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Abstract

Let d = (dj)j∈Im ∈ N
m be a decreasing finite sequence of positive integers, and

let α = (αi)i∈In be a finite and non-increasing sequence of positive weights. Given
a family Φ0 = (F0

j )j∈Im of Bessel sequences with F0
j = {f0

i,j}i∈Ik ∈ (Cdj )k for each
1 ≤ j ≤ m, our main purpose on this work is to characterize the best approximants of
the m-tuple of frame operators of the elements of Φ0 in the set D(α,d) of the so-called
(α,d)-designs, which are the m-tuples Φ = (Fj)j∈Im such that each Fj = {fi,j}i∈In is a
finite sequence in C

dj , and
∑

j∈Im
‖fi,j‖

2 = αi for i ∈ In. Specifically, in this work we
completely characterize the minimizers of the Joint Frame Operator Distance (JFOD)
function: Θ : D(α,d) → R≥0 given by

Θ(Φ) =

m
∑

j=1

‖SFj
− SF0

j
‖22 ,

where SF denotes the frame operator of F and ‖ · ‖2 is the Frobenius norm. Indeed, we
show that local minimizers of Θ are also global and we obtain an algorithm to construct
the optimal (α,d)-desings. As an application of the main result, in the particular case
that m = 1, we also characterize global minimizers of a G-frames problem recently
considered by He, Leng and Xu.

AMS subject classification: 42C15, 15A60.
Keywords: Frames, frames completions, proximity problems, majorization.

1 Introduction

Motivated by many applications in matrix theory, matrix approximation problems (or matrix
nearness problems) have been studied for several years. There are many books and papers
in the literature that deal with different variants of these problems, see for example [9] and
[11] for a more detailed discussion of the subject and references.

∗Partially supported by CONICET (PIP 00954CO - 2022), UNLP (11X829), UNSE (23/C190-PIP-2022)
e-mail addresses: mjbenac@gmail.com, nbrios@mate.unlp.edu.ar, mruiz@mate.unlp.edu.ar
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Let Mn×d(C) be the space of complex matrices of size n× d. Given a non empty subset X
of Mn×d(C) and A ∈ Mn×d(C), a usual matrix nearness problem is to compute

δ = min
X∈X

N(A−X) ,

where N(·) is a unitary invariant norm, that is, N(UAW ) = N(A) for every A ∈ Mn×d and
every pair of unitary matrices U ∈ Mn(C) and W ∈ Md(C). Typically, the matrix norm
used is the Frobenius norm: ‖A‖2 = tr(A∗A) which has some desirable properties.

If such a distance can be calculated, a natural issue that arises is to characterize the set of
best approximants, that is the set

X op = {X ∈ X : N(A−X) = δ}.

Finite frame theory provided many of such matrix approximation problems (or Procustes
type problems) related to frame designs. Given a finite dimensional complex Hilbert space
H, a frame F for H is simply a generating set of vectors of H. Associated to a frame F ,
there is a positive definite bounded linear operator SF of H, called frame operator, that
allows to perform encoding-decoding schemes. For practical reasons sometimes it is useful to
find frames with some structure whose frame operators are “close” to some definite positive
operator A. These kind of approximation problems were considered by some of the authors
in [8] and [14], in which they were attacked with various tools of matrix analysis, such as the
Schur-Horn theorem or Lidskii inequalities. These results are also related to optimal designs
of frames with specific predetermined characteristics obtained by minimizing some convex
potentials on sets of frames (see [16], [17],[18]).

In [13], the authors solved completely a conjecture posed by N. Strawn in [20] related to
an approximation problem. Given a S ∈ Md(C)

+ and a fixed finite sequence of positive
weights α = (αi)i∈Im , N. Strawn considered the following setting: let D(α, d) denote the
finite sequences F = {fi}i∈In ∈ (Cd)n such that ‖fi‖

2 = αi, i ∈ In . Consider in D(α, d) the
product metric (i.e. the metric as a subset of (Cd)n); let Θ : D(α, d) → R≥0, be given by
Θ(F) = ‖S − SF‖2, where ‖ · ‖2 denotes the Frobenius norm. Strawn conjectured that local
minimizers of Θ where actually global minimizers. This assertion becomes relevant in applied
situations in which numerical methods based on gradient descent or alternating projections
methods are used to obtain local minimizers of Θ, [12].

In [13], Strawn’s conjeture was settled in the affirmative and the spectral and geometrical
structures of the minimizers of the function Θ defined above (called the frame operator
distance) were explicitly computed.

In this work we consider a natural extension of the previous problem to a simultaneous
approximation problem. Now, given a positive integer m, we consider the sets of m-tuples
Φ = (Fj)j∈Im, such that each Fj = {fij}i∈In is a sequence in Cdj such that

∑

j∈Im

‖fij‖
2 = αi.

