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Abstract

This work proposes a view of probability as a relative measure rather than an absolute one. To

demonstrate this concept, we focus on finite outcome spaces and develop three fundamental axioms

that establish requirements for relative probability functions. We then provide a library of examples

of these functions and a system for composing them. Additionally, we discuss a relative version of

Bayesian inference and its digital implementation. Finally, we prove the topological closure of the relative

probability space, highlighting its ability to preserve information under limits.
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1 Introduction

The foundations of probability theory are still very much open to explore!

Since Kolmogorov published the standard axioms for probability[1] in 1933, there have been calls to alter
them. In “Kolmogorov’s Axiomatisation and Its Discontents”, Lyon[2] examines arguments made in favor
and against these alterations. One area of “discontentment” concerns conditional probability. We often want
to identify the probability of event A given event B, or P (A|B), even when B has probability zero1.

We are out of luck with the Kolmogorov model, which defines P (A|B) as the ratio P (A∩B)
P (B) . When P (B) = 0,

the indeterminate form 0
0 appears leaving the conditional probability undefined. In fact, this happens

whenever one wishes to compare two events that have probability zero.

Undeterred by the petty obstacle of the indeterminate form, mathematicians and engineers refer to relative
probabilities of this type all the time. For example, if we consider a probability distribution over [0, 1] given
by f(x) = 2x, we know that the value of f(12 ) = 1 is twice as much as f(14 ) =

1
2 . In a sense, we believe that

the outcome 1
2 is twice as likely as outcome 1

4 even though we are only talking about probability density.

Hajek[4] (citing Borel) gives a much more compelling example: if a random point on the Earth is selected,
what is the probability that it is in the eastern hemisphere given that it is on the equator? It seems that
one should not hesitate to answer one half. And yet the equator, being a mere 1-dimensional object, has
probability zero compared to the rest of the globe.

To address the discrepancy between theory and practice, we propose a non-standard model of probability.
This model is built on the relationships between outcomes and events rather than their absolute likelihoods.
By focusing on these relationships, this improves on the Kolmogorov model by solving the conditional
probability question. As additional benefits, it fits nicely with most distribution sampling techniques and
establishes probability functions as categories.

1.1 Previous Work and Goals

Leading probability theorists in the twentieth century developed axiomatic systems for conditional probabil-
ity, notably Renyi[5]. Later, Kohlberg and Reny[6] introduced the idea of relative probability and applied it
to game theory. Heinemann[7] further developed the idea into relative probability measures along with their
axioms and definitions, and found applications in Bayesian inference and economics[8].

This work is focused on the systematization of these concepts and will expand on them in several ways.

First, we will construct a theory of relative probability on finite outcome spaces. By omitting infinite outcome
spaces, we temporarily set aside the need to account for measurable sets and countable additivity2. Even
with this vast simplification there is much to be learned. The fundamental definitions for relative probability
will be more clearly constructed without the distractions that are introduced by continuous space.

1Note that zero probability events can indeed occur, particularly when given a continuous distribution. November[3] gave a
more recent philosophical treatment of this phenomenon.

2In the textbook Invitation to Discrete Mathematics[9], Matoušek et al. make the same simplification in order to illustrate
concepts while at the same time writing

By restricting ourselves to finite probability spaces we have simplified the situation considerably... A true proba-
bility theorist would probably say that we have excluded everything interesting.
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Our focus on probability at the outcome level will lead us to separate out three fundamental axioms of
relative probability. These fundamental axioms, acting on outcomes only, will be distinct from those related
to summation and measurability. They will establish relative probability as a thin category on outcomes.

Second, we will categorize the various patterns and states that arise when dealing with relative probability,
including total comparability, possibility classes, and anchor outcomes.

Third, we focus on the computational properties of Bayesian inference. The relative probability function
will simplify the formulas for some distributions in the Bayesian framework. We introduce the indeterminate
wildcard value, which will inevitably arise when relative probability is inferred on messy, real world data.
This discussion ends with how these concepts can be applied to code and data structures.

Finally, we prove the ability of relative probability functions to retain information when taking limits, or in
other words their topological closure.

Ultimately, practitioners will find these features of relative probability attractive. Its sphere of application
could be expanded beyond game theory and theoretical probability into fields like machine learning. This
paper provides a foundational analysis that future researchers can use to expand that sphere.

2 Preliminaries

2.1 Magnitude Space

Definition 2.1. The magnitude space M is the set of all positive real numbers along with 0 and ∞.

