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THE SPACE OF r-IMMERSIONS OF A UNION OF DISCS IN Rn

GREGORY ARONE AND FRANJO ŠARČEVIĆ

Abstract. For a manifold M and an integer r > 1, the space of r-immersions of M in Rn is
defined to be the space of immersions of M in Rn such that the preimage of every point in Rn

contains fewer than r points. We consider the space of r-immersions when M is a disjoint union
of k m-dimensional discs, and prove that it is equivalent to the product of the r-configuration
space of k points in Rn and the kth power of the space of injective linear maps from Rm to
Rn. This result is needed in order to apply Michael Weiss’s manifold calculus to the study of r-
immersions. The analogous statement for spaces of embeddings is “well-known”, but a detailed
proof is hard to find in the literature, and the existing proofs seem to use the isotopy extension
theorem, if only as a matter of convenience. Isotopy extension does not hold for r-immersions,
so we spell out the details of a proof that avoids using it, and applies to spaces of r-immersions.

1. Introduction

Embedding calculus (also known as manifold calculus) is a method, invented by M. Weiss [8], for
analysing presheaves on manifolds. Suppose F is a contravariant functor defined on a suitable
category of m-dimensional manifolds. Let Dm be the open unit disc in Rm. One of the main ideas
of embedding calculus is to first focus on the value of F on manifolds of the form

∐k

i=1D
m, and

then extrapolate from there to get approximations to the value of F on general m-dimensional
manifolds. For this approach to be useful, one generally needs a good understanding of the value
of F on disjoint unions of copies of Dm.

The original motivating example for embedding calculus is, not coincidentally, the embedding
functor Emb(−,Rn), were Rn is a fixed vector space and the domain of the functor is considered
to be the category of m-dimensional manifolds and codimension zero embeddings, for some fixed
m. One can also replace Rn with a more general manifold N , but we will restrict ourselves to
embeddings into a Euclidean space.

In order to apply Weiss’s machinery to the embedding functor, one needs a good understanding
of the homotopy type of spaces of the form Emb(

∐

k D
m,Rn). Fortunately, the homotopy type

of these spaces is well-understood. To describe it, let Conf(k,Rn) ⊂ (Rn)k be the configuration
space of ordered k-tuples of pairwise distinct points in Rn. That is, for k = {1, . . . , k}

Conf(k,Rn) := Emb(k,Rn) ∼= {(x1, . . . , xk) ∈ (Rn)k : xi 6= xj for i 6= j}.

Also let Linj(Rm,Rn) denote the space of injective linear maps from Rm to Rn.
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There is a natural map

(1) Emb

(

∐

k

Dm,Rn

)

≃−→ Conf(k,Rn)× Linj(Rm,Rn)k.

The map is defined by evaluating an embedding at the centers of the discs, and also differentiating
at the centers of the discs. It is well-known that the map (1) is an equivalence.

Recently there has been an emerging interest in applying embedding calculus to the study of
r-immersions [3, 7]. Given an integer r > 1, an r-immersion is an immersion with the property
that the preimage of each point consists of fewer than r points. Let rImm(M,N) denote the
space of r-immersions of M into N . For r = 2, a 2-immersion is the same thing as an injective
immersion. When M is compact it is the same as an embedding. More generally, when M is
tame (i.e., is the interior of a compact manifold with boundary), the space of 2-immersions is
equivalent to the space of embeddings. Thus for practical purposes, we can identify the space of
2-immersions with the space of embeddings. In general, we have inclusions

Emb(M,N) ⊂ 3 Imm(M,N) ⊂ · · · ⊂ rImm(M,N) ⊂ · · · ⊂ Imm(M,N).

In order to apply embedding calculus to the study of r-immersions, one would like to have an
analogue of the equivalence (1) for r-immersions. Let rConf(k,Rn), called the r-configuration

space, also known as non r-equal configuration space, of k points in Rn, be defined to be the
space

rConf(k,Rn) := rImm(k,Rn) ∼= {(x1, . . . , xk) ∈ (Rn)k : ∄1 ≤ i1 < · · · < ir ≤ k s.t. xi1 = . . . = xir}.

There is a natural map

(2) rImm

(

∐

k

Dm,Rn

)

≃−→ rConf(k,Rn)× Linj(Rm,Rn)k,

defined by evaluation at the centers of the discs and differentiation at the centers of the discs. It
is a generalization of (1). Our main result (Theorem 2.1) says that this map is an equivalence.
This fact is implicitly assumed in [7], and to some extent also in [3].