These m- tuples are called (α,d)-designs. Then, given a fixed sequence of positive operators
{Sj}, we consider the function

Θ(Φ) =

m
∑

j=1

‖Sj − SFj
‖22 ,
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which measure the joint frame operator distance between {Sj}j∈Im and the frame operators
{SFj

}j∈Im.

The problem we consider in this work is to find the (α,d)-designs Φop that minimize Θ, which
result in the best simultaneous approximation of Sj , for 1 ≤ j ≤ m. Moreover, since the set
of (α,d)-designs can be endowed with a natural (product) metric, we also consider the study
of the spectral and geometric structure of the local minimizers of Θ in this set. Notice that
the particular case m = 1 represent Strawn’s problem described above.

The case m > 1 is original and correspond to a natural extension of Strawn’s problem, so it is
forseeable that similar techniques allow us to find an spectral and geometric characterization
of the local and global minimizers of Θ in the set of (α,d)-designs. Specifically, we solve the
multivalue Strawn’s problem through a translation of the multi-completion problem given in
[3], which means that the minimum in Θ are attained in the (α,d)-designs that minimize the
joint convex potential for a suitable multi-completion problem.

These notes are organized as follows. In Section 2 we include some preliminaries about matrix
analysis and (α,d)-designs. In Section 3 we prove the main result, that local minimizers of
Θ are global, and we obtain an spectral characterization of this minimizers. In Section 4
we present an algorithm to find (effectively) the best approximants among (α,d)-designs.
Finally, in Section 5, we apply the m = 1 case to an approximation problem for G-frames
(see for example [21] and [22]), considered in [19]. This allows us to fully describe the
minimizers for the distance problem considered and to suggest an algorithm that will allow
us to construct the optimal G-frames.

2 Preliminaries and notation

In this Section we recall the notion of (α , d)-design, the multi-completions and the main
problems considered in [3], that plays a key role in our work. Next, we describe some basic
notation and notions used throughout the rest of the paper.

We letMd(C) for the algebra of d×d complex matrices. We denote byH(d) ⊂ Md(C) the real
subspace of selfadjoint matrices and by Md(C)

+ ⊂ H(d) the cone of positive semidefinite
matrices. We let U(d) ⊂ Md(C) denote the group of unitary matrices. For d ∈ N, let
Id = {1, . . . , d} and let 1d = (1)i∈Id ∈ Rd be the vector with all its entries equal to 1.

Given x = (xi)i∈Id ∈ R
d we denote by x↓ = (x↓

i )i∈Id (respectively x↑ = (x↑
i )i∈Id) the vector

obtained by rearranging the entries of x in non-increasing (respectively non-decreasing) order.
We denote by (Rd)↓ = {x↓ : x ∈ Rd}, (Rd

≥0)
↓ = {x↓ : x ∈ Rd

≥0} and analogously for (Rd)↑

and (Rd
≥0)

↑.

We also denote by Id ∈ Md(C) the identity matrix. Given S ∈ Md(C) we let R(S) ⊂ Cd

denote the range (or image) of S and rk(S) denote the rank of S, i.e. the dimension of R(S).
Given a matrix A ∈ H(d) we denote by λ(A) = λ↓(A) = (λi(A))i∈Id ∈ (Rd)↓ the eigenvalues
of A counting multiplicities and arranged in non-increasing order, and by λ↑(A) the same
vector but arranged in non-decreasing order. On the other hand, we denote by σ(A) ⊂ R its
spectrum, i.e. the set of eigenvalues of A. If x, y ∈ Cd we denote by x ⊗ y ∈ Md(C) the
rank-one matrix given by (x⊗ y) z = 〈z , y〉 x, for z ∈ Cd.

3



2.1 Finite frames

Given a finite sequence F = {fi}i∈In in Cd, SF ∈ Md(C)
+ (a Bessel sequence using frame

terminology) will denote the frame operator of F , which is given by

SF f =
∑

i∈In

〈f, fi〉fi =
∑

i∈In

(fi ⊗ fi) f for f ∈ C
d .

If there exists a constant a > 0 such that

a ‖f‖2 ≤
∑

i∈In

|〈f, fi〉|
2 for all f ∈ C

d . (1)

we say that F is a frame for Cd. This condition is equivalent to say that F spans Cd or that
SF is a positive invertible operator acting on Cd.

Recall now the notion of majorization between real vectors, which is a partial pre-order
relation in Rd that arises naturally in matrix analysis, and that will play a central role
throughout our work. Let x, y ∈ Rd. We say that x is submajorized by y, and write x ≺w y,
if

j
∑

i=1

x
↓
i ≤

j
∑

i=1

y
↓
i for every 1 ≤ j ≤ d .

If x ≺w y and tr x =
∑

i∈Id
xi =

∑

i∈Id
yi = tr y, then x is majorized by y, and write x ≺ y.

