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Abstract

The Scott-Vogelius finite element pair for the numerical discretization of the
stationary Stokes equation in 2D is a popular element which is based on a contin-
uous velocity approximation of polynomial order k and a discontinuous pressure
approximation of order k − 1. It employs a “singular distance” (measured by
some geometric mesh quantity Θ(z) ≥ 0 for triangle vertices z) and imposes a
local side condition on the pressure space associated to vertices z with Θ(z) = 0.
The method is inf-sup stable for any fixed regular triangulation and k ≥ 4.
However, the inf-sup constant deteriorates if the triangulation contains nearly
singular vertices 0 < Θ(z) ≪ 1.
In this paper, we introduce a very simple parameter-dependent modification of the
Scott-Vogelius element such that the inf-sup constant is independent of nearly-
singular vertices. We will show by analysis and also by numerical experiments that
the effect on the divergence-free condition for the discrete velocity is negligibly
small.

Keywords: hp finite elements, Scott-Vogelius elements, inf-sup stability, mass
conservation
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1 Introduction

In this paper we consider the numerical solution of the stationary Stokes equation in a
bounded two-dimensional polygonal Lipschitz domain by a conforming Galerkin finite
element method.

Motivation. The intuitive choice for a Stokes element (Sk (T ) ,Pk−1 (T )), where
Sk (T ) denotes the space of continuous velocity fields with local polynomial degree k
over a given triangulation T and Pk−1 (T ) the discontinuous pressures space of degree
k − 1, is in general not inf-sup stable (see, e.g., [1] and [2, Chap. 7] for quadrilateral
meshes). A careful analysis [1], [3] of the range of the divergence operator reveals that
the dimension of the image div(Sk(T )) ⊂ Pk−1(T ) reduces by one linear constraint for
every singular vertex. For k ≥ 4, this results in the inf-sup stable Scott-Vogelius [3] pair
(Sk(T ),div(Sk(T ))) on families of shape-regular meshes [4] that naturally computes
fully divergence-free velocity approximations. However the Scott-Vogelius element, as
described in [1], [3] and [4], has two major drawbacks.
1. The inf-sup constant is not robust with respect to small perturbations of the mesh

when a singular vertex becomes nearly singular, measured through the geometric
quantity Θmin := min {Θ(z) | Θ(z) > 0}. Here Θ (z) is a measure of the singular
distance of a vertex z from a proper singular situation. Θmin strongly affects the
stability of the discretization, the size of the discretization error, as well as the
condition number of the resulting algebraic linear system.

2. In order to implement the method, the condition: “Is a mesh point, say z, a
singular vertex?” cannot be realized in floating point arithmetics and has to
be replaced by a threshold condition for “nearly singular vertices” of the form
“Θ (z) ≤ ε”. Through this threshold condition, it is possible that the constraints
are imposed on nearly singular vertices, i.e. for 0 < Θ(z) ≤ ε and the discrete
velocity looses the divergence-free property as a consequence. To the best of our
knowledge, this effect has not been analyzed in the literature and we will estimate
the influence of ε > 0 to the divergence-free property of the discrete velocity in
Section 5.

In [5, Rem. 2], two mesh modification strategies are sketched as a remedy of (1): i)
nearly singular vertices are moved so that they become properly singular; ii) triangles
which contain a nearly singular vertex are refined. Both strategies require the finite ele-
ment code to have control on the mesh generator. However, in many engineering finite
element codes the mesh design is separated from the discretization and hence, inter-
active refinement features are not available. In addition fast solvers in computational
fluid dynamics sometimes make use of a very regular mesh structure (e.g., C-meshes
for the modelling of airfoils) and then local mesh refinement is not compatible.

In this paper, we propose a simpler strategy where a modification of the mesh
is avoided. We introduce a parameter dependent modification to the standard Scott-
Vogelius pair, the pressure-wired Stokes element, and prove that the inf-sup constant
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is independent of Θmin, the mesh width, the polynomial degree but depends only on
the shape-regularity of the mesh.

Main Contributions. The construction of our modification employs a geometric
quantity Θ (z) ≥ 0 which measures the singular distance of the vertex z in the mesh
from a singular configuration. For some arbitrary (in general small) control parameter
0 ≤ η, the pressure space is reduced by the same constraint as in the Scott-Vogelius
FEM for every vertex with singular distance Θ(z) ≤ η, which we call nearly singular.
Since the constraints involve the alternating sum of pressure values over all trian-
gles that encircle a nearly singular vertex (similar to a wire that is loosely woven
around the tips of all triangles sharing a common vertex) we call the new element the
pressure-wired Stokes element. The proof that the inf-sup constant of this element is
independent of the mesh width, the polynomial degree, and depends on the mesh only
through the shape-regularity constant will be based on the results in [5, Sections 4 &
5], where the discrete stability is proved via a lower bound for the inf-sup constant
of the form cΘmin > 0 with a positive constant c only depending on the domain and
the shape regularity. We can therefore choose the threshold η for our generalization
of the Scott-Vogelius element such that the resulting pressure-wired Stokes element is
inf-sup stable independent of the mesh size, the polynomial degree, and any (nearly)
singular vertex. These improvements come at some cost: in general we cannot expect
divergence-free velocity approximations as for the standard Scott-Vogelius pair. We
investigate the dependence of the L2 norm of the divergence of the velocity approxi-
mation uS in the pressure-wired Stokes element and establish an estimate of the form
∥divuS∥L2(Ω) ≤ Cη with C > 0 being independent of the mesh width and the poly-
nomial degree. We emphasize that this estimate does not require any regularity of the
Stokes solution. Numerical experiments will be reported in Section 6 and show that
the constant C is very small for the considered examples.

Literature overview. The Scott-Vogelius pair for triangulations of two-
dimensional domains (see [1], [3]) is inf-sup stable for k ≥ 4, while the inf-sup constant
deteriorates for nearly singular vertices. This problem can be attenuated by using
special mesh-refinement strategies, e.g., Alfeld splits that are also known as barycen-
tric refinements and provide inf-sup stability already for k ≥ 2 in two dimensions
[6] and k ≥ 3 in three dimensions [7]. In three dimensions, inf-sup stability and a
full characterisation of the divergence divSk(T ) is not known on general meshes, see
[8] and references therein. Our pressure-wired Stokes element places few additional
constraints on the pressure space and acquires robust inf-sup stability on arbitrary
shape-regular grids – the proof for the estimate of the inf-sup constant is based on
the theory developed in [1], [3], [4], [5], [9], [10]. An alternative approach consti-
tutes the enrichment of the velocity space, e.g., in [11] with Raviart-Thomas bubble
functions leading to a divergence-free velocity approximation in H(div). Conforming
alternatives to the Scott-Vogelius element are the Mini element [12], the (modified)
Taylor-Hood element [2, Chap. 3, §7], the Bernardi-Raugel element [9], and the ele-
ment by Falk-Neilan [13] to mention some but few of them. We note that there exist
further possibilities to obtain a stable discretization of the Stokes equation; one is
the use of non-conforming schemes and/or modifications of the discrete equation by
adding stabilizing terms. We do not go into details here but refer to the monographs
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and overviews [14], [15], [16] instead. For a discussion on the divergence-free condition
and pressure-robustness, we refer to [17].

Further contributions and outline: After introducing the Stokes problem on
the continuous as well as on the discrete level and the relevant notation in Section 2,
we define the conforming pressure-wired Stokes element in Section 3. The first main
result in Section 4 establishes the discrete inf-sup condition for this new element with
a lower bound on the inf-sup constant that is independent of h, k, and (nearly) critical
points. The second main result controls the L2 norm of the divergence of the discrete
velocity in Section 5 and verifies its negligibility for small η ≪ 1 in practice. In fact,
the L2 norm tends to zero (at least) linearly in η without imposing any regularity
assumption on the continuous problem. The involved constants are again independent
of h, k, and Θmin but possibly depend on the mesh via its shape-regularity constant.
We report on numerical evidence on optimal convergence rates in Section 6, both as an
h-version with regular mesh refinement and as a k-version that successively increases
the polynomial degree. While this new element is technically not divergence-free, our
benchmarks suggest that the discrete divergence is near machine-precision already on
coarse meshes and for moderate parameters η > 0.