As we mentioned above, the case r = 2 of our result is well-known. However, we had trouble
finding a detailed proof of it in the literature. Furthermore, proofs that we did find tend to
use at some point the fact that when M0 is a closed submanifold of M , the restriction maps
Emb(M,Rn) → Emb(M0,Rn) and Imm(M,Rn) → Imm(M0,Rn) are fibrations. This property
definitely fails for r-immersions when 2 < r < ∞. Even when M = k is a finite set (a zero-
dimensional manifold), and k0 ⊂ k, the restriction map rConf(k,Rn) → rConf(k0,Rn) is not a
fibration.

Our companion paper [1] relies heavily on the map (2) being an equivalence. It thus seems
prudent to write out a full proof of this assertion. We hope that the result is interesting enough
to stand on its own.

Notation for the derivative of a function. Since the letter D denotes a disc in Rm, we avoid
using it to denote the differential. Instead we use the same notation for derivatives as in [2]. Let
U, V be open subsets of Rm and Rn respectively, and let f : U → V be a smooth function. We
define f ′ to be the function f ′ : U → L(Rm,Rn) which associates to a point x ∈ U the Fréchet
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derivative of f at x. Thus for each x ∈ U, f ′(x) is a linear homomorphism from Rm to Rn. The
linear approximation of f at 0 can be written as Lf(x) = f(0) + f ′(0)(x).

Similarly f ′′ : U → L ((Rm ⊗ Rm)Σ2 ,R
n) denotes the second derivative of f , and f (i) : U →

L
(

(Rm)⊗i
Σi
,Rn

)

denotes the i-th derivative of f . Thus for each x ∈ U , f (i)(x) is a symmetric
multilinear map from Rm × · · · × Rm to Rn.

We will equip the space of multilinear maps with the norm metric. Thus

||f (i)(x)||norm = sup{||f (i)(x)(u1, . . . , ui)||Rn : ||u1||Rm = · · · = ||ui||Rm = 1}.
Subsequently, we will just write || − || to denote the norm of a vector or an operator, trusting
that it is clear from the context which norm is meant.

This notion of derivative can be extended to smooth maps f : M → N where M,N are smooth
manifolds with boundary. We will only apply it to the case when N = Rn and M is a finite
disjoint union of either open or closed discs in Rm.

Topology on spaces of smooth maps. We endow the space C∞(M,Rn) of smooth maps from
M to Rn with the compact-open C∞-topology, a.k.a the weak Whitney C∞-topology. Thus a

sequence of smooth functions fj : M → Rn converges to f if for every k ≥ 0 the sequence f
(k)
j

converges to f (k) uniformly on every compact subspace of M . When M is a subset of Rm, this is
equivalent to saying that for every multi-index α, the sequence ∂αfj converges to ∂αf uniformly
on every compact subspace of M . All spaces of embeddings, immersions, r-immersions, etc. are
endowed with the subspace topology from the space of smooth maps.

2. r-immersions of a union of discs

Let Dm be the open unit disc in Rm and k a natural number. Let Linj(Rm,Rn) denote the space
of injective linear maps from Rm to Rn. There is a canonical map

ev : rImm

(

∐

k

Dm,Rn

)

→ rConf(k,Rn)× Linj(Rm,Rn)k.

The map ev is defined by evaluating an r-immersion f :
∐

k D
m → Rn at the center of each disc

Dm and also differentiating f at the center of each disc. The main result of this paper is the
following theorem

Theorem 2.1. The map ev is a weak homotopy equivalence.

The proof of Theorem 2.1 goes through a construction of several intermediate spaces. To begin
with, let us introduce notation for some auxiliary spaces of componentwise embeddings.

Definition 2.2. Suppose
∐k

i=1Mi is a disjoint union of k manifolds, possibly with boundary. Let

CEmb

(

k
∐

i=1

Mi,R
n

)

⊂ C∞

(

k
∐

i=1

Mi,R
n

)

be the space of smooth maps that restrict to an embedding on each component. Similarly, let

rImmce
(

∐k

i=1Mi,Rn
)

be the subspace of rImm
(

∐k

i=1Mi,Rn
)

consisting of those r-immersions

that restrict to an embedding on each Mi.
3



In practice we will use this notation only when each Mi is an open or closed disc in Rm.

Remark 2.3. It is well-known that for a compact M , possibly with boundary, Emb(M,N) is
open in C∞(M,N) (since M is compact, the strong and weak Whitney topologies coincide).
See [5, Theorem 1.4] or [6, Proposition 9.5.9], where the case with boundary is treated more

explicitly. Since there are homeomorphisms CEmb
(

∐k

i=1Mi,Rn
)

∼=−→
∏

i Emb (Mi,Rn) and

C∞

(

∐k

i=1Mi,Rn
)

∼=−→ ∏

i C
∞ (Mi,Rn), it follows that when the manifolds Mi are compact,

CEmb
(

∐k

i=1Mi,Rn
)

is an open subset of C∞

(

∐k

i=1Mi,Rn
)

. Since

rImmce

(

k
∐

i=1

Mi,R
n

)

= rImm

(

k
∐

i=1

Mi,R
n

)

∩ CEmb

(

k
∐

i=1

Mi,R
n

)

,

it follows that, again assuming Mi are compact, rImmce
(

∐k

i=1Mi,Rn
)

is an open subset of

rImm
(

∐k

i=1Mi,Rn
)

.