In addition, we say that x is strictly majorized by y if x ≺ y and x↓ 6= y↓.
For convenience, we extend the definition to allow comparing vectors of positive entries and
different sizes, if x ∈ Rk

≥0 and y ∈ Rd
≥0, we note x ≺w y if

j
∑

i=1

x
↓
i ≤

j
∑

i=1

y
↓
i for every 1 ≤ j ≤ min{k, d} .

and x is majorized by y if x ≺w y and
∑

i∈Ik
xi =

∑

i∈Id
yi.

In several applications of finite frame theory, it is important to construct families F =
{fi}i∈Ik ∈ (Cd)k in such a way that the frame operator SF and the squared norms (‖fi‖

2)i∈Ik
are prescribed in advance. This problem is known as the frame design problem, and its
solution can be obtained in terms of the Schur-Horn theorem for majorization.

Theorem 2.1 (See [1]). Let S ∈ Md(C)
+ and let a = (ai)i∈Ik ∈ (Rk

>0). Then, the following
statements are equivalent:

1. There exists F = {fi}i∈Ik ∈ (Cd)k such that SF = S and ‖fi‖
2 = ai , for i ∈ Ik ;

2. a ≺ λ(S).

2.2 Preliminaries on (α , d)-designs

Given a m-tuple of natural numbers d = (d1, d2, . . . , dm), arranged in a non-increasing order,
a d-design is any family of Bessel sequences:

Φ = {Fj}j∈Im,
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such that each Fj = {fi,j}i∈Ik is a Bessel sequence for Cdj .

Our interest is to consider d-designs with some restriction on the sizes of the vectors on the
Bessel sequences.

Namely, let α = (α1, α2, . . . , αn) ∈ (Rn
>0) be a sequence of weights. Then, an (α,d)-design

Φ = {Fj}j∈Im is a d-design such that
∑

j∈Im

‖fij‖
2 = αi, for i ∈ In .

The set of all (α , d)-designs shall be denoted by D(α , d). Also, with the aim to simplify
some calculations, we assume that the weights are arranged in a non-increasing order.

Notice that, if m = 1 and d = d, (α , d)-designs generalize the notion of the structured
Bessel sequences for Cd with prescribed norms given by α. That is, those Bessel sequences
F = {fi}i∈In whose vectors lie in the α-torus

Bα , d = {F = {fi}i∈In ∈ (Cd)n : ‖fi‖
2 = αi , i ∈ In} . (2)

In [3], the authors studied the problem of finding (α,d)-designs Φop = {F op
j }j∈Im that com-

plete an initial d-design Φ0 = {F0
j }j∈Im in an optimal sense.

In what follows, we will detail this multi-completion problem and the results obtained in [3],
which will be useful in the next Section.

Consider an n-tuple α = (αi)i∈In ∈ Rn
>0, arranged in a non-increasing order and let d =

(dj)j∈Im ∈ (Nm)↓ be such that d1 ≤ n (this last condition is to assure that the optimal
completions are frames for their respective spaces).

We shall consider the set of (α,d)-designs, D(α , d), endowed with the metric

m(Φ,Φ′) =
∑

j∈Im

(

∑

i∈In

‖fi,j − f ′
i,j‖

2

)1/2

,

where Φ,Φ′ ∈ D(α , d).

We set a fixed d-design Φ0 = (F0
j )j∈Im. The goal is to find and to characterize optimal (multi)

completions of Φ0 among the (α,d)-designs. That completion is obtained by appending to
each F0

j the vectors of the respective Bessel sequence in the (α,d)-design.

Here, the optimality is measured in terms of (joint) Benedetto-Fickus potential P of the multi-
completions. That is, the goal is to find the local minimizers of the function Ψ : D(α , d) →
R≥0, given by

Ψ(Φ) = P(Φ0 , Φ) =
∑

j∈Im

tr(S2
(F0

j ,Fj)
) =

∑

j∈Im

∑

i∈Idj

λ2
i (S(F0

j
,Fj)) , (3)

where S(F0
j ,Fj) = SF0

j
+SFj

denotes the frame operator of the sequence (F0
j , Fj) ∈ (Cdj )k+n,

for j ∈ Im and the metric in D(α , d) is induced by the distance defined above.

Now we are able to present a summarized version of the main result of [3] that shall be useful
in the sequel.

First, let λj = (λi,j)i∈Idj = λ↑(SF0
j
) ∈ (R

dj
≥0)

↑, for j ∈ Im be the vectors of eigenvalues

(arranged in a non-decreasing order) of each frame operator SF0
j
.

5



Theorem 2.2 ([3]). There exist vectors νj ∈ Rdj such that, for Φ̃ ∈ D(α , d), we have

Φ̃ is a local minimizer of Ψ on D(α , d) ⇐⇒ λ(S(F0
j , F̃j)

) = ν
↓
j .