M = [0,+∞]

Magnitudes correspond with our intuition of size. The value of infinity is a limit element, larger that all of
the other magnitudes. It endows the magnitude space with several important properties:

1. Compactness: Sequences that go off to infinity still have a limit (at ∞).

2. Symmetry around ratios: When we compare the probability of two events, we get their odds. If the odds
are 0, then we are comparing an event with probability 0 to an event with probability > 0. We should
be able to reverse this comparison, and say there are infinite odds when an event with probability > 0
is compared to an event with probability 0. It is also common to define the odds of a single event as
the odds of that event against its converse. In this case, ∞ corresponds to events that are certain.

3. The infinite element is introduced in measure theory because many mathematical systems (real and
natural numbers for example) contain sets of infinite measure.

We set 0−1 = ∞ and ∞−1 = 0, even though the product 0 · ∞ is indeterminate.

2.2 The Wildcard Element

Definition 2.2. Let the magnitude-wildcard space M∗ = M ∪ {∗} be the set of magnitudes along with a
wildcard element, ∗.

4



The wildcard element corresponds to several different concepts, each appearing in a unique discipline:

• The NaN, or Not a Number3 value in the IEEE standard for floating point arithmetic[10].

• The indeterminate form 0
0 in arithmetic.

• The wildcard pattern used in pattern matching and regular expressions in type theory and computer
science

The following properties on ∗ allow multiplication of any two magnitude-wildcard values.

0 · ∞ = ∗ ∗ ·m = ∗

We may also define ∗ + m = ∗, but there is an argument to be made that because there are no negative
numbers in this system, ∗+m should be a new pattern that only matches magnitudes greater than or equal
to m. For our purposes, the question of how to handle this can be deferred.

2.3 The Matching Relation

Definition 2.3. The matching relation :∼= is a binary relation on M∗. The statement m1 :∼= m2 is read “m1

is matched by m2” and is true when either m1 equals m2 or m2 is a wildcard.

m1 :∼= m2 ⇐⇒ (m1 = m2) ∨ (m2 = ∗)

The left hand side of a matching relation is the parameter and the right hand side is the constraint. The
wildcard element represents every single value, but it cannot be represented by any specific value. It also
represents a loss of information about the parameter.

A few lemmas quickly follow.

Lemma 2.1. If a magnitude matches a non-wildcard element, then the two values are equal.

m1 :∼= m2 ∧m2 6= ∗ =⇒ m1 = m2

Lemma 2.2. Every element is matched by the wildcard element. m :∼= ∗

Lemma 2.3. The wildcard element is matched only by itself. ∗ :∼= m =⇒ m = ∗

The matching relation looks a lot like equality and in many cases it is, but it doesn’t have all of the same
properties.

Theorem 2.4. The matching relation is reflexive, transitive, and anti-symmetric but not symmetric.

Proof. Reflexive is obvious: m :∼= m ⇐⇒ (m = m) ∨ (m = ∗)

The transitive property states that for all m1,m2,m3 in M, if m1 :∼= m2 and m2 :∼= m3, then m1 :∼= m3.

Assume that m1 :∼= m2 and m2 :∼= m3. If none of these values are the wildcards, then by lemma 2.1, they
are all equal and m1 :∼= m3. If m1 = ∗ then by lemma 2.3, m2 = ∗ and finally m3 = ∗. In other words, if
any of the three values are ∗, then m3 = ∗. By lemma 2.2, the theorem holds.

3“Not a Number” may have been an unfortunate naming choice because it actually represents any number!
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The anti-symmetric property states that if m1 :∼= m2 and m2 :∼= m1, then m1 = m2.

If both m1 and m2 match each other, then (m1 = m2) ∨ (m2 = ∗) and (m2 = m1) ∨ (m1 = ∗). By boolean
factorization, this means that (m1 = m2) ∨ ((m2 = ∗) ∧ (m1 = ∗)). On both sides of the conjunction,
m1 = m2.

The matching relation is not symmetric because m :∼= ∗ but ∗ :≇ m for any non-wildcard m.

3 Categorical Distributions

Let Ω be a set of mutually exclusive outcomes4. We assume that Ω is finite and there are K outcomes or
categories so that |Ω| = K.

