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PIERI RULES FOR SKEW DUAL IMMACULATE FUNCTIONS

ELIZABETH NIESE, SHEILA SUNDARAM,
STEPHANIE VAN WILLIGENBURG, SHIYUN WANG

Abstract. In this paper we give Pieri rules for skew dual immaculate functions and their
recently discovered row-strict counterparts. We establish our rules using a right-action
analogue of the skew Littlewood-Richardson rule for Hopf algebras of Lam-Lauve-Sottile.
We also obtain Pieri rules for row-strict (dual) immaculate functions.

1. Introduction

Schur-like functions are a new and flourishing area since the discovery of quasisymmetric
Schur functions in 2011 [11], which led to numerous other similar functions being discov-
ered, for example [1, 4, 6, 10, 14, 15, 16, 17]. In essence, Schur-like functions are functions
that refine the ubiquitous Schur functions and reflect many of their properties, such as their
combinatorics [2, 9], their representation theory [5, 7, 21, 22], and in the case of quasisym-
metric Schur functions have already been applied to resolve conjectures [13]. Of the various
Schur-like functions to arise after the quasisymmetric Schur functions, two were naturally
related to them: the dual immaculate functions [6] and the row-strict quasisymmetric Schur
functions [17]. Recently a fourth basis that interpolates between these latter two bases, the
row-strict dual immaculate functions, was discovered [20], thus completing the picture. The
representation theory of these functions was revealed in [19], in addition to the fundamental
combinatorics in [20]. In this paper we extend the combinatorics to uncover skew Pieri rules
in the spirit of [3, 12, 23] for both row-strict and classical dual immaculate functions.

More precisely, our paper is structured as follows. In Section 2 we establish a right-action
analogue of [12, Theorem 2.1] in Theorem 2.6. We then recall required background for the
Hopf algebras of quasisymmetric functions, QSym, and noncommutative symmetric func-
tions, NSym, in Section 3. Finally, in Section 4 we give (left) Pieri rules for row-strict
immaculate functions and row-strict dual immaculate functions in Corollaries 4.3 and 4.5,
respectively. Our final theorem is Theorem 4.7, in which we establish Pieri rules for skew
dual immaculate functions, and row-strict skew dual immaculate functions.
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2. The right-action skew Littlewood-Richardson rule for Hopf algebras

We begin by recalling and deducing general Hopf algebra results that will be useful later.
Following Tewari and van Willigenburg [23], let H and H∗ be a pair of dual Hopf algebras
over a field k with duality pairing 〈 , 〉 : H ⊗H∗ → k for which the structure of H∗ is dual
to that of H and vice versa. Let h ∈ H, a ∈ H∗. By Sweedler notation, we have coproduct
denoted by ∆h =

∑

h1 ⊗ h2, and similarly h1h2 = h1 · h2 denotes product. We define the
action of one algebra on the other one by the following.

(1) h ⇀ a =
∑

〈h, a2〉a1

(2) a ⇀ h =
∑

〈h2, a〉h1

Let S : H → H denote the antipode map. Then for ∆h =
∑

h1 ⊗ h2,

(3)
∑

(Sh1)h2 = ε(h)1H =
∑

h1(Sh2),

where ε and 1 denote counit and unit, respectively. Following Montgomery [18], we can
define the convolution product ∗ for f and g in H by

(f ∗ g)(a) =
∑

〈f, a1〉〈g, a2〉 = 〈fg, a〉.

Then it follows that
〈g, f ⇀ a〉 = 〈gf, a〉.

Similarly, 〈a ⇀ f, b〉 = 〈f, ba〉. Since H∗ is a left H-module algebra under ⇀, we have that

h ⇀ (a · b) =
∑

(h1 ⇀ a) · (h2 ⇀ b).

Lemma 2.1. ([12]) For g, h ∈ H and a ∈ H∗,

(a ⇀ g) · h =
∑

(S(h2)⇀ a)⇀ (g · h1)

where S : H → H is the antipode.

As in Montgomery [18], define a right action by the following.

(4) h ↼ a =
∑

〈h, a1〉a2

(5) a ↼ h =
∑

〈h1, a〉h2

As before, it follows that 〈g, f ↼ a〉 = 〈fg, a〉 and 〈a ↼ f, b〉 = 〈f, ab〉.