We will now define a map that “almost” exhibits rImmce(
∐

k D
m,Rn) as a deformation retract

of rImm (
∐

k D
m,Rn).

Definition 2.4. Let f ∈ C∞ (
∐

k D
m,Rn) and 0 ≤ t ≤ 1. Define the map ft ∈ C∞ (

∐

k D
m,Rn)

by the formula ft(x) = f(tx). It is clear that if f is an r-immersion then so is ft for all 0 < t ≤ 1,
but not for t = 0. Likewise, if f is a componentwise embedding, then so is ft for all 0 < t ≤ 1.
Define the map

H : rImm

(

∐

k

Dm,Rn

)

× (0, 1] → rImm

(

∐

k

Dm,Rn

)

by the formula

H(f, t) = ft.

For all f ∈ rImm (
∐

k D
m,Rn), since f is a local embedding, there exists an ǫ > 0 such that for

all 0 < t ≤ ǫ, H(f, t) ∈ rImmce(
∐

k D
m,Rn). The following easy lemma is a strengthening of

this obsevation.

Lemma 2.5. For every f ∈ rImm (
∐

k D
m,Rn) there exists an open neighbourhood U of f and

an ǫ > 0 such that H(U × (0, ǫ]) ⊂ rImmce(
∐

k D
m,Rn).

Proof. Let f :
∐

k D
m → Rn be an r-immersion. For 0 < ǫ < 1, let Bm

ǫ ⊂ Dm denote the
closed disc of radius ǫ. Since f is a local embedding one can find an ǫ > 0 so that f restricts to
an embedding of Bm

ǫ for each copy of Dm. This means that the restriction map

ρ : rImm

(

∐

k

Dm,Rn

)

→ rImm

(

∐

k

Bm
ǫ ,Rn

)

takes f into the subspace rImmce(
∐

k B
m
ǫ ,Rn) ⊂ rImm (

∐

k B
m
ǫ ,Rn). By Remark 2.3 it is

an open subset. Thus ρ−1 (rImmce(
∐

k B
m
ǫ ,Rn)) is the required open neighborhood of f in

rImm (
∐

k D
m,Rn). �
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Corollary 2.6. For any compact space K and map K → rImm (
∐

k D
m,Rn) there exists an

ǫ > 0 such that the composition

K × (0, 1] → rImm

(

∐

k

Dm,Rn

)

× (0, 1]
H−→ rImm

(

∐

k

Dm,Rn

)

takes K × (0, ǫ] into rImmce(
∐

k D
m,Rn).

Proof. Suppose we have a map h : K → rImm(
∐

k D
m,Rn). Let x ∈ K. Then h(x) is an r-

immersion. By Lemma 2.5, there is an open neighborhood V of h(x) in rImm(
∐

k D
m,Rn), and

a positive number ǫx such that all the elements of H(V ×(0, ǫx]) are componentwise embeddings.
Let Ux = h−1(V ). Thus for every x ∈ K we found an open neighborhood Ux and a positive
number ǫx such that every r-immersion in h(Ux) restricts to an embedding of discs of radius ǫx.
By compactness of K, there is a finite collection of points, say x1, . . . , xl such that Ux1, . . . , Uxl

cover K. Let ǫ = min{ǫx1 , . . . , ǫxl
}. Then every r-immersion in h(K) restricts to an embedding

of discs of radius ǫ. But this means that every element of H(h(K)× (0, ǫ]) is a componentwise
embedding. �

Now we can complete the first important step toward proving Theorem 2.1.

Proposition 2.7. The inclusion

(3) rImmce

(

∐

k

Dm,Rn

)

→֒ rImm

(

∐

k

Dm,Rn

)

is a weak homotopy equivalence.

Proof. First of all, the inclusion is surjective on π0. Indeed, suppose f ∈ rImm (
∐

k D
m,Rn).

Then H({f} × (0, 1]) defines a path from f to a point in rImmce(
∐

k D
m,Rn).