Definition 3.1. A categorical distribution on a Ω is a function P : Ω → [0, 1] such that
∑

h∈Ω P (h) = 1

The set of all categorical distributions of size K can be embedded in RK as a (K-1)-dimensional object
called a simplex (see figure 1). For example, if K = 3, the resulting space of categorical distributions is an
equilateral triangle embedded in R3 connecting the points (1, 0, 0), (0, 1, 0), and (0, 0, 1).

P0

P1

(0,1)

(1,0)

P0

P1

P2

(1,0,0)

(0,0,1)

(0,1,0)

(0,1,0,0)

(0,0,0,1)

(1,0,0,0)

(0,0,1,0)

Figure 1: An illustration of the probability simplex for K = 2, 3, and 4. These objects are respectively, a
segment embedded in R2, an equilateral triangle embedded in R3, and a normal tetrahedron embedded in
R4. We make no attempt to visualize the 4D space that contains the tetrahedron.

3.1 Events

An event is a set of outcomes, and by convention F is the set of all possible events. In general, F is not the
entire power set of Ω, but when Ω is finite we can consider any subset e ⊆ Ω to be an event5.

Definition 3.1 creates a probability function that assigns values on individual outcomes. We now define the
probability function on an event, which corresponds to the probability that any one of its outcomes occur.
Looking at probability on the event level rather than the outcome level is a crucial insight in the development
of probability theory (and measure theory more generally). Even though the process is far simpler for finite
distributions, we must pay attention to this layer in order for the framework to generalize.

4Each outcome could be thought of as a possible result of a random trial, or a possible value for an unknown variable
5We need not concern ourselves with defining a σ-algebra of measurable sets.
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Definition 3.2. For all e in F ,

P (e) =
∑

h∈e

P (h).

P acts on either outcomes or events using the convention P ({h}) = P (h). Ω is itself an event; the universal
event of all outcomes, with probability 1.

P (Ω) =
∑

h∈Ω

P (h) = 1

3.2 Relative Probability Function

A relative probability function, or RPF, measures the probability of one event with respect to another. For
example, we may wish to talk about an event that is “twice as likely” as another, even if we don’t know
the absolute probability of either event. In a sense, all probability is relative and conditional because all
probabilistic statements come with underlying assumptions.

We continue to use P to represent the RPF but now with two inputs instead of one. The expression P (e1, e2)
can be read as the probability of e1 relative to e2.

P : F × F → M
∗

We define relative probability in terms of absolute probability as a ratio, in the style of Kolmogorov.

Definition 3.3. The relative probability of events e1 and e2 on a categorical distribution P is as follows:

P (e1, e2) =
P (e1)

P (e2)

If P (e1) = P (e2) = 0, then P (e1, e2) = ∗, representing the motivational problem of zero-probability events
being incomparable.

With absolute probability, information is lost at the boundaries of the simplex where the probability of
several outcomes might be assigned a value of zero. For example, if Ω = {a, b, c} with P (a) = 1 and
P (b) = P (c) = 0, we cannot compare the probabilities of b and c by ratio as we can in the rest of the
simplex.

This poses an interesting problem for limits.

Example 3.1. Consider the following categorical distribution function, with parameter ǫ > 0:

P (a) = 1− ǫ P (b) =
2

3
ǫ P (c) =

1

3
ǫ

This is clearly an absolute probability, and its limit as ǫ goes to zero should be P (a) = 1, P (b) = P (c) = 0.
The fact that b is twice as likely as c is lost!
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4 The Relative Probability Approach

In section 3.2, the relative probability function was derived from the absolute probability function. Here in
section 4, we invert this process by starting with the relative probability as the fundamental building block.

4.1 Fundamental Axioms

Definition 4.1. Let Ω be the set of outcomes, and P : Ω× Ω → M∗ be a function acting on two outcomes
to produce a magnitude-wildcard. P is a relative probability function on the outcomes of Ω if it obeys the 3
fundamental axioms of relative probability:

(i) The identity axiom: P (h, h) = 1

(ii) The inverse axiom: P (h1, h2) = P (h2, h1)
−1

(iii) The composition axiom: P (h1, h3) :∼= P (h1, h2) · P (h2, h3)

P (h1, h2) represents the probability of h1 relative to h2. Outcomes h1 and h2 are comparable if P (h1, h2) 6= ∗.

Let us pause for a moment to discuss how these axioms were selected. The composition axiom is doing most
of the work, and it succinctly encodes how relative probability works. If A is twice as likely as B, and B
is 3 times as likely as C, then A had better be 6 times as likely as C. If not, these relative probability
assignments would have no meaning; they would just be numerical assignments without rhyme or reason6.