Lemma 2.2. Let f ∈ H and a, b ∈ H∗. Then

f ↼ a · b =
∑

(f1 ↼ a) · (f2 ↼ b).
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Proof. Let f, g ∈ H and a, b ∈ H∗. Then

〈g, f ↼ (a · b)〉 = 〈fg, ab〉

= 〈a ↼ (fg), b〉

=
∑

〈f1g1, a〉〈f2g2, b〉

=
∑

〈g1, f1 ↼ a〉〈g2, f2 ↼ b〉

=
∑

〈g, (f1 ↼ a) · (f2 ↼ b)〉.

Thus f ↼ a · b =
∑

(f1 ↼ a) · (f2 ↼ b). �

Lemma 2.3. Let a ∈ H∗. Then

ε(h) · 1H ↼ a = a

for any h ∈ H.

Proof. Let a ∈ H∗ and h ∈ H . Then

ε(h) · 1H ↼ a =
∑

〈ε(h) · 1H , a1〉a2.

This is only nonzero when a1 = 1H∗ . �

Lemma 2.4. Let h ∈ H and a, b ∈ H∗. Then

a · (h ↼ b) =
∑

h1 ↼ ((S(h2)↼ a) · b).

Proof. Expand the sum using Lemma 2.2 and coassociativity, (∆⊗1)◦∆(h) = (1⊗∆)◦∆(h) =
∑

h1 ⊗ h2 ⊗ h3, to get

∑

h1 ↼ ((S(h2)↼ a) · b) =
∑

(h1 ↼ (S(h2)↼ a)) · (h3 ↼ b)

=
∑

(h1 · S(h2)↼ a) · (h3 ↼ b) since H∗ is an H-module

= ((ε(h) · 1H)↼ a) · (h ↼ b) by (3)

= a · (h ↼ b) by Lemma 2.3. �

Lemma 2.5. Let g, h ∈ H and a ∈ H∗. Then

h · (a ↼ g) =
∑

(S(h2)↼ a)↼ h1 · g.
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Proof. Let g, h ∈ H and a, b ∈ H∗. Then

〈h · (a ↼ g), b〉 = 〈a ↼ g, h ↼ b〉

= 〈g, a · (h ↼ b)〉

=
〈

g,
∑

(h1 ↼ (S(h2)↼ a) · b
〉

by Lemma 2.4

=
∑

〈g, h1 ↼ (S(h2)↼ a) · b〉

=
∑

〈h1 · g, (S(h2)↼ a) · b〉

=
∑

〈(S(h2)↼ a)↼ h1 · g, b〉. �

We can use the right action to obtain an algebraic Littlewood-Richardson formula analogous
to [12, Theorem 2.1] for those bases whose skew elements appear as the right tensor factor
in the coproduct.

Let {Lα} ⊂ H and {Rβ} ⊂ H∗ be dual bases with indexing set P. Then

Lα · Lβ =
∑

γ

bγα,βLγ ∆(Lγ) =
∑

α,β

cγα,βLα ⊗ Lβ(6)

Rα ·Rβ =
∑

γ

cγα,βRγ ∆(Rγ) =
∑

α,β

bγα,βRα ⊗ Rβ(7)

where bγα,β and cγα,β are structure constants. We can also write

(8) ∆(Lγ) =
∑

δ

Lδ ⊗ Lγ/δ ∆(Rγ) =
∑

δ

Rδ ⊗ Rγ/δ.

Note that Lα ↼ Rβ = Rβ/α and Rβ ↼ Lα = Lα/β . Further,

(9) ∆(Lα/β) =
∑

π,ρ

cαπ,ρ,βLπ ⊗ Lρ ∆(Rα/β) =
∑

π,ρ

bαπ,ρ,βRπ ⊗Rρ.

The antipode acts on Lρ by S(Lρ) = (−1)θ(ρ)Lρ∗ where θ : P → N and ∗ : P → P.

