
COUNTING ELLIPTIC CURVES OVER THE RATIONALS
WITH A 7-ISOGENY

GRANT MOLNAR AND JOHN VOIGHT

Abstract. We count by height the number of elliptic curves over the rationals, both up
to isomorphism over the rationals and over an algebraic closure thereof, that admit a cyclic
isogeny of degree 7.
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1. Introduction

1.1. Motivation and setup. Number theorists have an enduring, and recently renewed,
interest in the arithmetic statistics of elliptic curves: broadly speaking, we study asymptot-
ically the number of elliptic curves of bounded size with a given property. More precisely,
every elliptic curve E over Q is defined uniquely up to isomorphism by a Weierstrass equation
of the form

(1.1.1) E : y2 = x3 + Ax+B

with A,B ∈ Z satisfying 4A3 + 27B2 ̸= 0 and such that no prime ℓ has ℓ4 | A and ℓ6 | B.
Let E be the set of elliptic curves of this form: we define the height of E ∈ E by

(1.1.2) ht(E) := max(
∣∣4A3

∣∣ , ∣∣27B2
∣∣).

For X ≥ 1, let E≤X := {E ∈ E : ht(E) ≤ X}. Mathematicians have studied the count of
those E ∈ E≤X which admit (or are equipped with) additional level structure as X → ∞,
and they have done so more generally over global fields.

In recent work, many instances of this problem have been resolved. For example, Harron–
Snowden [11] and Cullinan–Kenney–Voight [6] (see also previous work of Duke [9] and Grant
[10]) produced asymptotics for counting those elliptic curves E for which the torsion subgroup
E(Q)tors of the Mordell–Weil group is isomorphic to a given finite abelian group T , i.e., they
estimated # {E ∈ E≤X : E(Q)tors ≃ T} as X → ∞ for each of the fifteen groups T indicated
in Mazur’s theorem on torsion. These cases correspond to genus zero modular curves with
infinitely many rational points. For such T , they established an asymptotic with an effectively
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computable constant and a power-saving error term. Moreover, satisfactory interpretations
of the exponent of X and the constants appearing in these asymptotics are provided. The
main ingredients in the proof are the Principle of Lipschitz (also called Davenport’s Lemma
[7]) and an elementary sieve.

Moving on, we consider asymptotics for

(1.1.3) # {E ∈ E≤X : E admits a cyclic N -isogeny}

(where we mean that the N -isogeny is defined over Q). Our attention is again first drawn
to the cases where the modular curve Y0(N), parametrizing elliptic curves with a cyclic N -
isogeny, has genus zero: namely, N = 1, . . . , 10, 12, 13, 16, 18, 25. For N ≤ 4, we again have
an explicit power-saving asymptotic, with the case N = 3 due to Pizzo–Pomerance–Voight
[17] and the case N = 4 due to Pomerance–Schaefer [18]. For all but four of the remaining
values, namely N = 7, 10, 13, 25, Boggess–Sankar [3] provide at least the correct growth
rate. For both torsion and isogenies, work of Bruin–Najman [5] and Phillips [16] extend
these counts to a general number field K.
However, the remaining four cases have quite stubbornly resisted these methods. The

obstacle can be seen in quite elementary terms. Although there is no universal elliptic curve
with a cyclic N -isogeny, every such elliptic curve is of the form dy2 = x3 + f(t)x+ g(t) with
f(t), g(t) ∈ Q[t] (for t ∈ Q away from a finite set and d ∈ Z a squarefree twisting parameter).
For these four values of N , we have gcd(f(t), g(t)) ̸= 1. Phrased geometrically, the elliptic
surface over P1 defined by y2 = x3 + f(t)x + g(t) has places of additive reduction (more
precisely, type II). Either way, this breaks the sieve—and new techniques are required.

1.2. Results. For X ≥ 1, let

(1.2.1) N(X) := # {E ∈ E≤X : E admits a (cyclic) 7-isogeny} .

Our main result is as follows (Theorem 5.2.4).

Theorem 1.2.2. There exist effectively computable c1, c2 ∈ R>0 such that for every ϵ > 0,
we have

N(X) = c1X
1/6 logX + c2X

1/6 +O(X3/20+ϵ)

as X → ∞, where the implied constant depends on ϵ.

The constants c1, c2 in Theorem 1.2.2 are explicitly given, and estimated numerically in
section 6 as c1 = 0.09285536 . . . and c2 ≈ −0.16405. As 7 is prime, every 7-isogeny is cyclic,
so we omit this adjective for the remainder of our paper. It turns out that no elliptic curve
over Q admits two 7-isogenies with distinct kernels (Proposition 2.2.6), so N(X) also counts
elliptic curves equipped with a 7-isogeny.

The first step in our strategy to prove Theorem 1.2.2 diverges from the methods of Boggess–
Sankar [3] and Phillips [16], where the twists are resolved by use of a certain modular curve
(denoted by X1/2(N)). Instead, we first count twist classes directly, as follows. Let Qal be
an algebraic closure of Q. Up to isomorphism over Qal, every elliptic curve E over Q with
j(E) ̸= 0, 1728 has a unique Weierstrass model (1.1.1) with the additional property that
B > 0 and no prime ℓ has ℓ2 | A and ℓ3 | B; such a model is called twist minimal. (See
section 2.1 for j(E) = 0, 1728.) Let E tw ⊂ E be the set of twist minimal elliptic curves, and
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let E tw
≤X := E tw ∩ E≤X be those with height at most X. Accordingly, we obtain asymptotics

for

(1.2.3) N tw(X) := #{E ∈ E tw
≤X : E admits a 7-isogeny}

as follows (Theorem 4.2.19).

Theorem 1.2.4. We have

N tw(X) = 3ζ(2)c1X
1/6 +O(X2/15 log17/5X)

as X → ∞, with c1 as in Theorem 1.2.2.

For an outline of the proof, see section 4.1. The use of the Principle of Lipschitz remains
fundamental, but the sieving is more involved: we decompose the function into progressively
simpler pieces that can be estimated. (See Remark 2.2.14 for a stacky interpretation.) We
then deduce Theorem 1.2.2 from Theorem 1.2.4 by counting twists using a Tauberian theorem
(attributed to Landau). The techniques of this paper can be adapted to handle the cases
N = 10, 13, 25, which have places of type III additive reduction; these will be treated in
upcoming work.

1.3. Contents. In section 2, we set up basic notation and investigate minimal twists. In
section 3, we tersely review some needed facts from analytic number theory. In section 4,
we pull together material from the earlier sections to prove Theorem 1.2.4. In section 5, we
use Landau’s Tauberian theorem and Theorem 1.2.4 to obtain Theorem 1.2.2. In section 6,
we describe algorithms to compute the various quantities we study in this paper, and report
on their outputs.

1.4. Data availability statement. All data generated or analyzed during this study are
available upon request. We have no conflicts of interest to disclose.

1.5. Acknowledgements. The authors would like to thank Eran Assaf, Jesse Elliott, Mits
Kobayashi, David Lowry-Duda, Robert Lemke Oliver, Taylor Petty, Tristan Phillips, Carl
Pomerance, and Rakvi for their helpful comments. The authors were supported by a Simons
Collaboration grant (550029, to JV).

2. Elliptic curves and isogenies

In this section, we set up what we need from the theory of elliptic curves.

2.1. Height, minimality, and defect. We begin with some notation and terminology
(repeating and elaborating upon the introduction); we refer to Silverman [20, Chapter III]
for background.

Let E be an elliptic curve over Q. Recall that a (simplified) integral Weierstrass equation
for E is an affine model of the form

(2.1.1) y2 = x3 + Ax+B

with A,B ∈ Z. Let

(2.1.2) H(A,B) := max(
∣∣4A3

∣∣ , ∣∣27B2
∣∣).
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The largest d ∈ Z>0 such that d4 | A and d6 | B is called the minimality defect md(A,B) of
the model. We then define the height of E to be

(2.1.3) ht(E) = ht(A,B) :=
H(A,B)

md(A,B)12
,

well-defined up to isomorphism. In fact, E (up to isomorphism over Q) has unique minimal
model

y2 = x3 + (A/d4)x+ (B/d6)

with minimality defect d = 1. Let E be the set of elliptic curves over Q in their minimal
model, and let

(2.1.4) E≤X := {E ∈ E : ht(E) ≤ X}.
Let Qal be an algebraic closure of Q. We may similarly consider all integral Weierstrass

equations for E which define a curve isomorphic to E over Qal—these are the twists of E
(defined over Q). Let E have j(E) ̸= 0, 1728. We call the largest e ∈ Z>0 such that e2 | A
and e3 | B the twist minimality defect of a model (2.1.1), denoted tmd(A,B). Explicitly, we
have

(2.1.5) tmd(E) = tmd(A,B) :=
∏
ℓ

ℓvℓ , where vℓ := ⌊min(ordℓ(A)/2, ordℓ(B)/3)⌋,

with the product over all primes ℓ. As above, we then define the twist height of E to be

(2.1.6) twht(E) = twht(A,B) :=
H(A,B)

tmd(A,B)6
,

well-defined on the Qal-isomorphism class of E; and E has a unique model over Q up to
isomorphism over Qal with twist minimality defect tmd(E) = e = 1 and B > 0, which we
call twist minimal, namely,

(2.1.7) y2 = x3 + (A/e2)x+ |B|/e3.
For j = 0, 1728, we choose twist minimal models as follows:

• If j(E) = 0 (equivalently, A = 0), then we take y2 = x3 + 1 of twist height 27.
• If j(E) = 1728 (equivalently, B = 0), then we take y2 = x3 + x of twist height 4.

Let E tw ⊂ E be the set of twist minimal elliptic curves, and let E tw
≤X := E tw ∩ E≤X be those

with twist height at most X. If E ∈ E has j(E) ̸= 0, 1728, then the set of twists of E in E
are precisely those of the form E(c) : y2 = x3 + c2Ax+ c3B for c ∈ Z squarefree, and

(2.1.8) ht(E(c)) = c6 twht(E).

