelling order.

Proof. The result is a direct consequence of (2) and Proposition 5.3.

In the following example we show that Theorem 5.4 does not hold for
∂H .

Example 5.5. Let C := (235, 234, 246) ∈ Conf([6]3<); then C is a shelling
order and ∂DC = C; on the other hand, ∂HC = (235, 246, 234) is not a
shelling order.

13



Remark 5.6. Let X ⊆ [n]k< be a pure simplicial complex. Notice that {x, y}
is an edge of D(X) if and only if there exists a reflection t ∈ Sn such that
x = P (k)(ty), as elements of Sn, i.e. D(X) is the undirected Bruhat graph of
X (for a definition of the Bruhat graph in the parabolic setting see e.g. [17,
Definition 2.5]). Hence, if {x, y} is an edge of D(X), the elements x and y
are comparable in the Bruhat order.

In the next result, we prove that if a linear extension L of X ⊆ [n]k< is
a shelling order, promotion of L viewed as a linear extension and promotion
of L viewed as a shelling order coincide, under a suitable assumption.

Proposition 5.7. Let L ∈ Conf([n]k<) be a linear extension. Assume that the
Hasse diagram of L is a subgraph of the dual graph of L. Then ∂DL = ∂HL.

Proof. Recall that the promotion of L as a linear extension is the linear
extension ∂HL. By our assumption, if Li ⊳ Lj then {i, j} is an edge of
D(L), for all i, j ∈ [N(L)]. We are going to prove that the dual graph track
TD(L) = {i1, . . . , ir} is equal to the Hasse track TH(L) = {j1, . . . , js}.

If r = 1, then TD(L) = {L1} = TH(L), because H(L) is a subgraph of
D(L). Hence we may assume r > 1. Suppose that ia = ja, for some a 6 r−1.
Hence ia+1 6 ja+1, because H(L) is a subgraph of D(L). Assume ia+1 <
ja+1. Since {ia, ia+1} is an edge of D(L) and L is a linear extension, Lia <
Lia+1

. From the fact that {ia, ia+1} is not an edge of H(L) (i.e. Lia < Lia+1

is not a covering relation), there exists z ∈ [h] such that Lia ⊳ Lz < Lia+1
.

Since L is a linear extension, z < ia+1. But this is a contradiction, because
in this way {ia, z} is an edge of D(L), against the fact that ia+1 ∈ TD(L).
Therefore ia+1 = ja+1. Starting with a = 1 and proceeding inductively, we
proved that ia = ja for every a ∈ [r], i.e. the first elements of the Hasse track
TH(L) are the elements of the dual track TD(L). Since H(L) is a subgraph of
D(L), r = s and TD(L) = TH(L).

For order ideals or intervals of [n]k<, the assumption of Proposition 5.7 is
fulfilled.

Corollary 5.8. Let X ⊆ [n]k< be an order ideal or an interval. If L is a
linear extension of X then ∂DL = ∂HL.

Proof. If X ⊆ [n]k< is an order ideal or an interval then the Hasse diagram
X is a subgraph of the dual graph of X. In fact, as elements of Sn, x ⊳ y in
X if and only if x = ty, for some reflection t ∈ Sn (see [5, Theorem 2.5.5]).
Then the result follows by Proposition 5.7.

Remark 5.9. Any Bruhat interval I in [n]k< is a matroid. Then by Theorem
3.4 a linear extension of I is a shelling order. By Corollary 5.8 the promotion
of a linear extension L of I is equal to the promotion of L as shelling order.
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In the following example we show that Proposition 5.7 does not hold if
H(L) is not a subgraph of D(L). Moreover, it shows that this assumption
does not hold in general for matroids.

Example 5.10. Consider the linear extension L := (123, 124, 135, 145).
This is a linear extension of a matroid which is not a Bruhat interval. We
have that ∂HL = L but ∂DL = (123, 135, 124, 145). Hence ∂DL 6= ∂HL.

We end the article by introducing the evacuation function with respect to
the dual graph. Let h > 1 and r ∈ [h]; the r-promotion ∂r,D : Confh([n]

k
<) →

Confh([n]
k
<) is defined as follows:

∂r,DC = ∂D(C1 . . . Cr)Cr+1 . . . Ch,

for all C ∈ Confh([n]
k
<). The evacuation ǫD : Conf([n]k<) → Conf([n]k<) is

the function defined by setting

ǫDC = (∂2,D ◦ . . . ◦ ∂h−1,D ◦ ∂h,D) (C),

for all C ∈ Confh([n]
k
<), h > 1. The function ǫD is an involution, as stated

in [18, Theorem 1]. The last theorem follows directly from Theorem 5.4 and
the definition of ǫD.

Theorem 5.11. Let C ∈ Conf([n]k<) be a shelling order. Then the evacua-
tion ǫDC is a shelling order.
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