Theorem 2.6. For α, β, γ, δ ∈ P,

Lα/β · Lγ/δ =
∑

π,ρ,ν,µ

(−1)θ(ρ)cαπ,ρ,βb
ν
π,γb

δ
µ,ρ∗Lν/µ.
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Proof. We use Lemma 2.5 and the preceding facts about the product, coproduct, and an-
tipode maps on H and H∗ to obtain

Lα/β · Lγ/δ = Lα/β · (Rδ ↼ Lγ)

=
∑

π,ρ

cαπ,ρ,β(S(Lρ)↼ Rδ)↼ (Lπ · Lγ)

=
∑

π,ρ

(−1)θ(ρ)cαπ,ρ,β(Lρ∗ ↼ Rδ)↼ (Lπ · Lγ)

=
∑

π,ρ

(−1)θ(ρ)cαπ,ρ,β

(

Rδ/ρ∗ ↼

(

∑

ν

bνπ,γLν

))

=
∑

π,ρ,ν

(−1)θ(ρ)cαπ,ρ,βb
ν
π,γ(Rδ/ρ∗ ↼ Lν)

=
∑

π,ρ,ν,µ

(−1)θ(ρ)cαπ,ρ,βb
ν
π,γb

δ
µ,ρ∗(Rµ ↼ Lν)

=
∑

π,ρ,ν,µ

(−1)θ(ρ)cαπ,ρ,βb
ν
π,γb

δ
µ,ρ∗Lν/µ. �

3. The dual Hopf algebras QSym and NSym

We now focus our attention on the dual Hopf algebra pair of noncommutative symmetric
functions and quasisymmetric functions, and introduce our main objects of study the (row-
strict) dual immaculate functions.

A composition α = (α1, . . . , αk) of n, denoted by α � n is a list of positive integers such that
∑k

i=1 αi = n. We call n the size of α and sometimes denote it by |α|, and call k the length
of α and sometimes denote it by ℓ(α). If αj1 = · · · = αjm = i we sometimes abbreviate this
to im, and denote the empty composition of 0 by ∅. There exists a natural correspondence
between compositions α � n and subsets S ⊆ {1, . . . , n − 1} = [n − 1]. More precisely,
α = (α1, . . . , αk) corresponds to set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}, and conversely
S = {s1, . . . , sk−1} corresponds to comp(S) = (s1, s2 − s1, . . . , n− sk−1). We also denote by
Sc the set complement of S in [n− 1].

Given a composition α, its diagram, also denoted by α, is the array of left-justified boxes
with αi boxes in row i from the bottom. Given two compositions α, β we say that β ⊆ α
if βj ≤ αj for all 1 ≤ j ≤ ℓ(β) ≤ ℓ(α), and given α, β such that β ⊆ α, the skew diagram
α/β is the array of boxes in α but not β when β is placed in the bottom-left corner of α.
If, furthermore, β ⊆ α and αj − βj ∈ {0, 1} for all 1 ≤ j ≤ ℓ(β) ≤ ℓ(α) then we call α/β a
vertical strip.
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Example 3.1. If α = (3, 4, 1), then |α| = 8, ℓ(α) = 3, and set(α) = {3, 7}. Its diagram is

α =

and if β = (2, 4), then

α/β =

is a vertical strip.

Definition 3.2. Given a composition α, a standard immaculate tableau T of shape α is a
bijective filling of its diagram with 1, . . . , |α| such that

(1) The entries in the leftmost column increase from bottom to top;

(2) The entries in each row increase from left to right.

We obtain a standard skew immaculate tableau of shape α/β by extending the definition to
skew diagrams α/β in the natural way.

Given a standard (skew) immaculate tableau, T , its descent set is

Des(T ) = {i : i+ 1 appears strictly above i in T}.

Example 3.3. A standard skew immaculate tableau of shape (3, 4, 1)/(1) is

T =
7

2 3 4 6

1 5

with Des(T ) = {1, 5, 6}.

We are now ready to define our Hopf algebras and functions of central interest.