If further E ∈ E tw, then of course twht(E) = ht(E). (For j(E) = 0, 1728, we instead have
sextic and quartic twists, but these will not figure here: see Proposition 2.2.6.)

Remark 2.1.9. This setup records in a direct manner the more intrinsic notions of height
coming from moduli stacks. The moduli stack Y (1)Q of elliptic curves admits an open
immersion into a weighted projective line Y (1) ↪→ P(4, 6)Q by E 7→ (A : B) for any choice of
model (2.1.1), and the height of E is the height of the point (A : B) ∈ P(4, 6)(Q) associated
to OP(4,6)(12) (with coordinates harmlessly scaled by 4, 27): see Bruin–Najman [5, §2, §7]
and Phillips [16, §2.2]. Similarly, the height of the twist minimal model is given by the height
of the point (A : B) ∈ P(2, 3)(Q) associated to OP(2,3)(6), which is almost but not quite the
height of the j-invariant (in the usual sense).
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2.2. Isogenies of degree 7. Next, we gather the necessary input from modular curves.
Recall that the modular curve Y0(7), defined over Q, parametrizes pairs (E, ϕ) of elliptic
curves E equipped with a 7-isogeny ϕ up to isomorphism, or equivalently, a cyclic subgroup
of order 7 stable under the absolute Galois group GalQ := Gal(Qal |Q). For further reference
on the basic facts on modular curves used in this section, see e.g. Diamond–Shurman [8] and
Rouse–Sutherland–Zureick-Brown [19, §2]. We compute that the coarse space of Y0(7) is an
affine open in P1, so the objects of interest are parametrized by its coordinate t ̸= −7,∞
(see Lemma 2.2.2).

More precisely, define

(2.2.1)

f0(t) := −3(t2 − 231t+ 735)

= −3(t2 − (3 · 7 · 11)t+ (3 · 5 · 72)),
g0(t) := 2(t4 + 518t3 − 11025t2 + 6174t− 64827)

= 2(t4 + (2 · 7 · 31)t3 − (32 · 52 · 72)t2 + (2 · 32 · 73)t− (33 · 74)),
h(t) := t2 + t+ 7,

f(t) := f0(t)h(t),

g(t) := g0(t)h(t).

Then h(t) = gcd(f(t), g(t)).

Lemma 2.2.2. The set of elliptic curves E over Q that admit a 7-isogeny (defined over Q)
are precisely those of the form E : y2 = x3 + c2f(t)x + c3g(t) for some c ∈ Q× and t ∈ Q
with t ̸= −7.

Proof. Routine calculations with q-expansions for modular forms on the group Γ0(7), with
the cusps at t = −7,∞ show that every elliptic curve E over Q that admits a 7-isogeny is a
twist of

E : y2 = x3 + f(t)x+ g(t)

for some t ∈ Q. But f(t) and g(t) have no roots in Q, so these twists must be quadratic, as
desired. See [6, Proposition 3.3.16] for a similar but more expansive argument. □

Of course, for elliptic curves up to isomorphism over Qal, we can ignore the factor c in
Lemma 2.2.2.

Remark 2.2.3. Let

(2.2.4)

f ′
0(t) := −3(t2 + 9t+ 15)

= −3(t2 + (32)t+ (3 · 5)),
g′0(t) := 2(t4 + 14t3 + 63t2 + 126t+ 189)

= 2(t4 + (2 · 7)t3 + (32 · 7)t2 + (2 · 32 · 7)t+ (33 · 7)),
f ′(t) := f ′

0(t)h(t),

g′(t) := g′0(t)h(t),

with h(t) as above. The elliptic curve E in Lemma 2.2.2 is 7-isogenous to

E ′ : y2 = x3 + c2f ′(t) + c3g′(t)
5



via the marked 7-isogeny. Naturally, E ′ is also isogeneous to E via the dual 7-isogeny. We
obtain (2.2.4) from (2.2.1) via the Atkin-Lehner involution, which in our coordinates is given
by

(2.2.5) w7 : t 7→ − 7t

t+ 7
.

All of our arguments below could have been applied equally well using the parameterization
(2.2.4) instead of the parameterization (2.2.1).

Proposition 2.2.6. No elliptic curve E over Q admits two 7-isogenies with distinct kernels,
and no E over Q with j(E) = 0, 1728 admits a 7-isogeny.

Proof. For the first statement: if E admits two distinct 7-isogenies, then generators for each
kernel give a basis for the 7-torsion of E in which GalQ acts diagonally. The corresponding
compactified modular curve, Xsp(7), has genus 1 and 2 rational cusps; it is isomorphic to
X0(49) over Q, and has Weierstrass equation y2 + xy = x3 − x2 − 2x− 1 and LMFDB label
49.a4. Its Mordell–Weil group is Z/2Z, so all rational points are cusps.
For the second statement, we simply observe that f(t) and g(t) have no roots t ∈ Q. □

To work with integral models, we take t = a/b (in lowest terms) and homogenize, giving
the following polynomials in Z[a, b]:

(2.2.7)

C(a, b) := b2h(a/b) = a2 + ab+ 7b2,

A0(a, b) := b2f0(a/b) = −3(a2 − 231ab+ 735b2),

B0(a, b) := b4g0(a/b) = 2(a4 + 518a3b− 11025a2b2 + 6174ab3 − 64827b4),

A(a, b) := b4f(a/b) = C(a, b)A0(a, b)

B(a, b) := b6f(a/b) = C(a, b)B0(a, b).

We have C(a, b) = gcd(A(a, b), B(a, b)) ∈ Z[a, b].
We say that a pair (a, b) ∈ Z2 is groomed if gcd(a, b) = 1, b > 0, and (a, b) ̸= (−7, 1).

Thus Lemma 2.2.2 and Proposition 2.2.6 provide that the elliptic curves E ∈ E that admit
a 7-isogeny are precisely those with a model

(2.2.8) y2 = x3 +
c2A(a, b)

d4
x+

c3B(a, b)

d6

where (a, b) is groomed, c ∈ Z is squarefree, and d = md(c2A(a, b), c3B(a, b)). Thus the
count

(2.2.9) N(X) := #{E ∈ E≤X : E admits a 7-isogeny}

can be computed as

(2.2.10) N(X) = #

{
(a, b, c) ∈ Z3 :

(a, b) groomed, c squarefree, and
ht(c2A(a, b), c3B(a, b)) ≤ X

}
.

with the height defined as in (2.1.3).
Similarly, but more simply, the subset of E ∈ E tw that admit a 7-isogeny are

(2.2.11) Ea,b : y
2 = x3 +

A(a, b)

e2
x+

|B(a, b)|
e3

6
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with (a, b) groomed and e = tmd(A(a, b), B(a, b)) the twist minimality defect (2.1.5). Ac-
cordingly, if we define

(2.2.12) N tw(X) := #{E ∈ E tw
≤X : E admits a 7-isogeny}

then

(2.2.13) N tw(X) = #
{
(a, b) ∈ Z2 : (a, b) groomed and twht(A(a, b), B(a, b)) ≤ X

}
.

Remark 2.2.14. Returning to Remark 2.1.9, we conclude that counting elliptic curves equipped
with a 7-isogeny is the same as counting points on P(4, 6)Q in the image of the natural map
Y0(7) → Y (1) ⊆ P(4, 6)Q. Counting them up to twist replaces this with the further natural
quotient by (a : b) ∼ (λ2a : λ3b) for (a : b) ∈ P(4, 6)Q and λ ∈ Q×, which gives us P(2, 3)Q.

2.3. Twist minimality defect. The twist minimality defect is the main subtlety in our
study of N tw(X), so we analyze it right away.

Lemma 2.3.1. Let (a, b) ∈ Z2 be groomed, let ℓ be prime, and let v ∈ Z≥0. Then the
following statements hold.

(a) If ℓ ̸= 3, 7, then ℓv | tmd(A(a, b), B(a, b)) if and only if ℓ3v | C(a, b).
(b) ℓ3v | C(a, b) if and only if ℓ ∤ b and h(a/b) ≡ 0 (mod ℓ3v).
(c) If ℓ ̸= 3, then ℓ | C(a, b) implies ℓ ∤ (2a+ b) = (∂C/∂a)(a, b).

Proof. We use the notation (2.2.7) and argue as in Cullinan–Kenney–Voight [6, Proof of
Theorem 3.3.1, Step 3]. For part (a), we compute the resultants

Res(A0(t, 1), B0(t, 1)) = Res(f0(t), g0(t)) = −28 · 37 · 714 = Res(A0(1, u), B0(1, u)).

So if ℓ ̸= 2, 3, 7, then ℓ ∤ gcd(A0(a, b), B0(a, b)); so by (2.1.5), if ℓv | tmd(A(a, b), B(a, b)) then
ℓ2v | C(a, b). But also

Res(B0(t, 1), C(t, 1)) = Res(g0(t), h(t)) = 28 · 33 · 77 = Res(B0(1, u), C(1, u)),

so ℓ ∤ gcd(B0(a, b), C(a, b)) and thus ℓv | tmd(A(a, b), B(a, b)) if and only if ℓ3v | C(a, b). If
ℓ = 2, a short computation confirms that B(a, b) is twice an odd integer whenever (a, b) is
groomed, so our claim also holds in this case.

For (b), by homogeneity it suffices to show that ℓ ∤ b, and indeed this holds since if ℓ | b
then A(a, 0) ≡ −3a4 ≡ 0 (mod ℓ) and B(b, 0) ≡ 2a6 ≡ 0 (mod ℓ) so ℓ | a, a contradiction.