Moreover,

1. Φ̃ is a global minimizer of Ψ.

2. For j ∈ Im, SF̃j
commutes with SF0

j
and SF̃j

+SF0
j
is invertible. In particular, (F0

j , F̃j)

is a frame for Cdj .

The results proved in [3] state a stronger feature fulfilling local minima: the frame operators
SF̃j

not only commute with SF0
j
+ SF̃j

but also the vectors F̃j = {f̃ij} are eigenvectors of

SF0
j
+ SF̃j

. As a consequence, F̃j decomposes into mutually orthogonal sets of vectors for

each j ∈ Im.

These results allow to describe the spectra νj as νj = max{c , λj} (entry-wise maximum)
where c ∈ (Rd1)↓ is a vector constructed from the data α and λj, j ∈ Im.

3 Local minimizers for the joint frame operator dis-

tance (JFOD)

In this section we will present a simultaneous approximation problem for Bessel sequences
that generalizes previous results shown in [13]. Taking as a starting point a d-design Φ0 =
{F0

j }j∈Im the goal is to characterize (α,d)-designs that are local minimizers for some distance
function defined on the frame operators. The approach is similar to the one developed in
[13]: it reduces to finding the local (global) minima of a suitable joint convex potential for
the (α,d)-design problem described in the previous section for a particular case of initial
data.

Given two d-designs Φ1 = {F1
j }j∈Im and Φ2 = {F2

j }j∈Im, whose sequences of frame operators
are ΣΦ1 = {SF1

j
}j∈Im and ΣΦ2 = {SF2

j
}j∈Im, respectively, we define their joint frame operator

distance (JFOD) as follows:

distJFOD(ΣΦ1 , ΣΦ2) =

(

∑

j∈Im

‖SF1
j
− SF2

j
‖22

)
1
2

where the norm ‖ · ‖2 is the Frobenius norm.

Let Φ0 = {F0
j }j∈Im be a (fixed) d-design and consider a set of weights α as in previous

section. As it was announced, our objective is to characterize those (α , d)-designs that best
approximate Φ0 in terms of the JFOD.

In order to properly pose the problem to study, we define the function to minimize:

Definition 3.1. Let Φ0 = {F0
j }j∈Im be a d-design for m ∈ N and α = (αi)i∈In ∈ (Rn

>0)
↓.

Consider the function

Θ : D(α , d) → R≥0 given by Θ(Φ) = dist2JFOD(ΣΦ0 , ΣΦ) =
∑

j∈Im

‖SF0
j
− SFj

‖22,

for Φ = {Fj}j∈Im ∈ D(α , d).
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Next proposition shows that we can restate the JFOD problem as a multi-completion problem,
as in the case m = 1 studied in [13].

Remark 3.2. Given an initial (fixed) d-design Φ0 = {F0
j }j∈Im, with frame operators ΣΦ0 =

{SF0
j
}, take M = maxj∈Im ‖SF0

j
‖ and choose any d-design Φ̃0 = {F̃0

j }j∈Im such as ΣΦ̃0 =

{M · Idj − SF0
j
}j∈Im. It is clear that such a d-design exists since M · Idj − SF0

j
∈ M+

dj
(C) for

every j ∈ Im.

Proposition 3.3. Consider Φ0, Φ̃0 as in Remark 3.2. Then, Φ = {Fj}j∈Im ∈ D(α , d) is a
local minimizer of Θ if and only if it is a local minimizer of Ψ in D(α , d), given the initial
data Φ̃, α and the strictly convex function ϕ(t) = t2.

Proof. Given Φ = {Fj}j∈Im ∈ D(α , d) and M as in Remark 3.2,

SF0
j
− SFj

= M · Idj + (SF0
j
−M · Idj )− SFj

= M · Idj − (SF̃0
j
+ SFj

),

thus,

Θ(Φ) =
∑

j∈Im

‖SF0
j
− SFj

‖22 =
∑

j∈Im

tr([M · Idj − (SF̃0
j
+ SFj

)]2)

=
∑

j∈Im

[M2dj − 2M tr(SF̃0
j
+ SFj

)] +
∑

j∈Im

tr([SF̃0
j
+ SFj

]2)

= k +
∑

j∈Im

tr([SF̃0
j
+ SFj

]2) = k +Ψ(Φ) .

Where k =
∑

j∈Im
M2dj − 2M tr(SF̃0

j
+SFj

) denotes a constant. Hence Θ(Φ) = Ψ(Φ)+ k for

every Φ ∈ D(α , d). In particular, local minimizers of Θ and Ψ (with their respective initial
data) must coincide.