Given a composition α = (α1, . . . , αk) � n and commuting variables {x1, x2, . . .} we define
the monomial quasisymmetric function Mα to be

Mα =
∑

i1<···<ik

xα1
i1

· · ·xαk

ik

the fundamental quasisymmetric function Fα to be

Fα =
∑

i1≤···≤in
ij=ij+1⇒j 6∈set(α)

xi1 · · ·xin
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the dual immaculate function S
∗
α to be

S
∗
α =

∑

T

Fcomp(Des(T ))

and the row-strict dual immaculate function RS
∗
α to be

RS
∗
α =

∑

T

Fcomp(Des(T )c)

where the latter two sums are over all standard immaculate tableaux T of shape α. These
extend naturally to give skew dual immaculate and row-strict dual immaculate functions
S

∗
α/β [6] RS

∗
α/β [20], where α/β is a skew diagram.

The set of all monomial or fundamental quasisymmetric functions forms a basis for the Hopf
algebra of quasisymmetric functions QSym, as do the set of all (row-strict) dual immaculate
functions. There exists an involutory automorphism ψ defined on fundamental quasisym-
metric functions by

ψ(Fα) = Fcomp(set(αc))

such that [20]
ψ(S∗

α) = RS
∗
α

for a composition α. This extends naturally to skew diagrams α/β to give

ψ(S∗
α/β) = RS

∗
α/β .

Dual to the Hopf algebra of quasisymmetric functions is the Hopf algebra of noncommutative
symmetric funtions NSym. Given a composition α = (α1, . . . , αk) � n and noncommuting
variables {y1, y2, . . .} we define the nth elementary noncommutative symmetric function en
to be

en =
∑

i1<···<in

yi1 · · · yin

and the elementary noncommutative symmetric function eα to be

eα = eα1 · · · eαk
.

Meanwhile, we define the nth complete homogeneous noncommutative symmetric function
hn to be

hn =
∑

i1≤···≤in

yi1 · · · yin

and the complete homogeneous noncommutative symmetric function hα to be

hα = hα1 · · ·hαk
.

The set of all elementary or complete homogeneous noncommutative symmetric functions
forms a basis for NSym. The duality between QSym and NSym is given by

〈Mα,hα〉 = δαβ
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where δαβ = 1 if α = β and 0 otherwise. This induces the bases dual to the (row-strict) dual
immaculate functions via

〈S∗
α,Sα〉 = δαβ 〈RS

∗
α,RSα〉 = δαβ

and implicitly defines the bases of immaculate and row-strict immaculate functions. While
concrete combinatorial definitions of these functions have been established [6, 20], we will
not need them here. However, what we will need is the involutory automorphism in NSym
corresponding to ψ in QSym, defined by ψ(eα) = hα that gives [20] ψ(Sα) = RSα.

4. The Pieri rules for skew dual immaculate functions

A left Pieri rule for immaculate functions was conjectured in [6, Conjecture 3.7] and proved
in [8]. Given a composition α = (α1, . . . , αk) we say that tail(α) = (α2, . . . , αk). If β ∈ Z

k,
then neg(α− β) = |{i : αi − βi < 0}|. Let sgn(β) = (−1)neg(β) with neg(β) = |{i : βi < 0}|.

Following [8], we define Zs,α to be a set of all β ∈ Z
k such that

(1) β1 + · · ·+ βk = s and β1 + · · ·+ βi ≤ s for all i < k;

(2) αi − βi ≥ 0 for all 1 ≤ i ≤ k and |i : αi − βi = 0| ≤ 1;

(3) For all 1 ≤ i ≤ k,

◦ if αi > s− (β1 + · · ·+ βi−1), then 0 ≤ βi ≤ s− (β1 + · · ·+ βi−1),

◦ if αi < s− (β1 + · · ·+ βi−1), then βi < 0, and

◦ if αi = s−(β1+· · ·+βi−1), then either βi < 0 or βi = αi and βi+1 = · · · = βk = 0.

Now we are ready to define the coefficients of the immaculate basis appearing in the left
Pieri rule.