2 The Stokes problem and its numerical
discretization

Let Ω ⊂ R2 denote a bounded polygonal Lipschitz domain with boundary ∂Ω. We
consider the numerical solution of the Stokes equation

−∆u+∇p = f in Ω,
divu = 0 in Ω

with homogeneous Dirichlet boundary conditions for the velocity and the usual
normalisation condition for the pressure

u = 0 on ∂Ω and

∫
Ω

p = 0.

Throughout this paper standard notation for Lebesgue and Sobolev spaces applies.
All function spaces are considered over the field of real numbers. The space H1

0 (Ω) is
the closure of the space of smooth functions with compact support in Ω with respect
to the H1 (Ω) norm. Its dual space is denoted by H−1 (Ω) := H1

0 (Ω)
′
. The scalar

product and norm in L2 (Ω) read

(u, v)L2(Ω) :=

∫
Ω

uv and ∥u∥L2(Ω) := (u, u)
1/2
L2(Ω) in L2 (Ω) .

Vector-valued and 2×2 tensor-valued analogues of the function spaces are denoted by
bold and blackboard bold letters, e.g., Hs (Ω) = (Hs (Ω))

2
and Hs (Ω) = (Hs (Ω))

2×2

and analogously for other quantities.
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Notation 1. For vectors v,w ∈ R2, the Euclidean scalar product ⟨v,w⟩ := ∑2
j=1 vjwj

induces the Euclidean norm ∥v∥ := ⟨v,v⟩1/2. We denote the area of a subset M ⊂ R2

by |M | and write [v|w] for the 2× 2 matrix with column vectors v,w∈ R2.
The L2 (Ω) scalar product and norm for vector valued functions are

(u,v)L2(Ω) :=

∫
Ω

⟨u,v⟩ and ∥u∥L2(Ω) := (u,u)
1/2
L2(Ω) .

In a similar fashion, we define for G,H ∈ L2 (Ω) the scalar product and norm by

(G,H)L2(Ω) :=

∫
Ω

⟨G,H⟩ and ∥G∥L2(Ω) := (G,G)
1/2
L2(Ω) ,

where ⟨G,H⟩ = ∑2
i,j=1 Gi,jHi,j . Finally, let L2

0 (Ω) :=
{
u ∈ L2 (Ω) :

∫
Ω
u = 0

}
. We

introduce the bilinear forms a : H1 (Ω)×H1 (Ω)→ R and b : H1 (Ω)×L2 (Ω)→ R by

a (u,v) := (∇u,∇v)L2(Ω) and b (u, p) = (divu, p)L2(Ω) , (1)

where∇u and∇v denote the gradients of u and v. Given F ∈ H−1 (Ω), the variational
form of the stationary Stokes problem seeks (u, p) ∈ H1

0 (Ω)× L2
0 (Ω) such that

a (u,v)− b (v, p) = F (v) ∀v ∈ H1
0 (Ω) ,

b (u, q) = 0 ∀q ∈ L2
0 (Ω) .

(2)

The inf-sup condition guarantees well-posedness of (2), cf. [18] for details. In this
paper, we consider a conforming Galerkin discretization of (2) by a pair (S,M) of
finite dimensional subspaces of the continuous solution spaces

(
H1

0 (Ω) , L
2
0 (Ω)

)
. For

any given F ∈ H−1 (Ω) the weak formulation yields (uS, pM ) ∈ S×M such that

a (uS,v)− b (v, pM ) = F (v) ∀v ∈ S,
b (uS, q) = 0 ∀q ∈M.

(3)

It is well known that the bilinear form a (·, ·) is symmetric, continuous, and coercive so
that problem (3) is well-posed if the bilinear form b (·, ·) satisfies the inf-sup condition.
Definition 1. Let S and M be finite-dimensional subspaces of H1

0 (Ω) and L2
0 (Ω).

The pair (S,M) is inf-sup stable if the inf-sup constant β (S,M) is positive, i.e.,

β (S,M) := inf
q∈M\{0}

sup
v∈S\{0}

(q,divv)L2(Ω)

∥v∥H1(Ω) ∥q∥L2(Ω)

> 0. (4)

3 The pressure-wired Stokes element

Throughout this paper, T denotes a conforming triangulation of the bounded polyg-
onal Lipschitz domain Ω ⊂ R2 into closed triangles: the intersection of two different
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Fig. 1 Reference triangle (left) and physical triangle (right)
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Fig. 2 Singular configuration (top) and generic configuration (bottom) of a vertex patch for an
interior vertex z ∈ VΩ(T ) with Nz = 4 (resp. boundery vertex z ∈ V∂Ω(T ) with Nz = 1, 2, 3) triangles

triangles is either empty, a common edge, or a common point. The set of edges in T
is denoted by E (T ), comprised of boundary edges E∂Ω (T ) := {E ∈ E (T ) : E ⊂ ∂Ω}
and interior edges EΩ (T ) := E (T ) \E∂Ω (T ). For any edge E ∈ E(T ), we fix a unit
normal vector nE with the convention that for boundary edges E ∈ E∂Ω, nE points
to the exterior of Ω. The set of vertices in T is denoted by V (T ) while the subset of
boundary vertices is V∂Ω (T ) := {z ∈ V (T ) : z ∈ ∂Ω}. The interior vertices form the
set VΩ (T ) := V (T ) \V∂Ω (T ). For a triangle K ∈ T with diameter hK := diamK, the
set of its vertices is denoted by V (K). For z ∈ V (T ), we consider the local element
vertex patch

Tz := {K ∈ T | z ∈ K} and ωz :=
⋃

K∈Tz

K (5)

with the local mesh width hz := max {hK : K ∈ Tz}. For any vertex z ∈ V (T ), we fix
a counterclockwise numbering of the Nz := |Tz| triangles in

Tz = {Kj | 1 ≤ j ≤ Nz} and set Ez := {E ∈ E (T ) : z is an endpoint of E} . (6)

In Fig. 2, Tz is shown for four important configurations. The shape-regularity constant
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γT := max
K∈T

hK

ρK
(7)

relates the local mesh width hK=diamK with the diameter ρK of the largest inscribed
ball in an elementK ∈ T . The global mesh width is given by hT := max {hK : K ∈ T }.
Remark 1. The shape-regularity implies the existence of some ϕT > 0 exclusively
depending on γT such that every triangle angle in T is bounded from below by ϕT . In
turn, every triangle angle in T is bounded from above by π − 2ϕT .

For z ∈ V∂Ω (T ), denote by αz the interior angle between the two edges in E∂Ω (T )
with joint endpoint z and regarded from the exterior complement R2\Ω. Let

αT := min
z∈V∂Ω(T )

αz (8)

denote the minimal outer angle at the boundary vertices that lies between 0 < αT < 2π
for the Lipschitz domain Ω. Let Pk(K) denote the space of polynomials up to degree
k ∈ N0 defined on K ∈ T and define

Pk (T ) :=
{
q ∈ L2 (Ω) | ∀K ∈ T : q| ◦

K
∈ Pk

( ◦
K

)}
,

Pk,0 (T ) :=
{
q ∈ Pk (T ) |

∫
Ω

q = 0

}
≡ Pk(T ) ∩ L2

0(Ω),

Sk (T ) := Pk (T ) ∩H1(Ω),

Sk,0 (T ) := Sk (T ) ∩H1
0 (Ω) .