Part (c) follows from (b) and the fact that h(t) has discriminant disc(h(t)) = 33. □

For e ≥ 1, let T̃ (e) ⊆ (Z/e3Z)2 denote the image of{
(a, b) ∈ Z2 : (a, b) groomed, e | tmd(A(a, b), B(a, b))

}
under the projection

Z2 → (Z/e3Z)2,
and let T̃ (e) := #T̃ (e). Similarly, let T (e) ⊆ Z/e3Z denote the image of{

t ∈ Z : e2 | f(t) and e3 | g(t)
}

under the projection
Z → Z/e3Z,

and let T (e) := #T (e).
As usual, we write φ(n) := n

∏
p|n(1− 1/p) for the Euler totient function.
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Lemma 2.3.2. The following statements hold.

(a) The functions T̃ (e) and T (e) are multiplicative, and T̃ (e) = φ(e3)T (e).
(b) For all ℓ ̸= 3, 7 and v ≥ 1,

T (ℓv) = T (ℓ) = 1 +

(
ℓ

3

)
.

(c) We have
T (3) = 18, T (32) = 27, and T (3v) = 0 for v ≥ 3,

and

T (7) = 50, T (72) = 74 + 1 = 2402, and T (7v) = 77 + 1 = 823544 for v ≥ 3.

(d) We have T (e) = O(2ω(e)), where ω(e) is the number of distinct prime divisors of e.

Proof. For part (a), multiplicativity follows from the CRT (Sun Zi theorem). For the second
statement, let ℓ be a prime, and let e = ℓv for some v ≥ 1. Consider the injective map

(2.3.3)
T (ℓv)× (Z/ℓ3v)× → T̃ (ℓv)

(t, u) 7→ (tu, u)

We observe A(1, 0) = −3 and B(1, 0) = 2 are coprime, so no pair (a, b) with b ≡ 0 (mod ℓ)

can be a member of T̃ (ℓv). Surjectivity of the given map follows, and counting both sides
gives the result.

Now part (b). For ℓ ̸= 3, 7, Lemma 2.3.1(a)–(b) yield

T (ℓv) =
{
t ∈ Z/ℓ3vZ : h(t) ≡ 0 (mod ℓ3v)

}
.

By Lemma 2.3.1(c), h(t) ≡ 0 (mod ℓ) implies h′(t) ̸≡ 0 (mod ℓ), so Hensel’s lemma applies
and we need only count roots of h(t) modulo ℓ, which by quadratic reciprocity is

1 +

(
−3

ℓ

)
= 1 +

(
ℓ

3

)
=

{
2, if ℓ ≡ 1 (mod 3);

0, else.

Next, part (c). For ℓ = 3, we just compute T (3) = 18, T (32) = 27, and T (33) = 0; then
T (33) = 0 implies T (3v) = 0 for all v ≥ 3. For ℓ = 7, we compute

T (7) = 50, T (72) = 2402, T (73) = · · · = T (76) = 823544.

Hensel’s lemma still applies to h(t): let t0, t1 be the roots of h(t) in Z7 with t0 := 248044
(mod 77) (so that t1 = −1− t0). We claim that

(2.3.4) T (73v) = {t0} ⊔
{
t1 + 73v−7u ∈ Z/73vZ : u ∈ Z/77Z

}
,

for 3v ≥ 7. Indeed, g0(t1) ≡ 0 (mod 77), so we can afford to approximate t1 modulo
73v−7. As g(t0) ̸≡ 0 (mod 7) and g(t1) ̸≡ 0 (mod 78), no other values of t suffice. Thus
T (73v) = 1 + 77 = 823544.
Finally, part (d). From (a)–(c) we conclude

(2.3.5) T (e) ≤ 27 · 823544
4

·
∏
ℓ|e

ℓ̸=3,7

(
1 +

(
ℓ

3

))
≤ 5558922 · 2ω(e)

so T (e) = O(2ω(e)) as claimed. □
8



2.4. The common factor C(a, b). In view of Lemma 2.3.1, the twist minimality defect
away from the primes 2, 3, 7 is given by the quadratic form C(a, b) = a2+ab+7b2 = b2h(a/b).
Fortunately, this is the norm form of a quadratic order of class number 1, so although this is
ultimately more than what we need, we record some consequences of this observation which
take us beyond Lemma 2.3.2.

For m ∈ Z>0, let

(2.4.1) c(m) := #{(a, b) ∈ Z2 : b > 0, gcd(a, b) = 1, C(a, b) = m}.

Lemma 2.4.2. The following statements hold.

(a) We have c(mn) = c(m)c(n) for m,n ∈ Z>0 coprime.
(b) We have

c(3) = 0, c(32) = 2, c(33) = 3, and c(3v) = 0 for v ≥ 4;

for p ̸= 3 prime and k ≥ 1 an integer, we have

(2.4.3) c(p) = c(pk) = 1 +
(p
3

)
.

(c) For m and n positive integers, we have

c(n3m) ≤ 3 · 2ω(n)−1c(m).

Proof. Let ζ := (1 +
√
−3)/2, so ζ = 1− ζ = (1−

√
−3)/2. The quadratic form

C(a, b) = a2 + ab+ 7b2 = (a+ b (−1 + 3ζ))(a+ b(−1 + 3ζ)) = Nm(a+ b (−1 + 3ζ))

is the norm on the order Z[3ζ] in basis {1,−1 + 3ζ}. Recall that α ∈ Z[3ζ] is primitive if no
n ∈ Z>1 divides α. Thus, accounting for sign,

(2.4.4) 2c(m) = #{α ∈ Z[3ζ] primitive : Nm(α) = m}.
The order Z[3ζ] is a suborder of the Euclidean domain Z[ζ] of conductor 3. It inherits from

Z[ζ] the following variation on unique factorization: up to sign, every nonzero α ∈ Z[3ζ] can
be written uniquely as

α = βπe1
1 · · · πer

r ,

where Nm(β) is a power of 3, π1, . . . , πr are distinct irreducibles coprime to 3, and e1, . . . , er
are positive integers. Note that α is primitive if and only if β is primitive and for 1 ≤ i, j ≤ r
(not necessarily distinct) we have πi ̸= πj. Thus if m and n are coprime integers, α ∈ Z[3ζ]
is primitive, and Nm(α) = mn, then α may be factored uniquely (up to sign) as α = α1α2,
where Nm(α1) = m and Nm(α2) = n. This proves (a).
We now prove (b). If p ̸= 3 is inert in Z[3ζ] (equivalently, in Z[ζ]), then no primitive α

satisfies Nm(α) = pv, so c(pv) = 0. If p ̸= 3 splits in Z[3ζ] (equivalently, in Z[ζ]), then no
primitive α is divisible by more than one of the two primes above p, so c(pv) = 2. This
proves (2.4.3) (compare Lemma 2.3.2). Finally, if p = 3, we compute c(3) = 0, c(32) = 2,
and c(33) = 3. Congruence conditions show c(3v) = 0 for v ≥ 4.
Part (c) follows immediately from (a) and (b). □

Remark 2.4.5. We prove Lemma 2.4.2(a) and Lemma 2.4.2(b) only as a means to proving
Lemma 2.4.2(c). Although the algebraic structure of the Eisenstein integers Z[ζ] may not
be available in the study of other families of elliptic curves that exhibit potential additive
reduction, we expect analogues of Lemma 2.4.2(c) to hold in a general context.
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The twist minimality defect measures the discrepancy between H(A,B) and twht(A,B):
this discrepancy cannot be too large compared to C(a, b), as the following theorem shows.

Theorem 2.4.6. We have the following.

(a) For all (a, b) ∈ R2, we have

(2.4.7) 108C(a, b)6 ≤ H(A(a, b), B(a, b)) ≤ κC(a, b)6,

where κ = 311 406 871.990 204 . . . is an explicit algebraic number.
(b) If C(a, b) = e30m, with m cubefree, then tmd(A(a, b), B(a, b)) = e0e

′ for some e′ | 3·73,
and

22

33 · 718
e120 m6 ≤ twht(A(a, b), B(a, b)) ≤ κe120 m6.

Proof. We wish to find the extrema of H(A(a, b), B(a, b))/C(a, b)6. As this expression is
homogeneous of degree 0, and C(a, b) is positive definite, we may assume without loss of
generality that C(a, b) = 1. Using Lagrange multipliers, we verify that (2.4.7) holds: the
lower bound is attained at (1, 0), and the upper bound is attained when a = 0.450 760 . . .
and b = −0.371 118 . . . are roots of

(2.4.8)
1296a8 − 2016a6 + 2107a4 − 1596a2 + 252 = 0

1067311728b8 − 275298660b6 + 43883077b4 − 3623648b2 + 1849 = 0,

respectively.
Now write C(a, b) = e30m with m cubefree, and write tmd(A(a, b), B(a, b)) = e0e

′. By
Lemma 2.3.1, e′ = 3v7w for some v, w ≥ 0; a short computation shows v ∈ {0, 1}, and (2.3.4)
shows w ≤ ⌈7/3⌉ = 3. As

H(A(a, b), B(a, b)) = e60 (e
′)
6
twht(A(a, b), B(a, b)),

we see
108

(e′)6
e120 m6 ≤ twht(A(a, b), B(a, b)) <

κ

(e′)6
e120 m6.

Rounding e′ up to 3 · 73 on the left and down to 1 on the right gives the desired result. □

Corollary 2.4.9. Let (a, b) be a groomed pair. We have

tmd(A(a, b), B(a, b)) ≤ 35/4 · 79/2

21/6
twht(A(a, b), B(a, b))1/12

where 35/4 · 79/2/21/6 = 22 344.5 . . .

Proof. In the notation of Theorem 2.4.6(b),

e120 m6 ≤ 33 · 718

22
twht(A(a, b), B(a, b)).

Multiplying through by (e′)12, rounding m down to 1 on the left, rounding e′ up to 3 · 77 on
the right, and taking 12th roots of both sides, we obtain the desired result. □

3. Analytic ingredients

In this section, we record some results from analytic number theory used later.
10



3.1. Lattices and the principle of Lipschitz. We recall (a special case of) the Principle
of Lipschitz, also known as Davenport’s Lemma.