As a consequence, the complete characterization of local (global) minimizers for Θ can be
carried out by the results summarized in Theorem 2.2:

Let ν̃j , j ∈ Im, denote the spectra of S(F̃0
j ,Fj)

, where Φ = {Fj}j∈Im is a local (global)

minimizer of Ψ, for the initial data given by the d-design Φ̃0 constructed from Φ0 as it was
described in Remark 3.2. Notice that, if we denote by λj = λ↓(SF0

j
) the vector of eigenvalues

of SF0
j
arranged in non-increasing order, then the eigenvalues λ̃j = λ↑(SF̃0

j
) = M1dj − λj ∈

(R
dj
≥0)

↑.

Theorem 3.4. Let δj = (δi,j)i∈Idj = M 1dj − ν̃j. Then,

1. min

{

Θ(Φ) =
∑

j∈Im

∥

∥

∥
SF0

j
− SFj

∥

∥

∥

2

2
: Φ ∈ D(α,d)

}

=
∑

j∈Im

‖δj‖
2.

2. If Φ ∈ D(α,d), then

Θ(Φ) =
∑

j∈Im

∥

∥

∥
SF0

j
− SFj

∥

∥

∥

2

2
=

m
∑

j=1

‖δj‖
2 if and only if, λj(SF0

j
− SFj

) = δ
↓
j .

In this case, there exists an onb {vi,j}i∈Idj of Cdj (for each j ∈ Im) such that

SF0
j
=
∑

i∈Idj

λi,j vi,j ⊗ vi,j and SFj
=
∑

i∈Idj

(λi,j − δi,j) vi,j ⊗ vi,j . (4)

7



3. Local minimizers of Θ in D(α , d) are also global minimizers.

Proof. The assertions of the statement are consequences of the Proposition 3.3 and Theorem
2.2. In fact, by Proposition 3.3 local minima for Θ in D(α , d) coincide with local (and hence
global) minimizers for Ψ, where the initial data is given by Φ̃0.

In particular, Φ = {Fj}j∈Im is a local minimizer for Θ in D(α , d) if and only if, for each
j ∈ Im, the spectrum of

S(F̃0
j ,Fj)

= SF̃0
j
+ SFj

= M · Idj − SF0
j
+ SFj

is given by the vector ν̃j, that characterize the minimizers of Ψ, according Theorem 2.2. In
particular, the spectra of SFj

− SF0
j
are given by the vectors δj , ∀j ∈ Im, which implies

‖SFj
− SF0

j
‖22 = ‖δj‖

2.

Moreover, by the same result, SFj
commutes with M · Idj − SF0

j
, so

SFj
· SF0

j
= SF0

j
· SFj

.

Therefore, SFj
and SF0

j
can be simultaneously diagonalized as in (4).

4 Explicit computation of δ = (δj)j∈Im

Once we established in Prop. 3.3 the link between the approximation problem with optimal
(α,d)- multi-completions, we can compute the vectors δj , j ∈ Im, by reinterpreting the
description of the optimal spectra νj done in [3] using the “translated” initial data.

Consider the notation introduced in the previous section, so that λj = (λi,j)i∈Idj ∈ (R
dj
≥0)

↓

denote the spectrum of each SF0
j
and M = maxj∈Im ‖SF0

j
‖. Then, for the construction of the

vectors ν̃j we shall use

λ̃j = M · 1dj − λj = (M − λi,j)i∈Idj ∈ (R
dj
≥0)

↑, (5)

i.e. the vector of eigenvalues of SF̃0
j
= M · Idj −SF0

j
, counted with multiplicities and arranged

in non decreasing order, along with the weights α = (αi)i∈In .

According the results shown in [3], there is a unique vector c ∈ (Rd1)↓, computable from
{λ̃j}j∈Im and α, such that each spectrum ν̃j of the optimal completion SF̃0

j
+SFj

is described
as

ν̃j = max((c)dj , λ̃j) , (6)

where the maximum is taken entry-wise and (c)dj is the truncation of c on its dj first entries

The construction of the vector c is done with some detail in [3]. Mainly, it can be characterized
as the unique (up to rearrangements) vector in Rd1 such that, if

c = (c11s1, c21s2, · · · , cp1sp) , (7)
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where c1 > c2 > · · · > cp > 0 and
∑p

k=1 sk = d1, then each ck and sk satisfy

(αi)
ik
i=ik−1+1 ≺





∑

j: i≤dj

(ck − λ̃i,j)
+





ik

i=ik−1+1

=





∑

j: i≤dj

(λi,j − (M − ck))
+





ik

i=ik−1+1

(8)

and

(αi)
n
i=ip−1+1 ≺





∑

j: i≤dj

(ck − λ̃i,j)
+





d1

i=ip−1+1

=





∑

j: i≤dj

(λi,j − (M − ck))
+





d1

i=ip−1+1

(9)

for i0 = 0 and ij =
∑j

i=1 si.