Second, let us show that the inclusion is injective on π0. Suppose f, g ∈ rImmce(
∐

k D
m,Rn)

and there is a path α : [0, 1] → rImm (
∐

k D
m,Rn) from f to g. Consider the composition

[0, 1]× (0, 1]
α×1(0,1]−−−−→ rImm

(

∐

k

Dm,Rn

)

× (0, 1]
H−→ rImm

(

∐

k

Dm,Rn

)

.

It follows from Corollary 2.6 that for some 0 < ǫ < 1 this map restricts to a map

[0, 1]× [ǫ, 1]
H◦(α×1[ǫ,1])−−−−−−−→ rImm

(

∐

k

Dm,Rn

)

that sends [0, 1] × {ǫ} into rImmce(
∐

k D
m,Rn). Moreover, since α maps ∂([0, 1]) into the

subspace rImmce(
∐

k D
m,Rn), and H preserves this subspace, it follows that H ◦ (α × 1[ǫ,1])

maps ∂([0, 1])× [ǫ, 1] into rImmce(
∐

k D
m,Rn). Altogether it follows that H ◦ (α× 1[ǫ,1]) takes

[0, 1]×{ǫ}∪ ∂([0, 1])× [ǫ, 1] into rImmce(
∐

k D
m,Rn). Therefore H ◦ (α× 1[ǫ,1]) defines a path

homotopy between α, and a path from f to g that lies entirely in rImmce(
∐

k D
m,Rn). We have

proved that the inclusion is injective on π0.
5



Now let us choose a basepoint in rImmce(
∐

k D
m,Rn) and let it also serve as the basepoint of

rImm (
∐

k D
m,Rn). We want to show that for all d ≥ 1 the induced homomorphism

πd

(

rImmce

(

∐

k

Dm,Rn

))

→ πd

(

rImm

(

∐

k

Dm,Rn

))

is an isomorphism. For surjectivity, let h : Sd → rImm (
∐

k D
m,Rn) be a pointed map. We need

to show that h is pointed homotopic to a map Sd → rImmce(
∐

k D
m,Rn). Using Corollary 2.6

once more we conclude that there exists an 0 < ǫ < 1 such that the composition

Sd × [ǫ, 1]
h×1[ǫ,1]−−−−→ rImm

(

∐

k

Dm,Rn

)

× [ǫ, 1]
H−→ rImm

(

∐

k

Dm,Rn

)

takes Sd × {ǫ} into rImmce(
∐

k D
m,Rn). We obtained an unpointed homotopy of h to a map

hǫ : S
d → rImmce(

∐

k D
m,Rn). Furthermore, h takes the basepoint of Sd into rImmce(

∐

k D
m,Rn),

so it follows that the homotopy H ◦ (h× 1[ǫ,1]), while not constant on the basepoint, keeps the
basepoint inside rImmce(

∐

k D
m,Rn). It follows that h is pointed homotopic to a conjugation

of hǫ by a path in rImmce(
∐

k D
m,Rn), which completes the proof of surjectivity on πd.

Finally, we need to show that the inclusion is injective on πd. Suppose h : S
d → rImmce(

∐

k D
m,Rn)

represents an element of the kernel. It means that h extends to a map h̃ : Dd+1 → rImm (
∐

k D
m,Rn).

Using H and Corollary 2.6 once again, one can show that h̃ can be deformed into a map
Dd+1 → rImmce(

∐

k D
m,Rn) that defines a null homotopy of h, thus proving that h repre-

sents zero in πd (rImmce(
∐

k D
m,Rn)). The details of this last step are left to the reader. �

Let us say that an immersion of
∐

k D
m is non-r-overlapping if the intersection of images of every

r components is empty. Note that a componentwise embedding is an r-immersion if and only if
it is non-r-overlapping.

The following definition is taken from [4].

Definition 2.8. Let f :
∐

k D
m → Rn be a map. For each 1 ≤ i ≤ k, let 0i be the center of the

i-th copy of Dm in the coproduct
∐

k D
m. For each r-tuple of integers ~i = (i1, . . . , ir), where

1 ≤ i1 < i2 < · · · < ir ≤ k, let

f~i =
f(0i1) + · · ·+ f(0ir)

r
.

Finally define sd(f) by the following formula

sd(f) =
1√
r

min
1≤i1<···<ir≤k

√

√

√

√

r
∑

j=1

||f(0ij)− f~i||2.

The notation sd stands for “safe distance”. It is a distance for which it is guaranteed that if the
radius of each disc is less than the safe distance, then the immersion is non-r-overlapping (as we
will prove shortly). The formula for sd(f) does not give the largest possible safe distance, but
what matters is that sd(f) depends continuously on f .

Next, let us make precise the notion of a radius of an immersion of a union of discs.
6



Definition 2.9. Let f :
∐

k D
m → Rn be a map. Let Dm

i denote the i-th copy of Dm in the
coproduct. Define the radius of f to be the following

R(f) = sup
1≤i≤k, x∈Dm

i

||f(x)− f(0i)||.