Theorem 3.1.1 (Principle of Lipschitz). Let R ⊆ R2 be a closed and bounded region, with
rectifiable boundary ∂R. We have

#(R∩ Z2) = area(R) +O(len(∂R)),

where the implicit constant depends on the similarity class of R, but not on its size, orien-
tation, or position in the plane R2.

Proof. See Davenport [7]. □

Specializing to the case of interest, for X > 0 let

(3.1.2) R(X) :=
{
(a, b) ∈ R2 : H(A(a, b), B(a, b)) ≤ X, b ≥ 0

}
,

and let R := area(R(1)). The region R(1) is the common region in Figure 3.1.3.

Figure 3.1.3: The region R(1)

Lemma 3.1.4. For X > 0, we have area(R(X)) = RX1/6.

Proof. Since f(t) = A(t, 1) and g(t) = B(t, 1) have no common real root, the region R(X)
is compact [6, Proof of Theorem 3.3.1, Step 2]. The homogeneity

H(A(ua, ub), B(ua, ub)) = u12H(A(a, b), B(a, b))

implies

area(R(X)) = area({(X1/12a,X1/12b) : (a, b) ∈ R(1)}) = X1/6 area(R(1)) = RX1/6

as desired. □

The following corollaries are immediate.
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Corollary 3.1.5. For a0, b0, d ∈ Z with d ≥ 1, we have

#{(a, b) ∈ R(X) ∩ Z2 : (a, b) ≡ (a0, b0) (mod d)} =
RX1/6

d2
+O

(
X1/12

d

)
.

The implied constants are independent of X, d, a0, and b0. In particular,

(3.1.6) #(R(X) ∩ Z2) = RX1/6 +O(X1/12).

Proof. Combine Lemma 3.1.4 and Theorem 3.1.1. □

Corollary 3.1.7. Let (c(m))m≥1 be as in (2.4.1). We have∑
m≤X

c(m) = O(X).

Proof. Immediate from Corollary 3.1.5. □

3.2. Dirichlet series. The following theorem is attributed to Stieltjes.

Theorem 3.2.1. Let α, β : Z>0 → R be arithmetic functions. If Lα(s) :=
∑

n≥1 α(n)n
−s

and Lβ(s) :=
∑

n≥1 β(n)n
−s both converge when Re(s) > σ, and one of these two series

converges absolutely, then

Lα∗β(s) :=
∑
n≥1

∑
d|n

α(d)β
(n
d

)n−s

converges for s with Re(s) > σ. If both Lα(s) and Lβ(s) both converge absolutely when
Re(s) > σ, then so does Lα∗β(s).

Proof. Widder [22, Theorems 11.5 and 11.6b] proves a more general result, or see Tenenbaum
[21, proof of Theorem II.1.2, Notes on p. 204]. □

Let γ := limy→∞
(∑

n≤y 1/n
)
− log y be the Euler–Mascheroni constant.

Theorem 3.2.2. The difference

ζ(s)−
(

1

s− 1
+ γ

)
is entire on C and vanishes at s = 1.

Proof. Ivić [13, page 4] proves a more general result. □

3.3. Regularly varying functions. We require a fragment of Karamata’s integral theorem
for regularly varying functions.

Definition 3.3.1. Let F : R≥0 → R be measurable and eventually positive. We say that F
is regularly varying of index ρ ∈ R if for each λ > 0 we have

lim
y→∞

F (λy)

F (y)
= λρ.

Theorem 3.3.2 (Karamata’s integral theorem). Let F : R≥0 → R be locally bounded and
regularly varying of index ρ ∈ R. Let σ ∈ R. Then the following statements hold.

12



(a) For any σ > ρ+ 1, we have∫ ∞

y

t−σF (u) du ∼ y1−σF (y)

|σ − ρ− 1|
as y → ∞.

(b) For any σ < ρ+ 1, we have∫ y

0

u−σF (u) du ∼ y1−σF (y)

|σ − ρ− 1|
as y → ∞.

Proof. See Bingham–Glodie–Teugels [2, Theorem 1.5.11]. (Karamata’s integral theorem also
includes a converse.) □

Corollary 3.3.3. Let α : Z>0 → R be an arithmetic function, and suppose that for some
κ, ρ, τ ∈ R with κ ̸= 0 and ρ > 0, we have

(3.3.4) F (y) :=
∑
n≤y

α(n) ∼ κyρ logτ y

as y → ∞. Let σ > 0. Then the following statements hold, as y → ∞.

(a) If σ > ρ, then ∑
n>y

n−σα(n) ∼ ρy−σF (y)

|σ − ρ|
∼ κρyρ−σ logτ y

|σ − ρ|
.

(b) If ρ > σ, then ∑
n≤y

n−σα(n) ∼ ρy−σF (y)

|σ − ρ|
∼ κρyρ−σ logτ y

|σ − ρ|
.

Proof. Replacing α and F with −α and −F if necessary, we may assume κ > 0. As a partial
sum of an arithmetic function, F (y) is measurable and locally bounded; by (3.3.4), F (y) is
eventually positive. Now for any λ > 0, we compute

lim
y→∞

F (λy)

F (y)
= lim

y→∞

κ(λy)ρ logτ (λy)

κyρ logτ y
= λρ,

so F is regularly varying of index ρ.
Suppose first σ > ρ. Since

y−σF (y) ∼ κyρ−σ logτ y → 0

as y → ∞, Abel summation yields∑
n>y

n−σα(n) = −y−σF (y) + σ

∫ ∞

y

u−σ−1F (u) du.

Clearly σ + 1 > ρ+ 1, so Theorem 3.3.2(a) tells us∫ ∞

y

u−σ−1F (u) du ∼ y−σF (y)

|σ − ρ|
∼ κyρ−σ logτ y

|σ − ρ|
13



and thus ∑
n>y

n−σα(n) ∼ ρy−σF (y)

|σ − ρ|
as y → ∞.

The case ρ > σ is similar. □

3.4. Bounding Dirichlet series on vertical lines. Recall that a complex function F (s)
has finite order on a domain D if there exists ξ ∈ R>0 such that

F (s) = O(1 + |t|ξ)

whenever s = σ + it ∈ D. If F is of finite order on a right half-plane, we define

µF (σ) := inf{ξ ∈ R≥0 : F (σ + it) = O(1 + |t|ξ)}

where the implicit constant depends on σ and ξ.
Let L(s) be a Dirichlet series with abscissa of absolute convergence σa and abscissa of

convergence σc.

Theorem 3.4.1. We have µL(σ) = 0 for all σ > σa, and µL(σ) is nonincreasing (as a
function of σ) on any region where L has finite order.

Proof. Tenenbaum [21, Theorem II.1.21]. □

Theorem 3.4.2. Let σc < σ0 ≤ σc + 1 and let ϵ > 0. Then uniformly on

{s = σ + it ∈ C : σ0 ≤ σ ≤ σc + 1, |t| ≥ 1} ,

we have

L(σ + it) = O(t1+σc−σ+ϵ).

Proof. Tenenbaum [21, Theorem II.1.19]. □

Corollary 3.4.3. For all σ > σc, we have

µL(σ) ≤ max(0, 1 + σc − σ).

Proof. It is well-known that σa ≤ σc+1, so the claim holds for σ > σc+1 by Theorem 3.4.1.
Now for σc < σ < σc + 1, our claim follows by letting ϵ → 0 in Theorem 3.4.2. □

Theorem 3.4.4. Let ζ(s) be the Riemann zeta function, and let σ ∈ R. We have

µζ(σ) ≤


1
2
− σ, if σ ≤ 0;

1
2
− 141

205
σ, if 0 ≤ σ ≤ 1

2
;

64
205

(1− σ), if 1
2
≤ σ ≤ 1;

0 if σ ≥ 0.

Moreover, equality holds if σ < 0 or σ > 1.

Proof. Tenenbaum [21, page 235] proves the claim when σ < 0 or σ > 1. Now µζ(1/2) ≤
32/205 by Huxley [12, Theorem 1], and our result follows from the subconvexity of µζ [21,
Theorem II.1.20]. □
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3.5. A Tauberian theorem. We now present a Tauberian theorem, due in essence to
Landau [14].

Definition 3.5.1. Let (α(n))n≥1 be a sequence with α(n) ∈ R≥0 for all n, and let Lα(s) :=∑
n≥1 α(n)n

−s. We say the sequence (α(n))n≥1 is admissible with (real) parameters (σa, δ, ξ)
if the following hypotheses hold:

(i) Lα(s) has abscissa of absolute convergence σa.
(ii) The function Lα(s)/s has meromorphic continuation to {s = σ + it ∈ C : σ > σa − δ}

and only finitely many poles in this region.
(iii) For σ > σa − δ, we have µLα(σ) ≤ ξ.

If (α(n))n is admissible, let s1, . . . , sr denote the poles of Lα(s)/s with real part greater
than σa − δ/(ξ + 2).

The following theorem is essentially an application of Perron’s formula, which is itself an
inverse Mellin transform.

Theorem 3.5.2 (Landau’s Tauberian Theorem). Let (α(n))n≥1 be an admissible sequence
(Definition 3.5.1), and write Nα(X) :=

∑
n≤X α(n). Then for all ϵ > 0,

Nα(X) =
r∑

j=1

ress=sj

(
Lα(s)X

s

s

)
+O

(
Xσa− δ

⌊ξ⌋+2
+ϵ
)
,

where the main term is a sum of residues and the implicit constant depends on ϵ.

Proof. See Roux [15, Theorem 13.3, Remark 13.4]. □

Remark 3.5.3. Landau’s original theorem [14] was fitted to a more general context, and
allowed sums of the form ∑

n≥1

α(n)ℓ(n)−s

as long as (ℓ(n))n≥1 was increasing and tended to ∞. Landau also gave an explicit expansion
of

ress=sj

(
Lα(s)X

s

s

)
in terms of the Laurent series expansion for Lα(s) around s = sj. However, Landau also
required that Lα(s) has a meromorphic continuation to all of C, and Roux [15, Theorem
13.3, Remark 13.4] relaxes this assumption.