(9)

The vector-valued spaces are Sk (T ) := Sk (T )2 and Sk,0 (T ) := Sk,0 (T )2. It is well
known that the most intuitive Stokes element (Sk,0 (T ) ,Pk−1,0 (T )) is in general unsta-
ble. The analysis in [1], [3] for k ≥ 4 relates the instability of (Sk,0 (T ) ,Pk−1,0 (T ))
to critical or singular points of the mesh T . The set of η-critical points CT (η) for the
control parameter η ≥ 0 recovers the definition of the classical critical points CT (0)
(introduced in [1, R.1, R.2] and called singular vertices in [1]) for η = 0.
Definition 2. The local measure of singularity Θ(z) at z ∈ V(T ) is given by

Θ(z) :=


max { |sin (θi + θi+1)| | 0 ≤ i ≤ Nz} if z ∈ VΩ (T ) ,
max { |sin (θi + θi+1)| | 0 ≤ i ≤ Nz−1} if z ∈ V∂Ω(T ) ∧Nz > 1,

0 if z ∈V∂Ω(T ) ∧Nz = 1,

(10)

where the angles θj in Tz are numbered counterclockwise from 1 ≤ j ≤ Nz (see (6))
and cyclic numbering is applied, i.e. θNz+1

= θ1. For η ≥ 0, the vertex z ∈ V (T ) is
an η-critical vertex if Θ(z) ≤ η. The set of all η-critical vertices is given by

CT (η) := {z ∈ V (T ) | Θ(z) ≤ η} .
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For a vertex z ∈ V (T ), the functional AT ,z : Pk (T )→ R alternates counterclockwise
through the numbered triangles Kℓ, 1 ≤ ℓ ≤ Nz in the patch Tz, and is given by

AT ,z (q) :=

Nz∑
ℓ=1

(−1)ℓ
(
q|Kℓ

)
(z) . (11)

From Definition (10) it follows that for any η ≥ 1 we have CT (η) = V (T ) and the
assumption η ∈ [0, 1] throughout this paper is not an actual restriction. The first row
in Figure 2 displays all four singular mesh configurations (i.e., Θ(z) = 0) that occurs
when all edges of the vertex patch T (z) lie on two straight lines. It follows from [10]
that for small η, the only possible η-critical mesh configurations are perturbations of
those four situations and illustrated in the second row of Figure 2.
Lemma 1 ([10, Lem. 2.13]). There exists a constant η0 > 0 only depending on the
shape-regularity of the mesh and the minimal outer angle αT of Ω such that Θ(z) ≤ η0
for z ∈ V(T ) implies
(a) if z ∈ VΩ(T ) is an interior vertex, then Nz = 4,
(b) if z ∈ V∂Ω(T ) is a boundary vertex, then Nz ≤ 3.

The pressure space of the pressure-wired Stokes element is obtained by requiring
the condition AT ,z (q) = 0 for all η-critical points.
Definition 3. For η ≥ 0, the subspace Mη,k−1 (T ) ⊂ Pk−1,0 (T ) of the pressure space
is given by

Mη,k−1 (T ) := {q ∈ Pk−1,0 (T ) | ∀z ∈ CT (η) : AT ,z (q) = 0} . (12)

The pressure-wired Stokes element is given by (Sk,0 (T ) ,Mη,k−1 (T )).
Note that for the choice η = 0, M0,k−1 (T ) is the pressure space introduced by

Vogelius [1] and Scott-Vogelius [3] and the following inclusions hold: for 0 ≤ η ≤ η′

Mη′,k−1 (T ) ⊂Mη,k−1 (T ) ⊂M0,k−1 (T ) = Qk−1
h (13)

(with the pressure space Qk−1
h in [4, p. 517]). The existence of a continuous right-

inverse of the divergence operator div : Sk,0(T ) → M0,k−1(T ) was proved in [1] and
[3, Thm. 5.1].
Proposition 1 (Scott-Vogelius). Let k ≥ 4. For any q ∈M0,k−1 (T ) there exists some
v ∈ Sk,0 (T ) such that

divv = q and ∥v∥H1(Ω) ≤ C ∥q∥L2(Ω) .

The constant C is independent of hT and only depends on the shape-regularity of the
mesh, the polynomial degree k, and on Θmin, where

Θmin := min
z∈V(T )\CT (0)

Θ(z) . (14)

It follows from [4, Thm. 1] that the inf-sup constant of the Scott-Vogelius element
(Sk,0 (T ) ,M0,k−1 (T )) can be bounded from below by β (Sk,0 (T ) ,M0,k−1 (T )) ≥
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Θminc (γT , k), where c (γT , k) > 0 depends on the shape regularity constant γT and
the polynomial degree k. The dependence on k has been analysed in a series of papers
starting from [1, Lem. 2.5] with the final result in [5, Theorem 5.1], which states that

β (Sk,0 (T ) ,M0,k−1 (T )) ≥ Θminc (γT ) > 0

is independent of the polynomial degree k. However, the estimate is non-robust with
respect to small perturbations of critical configurations 0 ̸= Θ(z)≪ 1. Our notion of
η-critical points can be regarded as a robust generalization and we will analyse the
consequences in this paper. In the next section, we will prove for the pressure-wired
Stokes element that

β (Sk,0 (T ) ,Mη,k−1 (T )) ≥ (Θmin + η) c (γT ) > 0

by modifying the arguments in [5, Sections 4 & 5] and investigate the effect on the
divergence-free property of the discrete velocity in Section 5.

4 Inf-sup stability of the pressure-wired Stokes
element

In this section we prove that the inf-sup constant for the pressure wired Stokes element
allows for a lower bound that is independent of the mesh width and the polynomial
degree k, and we examine the dependence on the geometric quantity Θmin and the
control parameter η. This is formulated as the main theorem of this section.
Theorem 2 (inf-sup stability). For any k ≥ 4 and 0 ≤ η ≤ 1, the inf-sup constant
(4) has the positive lower bound

β (Sk,0 (T ) ,Mη,k−1 (T )) ≥ (Θmin + η) c. (15)

The constant c > 0 exclusively depends on the shape-regularity of the mesh and on Ω
via a Friedrichs inequality. In particular, c is independent of the mesh width hT , the
polynomial degree k, Θmin, and η.

By choosing η = 0 we obtain the original Scott-Vogelius element with a k-robust
inf-sup constant (see [5, Theorem 5.1]). Due to (13), [5, Theorem 5.1] immediately
yields that the pressure-wired Stokes element is also inf-sup stable and the inf-sup
constant β (Sk,0 (T ) ,Mη,k−1 (T )) is also independent of the polynomial degree k and
the mesh width hT . However, in order to obtain the bounds as described in Theorem 2,
we have to modify the arguments in [5, Sections 4 & 5]. The goal of these modifications
is to prove that there exists a right-inverse Πη,k : Mη,k−1 (T ) → Sk,0 (T ) for the
divergence operator div (·). This is expressed in the following Lemma.
Lemma 2. Given any k ≥ 4 and 0 ≤ η ≤ 1, there exists a linear operator Πη,k :
Mη,k−1 (T )→ Sk,0 (T ) such that, for any q ∈Mη,k−1 (T ),

divΠη,kq = q and ∥Πη,kq∥H1(Ω) ≤
C

Θmin + η
∥q∥L2(Ω) . (16)
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The constant C > 0 exclusively depends on the shape-regularity of the mesh.
In order to prove this Lemma we modify [5, Lemma 4.2 and 4.5] to take into

account the parameter η; its formulation uses the following notation. Enumerate the
elements in Tz counterclockwise by Ki for 1 ≤ i ≤ Nz such that the edges in Ez are
given by Ei = Ki−1∩Ki, employing cyclic numbering convention, meaning K0 = KNz

and KNz+1 = K1. For 1 ≤ i ≤ Nz, θi denotes the angle at z in Ki. The vectors ti and
ni denote the unit tangent vector and the unit normal vector of the edge Ei pointing
away from z and into Ki respectively.
Lemma 3 ([5, Lemma 4.2 and 4.5]). Given any k ≥ 4 and any 0 ≤ η ≤ 1, then for all

z ∈ V (T ) and q ∈Mη,k−1 (T ), there exists a solution
(
d̃z
Ei

)Nz

i=1
⊆ R2 of the system

q|Ki
(z) sin θi =

〈
d̃z
Ei
,ni+1

〉
−
〈
d̃z
Ei+1

,ni

〉
∀1 ≤ i ≤ Nz, (17)

that satisfies

Nz∑
i=1

∥∥∥d̃z
Ei

∥∥∥2 ≤ C

Nz∑
i=1

q|Ki
(z) 2 ×

{
(Θmin + η)