Note that R(f) can be ∞. But if, for example, f is the restriction of a map defined on a union
of closed unit discs then R(f) is finite.

The point of the last two definitions is that they give a condition for an immersion to be non-r-
overlapping. The following lemma is present implicitly in [4].

Lemma 2.10. Let f :
∐

k D
m → Rn be a map. If R(f) < sd(f) then f is non-r-overlapping.

Proof. Suppose by contradiction that f is r-overlapping. Then there exists an r-tuple ~i =
(i1, . . . , ir) and points xij ∈ Dm

ij
such that f(xi1) = · · · = f(xir). Let z denote this common

value. Recall that f~i is the centroid of f(0i1), . . . , f(0ir). We have the following inequalities

r · sd(f)2 ≤
r
∑

j=1

||f(0ij)− f~i||2 ≤
r
∑

j=1

||f(0ij)− z||2 ≤ r · R(f)2

which contradicts the assumption R(f) < sd(f). �

Next, let us introduce the homotopy between a smooth map f :
∐

k D
m → Rn and its lineariza-

tion. It is a standard tool in the study of embeddings of a disc or a union of discs.

Definition 2.11. Define the map Φ: C∞(
∐

k D
m,Rn) × [0, 1] → C∞(

∐

k D
m,Rn) as follows.

Let Dm
i denote the i-th copy of Dm in

∐

k D
m, let 0i be the center of Dm

i and let x ∈ Dm
i .

Then

Φ(f, t)(x) =

{

f(0i) +
f(xt)−f(0i)

t
t > 0

f(0i) + f ′(0i)(x) t = 0

We need to know that Φ is a continuous function. This is a standard result, but we did not find
a detailed proof of it, so for the reader’s convenience we include one.

Lemma 2.12. The function Φ of Definition 2.11 is continuous.

Proof. Continuity at points where t > 0 really is obvious and is left to the reader. We shall address
continuity at points where t = 0. The weak topology on C∞(

∐

k D
m,Rn) is first countable, so

it is enough to prove that Φ is sequentially continuous. Suppose we have a sequence (fj , tj) in
C∞(

∐

k D
m,Rn)× [0, 1] converging to (f, 0) ∈ C∞(

∐

k D
m,Rn)× [0, 1]. We have to show that

Φ(fj , tj) converges to the linearization of f . This means that we have to show that Φ(fj , tj)
converges uniformly to f on any compact subset of

∐

k D
m, and the same holds for all derivatives

of these functions.

Let us first prove convergence on the level of functions themselves. We can use linear Taylor
approximation to write, for each j and x ∈ Dm

i

fj(x) = fj(0i) + f ′
j(0i)(x) + Ej(x)

where Ej is the error term. It follows that

(4) Φ(fj , tj)(x) = fj(0i) + f ′
j(0i)(x) +

Ej(xtj)

tj
7



where by convention
Ej(xt)

t
= 0 when t = 0.

LetK ⊂∐k D
m be a compact subset. We need to show that Φ(fj , tj)(x) converges to Φ(f, 0)(x)

uniformly in x, when x is restricted to K. Let us define the constants Mj ,M as follows

Mj = sup
x∈K

(||f ′′
j (x)||), M = sup

x∈K

(||f ′′(x)||)

where ||−|| denotes the operator norm. SinceK is compact, Mj,M are finite. Since fj converges
to f in the C∞ topology, the sequence Mj converges to M , and in particular it is bounded.

By Taylor’s theorem for vector-valued functions [2, Theorem 5.6.2] we have the estimate

||Ej(xt)|| ≤
Mj

2
||x||2t2 ≤ Mj

2
t2.

Note that Ej(xt) ∈ Rn and x ∈ Rm, so the two occurrences of ||− || denote the Euclidean norm

in Rn and Rm respectively. It follows that the error estimate
Ej(xtj)

tj
in (4) satisfies the following

estimate for all j and x:

(5)

∥

∥

∥

∥

Ej(xtj)

tj

∥

∥

∥

∥

≤ Mj

2
tj.

Therefore the following holds, where as usual x ∈ Dm
i :

‖Φ(f, 0)(x)− Φ(fj , tj)(x)‖ =
∥

∥

∥
f(0i) + f ′(0i)(x)−

(

fj(0i) + f ′
j(0i)(x) +

Ej(xtj)

tj

)
∥

∥

∥

≤ ‖f(0i)− fj(0i)‖+
∥

∥f ′(0i)− f ′
j(0i)

∥

∥+
Mj

2
tj .