Let d(n) denote the number of divisors of n, and let ω(n) denote the number of distinct
prime divisors of n. Theorem 3.5.2 has the following easy corollary.

Corollary 3.5.4. We have∑
n≤y

2ω(n) =
y log y

ζ(2)
+O(y) and

∑
n≤y

d(n)2 =
y log3 y

6ζ(2)
+O(y log2 y).

as y → ∞.

Proof. Recall that
ζ(s)2

ζ(2s)
=
∑
n≥1

2ω(n)

ns
and

ζ(s)4

ζ(2s)
=
∑
n≥1

d(n)2

ns
.
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It is straightforward to verify that
(
2ω(n)

)
n≥1

and (d(n)2)n≥1 are both admissible with pa-

rameters (1, 1/2, 1/3). We apply Theorem 3.5.2 and discard lower-order terms to obtain the
result. □

Remark 3.5.5. Theorem 3.5.2 furnishes lower order terms for the sums
∑

n≤y 2
ω(n) and∑

n≤y d(n)
2, and even better estimates are known (e.g. Tenenbaum [21, Exercise I.3.54]

and Zhai [23, Corollary 4]), but Corollary 3.5.4 suffices for our purposes and illustrates the
use of Theorem 3.5.2.

4. Estimates for twist classes

In this section, we decompose N tw(X), counting the number of twist minimal elliptic
curves over Q admitting a 7-isogeny (2.2.12) in terms of progressively simpler functions. We
then estimate those simple functions, and piece these estimates together until we arrive at
an estimate for N tw(X); the main result is Theorem 4.2.19, which proves Theorem 1.2.4.

4.1. Decomposition and outline. We establish some notation for brevity and ease of
exposition. Suppose (α(X;n))n≥1 is a sequence of real-valued functions, and ϕ : R>0 → R>0.
We write ∑

n≥1

α(X;n) =
∑

n≪ϕ(X)

α(X;n)

if there is a positive constant κ such that for all X ∈ R>0 and all n > κϕ(X), we have
α(X;n) = 0.

The function N tw(X) is difficult to understand chiefly because of the twist minimality
defect. Fortunately, the twist minimality defect cannot get too large relative to X (see
Corollary 2.4.9). So we partition our sum based on the value of tmd(A(a, b), B(a, b)) in
terms of the parametrization provided in section 2.2.

For e ≥ 1, let N tw(X; e) denote the number of pairs (a, b) ∈ Z2 with

• (a, b) groomed,
• twht(A(a, b), B(a, b)) ≤ X, and
• tmd(A(a, b), B(a, b)) = e.

By (2.2.13) and Corollary 2.4.9, we have

(4.1.1) N tw(X) =
∑

e≪X1/12

N tw(X; e);

more precisely, we can restrict our sum to

e ≤ 35/4 · 79/2

21/6
·X1/12.

Determining when an integer e divides tmd(A,B) is easier than determining when e equals
tmd(A,B), so we also let M(X; e) denote the number of pairs (a, b) ∈ Z2 with

• (a, b) groomed,
• H(A(a, b), B(a, b)) ≤ X;
• e | tmd(A(a, b), B(a, b));
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Note that the points counted by N tw(X; e) have twist height bounded by X, but the points
counted by M(X; e) have only the function H bounded by X.

Theorem 2.4.6 and the Möbius sieve yield

(4.1.2) N tw(X; e) =
∑

f≪X1/18

e2/3

µ(f)M(e6X; ef);

more precisely, we can restrict our sum to

f ≤ 31/272

21/9
· X

1/18

e2/3
.

In order to estimate M(X; e), we further unpack the groomed condition on pairs (a, b).
We therefore let M(X; d, e) denote the number of pairs (a, b) ∈ Z2 with

• gcd(da, db, e) = 1 and b > 0;
• H(A(da, db), B(da, db)) ≤ X;
• e | tmd(A(da, db), B(da, db));
• (a, b) ̸= (−7, 1).

By Theorem 2.4.6, and because H(A(a, b), B(a, b)) is homogeneous of degree 12, another
Möbius sieve yields

(4.1.3) M(X; e) =
∑

d≪X1/12

gcd(d,e)=1

µ(d)M(X; d, e);

more precisely, we can restrict our sum to

d ≤ 1

21/6 · 31/4
·X1/12.

Before proceeding, we now give an outline of the argument used in this section. In
Lemma 4.2.1, we use the Principle of Lipschitz to estimate M(X; d, e), then piece these
estimates together using (4.1.3) to estimate M(X; e). Heuristically,

(4.1.4) M(X; d, e) ∼ RT (e)X1/6

d2e3

∏
ℓ|e

(
1− 1

ℓ

)
(where R is the area of (3.1.2) and T is the arithmetic function investigated in Lemma 2.3.2)
by summing over the congruence classes modulo e3 that satisfy e | tmd(A(da, db), B(da, db)).
Then (4.1.3) suggests

(4.1.5) M(X; e) ∼ RT (e)X1/6

ζ(2)e3
∏

ℓ|e
(
1 + 1

ℓ

) .
To go further, we substitute (4.1.2) into (4.1.1), and let n = ef to obtain

(4.1.6) N tw(X) =
∑

n≪X1/12

∑
e|n

µ (n/e)M(e6X;n).

This is the core identity that, in concert with the Principle of Lipschitz, enables us to estimate
N tw(X).

17



Substituting (4.1.5) into (4.1.6), and recalling φ(n) =
∑

e|n µ(n/e)e, we obtain the heuristic
estimate

(4.1.7) N tw(X) ∼ QRX1/6

ζ(2)
,

where

(4.1.8) Q :=
∑
n≥1

T (n)φ(n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) .
To make this estimate for N tw(X) rigorous, and to get a better handle on the size of order

of growth for its error term, we now decompose (4.1.6) based on the size of n into two pieces:

(4.1.9)

N tw
≤y(X) :=

∑
n≤y

∑
e|n

µ
(n
e

)
M(e6X;n),

N tw
>y(X) :=

∑
n>y

∑
e|n

µ (n/e)M(e6X;n).

By definition, we have

N tw(X) = N tw
≤y(X) +N tw

>y(X).

We then estimate N tw
≤y(X) in Proposition 4.2.6, and treat N tw

>y(X) as an error term which
we bound in Lemma 4.2.14. Setting the error from our estimate equal to the error arising
from N tw

>y(X), we obtain Theorem 4.2.19.
In the remainder of this section, we follow the outline suggested here by successively

estimating M(X; d, e), M(X; e), N tw
≤y(X), N tw

>y(X), and finally N tw(X).

4.2. Asymptotic estimates. We first estimate M(X; d, e) and M(X; e).

Lemma 4.2.1. The following statements hold.

(a) If gcd(d, e) > 1, then M(X; d, e) = 0. Otherwise, we have

M(X; d, e) =
RT (e)X1/6

d2e3

∏
ℓ|e

(
1− 1

ℓ

)
+O

(
T (e)X1/12

d

)
.

where R is the area of (3.1.2).
(b) We have

M(X; e) =
RT (e)X1/6

ζ(2)e3
∏

ℓ|e
(
1 + 1

ℓ

) +O(T (e)X1/12 logX).

In both cases, the implied constants are independent of d, e, and X.

Proof. We begin with (a) and examine the summands M(X; d, e). If d and e are not co-
prime, then M(X; d, e) = 0 because gcd(da, db, e) ≥ gcd(d, e) > 1. On the other hand, if
gcd(d, e) = 1, we have a bijection from the pairs counted by M(X; 1, e) to the pairs counted
by M(d12X; d, e) given by (a, b) 7→ (da, db).
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Combining Lemma 2.3.2(a) and Corollary 3.1.5, we have
(4.2.2)

M(X; 1, e) =
∑

(a0,b0)∈T̃ (e)

#{(a, b) ∈ R(X) ∩ Z2 : (a, b) ≡ (a0, b0) (mod e3), (a, b) ̸= (−7, 1)}

= φ(e3)T (e)

(
RX1/6

e6
+O

(
X1/12

e3

))
=

RT (e)X1/6

e3

∏
ℓ|e

(
1− 1

ℓ

)
+O(T (e)X1/12),

and thus

M(X; d, e) =
RT (e)X1/6

d2e3

∏
ℓ|e

(
1− 1

ℓ

)
+O

(
T (e)X1/12

d

)
.

For part (b), we compute

(4.2.3)

M(X; e) =
∑

d≪X1/12

gcd(d,e)=1

µ(d)M(X; d, e)

=
∑

d≪X1/12

gcd(d,e)=1

µ(d)

T (e)RX1/6

d2e3

∏
ℓ|e

(
1− 1

ℓ

)
+O

(
T (e)

X1/12

d

)

=
RT (e)X1/6

e3

∏
ℓ|e

(
1− 1

ℓ

) ∑
d≪X1/12

gcd(d,e)=1

µ(d)

d2
+O

T (e)X1/12
∑

d≪X1/12

gcd(d,e)=1

1

d

 .

Plugging the straightforward estimates

(4.2.4)
∑

d≪X1/12

gcd(d,e)=1

µ(d)

d2
=

1

ζ(2)

∏
ℓ|e

(
1− 1

ℓ2

)−1

+O(X−1/12)

and ∑
d≤X1/12

1

d
=

1

12
logX +O(1)

into (4.2.3) then simplifies to give

(4.2.5) M(X; e) =
RT (e)X1/6

ζ(2)e3
∏

ℓ|e
(
1 + 1

ℓ

) +O(T (e)X1/12 logX)

proving (b). □

We are now in a position to estimate N tw
≤y(X).