−2
, if z /∈ CT (η),

1, if z ∈ CT (η),
(18)

where C > 0 solely depends on the shape-regularity of T .
Proof. Let us first consider z /∈ CT (η). If z ∈ VΩ (T ), then by [5, Lemma 4.2] we know

that there exists
(
dz
Ei

)Nz

i=1
⊆ R2 satisfying (17) and

Nz∑
i=1

∥∥dz
Ei

∥∥2 ≤ 2

(
1 +

Nz

ξ (z)

)2 Nz∑
i=1

q|Ki
(z)

2
,

where ξ (z) :=
∑Nz

i=1 |sin (θi + θi+1)| employing cyclic numbering convention. We
observe that from the definition of ξ and z /∈ CT (η), it follows that

Θmin + η

2
≤ Θ(z) ≤ ξ (z) .

Since the maximal possible number Nz of triangles around a vertex z ∈ V(T ) only
depends on the shape-regularity, we conclude that

Nz∑
i=1

∥∥dz
Ei

∥∥2 ≤ C

(Θmin + η)
2

Nz∑
i=1

q|Ki
(z)

2
,

for some constant C > 0 solely depending on the shape-regularity of T . If z ∈ V∂Ω (T )
we repeat the arguments presented above on the set of vectors

(
dz
Ei

)Nz

i=1
given by

[5, Lemma 4.5 (1)] and therefore by setting d̃z
Ei

:= dz
Ei

as described above, we have
proven (17) and (18) for non-η-critical vertices. Let us now consider z ∈ CT (η) and

10



we first assume z ∈ VΩ (T ). We choose d̃z
Ei

= δiti and some elementary computation
transforms (17) into

q|Ki
(z) = δi + δi+1 ∀1 ≤ i ≤ Nz, (19)

employing cyclic notation convention (cf. [5, (4.8)]). Set δ1 := 0 and δi+1 :=∑i
j=1 (−1)

i−j
q|Kj

(z) for all 1 ≤ i ≤ Nz − 1. For i = 1 (19) is trivially satisfied and
for 2 ≤ i ≤ Nz − 1, we compute

δi + δi+1 =

i−1∑
j=1

(−1)i−1−j
q|Kj

(z) +

i∑
j=1

= (−1)i−j
q|Kj

(z)

=

i−1∑
j=1

(−1)i−1−j
q|Kj

(z) + (−1)i−j
q|Kj

(z) + q|Ki
(z) = q|Ki

(z) .

For i = Nz we have by assumption that AT ,z (q) = 0 and conclude after rearranging

the terms that δNz = q|KNz
(z). Since the d̃z

Ei
are the same as in [5, Lemma 4.3] we

obtain
Nz∑
i=1

∥∥∥d̃z
Ei

∥∥∥2 ≤ C

Nz∑
i=1

q|Ki
(z)

2

for some constant C > 0 solely depending on the shape-regularity of the mesh. If
z ∈ V∂Ω (T ) holds, the same construction as in [5, Lemma 4.3] and AT ,z (q) = 0 verify
(17) and (18) also for the η-critical vertices.

Proof of Lemma 2. Let q ∈ Mη,k−1 (T ) be given. Taking the functions ϕz
E,k from [5,

Lem. B.1] we set

Ψh,k :=
∑

z∈V(T )
E∈E(E)

dz
Eϕ

z
E,k,

where dz
E is taken as in Lem. 3. Mimicking the arguments in [5, Sec. 5] (with Ψh,k

replaced by Ψh,p therein) in combination with Lemma 3, we obtain that there exists
a vector field uq ∈ Sk,0 (T ) satisfying divuq = q and

∥uq∥H1(Ω) ≤ Cmax
{
1, (Θmin + η)

−1
}
/2 ∥q∥L2(Ω) ≤ C (Θmin + η)

−1 ∥q∥L2(Ω) .

with 1 ≤ 2(Θmin+ η)−1 from Θmin, η ≤ 1 in the last step. The constant C > 0 is inde-
pendent of the polynomial degree k, the mesh width hT , the geometric quantity Θmin

and the parameter η and exclusively depending on the shape-regularity of the mesh,
and the domain Ω. Therefore by setting Πη,kq := uq we have proven our statement.

Proof of Theorem 2. For the estimate of the inf-sup constant we compute

inf
q∈Mη,k−1(T )

p ̸=0

sup
v∈Sk,0(T )

v ̸=0

(q,divv)L2(Ω)

∥v∥H1(Ω) ∥q∥L2(Ω)

Lem. 3
≥ inf

q∈Mη,k−1(T )

q ̸=0

(q,divΠη,kq)L2(Ω)

∥Πη,kq∥H1(Ω) ∥q∥L2(Ω)
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≥ c (Θmin + η) ,

where c only depends on the shape-regularity of the mesh and on Ω via the Friedrichs
inequality.

Main properties of a “good” Stokes element are the inf-sup stability, the approxima-
tion properties of the velocity and pressure space, and the divergence-free condition for
the velocity solution. We end this section by a remark on the approximation properties
while the next section is devoted to the analysis of the smallness of the divergence.
Remark 2 (approximation properties). Since the velocity space is the standard con-
forming finite element space, the approximation properties are standard. For the
pressure space we start with an observation for q ∈Mη,k−1(T ) where 0 ≤ η ≤ η0 with
η0 from Lemma 1. Suppose z ∈ V∂Ω(T ) ∩ CT (η) is an η-critical boundary vertex with
Nz odd (type 2 or 4 in Figure 2), AT ,z(q) = 0 reveals the following implication

q continuous in z =⇒ q(z) = 0.

Since the exact pressure does not vanish at theses points in general, we cannot expect
a good approximation property of Mη,k−1(T ) in neighborhoods of such vertices that
can only occur at corners of the domain Ω by Lemma 1. This is a drawback for both,
the original Scott-Vogelius element and the pressure-wired Stokes element. In [19], we
present a strategy to modify the pressure space in these vertices such that standard
approximation properties hold while the discrete inf-sup stability is preserved.

5 Divergence estimate of the discrete velocity

The Scott-Vogelius pair (Sk,0 (T ) ,M0,k−1 (T )) is inf-sup stable for k ≥ 4 but sensitive
with respect to nearly singular vertex configurations, where 0 < Θ(z)≪ 1 for some z ∈
V (T ). The corresponding discrete solution is divergence free. Since our η-dependent
pressure space Mη,k−1 (T ) is a proper subspace of the image of the divergence operator
div : Sk,0(T )→M0,k−1 (T ) in general, we cannot expect the discrete velocity solution
to be pointwise divergence-free. However, since limη→0 Mη,k−1 (T ) = M0,k−1 (T ), we
may expect ∥divuS∥L2(Ω) to be small. The main result of this section establishes
an estimate of the divergence which tends to zero as η → 0 without any regularity
assumption on the continuous Stokes problem. Consider the open subset

Ω(η) :=
⋃

z∈CT (η)

int(ωz) ⊂ Ω, (20)

where int(ωz) denotes the interior of the closed vertex patch ωz from (5).
Theorem 3 (velocity control). Let k ≥ 4 and 0 ≤ η < η0 be given with η0 > 0 as
in Lemma 1. Let (u, p) denote the solution to (2) for F ∈ H−1(Ω). Then the discrete
solution (uS, pM ) to (3) in (Sk,0 (T ) ,Mη,k−1 (T )) satisfies

∥∇(u− uS)∥L2(Ω) ≤ C min
vS∈Sk,0(T )
div vS=0

∥∇(u− vS)∥L2(Ω) + η min
qM∈Mη,k−1(T )

∥p− qM∥L2(Ω(η)),

12



∥divuS∥L2(Ω) ≤ Cη min
vS∈Sk,0(T )
div vS=0

∥∇(u− vS)∥L2(Ω) + η2 min
qM∈Mη,k−1(T )

∥p− qM∥L2(Ω(η)).