Here the || − || sign refers to the euclidean norm in Rn in ‖f(0i)− fj(0i)‖, and to the operator
norm in

∥

∥f ′(0i)− f ′
j(0i)

∥

∥. Since fj converges to f in the weak Whitney C∞-topology, and

tj
n→∞−−−→ 0, and Mj is bounded, it is clear that the right hand side of the inequality converges to

zero as j → ∞, independently of x. We have proved the convergence on the level of functions.

Now let us look at derivatives. Fix a compact set K as above. It is easy to check that for all j
and x ∈ Dm

i , Φ(fj , tj)
′(x) = f ′

j(xtj), while Φ(f, 0)′(x) = f ′(0i). We have an estimate
∥

∥f ′
j(xtj)− f ′

j(0i)
∥

∥ ≤ Mjtj .

Since tj converges to 0, it follows that by taking j large enough we can make
∥

∥f ′
j(xtj)− f ′

j(0i)
∥

∥

arbitrarily small, for all x ∈ K ∩Dm
i . Since fj converges to f in the C∞-topology, we can also

make ||f ′
j(0i) − f ′(0i)|| arbitrarily small. It follows that by taking j large enough we can make

||f ′
j(xtj)− f ′(0j)|| = ‖Φ(fj , tj)′(x)− Φ(f, 0)′(x)‖ arbitrarily small, which means that Φ(fj , tj)

′

converges to Φ(f, 0)′ uniformly on K.

Finally, suppose i > 1. It is not hard to check that Φ(fj , tj)
(i)(x) = f

(i)
j (xtj)t

i−1
j andΦ(f, 0)(i)(x) =

0. Since f
(i)
j converges to f (i) uniformly on K, it follows that ||f (i)

j (x)|| is uniformly bounded on

K, and thus ||f (i)
j (xtj)t

i−1
j || can be made arbitrarily small by taking j large enough. This proves

convergence for higher derivatives. �

We need to define one more invariant of a map of a union of discs. It measures the largest
possible radius attained by f during the homotopy Φ.
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Definition 2.13. Let f :
∐

k D
m → Rn be a map. Let Dm

i denote the i-th copy of Dm in the
coproduct. Define LR(f) by the following formula

LR(f) = sup
1≤i≤k, 0≤t≤1, x∈Dm

i

||Φ(f, t)(x)− f(0i)|| = sup
1≤i≤k, 0<t≤1, x∈Dm

i

||f(tx)− f(0i)||
t

.

Just as with R(f), LR(f) can be infinite. Indeed, it always holds that R(f) ≤ LR(f). But if,
for example, f is the restriction of a differentiable function defined on a union of closed discs
then LR(f) < ∞. Recall that for 0 ≤ s ≤ 1, fs is defined by the formula fs(x) = f(sx). It
follows that if f is differentiable and 0 ≤ s < 1 then LR(fs) < ∞. Let us record this simple fact
in a lemma.

Lemma 2.14. Suppose f is differentiable

(1) Whenever s < 1, LR(fs) < ∞.

(2) LR(fs) ≤ s · LR(f).

Proof. (1) The case s = 0 is trivial, because f0 is constant on each disc, and LR(f0) = 0. For
x ∈ Dm

i and 0 < s < 1, sx ∈ sDm
i , where sDm

i is the open disc of radius s contained in Dm
i

whose closure sDm
i is also contained in Dm

i , so it is easy to define an extension of fs to a union
of closed discs.

(2) The case s = 0 is trivial again. Let s > 0. For x ∈ Dm
i , sx ∈ sDm

i , and if 0i is the center of
the disc Dm

i , then 0i is also the center of the disc sDm
i . By definition,

LR(fs) = sup
1≤i≤k, 0<t≤1, sx∈sDm

i

||f(stx)− f(0i)||
t

= s · sup
1≤i≤k, 0<t≤1, sx∈sDm

i

||f(stx)− f(0i)||
st

≤ s · sup
1≤i≤k, 0<t≤1, x∈Dm

i

||f(tx)− f(0i)||
t

= s · LR(f)

�

We have the following simple but important observation.

Lemma 2.15. Fix an 0 < s < 1. Then LR(fs) depends continuously on f .

Proof. For a fixed f ∈ C∞(
∐

k D
m,Rn), let us define the function Ψf : (

∐

k D
m)× [0, 1] → Rn

as follows: for x ∈ Dm
i and 0 ≤ t ≤ 1

Ψf(x, t) = Φ(f, t)(x)− f(0i) =

{

f(xt)−f(0i)
t

t > 0
f ′(0i)(x) t = 0

Suppose we have a sequence fj ∈ C∞(
∐

k D
m,Rn), converging to f in the usual C∞-topology,

and we fix an s < 1. We claim that in this case Ψ(fj)s converges uniformly to Ψfs. Since
LR(f) = sup(Ψf), it follows that the sequence LR((fj)s) converges to LR(fs), which is what
we want to prove.