Since for each j ∈ Im, δj = M1dj − ν̃j, where ν̃j can be constructed as before, we are able to
propose an algorithm that computes δj from the previous assertions.

First, let b be the vector in (Rd1)↑ defined as b = M · 1d1 − c. Then, by equations (5), (6)
and the characterization of δj:

δj = min((b)dj , λj) . (10)

From the equations (8) and (9) that define the vector c we construct

b = (b11s1, b21s2, · · · , bp1sp) ∈ (Rd1)↑ ,

inductively as follows (as before, we let i0 = 0 and ij =
∑j

k=1 sk):

Definition 4.1. Let us suppose that we have found the indices i0 = 0 < i1 < · · · < ik
(therefore we have s1 = i1, sj = ij − ij−1, for j = 1, . . . , k) and the constants b1 < b2 < · · · <
bk.

Then, we define ik+1 and bk+1 as:

ik+1 := max
{

i : ik + 1 ≤ i ≤ d1 : (αi)
i∗

i=ik+1 ≺ (βi,k+1)
i
i=ik+1

}

for 0 ≤ k ≤ p− 1 , (11)

where i∗ and βi,k+1 are determined from the following cases:

Case 1) If i ∈ Id1−1 then i∗ = i, and

(βi,k+1)
i
i=ik+1 =





∑

j: i≤dj

(λi,j − b∗k+1,i)
+





i

i=ik+1

and b∗k+1,i, for i ≥ ik + 1, is the unique solution of the equation

i
∑

i=ik+1

αi =

i
∑

i=ik+1

∑

j: i≤dj

(λi,j − x)+ .

Case 2) If i = d1, then i∗ = n, and

(βi,k+1)
d1
i=ip−1+1 =





∑

j: i≤dj

(λi,j − b∗k+1,d1
)+





d1

i=ip−1+1

9



and b∗k+1,d1
, is the unique solution of the equation

n
∑

i=ip−1+1

αi =

d1
∑

i=ip−1+1

∑

j: i≤dj

(λi,j − x)+ .

We denote bk+1 = b∗k+1,ik+1
for k ∈ Ip−1. △

This algorithm that produces the vector b, which generates δ = {δj}j∈Im is deduced from the
characterization of c given in [3]. We omit the proof of the correct ordering in the entries of
b (that is, that the bk+1 produced in this way is such that bk < bk+1) and of the uniqueness
of b since they follow directly from the results proved in [3].

Remark 4.2. Note that the construction of δ proposed in Definition 4.1 does not depend on
the translation parameter M . This means that the algorithm that produces δ only requires
as initial data the spectra λj of the frame operators SF0

j
(with multiplicities and arranged in

non decreasing order) and the set of weights α = (αi)i∈In, as expected.

Example 4.3. In the following example, we implement the described algorithm for the same
initial data considered in [3, Example 5.5].

That is: for d = (7, 5, 3) consider Φ0 = {F0
j }j∈I3 be given in matrix form by

F0
1 =





















0.3066 1.6919 −1.14 0.0488
0.9339 −0.4353 −0.2197 0.2354

−1.8151 0.8134 0.3742 0.2428
1.7690 1.0168 0.8745 −0.045

−0.4706 0.7223 0.8595 0.0609
1.1678 −0.0164 0.0839 0.2206

−0.1574 0.48 0.042 −0.3589





















F0
2 =













−2.723 −0.068 −0.5242
−2.2341 −0.5975 0.2401
−1.5660 0.7992 0.0219
2.2048 −0.1835 −0.4038
0.5298 0.2569 0.0631













and

F0
3 =





−0.8048 −0.9958 −0.1026
1.0153 −0.5127 −0.4653
0.5669 −0.4955 0.6877





In this case, the spectra of SF0
j
are:

λ1 = (9, 5.5, 3, 0.3, 0, 0, 0), λ2 = (20, 1.1, 0.5, 0, 0) and λ3 = (2, 1.5, 0.7).

Consider the set of weights α = (40, 35, 9, 5, 4.5, 3, 2.4, 2). An implementation of the
previously discussed algorithm produces

b = 20 · 17 − c = (−5.9833, −5.9833, −2.3778, −2.3778, −2.3778, −2.3778, −2.3778),

so δ1 = b, δ2 = (b)5 and δ3 = (b)3. Thus, the minimal value for the multi-approximation
is

‖δ1‖
2 + ‖δ2‖

2 + ‖δ3‖
2 = 265.685 .
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Moreover, by applying well-known algorithms that allow the construction of matrices with
prescribed spectra and column norms (see for example [10]), we obtain the following solution
to the multi-approximation problem:

F̃1 =





















−1.8371 1.6608 1.2662 0.5185 0.3026 0.3396 0.1226 0.5687
−0.5473 −1.2442 0.7725 0.2088 −0.5880 −1.0094 −0.4046 −0.0201
1.0932 2.3814 −0.0088 −0.7383 −0.8395 −0.1102 −0.3142 −0.2439