If T does not have η-critical boundary vertices z ∈ CT (η)∩V∂Ω(T ) with Nz odd (type
2 or 4 in Figure 2), then div uS ≡ 0 in Ω\Ω(η). The constant C > 0 depends solely on
the shape regularity of T and on the domain Ω. In particular C is independent of the
mesh width hT , the polynomial degree k, the geometric quantity Θmin and the control
parameter η.

A key ingredient in the proof of Theorem 3 is the following control of the divergence.
Define the space

Sη,k,0(T ) := {vS ∈ Sk,0 (T ) | AT ,z (divvS) = 0 for all z ∈ CT (η)} .

For a function v ∈ L2(Ω) and a subspace U ⊂ L2(Ω) , v ⊥ U abbreviates the L2

orthogonality onto U , i.e., (v, u)L2(Ω) = 0 for all u ∈ U . The same notation applies for

vector-valued functions v ∈ L2(Ω).
Lemma 4 (divergence control). Let k ≥ 4 and 0 ≤ η < η0 be given with η0 > 0 as in
Lemma 1. For any vS ∈ Sk,0(T ) with divvS ⊥Mη,k−1(T ), there exists CS ∈ R with

(a) divvS|Ω\Ω(η)
≡ CS and ∥divvS − CS∥L2(Ω(η)) ≤

√
16/7 ∥divvS∥L2(Ω(η)),

(b) ∥divvS∥L2(Ω) ≤ ∥divvS − CS∥L2(Ω(η)) ≤ Cdivη min
wS∈Sη,k,0(T )

∥∇ (vS −wS)∥L2(Ω(η)).

If T does not contain η-critical boundary vertices z ∈ CT (η) ∩ V∂Ω(T ) with Nz odd,
then CS = 0. The constant Cdiv > 0 exclusively depends on the shape regularity of T .
Proof of Theorem 3. The discrete formulation (3) imposes that the discrete velocity
uS satisfies divuS ⊥Mη,k−1(T ). Consider an arbitrary vS ∈ Sk,0(T ) with divvS = 0
and observe vS ∈ Sη,k,0(T ) by definition. The weak formulation (2) and the discrete
formulation (3) for the test function eS := uS − vS ∈ Sk,0(T ) satisfy

a(u− uS, eS) = b(eS, p− pM ) = b(uS, p− qM ) ∀qM ∈Mη,k−1(T )

with div eS = divuS ⊥Mη,k−1(T ) in the last step. Let qM ∈Mη,k−1(T ) be arbitrary.
Lemma 4 provides divuS|Ω\Ω(η)

≡ CS ∈ R and CS ⊥ p− qM ∈ L2
0(Ω) reveals

b(uS, p− qM ) = (divuS − CS, p− qM )L2(Ω(η)) .

The previous two displayed equalities and a Cauchy inequality provide

∥∇(uS − vS)∥2L2(Ω) = a (uS − vS, eS) = a(u− vS, eS)− a(u− uS, eS)

≤ ∥∇ (u− vS)∥L2(Ω) ∥∇eS∥L2(Ω) + ∥p− qM∥L2(Ω(η))∥ divuS−CS∥L2(Ω(η)).

Lemma 4 reveals ∥∇ (uS − vS)∥L2(Ω) ≤ ∥∇ (u− vS)∥L2(Ω) + Cdivη∥p − qM∥L2(Ω(η)).

This, ∥∇ (u− uS)∥L2(Ω) ≤ ∥∇ (u− vS)∥L2(Ω) + ∥∇ (uS − vS)∥L2(Ω) from a triangle
inequality, and Lemma 4 lead to

∥∇ (u− uS)∥L2(Ω) ≤ 2 ∥∇ (u− vS)∥L2(Ω) + Cdivη∥p− qM∥L2(Ω(η)),

13



z t1

t2

t3

t4

θ1θ2

θ3
θ4

Fig. 3 Setting of Lemma 5

∥divuS∥L2(Ω) ≤ Cdivη ∥∇ (u− vS)∥L2(Ω) + C2
divη

2∥p− qM∥L2(Ω(η)).

Since vS and qM are arbitrary, this concludes the proof.

One remark precedes the preparation and proof of Lemma 4 in Subsections 5.1–5.2.
Remark 3 (localized pressure-robustness). The presence of η-critical but not singular
vertices implies that the discrete pressure space Mη,k−1(T ) ⊊ M0,k−1(T ) = divSk,0(T )
is a strict subset of the discrete divergence characterised in [1], [3]. Thus, full pressure-
robustness [17] cannot be expected in general and the velocity error may depend on the
pressure. However, Theorem 3 guarantees that this pollution effect appears only locally
around the η-critical vertices and is at most linear in η; the velocity approximation is
independent of the pressure restricted to Ω \ Ω(η).

5.1 Analysis for η-critical vertices

This subsection analyses the divergence of piecewise smooth and globally continuous
functions on the vertex patch Tz of an η-critical vertex z ∈ CT (η).
Lemma 5. Consider four directions t1, . . . , t4 ∈ R2\ {0} and some functions
v1, . . . ,v4 ∈ C1 (U (z)) defined in some neighborhood U (z) of z ∈ R2 as in Fig. 3.
Let θj denote the (signed) angles counted counterclockwise between tj and tj+1 for
j = 1, . . . , 4 (with cyclic notation). If the Gâteaux derivatives ∂tj (vj−1 − vj) vanish
at z for all j = 1, . . . , 4 then

µ |sin θ1|
∣∣∣∣∣

4∑
j=1

(−1)j divvj (z)

∣∣∣∣∣ ≤ √8Θ
4∑

j=1

∥∇vj (z)∥ (21)

with µ := min {|sin θ2| , |sin θ4|} and Θ := max {|sin (θ1 + θ2)| , |sin (θ2 + θ3)|}.
The proof of this lemma requires two intermediate results. Recall the definition of

the condition number
cond2 (M) :=

∥∥M−1
∥∥
2
∥M∥2

of a regular matrix M ∈ R2×2 with the induced Euclidean norm given by ∥M∥2 :=
supx∈R2\{0} ∥Mx∥ / ∥x∥.
Proposition 4. Given two vectors t1, t2 ∈ R2 of unit length ∥t1∥ = ∥t2∥ = 1, set
M := [t1|t2] ∈ R2×2 (cf. Notation 1). Let θ be the angle between t1 and t2, i.e.,
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cos θ = ⟨t1, t2⟩. Then
cond2 (M) ≤ 2

|sin θ| .

Proof. Recall the characterisation of the spectral norm ∥M∥2 = σmax(M) as the
maximal singular value of the matrix M from linear algebra. A direct computation
reveals the eigenvalues 1± cos θ and the corresponding eigenfunctions (±1; 1) ∈ R2 of

M⊤M =

(
1 cos θ

cos θ 1

)
.

Suppose 1 − cos θ ≤ 1 + cos θ (otherwise replace θ by π + θ and observe |sin θ| =
|sin (θ + π)|). Then, the estimate for the condition number of M follows from

cond2 (M) =

√
1 + cos θ

1− cos θ
=

√
(1 + cos θ)2

1− cos2 θ
≤ 2

| sin(θ)| .

The second intermediate result for the proof of Lemma 5 is an algebraic identity
for the rotation of vectors in 2D. Define the rotation matrix

R (θ) :=

(
cos θ − sin θ
sin θ cos θ

)
=

(
Re − Im
Im Re

)
ei θ . (22)

Proposition 5 (rotation identity). Any α, β, γ ∈ R satisfies

sin (α− β)R (γ) = sin (γ − β)R (α) + sin (α− γ)R (β) .