It remains to prove the claim. Since the sequence fj converges to f , and s < 1, it follows that
the sequence (fj)s converges uniformly to fs on the entire space

∐

k D
m, and same holds for all

derivatives. It follows easily that for any δ > 0, Ψ(fj)s converges uniformly to Ψfs on the space
9



(
∐

k D
m) × [δ, 1]. To establish convergence near t = 0, we use the estimates in the proof of

Lemma 2.12. Applying formula (4), we can write the following:

Ψ(fj)s(x, t)−Ψfs(x, t) = (fj)
′
s(0i)(x) +

Ej(xt)

t
−
(

f ′
s(0i)(x) +

E(xt)

t

)

.

Here E is the error term for the linear approximation of f . Defining Mj and M as in the proof
of Lemma 2.12, and using inequality (5), we get the following inequalities

∥

∥Ψ(fj)s(x, t)−Ψfs(x, t)
∥

∥ ≤ ‖(fj)′s(0i)(x)− f ′
s(0i)(x)‖+

∥

∥

∥

Ej(xt)

t

∥

∥

∥
+
∥

∥

∥

E(xt)
t

∥

∥

∥

≤ ‖(fj)′s(0i)− f ′
s(0i)‖+

Mj

2
t + M

2
t.

Note that in the last line ‖(fj)′s(0i)− f ′
s(0i)‖ denotes the operator norm of (fj)

′
s(0i)− f ′

s(0i).

Since (fj)
′
s(0i) converges to f ′

s(0i), and the sequence Mj is bounded, it is clear that for all ǫ > 0
we can find a δ > 0 and an integer j1, such that for all 0 ≤ t ≤ δ and j > j1 the terms
||(fj)′s(0i) − f ′

s(0i)||,
Mj

2
t and M

2
t are each smaller than ǫ

3
. It follows that for all j > j1 and

(x, t) ∈
∐

k D
m × [0, δ],

∥

∥Ψ(fj)s(x, t)−Ψfs(x, t)
∥

∥ < ǫ.

We also can find an j2 such that for all j > j2 and (x, t) ∈ ∐k D
m× [δ, 1] it holds ||Ψ(fj)s(x, t)−

Ψfs(x, t)|| < ǫ. Thus for all j > max(j1, j2) the inequality ||Ψ(fj)s(x, t) − Ψfs(x, t)|| < ǫ holds
for all x and t. This means that Ψ(fj)s converges uniformly to Ψfs, and we have proved the
claim. �

Definition 2.16. We say that a function f :
∐

k D
m → Rn is small, if LR(f) < sd(f). Let

rImmsm

(

∐

k

Dm,Rn

)

⊂ rImmce

(

∐

k

Dm,Rn

)

denote the subspace consisting of r-immersions that are componentwise embeddings and are
small.

Note that if f is small then Φ(f, t) satisfies the hypothesis of Lemma 2.10 for all t, and thus
Φ(f, t) is non-r-overlapping for all t.

Proposition 2.17. The inclusion rImmsm(
∐

k D
m,Rn) →֒ rImmce(

∐

k D
m,Rn) is a homotopy

equivalence.

Proof. Let us define the function α : rImmce(
∐

k D
m,Rn) → (0, 1) by the formula

α(f) = min

(

1

2
,

sd(f)

4LR(f1
2
)

)

.

Notice that LR(f1
2
) < ∞ by Lemma 2.14 (1), and therefore α(f) is a well-defined positive

number smaller than 1. Also notice that sd(f) is obviously continuous in f , and LR(f1
2
) is

continuous by Lemma 2.15. Therefore α is a continuous function.

Next, let jf : [0, 1] → [α(f), 1] be the canonical linear homeomorphism. Let j be the function

j : rImmce

(

∐

k

Dm,Rn

)

× [0, 1] → [0, 1]

defined by the formula j(f, t) = jf(t), then j is continuous in both f and t.
10



Now let us define a homotopy

H : rImmce

(

∐

k

Dm,Rn

)

× [0, 1] → rImmce

(

∐

k

Dm,Rn

)

by the formula H(f, t) = fjf (t). Since jf is continuous in f and t, H is continuous. Since jf (1) =
1 and jf (0) = α(f), H is a homotopy between the identity function on rImmce(

∐

k D
m,Rn) and

the function that sends f to fα(f) = f
min( 1

2
,

sd(f)
4LR(f1

2
)
)
.