Definition 4.1 ([8]). For a positive integer s and compositions α, γ with |α| − |γ| = s, let
1 ≤ j ≤ k be the smallest integer such that αi = γi−1 for all j < i ≤ k where j = k when
αk 6= γk−1. Let j ≤ r ≤ k be the largest integer such that αj < αj+1 < · · · < αr. Let
α(i) = (α1, . . . , αi) Then define

cγs,α =























sgn(α− γ), if ℓ(γ) = ℓ(α) and α− γ ∈ Zs,α;
sgn(α(j−1) − γ(j−1)) if ℓ(γ) = ℓ(α)− 1,

r − j is even, and
(α(j−1) − γ(j−1), αj, 0, . . . , 0) ∈ Zs,α;

0 otherwise.
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Theorem 4.2 ([6, 8]). Let m > 0 and α be a composition. Then

hmSα =
∑

β�|α|+m
β1≥m

0≤ℓ(β)−ℓ(α)≤1

c
tail(β)
β1−m,αSβ.

Applying ψ to both sides of the left Pieri rule in Theorem 4.2 immediately yields a left Pieri
rule for row-strict immaculate functions.

Corollary 4.3. Let m > 0 and α be a composition. Then

emRSα =
∑

β�|α|+m
β1≥m

0≤ℓ(β)−ℓ(α)≤1

c
tail(β)
β1−m,αRSβ.

Lemma 3.1 of [8] shows that for s ≥ 0, r > 0 and compositions α, β with |α| = |β|+ s,

〈Sα, F(s)S
∗
β〉 = 〈hrSα,S

∗
(s+r,β)〉.

This leads to the following Pieri rule for dual immaculate functions.

Theorem 4.4 ([8]). Let s > 0 and α be a composition. Then

F(s)S
∗
α =

∑

β�|α|+s
0≤ℓ(β)−ℓ(α)≤1

cαs,βS
∗
β.

Again, applying ψ to both sides gives a Pieri rule for row-strict dual immaculate functions.

Corollary 4.5. Let s > 0 and α be a composition. Then

F(1s)RS
∗
α =

∑

β�|α|+s
0≤ℓ(β)−ℓ(α)≤1

cαs,βRS
∗
β.

We use these results together with Hopf algebra computations to construct a Pieri rule for
skew dual immaculate functions. Using the map ψ, this also gives a Pieri rule for row-strict
skew dual immaculate functions. But first we have a small, yet crucial, lemma.

Lemma 4.6. Let α and γ be compositions. Then Sγ ↼ S
∗
α = S

∗
α/γ.

Proof. Recall that if H = QSym and H∗ = NSym are our pair of dual Hopf algebras, then
we know ∆S

∗
α =

∑

β S
∗
β ⊗S

∗
α/β and we have

Sγ ↼ S
∗
α =

∑

β

〈Sγ,S
∗
β〉S

∗
α/β = S

∗
α/γ
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since 〈Sγ,S
∗
β〉 = δγβ , where δγβ = 1 if γ = β and 0 otherwise. �

We can now give our Pieri rule for (row-strict) skew dual immaculate functions.

Theorem 4.7. Let γ ⊆ α. Then

S
∗
(s)S

∗
α/γ =

∑

β/τ

(−1)|γ|−|τ | · cα|β|−|α|,β S
∗
β/τ

and hence by applying ψ to both sides

RS
∗
(s)RS

∗
α/γ =

∑

β/τ

(−1)|γ|−|τ | · cα|β|−|α|,β RS
∗
β/τ

where |β/τ | = |α/γ|+ s, γ/τ is a vertical strip of length at most s, ℓ(β)− ℓ(α) ∈ {0, 1} and
cα|β|−|α|,β is the coefficient of Definition 4.1. These decompositions are multiplicity-free up to
sign.

Proof. Note that S∗
(1s) = F(1s) and S

∗
(s) = F(s). Recall that

(10) ∆Fα =
∑

(β,γ) with
β·γ=α or
β⊙γ=α

Fβ ⊗ Fγ

where for β = (β1, . . . , βk) and γ = (γ1, . . . , γl), β · γ = (β1, . . . , βk, γ1, . . . , γl) is the concate-
nation of β and γ, and β ⊙ γ = (β1, . . . , βk−1, βk + γ1, γ2, . . . , γl) is the near-concatenation
of β and γ.

Then we have

∆(F(s)) =

s
∑

i=0

F(i) ⊗ F(s−i).