Proof. The real Re and imaginary Im parts are R-linear and it is enough to verify

sin (α− β) ei γ = sin (γ − β) eiα +sin(α− γ) ei β . (23)

Indeed, a direct computation with the identity 2i sin θ = ei θ − e− i θ for θ ∈ R shows

2i sin (γ − β) eiα =
(
ei(γ−β)− ei(β−γ)

)
eiα = ei γ ei(α−β)− ei β ei(α−γ),

2i sin (α− γ) ei β =
(
ei(α−γ)− ei(γ−α)

)
ei β = eiα ei(β−γ)− ei γ ei(β−α) .

The sum of these terms and ei β ei(α−γ) = eiα ei(β−γ) lead to the identity (23). This
and (22) conclude the proof.

Proof of Lemma 5. Assume sin θ1 ̸= 0, otherwise the left-hand side of (21) is zero and
there is nothing to prove.
Step 1 (preparations): Rescale the directions to unit length ∥t1∥ = · · · = ∥t4∥ = 1
and letM := [t1|t2] ∈ R2×2 be the matrix with columns t1 and t2. It is well known that
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the Piola transform preserves the divergence of a function. Indeed, the transformed
function v̂ := M−1v ◦Φ with Φ(x̂) := Mx̂ + z satisfies (divv) ◦Φ = div v̂ and the
componentwise Gâteaux derivatives satisfy

∂t̃j (v̂j−1 − v̂j) (0) = 0 for j = 1, . . . , 4 (24)

in the directions t̃j := M−1tj by assumption. Note that t̃1 = e1 and t̃2 = e2 are
the canonical unit vectors in R2 so that ∂1 = ∂t̃1 and ∂2 = ∂t̃2 hold. We denote the

components of v̂j by
(
v̂1j , v̂

2
j

)
. Following the proof of [4, Lem. 2] we conclude that the

sum in the left-hand side of (21) equals

4∑
j=1

(−1)j (divvj) (z) =

4∑
j=1

(−1)j (div v̂j) (0) =

4∑
j=1

(−1)j
(
∂1v̂

1
j + ∂2v̂

2
j

)
(0)

= ∂1
(
v̂14 − v̂11

)
(0) + ∂1

(
v̂12 − v̂13

)
(0) + ∂2

(
v̂22 − v̂21

)
(0) + ∂2

(
v̂24 − v̂23

)
(0)

= ∂1
(
v̂12 − v̂13

)
(0) + ∂2

(
v̂24 − v̂23

)
(0) (25)

with (24) in the last step. The other terms might not vanish but (24) leads to a bound
in terms of the full gradient ∇(v̂12 − v̂13) and ∇(v̂24 − v̂23) at 0.

Step 2 (bounds by the full gradient): The directions tj = R (θ1 + · · ·+ θj−1) t1
are rotations of t1 by the angles θj satisfying cos θj = ⟨tj , tj+1⟩ for j = 1, . . . , 4. The
application of Proposition 5 for the rotation of t1 first with α ← θ1 + θ2, β ← 0,
γ ← θ1 and second with α← θ1 + θ2 + θ3 = 2π − θ4, β ← θ1, γ ← 0 leads to

sin (θ1 + θ2) t2 = sin (θ1) t3 + sin (θ2) t1,

sin (θ2 + θ3) t1 = sin (−θ1) t4 + sin (2π − θ4) t2.

This, (24) with t̃j = ej for j = 1, 2, and the anti-symmetry of the sine result in∣∣sin (θ2) ∂1(v̂12 − v̂13
)∣∣ = ∣∣sin (θ1 + θ2) ∂2

(
v̂12 − v̂13

)∣∣ ≤ ∥∥sin (θ1 + θ2) ∇
(
v̂12 − v̂13

)∥∥ ,∣∣sin (θ4) ∂2(v̂23 − v̂24
)∣∣ = ∣∣sin (θ2 + θ3) ∂1

(
v̂23 − v̂24

)∣∣ ≤ ∥∥sin (θ2 + θ3) ∇
(
v̂23 − v̂24

)∥∥
(26)

at 0 = Φ−1(z). Introduce the shorthand

µ := min {|sin (θ2)| , |sin (θ4)|} and Θ := max {|sin (θ1 + θ2)| , |sin (θ2 + θ3)|} .

The combination of (25) and (26) provide

µ

∣∣∣∣∣
4∑

j=1

(−1)j (divvj) (z)

∣∣∣∣∣ ≤ Θ
(∥∥∇ (

v̂12 − v̂13
)∥∥+

∥∥∇ (
v̂23 − v̂24

)∥∥) (0)
≤
√
2Θ

4∑
j=1

∥∇v̂j∥ (0)
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with a triangle inequality and
∥∥∇v̂1

3

∥∥+
∥∥∇v̂2

3

∥∥ ≤ √2 ∥∇v̂3∥ in the last step.

Step 3 (finish of the proof): Recall the assumption sin θ1 ̸= 0. This, the chain
rule for derivatives Dv̂j = M−1 ((Dvj) ◦Φ)M, and the Cauchy-Schwarz inequality
imply ∥∇v̂j∥ (0) ≤

∥∥M−1
∥∥
2
∥M∥2 ∥∇vj∥ (z) for j = 1, . . . , 4. Since cond2 (M) =∥∥M−1

∥∥
2
∥M∥2 ≤ 2/ |sin θ1| from Proposition 4, this concludes the proof.

Lemma 5 allows for an important generalisation of the known result, e.g., [4, Lem.
2], that AT ,z (divv) = 0 vanishes for continuous piecewise polynomials v ∈ Sk,0 (Tz).
Corollary 1. Let k ≥ 0 and 0 ≤ η < η0 be given with η0 > 0 as in Lemma 1. Any
η-critical vertex z ∈ CT (η) satisfies

(sinϕT )
2 |AT ,z (divv)| ≤ Cinvh

−1
z k2η ∥∇v∥L2(ωz)

for all v ∈ Sk,0 (T ) .

The constant Cinv > 0 exclusively depends on the shape-regularity.

Proof. For z ∈ V (T ), recall the fixed counterclockwise numbering (6) of the triangles
in Tz so that Tz = {Kj : 1 ≤ j ≤ Nz} for Nz := |Tz| as in Fig. 2. First we consider
the case of an inner η-critical vertex z ∈ VΩ (T ) with Nz = 4 from Lemma 1(a). Since
v ∈ Sk,0 (T ) is globally continuous, the jump [v]Ej

= 0 vanishes along the common

edge Ej := ∂Kj−1 ∩ ∂Kj and, as a consequence, ∂tj (v|Kj−1
− v|Kj

) (z) = 0. Thus,

Lemma 5 applies to vj := v|Kj
for j = 1, . . . , 4 and shows

µ (sin θ1) |AT ,z (divv)| ≤
√
8Θ

∑
K∈Tz

∥∇v|K (z)∥ .

The k-explicit inverse inequality [20, Thm. 4.76] and a scaling argument imply that
there is a constant C̃inv > 0 exclusively depending on the shape-regularity of T with

∥∇v|K (z)∥ ≤ ∥∇v∥L∞(K) ≤ C̃invh
−1
z k2 ∥∇v∥L2(K) ∀K ∈ Tz.

Since Θ(z) = Θ holds and the minimal angle property implies sinϕT ≤ sin θ1,
this, the definition of µ in Lemma 5, and

∑
K∈Tz

∥∇v∥L2(K) ≤ 2 ∥∇v∥L2(ωz)
from a

Cauchy inequality conclude the proof with Cinv :=
√
32C̃inv. The case of a bound-

ary vertex z ∈ V∂Ω (T ) with Nz ≤ 3 from Lemma 1(b) can be transformed to the
first case. One extends the “open” boundary patch Tz to a closed patch by defin-
ing shape regular triangles Kj , N + 1 ≤ j ≤ 4, such that the extended patch

T̃z := Tz ∪ {Kj : N + 1 ≤ j ≤ 4} satisfies: a) T̃z a closed patch, i.e., z is a vertex of
Kj , 1 ≤ j ≤ 4 and the intersection Kj−1 ∩Kj is a common edge, b) z is a η-critical

vertex in T̃z. The function v ∈ Sk,0 (T ) then extends to the full patch
⋃

N+1≤j≤4Kj

by 0 and the proof of the first case carries over.