Proposition 4.2.6. Suppose y ≪ X
1
12 . Then

N tw
≤y(X) =

QRX1/6

ζ(2)
+O

(
max

(
X1/6 log y

y
,X1/12y3/2 logX log3 y

))
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where

Q :=
∑
n≥1

φ(n)T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) = Q3Q7

∏
p ̸=7 prime

p≡1 (mod 3)

(
1 +

2

(p+ 1)2

)
,

and Q3 = 13/6, Q7 = 63/8.

Proof. Substituting the asymptotic for M(X; e) from Lemma 4.2.1 into the defining series
for N tw

≤y(X), we have

N tw
≤y(X) =

∑
n≤y

∑
e|n

µ (n/e)

(
RT (n)eX1/6

ζ(2)n3
∏

ℓ|n
(
1 + 1

ℓ

) +O
(
T (n)e1/2X1/12 log(e6X)

))
.

We handle the main term and the error of this expression separately. For the main term,
we have

(4.2.7)

∑
n≤y

∑
e|n

µ (n/e)

(
RT (n)eX1/6

ζ(2)n3
∏

ℓ|n
(
1 + 1

ℓ

)) =
RX1/6

ζ(2)

∑
n≤y

T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

)∑
e|n

µ (n/e) e

=
RX1/6

ζ(2)

∑
n≤y

φ(n)T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) .
By Lemma 2.3.2(d), we see

φ(n)T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) = O

(
2ω(n)

n2

)
.

By Corollary 3.3.3 and Corollary 3.5.4, we have∑
n>y

2ω(n)

n2
∼ log y

ζ(2)y

as y → ∞. A fortiori,∑
n>y

φ(n)T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) = O

(∑
n>y

2ω(n)

n2

)
= O

(
log y

y

)
,

so the series

(4.2.8)
∑
n≥1

φ(n)T (n)

n3
∏

ℓ|n
(
1 + 1

ℓ

) = Q

is absolutely convergent, and

(4.2.9)

∑
n≤y

∑
e|n

µ (n/e)

(
RT (n)eX1/6

ζ(2)n3
∏

ℓ|n
(
1 + 1

ℓ

)) =
RX1/6

ζ(2)

(
Q−O

(
log y

y

))

=
QRX1/6

ζ(2)
+O

(
X1/6 log y

y

)
.
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As the summands of (4.2.8) constitute a nonnegative multiplicative arithmetic function,
we can factor Q as an Euler product. For p prime, Lemma 2.3.2 yields

(4.2.10) Qp :=
∑
a≥0

φ(pa)T (pa)

p3a
∏

ℓ|p
(
1 + 1

ℓ

) =


1 +

2

p2 + 1
, if p ≡ 1 (mod 3) and p ̸= 7;

13/6, if p = 3;

63/8, if p = 7;

1 else.

Thus

(4.2.11) Q =
∏

p prime

Qp = Q3Q7

∏
p ̸=7 prime

p≡1 (mod 3)

(
1 +

2

p2 + 1

)
.

We now turn to the error term. Since y ≪ X1/12, for e ≤ y we have log(e6X) ≪ logX.
Applying Lemma 2.3.2(d), we obtain

∑
n≤y

∑
e|n

µ (n/e)O
(
T (n)e1/2X1/12 log

(
e6X

))
= O

X1/12 logX
∑
n≤y

T (n)
∑
e|n

∣∣∣µ(n
e

)∣∣∣ e1/2


= O

(
X1/12 logX

∑
n≤y

22ω(n)n1/2

)
.(4.2.12)

Corollary 3.3.3 and Corollary 3.5.4, together with the trivial inequality 22ω(n) ≤ d(n)2, yield

(4.2.13)
∑
n≤y

22ω(n)n1/2 = O(y3/2 log3 y).

Substituting (4.2.13) into (4.2.12) gives our desired result. □

We now bound N tw
>y(X).

Lemma 4.2.14. We have

N tw
>y(X) = O

(
X1/6 log3 y

y

)
.

Proof. We have

N tw
>y(X) =

∑
n>y

∑
e|n

µ (n/e)M(e6X;n) ≤
∑
n>y

2ω(n)M(n6X;n).(4.2.15)

Write n = 3v7wn′ where gcd(n′, 3) = gcd(n′, 7) = 1. We define

n0 := 3max(v−1,0)7max(w−3,0)n′,

so
n

3 · 73
≤ n0 ≤ n.

Let (a, b) ∈ Z2 be a groomed pair. By Theorem 2.4.6(a), H(A(a, b), B(a, b)) ≤ n6X implies
108C(a, b)6 ≤ n6X, and by Theorem 2.4.6(b), n | tmd(A(a, b), B(a, b)) implies n3

0 | C(a, b)3.
Thus

(4.2.16) M(n6X;n) ≤ #
{
(a, b) ∈ Z2 groomed : 108C(a, b)6 ≤ n6X, n3

0 | C(a, b)
}
.
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Recalling (2.4.1) and Lemma 2.4.2(c), we deduce

M(n6X;n) ≤
∑

m≪X1/6/n2

c(n3
0m) ≤ 3 · 2ω(n0)−1

∑
m≪X1/6/n2

c(m).

But 2ω(n) ≤ 4 · 2ω(n0), so by Corollary 3.1.7, we have

M(n6X;n) = O

(
2ω(n)X1/6

n2

)
,

and substituting this expression into (4.2.15) yields

(4.2.17) N tw
>y(X) = O

(∑
n>y

(
2ω(n)

)2
X1/6

n2

)
= O

(
X1/6

∑
n>y

22ω(n)

n2

)
.

As in the proof of Proposition 4.2.6, combining Corollary 3.3.3 and Corollary 3.5.4 together
with the trivial inequality 22ω(n) ≤ d(n)2 yields

(4.2.18)
∑
n>y

22ω(n)

n2
= O

(
log3 y

y

)
.

Substituting (4.2.18) into (4.2.17) gives our desired result. □

We are now in a position to prove Theorem 1.2.4, which we restate here with the notations
we have established.

Theorem 4.2.19. We have

N tw(X) =
QRX1/6

ζ(2)
+O(X2/15 log17/5X),

where

Q =
∑
n≥1

φ(n)T (n)

n3
∏

ℓ|n (1 + 1/ℓ)
,

and R is the area of the region

R(1) =
{
(a, b) ∈ R2 : H(A(a, b), B(a, b)) ≤ 1, b ≥ 0

}
.

Proof. Let y be a positive quantity with y ≪ X1/12; in particular, log y ≪ logX. Proposi-
tion 4.2.6 and Lemma 4.2.14 together tell us

(4.2.20) N tw(X) =
QRX1/6

ζ(2)
+O

(
max

(
X1/6 log3 y

y
,X1/12y3/2 logX log3 y

))
.

We let y = X1/30/ log2/5X, so

(4.2.21)
X1/6 log3 y

y
≍ X1/12y3/2 logX log3 y ≍ X2/15 log17/5X,

and we conclude

N tw(X) =
QRX1/6

ζ(2)
+O(X2/15 log17/5X)

as desired. □
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4.3. L-series. To conclude, we set up the next section by interpreting Theorem 4.2.19 in
terms of Dirichlet series. Let

(4.3.1) htw(n) := #
{
(a, b) ∈ Z2 groomed : twht(A(a, b), B(a, b)) = n

}
and define

(4.3.2) Ltw(s) :=
∑
n≥1

htw(n)

ns

wherever this series converges. Then N tw(X) =
∑

n≤X htw(n), and conversely we have

Ltw(s) =
∫∞
0

u−s dN tw(u).

Corollary 4.3.3. The Dirichlet series Ltw(s) has abscissa of (absolute) convergence σa =
σc = 1/6 and has a meromorphic continuation to the region

(4.3.4) {s = σ + it ∈ C : σ > 2/15} .

Moreover, Ltw(s) has a simple pole at s = 1/6 with residue

ress= 1
6
Ltw(s) =

QR

6ζ(2)

and is holomorphic elsewhere on the region (4.3.4).

Proof. Let s = σ + it ∈ C be given with σ > 1/6. Abel summation yields

(4.3.5)

∑
n≤X

htw(n)n−s = N tw(X)X−s + s

∫ X

1

N tw(u)u−s−1 du

= O

(
X1/6−σ + s

∫ X

1

u−5/6−σ du

)
;

as X → ∞ the first term vanishes and the integral converges. Thus, when σ > 1/6,∑
n≥1

htw(n)n−s = s

∫ ∞

1

N tw(u)u−1−s du

and this integral converges. A similar argument shows that the sum defining Ltw(s) diverges
when σ < 1/6. We have shown σc = 1/6 is the abscissa of convergence for Ltw(s), but as
htw(n) ≥ 0 for all n, it is also the abscissa of absolute convergence σa = σc.
Now define Ltw

rem(s) so that

(4.3.6) Ltw(s) =
QR

ζ(2)
ζ(6s) + Ltw

rem(s).

Abel summation and the substitution u 7→ u1/6 yields for σ > 1

ζ(6s) = s

∫ ∞

1

⌊
u1/6

⌋
u−1−s du = s

∫ ∞

1

(
u1/6 +O(1)

)
u−1−s du.

Let

δ(n) :=

{
1, if n = k6 for some k ∈ Z;
0, else.
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Then

(4.3.7)

Ltw
rem(s) =

∑
n≥1

(
htw(n)− QR

ζ(2)
δ(n)

)
n−s

= s

∫ ∞

1

(
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋)
u−1−s du

when σ > 1/6. But then for any ϵ > 0,

(4.3.8) N tw(u)− QR

ζ(2)

⌊
u1/6

⌋
= O(u2/15+ϵ)

by Theorem 4.2.19. Substituting (4.3.8) into (4.3.7), we obtain

Ltw
rem(s) = s

∫ ∞

1

(
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋)
u−1−s du = O

(
s

∫ ∞

1

u−13/15−σ+ϵ du

)
(4.3.9)

where the integral converges whenever σ > 2/15 + ϵ. Letting ϵ → 0, we obtain an analytic
continuation of Ltw

rem(s) to the region (4.3.4).
At the same time, ζ(6s) has meromorphic continuation to C with a simple pole at s = 1/6

with residue 1/6. Thus looking back at (4.3.6), we find that

Ltw(s) =
QR

ζ(2)
ζ(6s) + s

∫ ∞

1

(
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋)
u−1−s du

when σ > 1/6, but in fact the right-hand side of this equality defines a meromorphic function
on the region (4.3.4) with a simple pole at s = 1/6 and no other poles. Our claim follows. □

5. Estimates for rational isomorphism classes

In section 4, we counted the number of elliptic curves over Q with a 7-isogeny up to
isomorphism over Qal (Theorem 4.2.19). In this section, we count all isomorphism classes
over Q by enumerating over twists using a Tauberian theorem (Theorem 3.5.2).