Thus,

S
∗
(s)S

∗
α/γ = S

∗
(s)(Sγ ↼ S

∗
α) by Lemma 4.6

= F(s)(Sγ ↼ S
∗
α)

=

s
∑

i=0

(S(F(s−i))↼ Sγ)↼ (F(i)S
∗
α) by Lemma 2.5.

We first compute S(F(s−i)) ↼ Sγ. Since it is well known that S(Fα) = (−1)|α|Fcomp(set(α)c)

we have S(F(s−i)) = (−1)s−iF(1s−i). Furthermore, we can write the coproduct as

∆(Sγ) =
∑

δ,τ

bγδ,τSδ ⊗Sτ .



SKEW DUAL IMMACULATE PIERI RULES 11

Thus,

S(F(s−i))↼ Sγ = (−1)s−iF(1s−i) ↼ Sγ

=
∑

δ,τ

(−1)s−ibγδ,τ 〈F(1s−i),Sδ〉Sτ

=
∑

δ,τ

(−1)s−ibγδ,τ 〈S
∗
(1s−i),Sδ〉Sτ

=
∑

τ

(−1)s−ibγ
(1s−i),τ

Sτ .

By the definition of product and coproduct on NSym, we have

bγδ,τ = 〈∆Sγ,S
∗
δ ⊗S

∗
τ〉 = 〈Sγ,S

∗
δ ·S

∗
τ〉.

To compute this for δ = (1s−i) we use Proposition 3.34 from [6] which states that F⊥
(1r)Sα =

∑

β Sβ where β ∈ Z
ℓ(α), αk − βk ∈ {0, 1} for all k and |β| = |α| − r. The operator F⊥ is

used throughout [6], and has the property that 〈F⊥
Sα,S

∗
β〉 = 〈Sα, FS

∗
β〉.

Thus,

bγ(1s−i),τ = 〈Sγ,S
∗
(1s−i)S

∗
τ 〉

= 〈Sγ, F(1s−i)S
∗
τ〉

= 〈F⊥
(1s−i)Sγ,S

∗
τ〉

=

〈

∑

β

Sβ,S
∗
τ

〉

= δβτ

where the sum is over all β such that β ∈ Z
ℓ(γ), γk−βk ∈ {0, 1} for all k, and |β| = |γ|−(s− i).
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Then using the above calculations, Theorem 4.4 and Lemma 4.6, we have

S
∗
(s)S

∗
α/γ = S

∗
(s)(Sγ ↼ S

∗
α)

=
s
∑

i=0

(

(S(F(s−i))↼ Sγ)↼ (F(i)S
∗
α)
)

=

s
∑

i=0















(−1)(s−i)
∑

τ∈Zℓ(γ)

γk−τk∈{0,1}
|τ |=|γ|−(s−i)

Sτ















↼









∑

β�|α|+i
0≤ℓ(β)−ℓ(α)≤1

cαi,βS
∗
β









=

s
∑

i=0

∑

τ,β
τ∈Zℓ(γ)

γk−τk∈{0,1}
|τ |=|γ|−(s−i)

β�|α|+i
ℓ(β)−ℓ(α)∈{0,1}

(−1)(s−i) · cαi,β S
∗
β/τ

=
∑

β/τ

(−1)|γ|−|τ | · cα|β|−|α|,β S
∗
β/τ

where |β/τ | = |α/γ| + s, γ/τ is a vertical strip of length at most s, and ℓ(β) − ℓ(α) ∈
{0, 1}. �

Example 4.8. Let us compute S
∗
(2) ·S

∗
(1,2,1)/(1,1).

First, we need to compute all compositions β � 4 + i for i ∈ {0, 1, 2} and ℓ(β) = 3 or 4. We
list all possible choices for β as the set

A = {(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1),

(2, 1, 1, 1), (1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1), (1, 1, 1, 3),

(1, 1, 2, 2), (1, 1, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 3, 1, 1), (2, 1, 1, 2),

(2, 1, 2, 1), (2, 2, 1, 1), (3, 1, 1, 1), (1, 1, 4), (1, 2, 3), (1, 3, 2), (1, 4, 1),

(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)}.