5.2 Proof of Lemma 4

The last ingredient for the proof of Lemma 4 concerns the explicit characterisation
of the functions in M0,k−1(T ) that are L2 orthogonal to Mη,k−1 (T ). Recall the fixed
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counter-clockwise numbering (6) of Tz and let λKj ,z denote the barycentric coordinate
associated to z on Kj ∈ Tz.
Definition 4. For z ∈ V (T ), the function bk,z ∈ Pk (Tz) is given by

bk,z :=

Nz∑
j=1

(−1)j+k

|Kj |
P

(0,2)
k

(
1− 2λKj ,z

)
χKj

. (27)

The polynomials P
(0,2)
k (1− 2λK,z) ∈ Pk(K) have been introduced in [21] to char-

acterize the orthogonal complement of div(Sk+1,0(T )) in Pk,0(T ) on certain macro
elements, see also [22], [10], [23].
Lemma 6. Set ζk :=

(
k+2
2

)
for k ≥ 1 and let z ∈ V (T ).

1. The function bk,z ∈ Pk (Tz) from (27) satisfies, for all 1 ≤ j ≤ Nz, that

bk,z|Kj
(y) =

(−1)j
|Kj |

×
{
ζk if y = z,
(−1)k else

∀y ∈ V(Kj). (28)

2. The following integral relations hold on the triangle Kj ∈ Tz:

(bk,z, 1)L2(Kj)
= (−1)j ζ−1

k , (29)

(bk,z, q)L2(Kj)
= q (z) (bk,z, 1)L2(Kj)

∀q ∈ Pk(Kj). (30)

3. The function ζkbk,z is the Riesz representation of AT ,z in Pk(Tz), i.e.,

ζk (bk,z, q)L2(ωz)
= AT ,z (q) ∀q ∈ Pk(Tz). (31)

In partiular, bk,z is L2(ωz) orthogonal to all q∈Pk(Tz) with AT ,z(q)=0.
4. For k ≥ 2, the set {1} ∪ {bk,z}z∈V(T ) is linearly independent and

3

4

∥∥∥∥∥ ∑
z∈V(K)

czbk,z

∥∥∥∥∥
2

L2(K)

≤ |K|−1
∑

z∈V(K)

c2z ≤
12

7
min
C∈R

∥∥∥∥∥ ∑
z∈V(K)

czbk,z − C

∥∥∥∥∥
2

L2(K)

(32)

for any K ∈ T and cz ∈ R.

Proof. From [22, (3.14), (3.2)] it follows that the function bj := P
(0,2)
k

(
1− 2λKj ,z

)
is

orthogonal to any function q ∈ Pk(Kj) with q (z) = 0 and fulfils

bj (z) = P
(0,2)
k (−1) = (−1)k ζk, bj (y) = P

(0,2)
k (1) = 1 ∀y ∈ V (Kj) \ {z} . (33)

The integral of bj over the triangle Kj can be evaluated explicitly as

(bj , 1)L2(Kj)
=

∫
Kj

P
(0,2)
k

(
1− 2λKj ,z

)
= 2 |Kj |

∫ 1

0

∫ 1−x1

0

P
(0,2)
k (1− 2x1) dx2dx1
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= 2 |Kj |
∫ 1

0

(1− x1)P
(0,2)
k (1− 2x1)dx1

t=1−2x1=
|Kj |
2

∫ 1

−1

(t+ 1)P
(0,2)
k (t)dt

[22, Lem. C.1]
= (−1)k |Kj | /ζk. (34)

This implies (29). The L2 orthogonality (bj , q − q (z))L2(Kj)
= 0 shows

0 < (bj , bj)L2(Kj)
= bj (z) (bj , 1)L2(Kj)

(33), (34)
= |Kj | ∀q ∈ Pk (Kj) .

In turn, (30) follows from

(bk,z, q)L2(Kj)
= (bk,z, q − q (z))L2(Kj)

+ (bk,z, q (z))L2(Kj)
= q (z) (bk,z, 1)L2(Kj)

.

The definition of bk,z|Kj
= (−1)j+k |Kj |−1

bj in Kj ∈ Tz reveals

(bk,z, q)L2(ωz)
=

Nz∑
j=1

q|Kj
(z)

(−1)j+k

|Kj |
(bj , 1)L2(Kj)

(34)
= ζ−1

k AT ,z (q)

for any q ∈ Pk(Tz). This is (31) and implies the orthogonality (bk,z, q)L2(ωz)
= 0 for

any q ∈ Pk (Tz) with AT ,z (q) = 0. Given coefficients cz ∈ R for z ∈ V(K),K ∈ T ,
set q :=

∑
z∈V(K) czbk,z. The minimum in (32) is obtained for the integral mean

qK = |K|−1(q, 1)L2(K), i.e.,

min
C∈R
∥q − C∥2L2(K) = ∥q − qK∥2L2(K) = ∥q∥2L2(K) − ∥qK∥2L2(K) =

∑
z,y∈V(K)

czcyMz,y

with Mz,y := (bk,z, bk,y)L2(K) − |K|−1(bk,z, 1)L2(K)(bk,y, 1)L2(K). Since ∥bk,z∥2L2(K) =

|K|−1 and |(bk,z, bk,y)L2(K)| = ζ−1
k |K|−1 from (28)–(30) for z ̸= y ∈ V(K), (29) shows

that the diagonal and offdiagonal elements of the symmetric diagonally dominant 3×3
matrix M := (Mz,y)z,y∈V(K) ∈ R3×3 are controlled by

Mz,z = |K|−1(1− ζ−2
k ) =: m |Mz,y| ≤ |K|−1(ζ−1

k + ζ−2
k ) =: r

z ̸= y ∈ V(K). This and the Gerschgorin circle theorem [24, Thm. 7.2.1] prove that
(all and in particular) the lowest eigenvalue λmin of M is bounded from below by
m − 2r ≥ 7|K|−1/12 for k ≥ 2. Analog arguments control the maximal eigen-
value λmax ≤ |K|−1(1 + 2ζ−1

k ) ≤ |K|−14/3 for k ≥ 2 of N ∈ R3×3 with Nz,y :=
(bk,z, bk,y)L2(K). Hence, the min-max theorem implies (32) and the linear inde-
pendence follows from the support property, supp bk,z = ωz. This concludes the
proof.
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Now we have all the ingredients for the proof of the key Lemma 4 of this section.

Proof of Lemma 4. This proof is split into 3 steps.

Step 1 (characterisation of the divergence): Note that divvS ∈ Pk−1,0 (T ) has
integral mean zero from vS ∈ Sk,0(T ). The L2 orthogonality divvS ⊥ Mη,k−1 (T )
implies

divvS ∈Mη,k−1 (T )⊥ :=
{
p ∈ Pk−1 (T ) : (p, q)L2(Ω) = 0 for all q ∈Mη,k−1 (T )

}
.

It follows from Lemma 6(4) that span{1, bk−1,z : z ∈ CT (η)} is the orthogonal
compliment of Mη,k−1 (T ) in Pk−1 (T ). This guarantees the existence of coefficients
cz ∈ R for z ∈ CT (η) and CS ∈ R such that

divvS =
∑

z∈CT (η)

czbk−1,z + CS. (35)

Recall the open subset Ω(η) ⊂ Ω from (20). Since supp bk−1,z = ωz ⊂ Ω(η) from
Definition 4, (35) verifies divvS|Ω\Ω(η)

≡ CS. For any K ∈ T , Lemma 6(4) provides

∥ divvS − CS∥L2(K) =

∥∥∥∥∥∥
∑

z∈CT (η)

czbk−1,z

∥∥∥∥∥∥
L2(K)

≤
√

16/7∥divvS∥L2(K).