5.1. Setup. Breaking up the sum (2.2.10), let
(5.1.1)

h(n) := #{(a, b, c) ∈ Z3 : (a, b) groomed, c squarefree, ht(c2A(a, b), c3B(a, b)) = n}.
Then h(n) counts the number of elliptic curves E ∈ E of height n that admit a 7-isogeny
(2.2.9) and

(5.1.2) N(X) =
∑
n≤X

h(n).

We also let

(5.1.3) L(s) :=
∑
n≥1

h(n)

ns

wherever this sum converges.

Theorem 5.1.4. The following statements hold.

(a) We have

h(n) = 2
∑
c6|n

|µ(c)|htw(n/c6)
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(b) For s = σ + it ∈ C with σ > 1/6 we have

(5.1.5) L(s) =
2ζ(6s)Ltw(s)

ζ(12s)

with absolute convergence on this region.
(c) The Dirichlet series L(s) has a meromorphic continuation to the region (4.3.4) with

a double pole at s = 1/6 and no other singularities on this region.
(d) The Laurent expansion for L(s) at s = 1/6 begins

(5.1.6)

L(s) =
1

3ζ(2)2

(
QR

6

(
s− 1

6

)−2

+

(
ζ(2)ℓ0 +QR

(
γ − 2ζ ′(2)

ζ(2)

))(
s− 1

6

)−1

+O(1)

)
,

where

(5.1.7) ℓ0 :=
QRγ

ζ(2)
+

1

6

∫ ∞

1

(
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋)
u−7/6 du

is the constant term of the Laurent expansion for Ltw(s) around s = 1/6.

Proof. Part (a) follows directly from Lemma 2.2.2 and (2.1.8) and is something true inde-
pendent of the parametrization: to count all elliptic curves up to isomorphism by height, it
suffices to count them as twists of only the twist minimal curves. More precisely, from (2.1.8)
we have ht(c2A(a, b), c3B(a, b)) = n with c squarefree if and only if twht(A(a, b), B(a, b)) =
n/(c′)6 where c′ := ce/ gcd(c, e)2 and e := tmd(A(a, b), B(a, b)) and c′ squarefree. Thus

h(n) =
∑

c′ squarefree
(c′)6|n

htw(n/(c′)6)

which of course gives

h(n) = 2
∑
(c′)6|n

|µ(c)|htw(n/(c′)6)

proving (a).
For (b), we see that h7(n) is the the nth coefficient of the Dirichlet convolution of Ltw(s)

and

2
∑
n≥1

|µ(n)|n−6s =
2ζ(6s)

ζ(12s)
.

Write s = σ+ it. As both Ltw(s) and ζ(6s)/ζ(12s) are absolutely convergent when σ > 1/6,
we see

L(s) =
2ζ(6s)Ltw(s)

ζ(12s)

when σ > 1/6, and L(s) converges absolutely in this half-plane.
For (c), since ζ(s) is nonvanishing when σ > 1, the ratio ζ(6s)/ζ(12s) is meromorphic

for σ > 1/12. But Corollary 4.3.3 gives a meromorphic continuation of Ltw(s) to the region
(4.3.4). The function L(s) is a product of these two meromorphic functions on (4.3.4), and
so it is a meromorphic function on this region. The holomorphy and singularity for L(s)
then follow from those of Ltw(s) and ζ(s).
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We conclude (d) by computing Laurent expansions. We readily verify

(5.1.8)
ζ(6s)

ζ(12s)
=

1

ζ(2)

(
1

6

(
s− 1

6

)−1

+

(
γ − 2ζ ′(2)

ζ(2)

)
+O

(
s− 1

6

))
,

whereas the Laurent expansion for Ltw(s) at s = 1/6 begins

(5.1.9) Ltw(s) =
1

ζ(2)

(
QR

6

(
s− 1

6

)−1

+ ζ(2)ℓ0 + . . .

)
,

with ℓ0 given by (5.1.7). Multiplying the Laurent series tails gives the desired result. □

5.2. Proof of main result. We are now poised to finish off the proof of our main result.

Lemma 5.2.1. The sequence (h(n))n≥1 is admissible (Definition 3.5.1) with parameters
(1/6, 1/30, 128/1025).

Proof. We check each condition in Definition 3.5.1. Since h(n) counts objects, we indeed
have h(n) ∈ Z≥0.

For (i), Corollary 4.3.3 tells us that Ltw(s) has 1/6 as its abscissa of absolute convergence.

Likewise,
ζ(6s)

ζ(12s)
has 1/6 as its abscissa of absolute convergence. By Theorem 5.1.4(b),

L(s) =
2ζ(6s)Ltw(s)

ζ(12s)
,

and by Theorem 3.2.1 this series converges absolutely for σ > σa, so the abscissa of absolute
convergence for L(s) is at most 1/6. But for σ < 1/6, L(σ) > Ltw(σ) by termwise comparison
of coefficients, so the Dirichlet series for L(s) diverges when σ < 1/6, and (i) holds with
σa = 1/6.

For (ii), Corollary 4.3.3 tells us that Ltw(s) has a meromorphic continuation when σ =
Re(s) > 2/15; on the other hand, as ζ(12s) is nonvanishing for σ > 1/12, we see that
ζ(6s)/ζ(12s) has a meromorphic contintuation to σ > 1/12, and so (ii) holds with

δ = 1/6− 2/15 = 1/30.

(The only pole of L(s)/s with σ > 2/15 is the double pole at s = 1/6 indicated in Theo-
rem 5.1.4(e).)

For (iii), let σ > 2/15. Let ζa(s) = ζ(as). Applying Theorem 3.4.4, we have

(5.2.2) µζ6(σ) = µζ(6σ) <
64

205

(
1− 6 · 2

15

)
=

64

1025

if σ ≤ 1/6, and by Theorem 3.4.1, µζ6(σ) = 0 if σ > 1/6. We recall (4.3.6); applying
Theorem 3.4.1 again we see µLtw

rem
(σ) = 0 if σ > 2/15, so (5.2.2) implies µLtw(σ) < 64/1025

if σ > 2/15. Finally, as ζ(12s)−1 is absolutely convergent for s > 1/12, Theorem 3.4.1 tells
us µζ12

−1(σ) = 0. Taken together, we see

(5.2.3) µL(σ) <
64

1025
+

64

1025
+ 0 =

128

1025
,

so the sequence (h(n))n≥1 is admissible with final parameter ξ = 128/1025. □
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We now prove Theorem 1.2.2, which we restate here for ease of reference in our established
notation.

Theorem 5.2.4. For all ϵ > 0,

N(X) =
QR

3ζ(2)2
X1/6 logX +

2

ζ(2)2

(
ζ(2)ℓ0 +QR

(
γ − 1− 2ζ ′(2)

ζ(2)

))
X1/6 +O

(
X3/20+ϵ

)
as X → ∞, where the implicit constant depends on ϵ. The constants Q,R are defined in
Theorem 4.2.19, and ℓ0 is defined in (5.1.7).

Proof. By Lemma 5.2.1, (h(n))n≥1 is admissible with parameters (1/6, 1/30, 128/1025). We
now apply Theorem 3.5.2 to the Dirichlet series L(s), and our claim follows. □

Remark 5.2.5. We suspect that the true error on bothN(X) andN tw(X) isO(X1/12+ϵ). Some
improvements to our error term are possible. Improvements to the error term for N tw(X)
will directly improve the error term for N(X). In addition, we believe that (with appropriate
hypotheses) the denominator ⌊ξ⌋+ 2 in the exponent of the error for Theorem 3.5.2 can be
replaced with ξ + 1. If so, the exponent 3/20 + ϵ in the error term may be replaced with
158/1153 + ϵ. Under this assumption, improvements in the estimate of µζ(σ) will translate
directly to improvements in the error term of N(X) (see Bourgain [4, Theorem 5]). In the
most optimistic scenario, if the Lindelöf hypothesis holds, the exponent of our error term
would be the same as that of N tw(X).

Remark 5.2.6. Here we combine Landau’s Tauberian theorem (Theorem 3.5.2) with The-
orem 5.1.4(b) in order to obtain asymptotics for L(s). In doing so, we implicitly invoke
the apparatus of complex analysis, which is used in the proof of Perron’s formula and of
Landau’s Tauberian theorem. Indeed, this suggests a general strategy. However, we believe
an elementary argument applying Dirichlet’s hyperbola method [21, Theorem I.3.1] to The-
orem 5.1.4(a) could achieve similar asymptotics, and perhaps even modestly improve on the
error term.

6. Computations

In this section, we conclude by describing some computations which make our main the-
orems completely explicit.

6.1. Computing elliptic curves with 7-isogeny. We begin by outlining an algorithm for
computing all elliptic curves that admit a 7-isogeny up to twist height X. In a nutshell, we
iterate over possible factorizations e3m with m cubefree to find all groomed pairs (a, b) for
which C(a, b) = e3m, then check if twht(A(a, b), B(a, b)) ≤ X.
In detail, our algorithm proceeds as follows.