Next we need to find τ by removing a vertical strip of length at most s = 2 from γ = (1, 1).
We list all options for τ as the set B = {∅, (1), (1, 1)}.
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By Theorem 4.7, now we expand S
∗
(2) ·S

∗
(1,2,1)/(1,1) by finding all valid pairs (β, τ) such that

|β/τ | = 4. Thus

S
∗
(2) ·S

∗
(1,2,1)/(1,1) = c

(1,2,1)
0,(1,1,1,1)S

∗
(1,1,1,1) + c

(1,2,1)
0,(1,1,2)S

∗
(1,1,2)

+ c
(1,2,1)
0,(1,2,1)S

∗
(1,2,1) + c

(1,2,1)
0,(2,1,1)S

∗
(2,1,1)

− c
(1,2,1)
1,(1,1,1,2)S

∗
(1,1,1,2)/(1) − c

(1,2,1)
1,(1,1,2,1)S

∗
(1,1,2,1)/(1)

− c
(1,2,1)
1,(1,2,1,1)S

∗
(1,2,1,1)/(1) − c

(1,2,1)
1,(2,1,1,1)S

∗
(2,1,1,1)/(1)

− c
(1,2,1)
1,(1,1,3)S

∗
(1,1,3)/(1) − c

(1,2,1)
1,(1,2,2)S

∗
(1,2,2)/(1)

− c
(1,2,1)
1,(1,3,1)S

∗
(1,3,1)/(1) − c

(1,2,1)
1,(2,1,2)S

∗
(2,1,2)/(1)

− c
(1,2,1)
1,(2,2,1)S

∗
(2,2,1)/(1) − c

(1,2,1)
1,(3,1,1)S

∗
(3,1,1)/(1)

+ c
(1,2,1)
2,(1,1,1,3)S

∗
(1,1,1,3)/(1,1) + c

(1,2,1)
2,(1,1,2,2)S

∗
(1,1,2,2)/(1,1)

+ c
(1,2,1)
2,(1,1,3,1)S

∗
(1,1,3,1)/(1,1) + c

(1,2,1)
2,(1,2,1,2)S

∗
(1,2,1,2)/(1,1)

+ c
(1,2,1)
2,(1,2,2,1)S

∗
(1,2,2,1)/(1,1) + c

(1,2,1)
2,(1,3,1,1)S

∗
(1,3,1,1)/(1,1)

+ c
(1,2,1)
2,(2,1,1,2)S

∗
(2,1,1,2)/(1,1) + c

(1,2,1)
2,(2,1,2,1)S

∗
(2,1,2,1)/(1,1)

+ c
(1,2,1)
2,(2,2,1,1)S

∗
(2,2,1,1)/(1,1) + c

(1,2,1)
2,(3,1,1,1)S

∗
(3,1,1,1)/(1,1)

+ c
(1,2,1)
2,(1,1,4)S

∗
(1,1,4)/(1,1) + c

(1,2,1)
2,(1,2,3)S

∗
(1,2,3)/(1,1)

+ c
(1,2,1)
2,(1,3,2)S

∗
(1,3,2)/(1,1) + c

(1,2,1)
2,(1,4,1)S

∗
(1,4,1)/(1,1)

+ c
(1,2,1)
2,(2,1,3)S

∗
(2,1,3)/(1,1) + c

(1,2,1)
2,(2,2,2)S

∗
(2,2,2)/(1,1)

+ c
(1,2,1)
2,(2,3,1)S

∗
(2,3,1)/(1,1) + c

(1,2,1)
2,(3,1,2)S

∗
(3,1,2)/(1,1)

+ c
(1,2,1)
2,(3,2,1)S

∗
(3,2,1)/(1,1) + c

(1,2,1)
2,(4,1,1)S

∗
(4,1,1)/(1,1).

We can compute all the coefficients cα|β|−|α|,β and most of them turn out to be zero. Hence
we have the following expansion after simplification.

S
∗
(2) ·S

∗
(1,2,1)/(1,1) = S

∗
(1,2,1) −S

∗
(1,1,2,1)/(1) −S

∗
(2,2,1)/(1) +S

∗
(2,1,2,1)/(1,1)

+S
∗
(3,2,1)/(1,1)
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