The integral mean is the best-approximation onto constants and vanishes for divvS

so that this and divvS|Ω\Ω(η)
≡ CS verify

∥divvS∥L2(Ω) = min
C∈R
∥ divvS−C∥L2(Ω)

≤ ∥divvS − CS∥L2(Ω(η)) ≤
√

16/7∥ divvS∥L2(Ω(η)). (36)

Lemma 1(a) and η ≤ η0 guarantee Nz = 4 for any interior η-critical vertex z ∈
CT (η)∩VΩ(T ). If T does not contain η-critical boundary vertices z ∈ CT (η)∩V∂Ω(T )
with Nz odd, the integral mean of bk−1,z vanishes for all z ∈ CT (η) by (29) and

|Ω|CS =

∫
Ω

divvS −
∑

z∈CT (η)

cz

∫
Ω

bk−1,z = 0.

Step 2 (preparations): Let Kz ∈ Tz denote any fixed triangle in the vertex patch
of z ∈ CT (η). The orthogonality of divvS onto CS ∈ R, (35), and Lemma 6(3) provide

∥divvS∥2L2(Ω) =
∑

z∈CT (η)

(czbk−1,z,divvS)L2(ωz)

(31)
= ζ−1

k−1

∑
z∈CT (η)

cz AT ,z (divvS)

20



0 0.5 1

0

0.5

1

ε zε

Fig. 4 Perturbation Tε (blue) of the criss-cross triangulation T0 (gray) of the square

≤ ζ−1
k−1

√ ∑
z∈CT (η)

|Kz| (AT ,z (divvS))
2
√ ∑

z∈CT (η)

|Kz|−1
c2z (37)

with a Cauchy inequality in ℓ2 in the last step. Lemma 6(4) controls the last term by

∑
z∈CT (η)

|Kz|−1
c2z ≤

∑
K∈T

∑
z∈V(K)∩CT (η)

|K|−1c2z ≤ 12/7∥divvS∥2L2(Ω(η)). (38)

Step 3 (divergence control): Let wS ∈ Sη,k,0(T )⊂ Sk,0(T ) be arbitrary and recall
|K| ≤ h2

z for all K ∈ Tz by definition. Since AT ,z (divwS) vanishes and Θ (z) ≤ η for
every z ∈ CT (η),(37)–(38) and Corollary 1 applied to vS −wS ∈ Sk,0 (T ) imply

∥divvS∥L2(Ω) ≤
√

12/7ζ−1
k−1

√ ∑
z∈CT (η)

h2
z (AT ,z (divvS − divwS))

2

≤
√

12/7ζ−1
k−1k

2

√ ∑
z∈CT (η)

Θ(z)
2 ∥∇ (uS −wS)∥2L2(ωz)

.

Hence, the finite overlap of the vertex patches results in

∥ divvS∥L2(Ω) ≤
Cinv

sin2 ϕT

√
36/7ζ−1

k−1k
2η ∥∇ (uS −wS)∥L2(Ω(η)) .

Since wS ∈ Sη,k,0(T ) was arbitrary, this, (36), and ζ−1
k−1k

2 = 2k/(k+1) ≤ 2 conclude
the proof.

6 Numerical experiments

In this section we report on numerical experiments of the convergence rates for the
pressure-wired Stokes elements and investigate the dependence of ∥divuS∥L2(Ω) on η
and the number of degrees of freedom.

We comment on a straightforward implementation with a direct LU solver and
Lagrange multipliers for the pressure constraints. For the original Scott-Vogelius
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Fig. 5 Convergence history of the total error (left) and of the divergence (right) with zε treated as
η-critical zε ∈ CT (η) or non-singular zε ̸∈ CT (η) vertex for the h-method

element and nearly singular vertices the condition number of the algebraic system
becomes very large. As a consequence all input errors and variational crimes are ampli-
fied by the bad conditioning. The treatment of the ill-conditioning in the presence of
few nearly singular vertices by more robust solvers, e.g, of Krylov type, lies beyond
the scope of this paper with its focus on the pressure-wired Stokes element.
Analytical solution on the unit square. The difference to the classical Scott-
Vogelius element stems from the different treatment of near-singular vertices only.
Therefore we focus our benchmark on the criss-cross triangulation Tε of the unit square
Ω := (0, 1)2 with interior vertex zε := (1/2 + ε; 1/2) perturbed by some 0 < ε < 1/2
shown in Fig. 4. For ε≪ 1, this triangulation locally models a critical mesh configura-
tion with 0 < Θ(zε) ≪ 1 where in finite arithmetic the classical Scott-Vogelius FEM
becomes unstable. Consider the exact smooth solution

u (x) =

(
sin2 (πx1) sin (πx2) cos (πx2)
− sin2 (πx2) sin (πx1) cos (πx1)

)
, p (x) = 106 e−(x1−0.3)−2−(x2−32/500)−2

+C,

to the Stokes problem with body force F ≡ f := −∆u +∇p ∈ C∞ (Ω). The velocity
is pointwise divergence-free as it is the vector curl of sin2 (πx1) sin

2 (πx2) and C is
chosen such that the pressure p ∈ L2

0(Ω) has zero integral mean.
Optimal convergence of the h-method. This benchmark considers uniform red-
refinement of the initial mesh Tε that subdivides each element into four congruent
children by joining the edge midpoints. This refinement strategy does not introduce
new near-singular vertices in the refinement and Θ(zε) remains constant through-
out the refinement. We consider ε = 0.01, 0.0001, 10−6, 10−8 that corresponds to
Θ(zε) ≈ 2ε. Fig. 5 displays the total error ∥∇(u−uS)∥L2(Ω) + ∥p− pM∥L2(Ω) and the
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Fig. 6 Convergence history of the discretisation error (left) and ∥ div uS∥ (right) with zε treated as
nearly singular zε ∈ CT (η) or non-singular zε ̸∈ CT (η) vertex for the k-method

L2 norm of the discrete divergence ∥ divuS∥L2(Ω) when zε ̸∈ CT (η) is treated as non-
singular or as singular zε ∈ CT (η) vertex. In the first case, our pressure-wired Stokes
FEM is identical to the classical Scott-Vogelius FEM. We observe that for low poly-
nomial degrees k and perturbations Θ(zε) > 10−6, both variants converge optimally.
However, for small perturbations Θ(zε) < 10−6 (dotted), the solution to the classical
Scott-Vogelius FEM is polluted by the high condition number of the algebraic sys-
tem and only our modification that treats zε ∈ CT (η) as η-critical converges at all
and with optimal rate. The divergence of the classical Scott-Vogelius FEM vanishes
up to rounding errors except for a similar pollution effect for Θ(zε) < 10−6. We also
observe that the L2 norm of the divergence for the pressure-wired Stokes FEM is very
small compared to the total error and also significantly smaller than the velocity error
∥∇(u− uS)∥L2(Ω) (undisplayed) by a factor of Θ(zε).
Exponential convergence of the k-method. This benchmark monitors the
behaviour of the k-method that successively increases the polynomial degree k. The
convergence history of the total error in Fig. 6 displays the same pollution effect for
small perturbations 0 < ε ≪ 1 or higher polynomial degree k when zε is treated as
a non-singular vertex. All other graphs overlay and, in particular, the pressure-wired
Stokes FEM converges exponentially. For the discrete divergence, we observe the same
convergence up to a certain threshold when accumulated rounding errors dominate. We
remark that a sophisticated choice of bases, e.g., from [25], could improve this thresh-
old. However, this does not affect the high condition number caused by the singular
mesh configuration that produces the pollution effect for the Scott-Vogelius FEM.
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