−2.7000 −0.2801 −0.9373 −0.8292 −0.2106 −0.4169 0.2434 −0.1652
−0.1785 1.1942 −1.1371 0.9572 −0.5076 −0.4684 0.0565 −0.3832
−1.1612 −0.9604 −0.0092 0.1824 −0.6634 0.9483 −0.6628 −0.5109
−0.2751 0.6683 −0.0512 −0.0647 1.0101 −0.3055 −0.8896 −0.7003





















F̃2 =













−2.3145 −2.0750 −1.2187 0.0102 −0.2369 −0.4077 −0.1708 −0.1559
−1.0396 −2.7753 0.4457 0.3734 0.5631 0.3362 0.4060 0.3706
−2.6610 0.4670 0.04 −0.2241 0.5553 0.2283 0.4003 0.3654
2.2525 1.2076 −0.9958 −0.1239 0.6724 0.0069 0.4848 0.4425
0.0638 0.8863 −0.1217 1.4798 −0.0001 −0.0314 −0.0001 0













and

F̃3 =





−0.1356 2.7412 −0.1706 −0.04 −0.0834 −0.0451 −0.0601 −0.0549
−2.2991 −0.3745 −0.7734 −0.1812 −0.3781 −0.2047 −0.2726 −0.2488
−1.5759 0.1557 1.1430 0.2679 0.5587 0.3025 0.4028 0.3677





5 An application to a distance problem for G-frames

In the previous section we generalized the approximation problem studied in [13], to the
setting of (α,d)-designs, that is, as a simultaneous approximation to a family of semi-definite
positive matrices with some structured matrices, that come from these (α,d)-designs.

In this section we study another natural generalization, to the set of G-frames, that was
posed and studied in [19]. So, we briefly recall the concept of G-frames, introduced by W.
Sun in [21].

A family F = {Ti}i∈I of linear bounded operators Ti from Cd to an analysis space Cn is a
G-frame for Cd if there exist constants a, b > 0 such that

a‖x‖2 ≤
∑

i∈I

‖Tix‖
2 ≤ b‖x‖2,

for every x ∈ Cd. If only the upper inequality holds, we say that F is a G-Bessel sequence
for Cd.

Given a G-Bessel sequence F = {Ti}i∈I , its frame operator SF is defined as

SF =
∑

i∈I

T ∗
i Ti.

Let α = (αi)i∈Im be a non increasing finite sequence of positive weights. Consider the set

Λα = {F = {Ti}i∈Im : F is a G-Bessel sequence for H with ‖Ti‖
2
2 = αi}.
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Let A be a positive semi definite operator of H. Our goal is to study the following approxi-
mation problem:

Compute
min
F∈Λα

‖A− SF‖2, (12)

and characterize the G-Bessel sequences that attain the minimum distance.

We shall see that this problem can be treated as a particular case of the problem considered
in [13, 14].

First, we need the following characterization of the frame operators of elements in Λα. Recall
that the dimension of the analysis space that we are considering is n.

Proposition 5.1. Let S ∈ Md(C)
+ with eigenvalues given by λ ∈ R

d
≥0 and let α = (αi)i∈Im ∈

(Rm
>0)

↓. Then, there exists F ∈ Λα with SF = S if and only if

(
α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n) ≺ λ . (13)

Proof. On one direction, if (13) holds, the Schur-Horn theorem implies the existence of a
(vector) frame Fvec = {fj}j∈Inm

such that ‖fj‖
2 = αi

n
, for (i − 1)n + 1 ≤ j ≤ in, and whose

frame operator SFvec
is S. Let T ∗ ∈ L(Cnm,H) be the bounded linear operator such that

T ∗ei = fi, where {ej}j∈Inm
is the standard orthonormal basis in Cnm.

Consider a (fixed) orthonormal basis {bj}j∈In for K. Let Wi ∈ L(Cnm,K) be the partial
isometry defined such that

Wie(i−1)n+j = bj , for j = 1, . . . , n and Wiek = 0 otherwise.

That is, it implies that WiW
∗
i = In and W ∗

i Wi = Pi, where In is the identity in K and Pi is
the diagonal projection of Cmn onto the subspace generated by

Ji = {e(i−1)n+j : j = 1, . . . , n}.

Thus,
∑

i∈Im
Pi = Imn, the identity in Cmn.

Notice that, if we set F = {Ti}i∈Im where Ti ∈ L(H,K) is defined such that Ti = WiT , for
i ∈ Im, then F ∈ Λα and SF = SFvec

= S.