1. We list all primes p ≡ 1 (mod 3) up to (X/108)1/6 (this bound arises from Theo-
rem 2.4.6(a)).

2. For each pair (a, b) ∈ Z2 with b > 0, gcd(a, b) = 1, b > 0, and C(a, b) coprime
to 3 and less than Y , we compute C(a, b). We organize the results into a lookup
table, so that for each c we can find all pairs (a, b) with b > 0, gcd(a, b) = 1, b > 0,
and C(a, b) = c. We append 1 to our table with lookup value (1, 0). For each c in
our lookup table, we record whether c is cubefree by sieving against the primes we
previously computed.
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3. For positive integer pairs (e0,m), e120 m6 ≤ X/108, and m cubefree, we find all
groomed pairs (a, b) ∈ Z2 with C(a, b) = e30m. If gcd(e0, 3) = gcd(m, 3) = 1, we
can do this as follows. If e30 < Y , we iterate over groomed pairs (ae, be) and (am, bm)
yielding C(ae, be) = e30 and C(am, bm) = m respectively, and taking the product

(ae + be (−1 + 3ζ))(am + bm (−1 + 3ζ)) = a+ b (−1 + 3ζ) ∈ Z[3ζ]

as in the proof of Lemma 2.4.2. If e30 > Y , we iterate over groomed pairs (a′e, b
′
e) with

C(a′e, b
′
e) = e0 instead of over groomed pairs (ae, be), and compute

(a′e + be (−1 + 3ζ))3(am + bm (−1 + 3ζ)) = a+ b (−1 + 3ζ) ∈ Z[3ζ].

If gcd(e0, 3) > 1 or gcd(m, 3) > 1, we perform the steps above for the components of e0
and m coprime to 3, and then postmultiply by those groomed pairs (a3, b3) ∈ Z2 with
C(a3, b3) an appropriate power of 3 (which is necessarily 9 or 27 by Lemma 2.4.2(b).

4. For each pair (a, b) with C(a, b) = e30m, obtained in the previous step, we compute
H(A(a, b), B(a, b)). We compute the 3-component of the twist minimality defect
e3, the 7-component of the twice minimality defect e7, and thereby compute the
twist minimality defect e = lcm(e0, e3, e7). We compute the twist height using the
reduced pairs (A(a, b)/e2, |B(a, b)| /e3). If this result is less than or equal to X, we
report (a, b), together with their twist height and any auxiliary information we care
to record.

We list the first few twist minimal elliptic curves admitting a 7-isogeny in Table 6.1.1.

(A,B) (a, b) twht(E) tmd(E)

(−3, 62) (14, 5) 103788 1029
(13, 78) (21, 4) 164268 1029
(37, 74) (42, 1) 202612 1029
(−35, 98) (0, 1) 259308 21
(45, 18) (35, 2) 364500 1029

(−43, 166) (7, 13) 744012 3087
(−75, 262) (−7, 8) 1853388 1029
(−147, 658) (−56, 1) 12706092 1029
(−147, 1582) (7, 6) 67573548 343
(285, 2014) (28, 3) 109517292 343
(−323, 2242) (−21, 10) 135717228 1029
(−395, 3002) (−63, 2) 246519500 1029
(−155, 3658) (21, 11) 361286028 1029
(357, 5194) (7, 1) 728396172 21
(−595, 5586) (−14, 1) 842579500 63
(285, 5662) (91, 1) 865572588 1029
(−603, 5706) (−28, 11) 879077772 1029

Table 6.1.1: E ∈ E tw with 7-isogeny and twhtE ≤ 109

Running this algorithm out to X = 1042 took us approximately 34 CPU hours on a
single core, producing 4 582 079 elliptic curves admitting a 7-isogeny in E tw

≤1042 . To check the
accuracy of our code, we confirmed that the j-invariants of these curves are distinct. We
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also confirmed that the 7-division polynomial of each curve has a linear or cubic factor over
Q; this took 3.5 CPU hours. For X = 1042, we have

ζ(2)

QR

N tw(1042)

(1042)1/6
= 0.99996 . . . ,

which is close to 1.
Substituting Theorem 5.1.4(a) into (5.1.2) and reorganizing the resulting sum, we find

(6.1.2) N(X) = 2
∑
n≤X

htw
(
n/c6

) ∑
c≤(X/n)1/6

|µ(c)| .

Letting X = 1042 and using our list of 4 582 079 elliptic curves admitting a 7-isogeny, we
compute that there are 88 157 174 elliptic curves admitting a 7-isogeny in E≤1042 .

6.2. Computing constants. We also estimate the constants in our main theorems. First
and easiest among these is Q, given by (4.2.11). Truncating the Euler product as a product
over p ≤ Y gives us a lower bound

Q≤Y :=
273

16

∏
7<p≤Y

p≡1 (mod 3)

(
1 +

2

p2 + 1

)

for Q. To obtain an upper bound, we compute

Q < Q≤Y exp

2
∑
p>Y

p≡1 (mod 3)

1

p2 + 1

 .

For a, b ∈ Z coprime integers and X ∈ R>0, write

(6.2.1) π(X; a, b) := # {p prime : p ≡ a (mod b)} .
Suppose Y ≥ 8 · 109. Using Abel summation and Bennett–Martin–O’Bryant–Rechnitzer [1,
Theorem 1.4], we obtain∑

p>Y
p≡1 (mod 3)

1

p2 + 1
= −π(Y ; 3, 1)

Y 2 + 1
+ 2

∫ ∞

Y

π(u; 3, 1)u

(u2 + 1)2
du

< − Y

2 (Y 2 + 1) log Y
+

(
1

log Y
+

5

2 log2 Y

)∫ ∞

Y

u2

(u2 + 1)2
du

=
1

2

(
5Y

2(Y 2 + 1) log Y
+

(
1

log Y
+

5

2 log2 Y

)(π
2
− tan−1(Y )

))
so

Q < Q≤Y · exp
(

5Y

2(Y 2 + 1) log Y
+

(
1

log Y
+

5

2 log2 Y

)(π
2
− tan−1(Y )

))
.

In particular, letting Y = 1012, we compute

17.46040523112662 < Q < 17.460405231134835

This computation took approximately 9 CPU days, although an estimate nearly as good
could be computed much more quickly.
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We now turn our attention to R, given in (3.1.2). We observe

R(1) ⊆ [−0.677, 0.677]× [0, 0.078],

so we can estimate R(1) by performing rejection sampling on the rectangle [−0.677, 0.677]×
[0, 0.078], which has area 0.105612. Of our s := 595 055 000 000 samples, r := 243 228 665 965
lie in R, so

R ≈ 0.105612 · r
s
= 0.04316889 . . .

with standard error

0.105612 ·
√

r(s− r)

s3
< 6.8 · 10−8.

This took 11 CPU weeks to compute, although an estimate nearly as good could be computed
much more quickly. With a little more care, we believe that R could be estimated via
numerical integration with a provable error bound.

We can approximate ℓ0 by truncating the integral (5.1.7) and using our approximations
for Q and R. This yields ℓ0 ≈ −1.62334. In Theorem 4.2.19, we have shown that for some
M > 0 and for all u > X, we have∣∣∣∣N tw(u)− QR

ζ(2)

⌊
u1/6

⌋∣∣∣∣ < Mu2/15 log17/5 u.

Thus∣∣∣∣∫ ∞

X

(
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋)
u−7/6 du

∣∣∣∣
< M

∫ ∞

X

u−31/30 log17/5 u du

< M

∫ ∞

X

u−31/30 log4 u du

= 30MX−1/30
(
log4X + 120 log3X + 10800 log2X + 648000 logX + 19440000

)
;

this gives us a bound on our truncation error. We do not know the exact value for M , but
empirically, we find that for 1 ≤ u ≤ 1042,

−3.3119 · 10−5 ≤
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋
u2/15 log17/5 u

≤ 4.3226 · 10−6.

If we assume M ≈ 3.3119 · 10−5, we find the truncation error for ℓ0 is bounded by 253.23,
which catastrophically dwarfs our initial estimate.

We can do better with stronger assumptions. Suppose for the moment that N tw(X) −
QR
ζ(2)

X1/6 = O(X1/12+ϵ), as we guessed in Remark 5.2.5. We let ϵ := 10−4, and find that for

1 ≤ u ≤ 1042,

−1.2174 ≤
N tw(u)− QR

ζ(2)

⌊
u1/6

⌋
u1/12+ϵ

≤ 0.52272.

If ∣∣∣∣N tw(X)− QR

ζ(2)
X1/6

∣∣∣∣ ≤ MX1/12+ϵ
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for M ≈ 1.2174, we get an estimated truncation error of 2.43 · 10−5, which is much more
manageable.

Our estimate of ℓ0 is also skewed by our estimates of QR. An error of ϵ in our estimate
for QR induces an error of

ϵ

6ζ(2)

∫ X

1

⌊
u1/6

⌋
u−7/6 du <

ϵ

6ζ(2)

∫ X

1

u−1 du =
ϵ logX

6ζ(2)

in our estimate of ℓ0. When X = 1042, this gives an additional error of 1.15 · 10−5, for an
aggregate error of 253.23 or 2.43 · 10−5, depending on our assumptions.

Given Q, R, and ℓ0, it is straightforward to compute c1 and c2 using the expressions given
for them in Theorem 5.2.4. We find c1 = 0.09285536 . . . with an error of 6.02 · 10−8, and
c2 ≈ −0.16405 with an error of 307.89 or of 2.98 · 10−5, depending on the assumptions made
above. Note that both of these estimates for c2 depended on empirical rather than theoretical
estimates for the implicit constant in the error term of Theorem 5.2.4. As a sanity check,
we also verify that

N tw(1042)

107
− 42c1 log 10 = −0.1641924 . . . ≈ c2,

which agrees to three decimal places with the estimate for c2 we gave above.
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[15] Mathieu Roux, Théorie de l’information, séries de Dirichlet, et analyse d’algorithmes, Ph.D. thesis,
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