Let us check that f
min( 1

2
,

sd(f)
4LR(f1

2
)
)
is small. This means to check that

LR(f
min( 1

2
,

sd(f)
4LR(f1

2
)
)
) ≤ sd(f

min( 1
2
,

sd(f)
4LR(f1

2
)
)
).

Note that sd(f) only depends on the images of the centers of Dms under f , and therefore
sd(fs) = sd(f) for any s. So we need to prove that LR(f

min( 1
2
,

sd(f)
4LR(f1

2
)
)
) ≤ sd(f).

Suppose first that sd(f)
4LR(f1

2
)
≤ 1

2
. Then we have the inequalities (here we use Lemma 2.14 (2))

LR(f
min( 1

2
,

sd(f)
4LR(f1

2
)
)
) = LR(f sd(f)

4LR(f1
2
)

) ≤ sd(f)

2LR(f1
2
)
LR(f 1

2
) =

sd(f)

2
< sd(f).

Now suppose that 1
2
≤ sd(f)

4LR(f1
2
)
. Then we have the inequality LR(f1

2
) ≤ sd(f)

2
and

LR(f
min( 1

2
,

sd(f)
4LR(f1

2
)
)
) = LR(f 1

2
) ≤ sd(f)

2
< sd(f).

We have shown that H(f, 0) is small for every f . It is clear that if f is small, then H(f, t)
is small for all t. We have shown that H induces a homotopy between the identity map on
rImmce(

∐

k D
m,Rn) and a map rImmce(

∐

k D
m,Rn) → rImmsm(

∐

k D
m,Rn), which serves as

a homotopy inverse to the inclusion. �

The next step is to show that the space of small r-immersions that are componentwise embeddings
is equivalent to the space of small r-immersions that are componentwise affine.

Definition 2.18. Let rImmaff(
∐

k D
m,Rn) ⊂ rImmsm(

∐

k D
m,Rn) be the subspace consisting

of r-immersions that are affine on each component (and are small).

Proposition 2.19. The space rImmaff(
∐

k D
m,Rn) is a deformation retract of rImmsm(

∐

k D
m,Rn).

Proof. Recall the map Φ: C∞(
∐

k D
m,Rn)× [0, 1] → C∞(

∐

k D
m,Rn) from Definition 2.11. It

is easy to check from the definitions that

(1) Φ restricts to a map rImmsm(
∐

k D
m,Rn)× [0, 1] → rImmsm(

∐

k D
m,Rn)

(2) If f is affine on each component, meaning that f(x) = f(0i) + f ′(0i)(x) for all x ∈ Dm
i ,

then it’s easily seen that Φ(f, t)(x) = f(x) for all t. So the homotopy Φ is constant on
rImmaff(

∐

k D
m,Rn).

(3) For every f the function x 7→ Φ(f, 0)(x) is affine on each component.

It follows that Φ defines a deformation retraction of rImmsm(
∐

k D
m,Rn) onto rImmaff(

∐

k D
m,Rn).
�
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Next, we can prove that the evaluation map restricted to rImmaff(
∐

k D
m,Rn) is an equivalence.

Lemma 2.20. The map

ev : rImmaff

(

∐

k

Dm,Rn

)

→ rConf(k,Rn)× Linj(Rm,Rn)k

defined by evaluating at the center of each disc Dm and also differentiating at the center of each

disc, is a homotopy equivalence.

Proof. For affine maps, the smallness condition amounts to the following inequality, that has to
hold for each i between 1 and k:

||f ′(0i)|| ≤ sd(f).

Here ||f ′(0i)|| denotes the operator norm of f ′(0i). It is easy to show that the space rConf(k,Rn)×
Linj(Rm,Rn)k deformation retracts onto the image of small affine r-immersions. One has to mul-
tiply the linear transformations from Rm to Rn by a factor that will make their norms smaller
than sd(f). �

Finally we can prove the main result.

Proof of Theorem 2.1. We have constructed the following composition of maps

rImmaff

(

∐

k

Dm,Rn

)

→֒ rImmsm

(

∐

k

Dm,Rn

)

→֒ rImmce

(

∐

k

Dm,Rn

)

→֒

→֒ rImm

(

∐

k

Dm,Rn

)

ev−→ rConf(k,Rn)× Linj(Rm,Rn)k.

We have shown that each one of the inclusions is an equivalence, and that the composition is an
equivalence. It follows that the map marked ev is an equivalence. �

Corollary 2.21. Choose a basepoint in Imm (
∐

k D
m,Rn), and let rImm (

∐

k D
m,Rn) be the

homotopy fiber of the map rImm (
∐

k D
m,Rn) → Imm (

∐

k D
m,Rn). Then there exists an

equivalence

rImm

(

∐

k

Dm,Rn

)

≃ rConf(k,Rn).
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