Indeed,

SF =
∑

i∈Im

T ∗
i Ti =

∑

i∈Im

T ∗W ∗
i WiT = T ∗

(

∑

i∈Im

W ∗
i Wi

)

T = T ∗

(

∑

i∈Im

Pi

)

T = T ∗T = SFvec

and
‖Ti‖

2
2 = tr(T ∗

i Ti) = tr(TT ∗Pi) =
∑

j∈Imn

‖T ∗Piej‖
2 =

∑

j∈In

‖f(i−1)n+j‖
2 = αi.

On the other side, suppose that F = {Ti}i∈Im is a G-Bessel sequence in Λα such that SF = S.
Then,

αi = ‖Ti‖
2
2 = tr(T ∗

i Ti) for all i ∈ Im ,

in particular, if we denote fij = T ∗
i bj , we have

αi

n
1n ≺ (‖fi1‖

2 , ‖fi2‖
2 , · · · , ‖fin‖

2) ≺ λ(T ∗
i Ti).

12



Here, the majorization on the left holds since it is easy to see that for every x ∈ Rd
≥0,

( tr x
d
)1d ≺ x, while the comparison on the right is due to Theorem 2.1.

Again by use of Schur-Horn theorem we deduce from the previous majorization relationship
that there is, for each i ∈ Im, a Bessel sequence Gi = {gij}j∈Id for H such that ‖gij‖

2 = αi

d

and such that SGi
= T ∗

i Ti.

Define the linear operator T ∗ ∈ L(Cmn,H) by T ∗b(i−1)n+j = gij, for i ∈ Im and j ∈ In.

In particular, T ∗PiT = T ∗
i Ti, using the previous definition for the orthogonal projections Pi.

Then,

T ∗T = T ∗

(

∑

i∈Im

Pi

)

T =
∑

i∈Im

T ∗
i Ti = S.

Therefore, the sequence G = {Gi}i∈Im, constructed by juxtaposition is a Bessel sequence for
H, with synthesis operator T ∗ ∈ L(Cmn,H) and frame operator SG = T ∗T = S.

Finally, since the squared norms of the elements in G are given by the vector (α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n),

by Schur-Horn theorem we conclude that

(
α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n) ≺ λ(SG) = λ.

We are now in a position to prove the existence and characterization of approximants of the
problem posed in Eq. (12).

Theorem 5.2. Let α = (αj)j∈Im(R
m
≥0)

↓, and consider the set of G-frames Λα as before. Let
A ∈ Md(C)

+. Then, there exists Fop = {T op
j }j∈Im ∈ Λα such that

‖A− SFop‖2 ≤ ‖A− SF‖2 for all F ∈ Λα . (14)

Moreover, the minimal distance (and the approximants) can be computed using the spectrum of
A and the weights (α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n) as the initial data for the classical approximation

problem.

Proof. Given a F ∈ Λα, by Proposition 5.1 there is a Bessel sequence Fvec for H such that
SF = SFvec

and such that the norms of the vectors in Fvec are given by the weights:

(
α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n) .

In particular, the computation of the distance can be done using the results in [13] (or the
results in previous section, for the particular case of d = d). Notice that, as it was done in
the proof of the Proposition 5.1, optimal G-frames can be constructed from optimal vector
frames.

Remark 5.3. The problem considered in [19], is actually solved in terms of unitarily invariant
norms (briefly uin). Recall that a norm N(·) in Md(C) is unitarily invariant if

N(UAV ) = N(A) for every A ∈ Md(C) and U, V ∈ U(d) ,

and N(·) is strictly convex if its restriction to diagonal matrices is a strictly convex norm in
Cd. Examples of uin are the spectral norm and the p-norms, for p ≥ 1 (strictly convex if
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p > 1). Note that, in particular, when p = 2, we get the Frobenius norm. Then, the problem
posed in [19] is:

Given N(·) an strictly convex uin in Md(C), H = Cd, K = Cn, α = (αi)i∈Im and A ∈
Md(C)

+, compute
min
F∈Λα

N (A− SF) ,

and characterize the G-Bessel sequences that reach the minimum distance. Following the
same steps as for the Frobenius norm, and applying Theorem 4.1 in [14], we get the following
generalization of Theorem 5.2, since the minimizers do not depend on the unitary invariant
norm chosen. △

Theorem 5.4. Let α = (αj)j∈Im(R
m
≥0)

↓, N(·) an strictly convex uin in Md(C) and consider
the set of G-frames Λα as before. Let A ∈ Md(C)

+. Then, there exists Fop = {T op
j }j∈Im ∈ Λα

such that
N(A− SFop) ≤ N(A− SF) for all F ∈ Λα . (15)

Moreover, the minimal distance (and the approximants) can be computed using the spectrum of
A and the weights (α1

n
1n ,

α2

n
1n , · · · ,

αm

n
1n) as the initial data for the classical approximation

problem. Even more, the best approximants do not depend on the choice of the strictly convex
uin.
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