The composition axiom is enough to show that the identity axiom works most of the time. For any two
outcomes h1 and h2 we get through composition P (h1, h2) :∼= P (h1, h1) · P (h1, h2). As long as P (h1, h2)
isn’t 0, ∞, or ∗, then we would have to conclude P (h1, h1) = 1 so long as h1 is comparable to itself.

But that doesn’t get us all the way there! There are still scenarios where P (h, h) = ∗. The question that
must be asked is: should the the self-comparisons in an outcome space contain information where there is a
choice of values between 1 and ∗? Such information would not be relevant to relative probability. Therefore,
P (h, h) can only have a single value and it must be 1. Hence, the necessity of the identity axiom.

Composition and identity can actually be combined into a single axiom about composition paths. It’s a bit
unwieldy, but nevertheless interesting.

Proposition 4.1 (Path Composition). Given a non-empty list of N outcomes h0, h1, h2, ..., hN−1,

P (h0, hN−1) :∼=

N−2
∏

k=0

P (hk, hk+1)

In this case, P (h0, h0) would be matched by the empty product, which is 1.

The inverse axiom is nearly redundant as well. Since P (h0, h0) :∼= P (h0, h1) · P (h1, h0), the terms in the
constraint look like they must be inverses. But without stating the axiom explicitly, there could be a case
where P (h0, h1) is some non-wildcard magnitude like 2 but P (h1, h0) is ∗. This shouldn’t be allowed because
∗ represents a lack of knowledge about a value, and we consider P (h1, h0) and P (h1, h0) to be the same piece
of information but in reverse.

6Many of our political and economic forecasts come in this form.
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4.2 Examples

Now that the definition of relative probability is squared away, we can construct a library of examples for
common RPFs that will serve as building blocks to describing common situations.

Definition 4.2. The uniform RPF on any Ω considers each outcome equally likely. In other words,
P (h1, h2) = 1 for every pair of outcomes.

Definition 4.3. The indeterminate RPF has P (h1, h2) = ∗ for every pair of outcomes.

Definition 4.4. A certain RPF contains a single outcome that has infinite probability relative to all other
outcomes. Let hC be the certain outcome with hC 6= h. Then P (hC , h) = ∞. The relative probability of
the other K − 1 outcomes could be anything.

Definition 4.5. The empty RPF has no outcomes because K = 0, and therefore the function P has no
valid inputs.

It is surprising that there is still an RPF with Ω = ∅. This is not the case for absolute distributions where
such a function does not exist (because with no outcomes, they cannot sum to 1).

Definition 4.6. The unit RPF has a single outcome where K = 1 and Ω = h. There is only one such RPF
where P (h, h) = 1.

The unit RPF is both uniform and certain. This corresponds to the absolute case where the probability of
the single outcome must be 1.

Definition 4.7. Let P be an RPF with K outcomes labeled (h0, h1, ..., hK−1). P is a finite geometric RPF
with ratio r if the relative probabilities of each outcome with its neighbor is always r. In other words, for
all i ∈ (0, 1, ...,K − 2),

P (hi+1, hi) = r

When r is 0 or ∞, we can call this the limit finite geometric RPF.

Finally, to include an example that is both common and has powerful applications, the relative version of
the binomial distribution can be defined as follows:

Definition 4.8. A binomial distribution has a sample size n, and a probability of success p. The RPF has
outcome space Ω = {0, 1, 2, ..., n} and thus K = n+ 1. It is given as follows:

P (h1, h2) =
h2!(n− h2)!

h1!(n− h1)!

(

p

1− p

)h1−h2

5 Concepts for Relative Probability Functions

We defined the relative probability function in section 4 with the fundamental axioms and have constructed
some examples. Because new situations arise that do not occur in the Kolmogorov model, we also need to
define some new vocabulary.

Figure 2 gives us a roadmap of these new concepts and their relationship to each other.
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Relative Probability Function
Definition 4.1

Anchored RPF
Definition 5.3

Empty RPF
Definition 4.5

Indeterminate RPF
Definition 4.3

Non-empty
Totally Comparable RPF

Definition 5.1

Finite Limit
Geometric Distribution,

K > 2
Definition 4.7

Absolute Probability
Function

Definition 3.1

Union

Facet Probability
RPF

(single impossible event)

Totally Mutually Possible
RPF

Definition 5.6

(Non-Empty)
Uniform

Definition 4.2

Unit
Distribution
Definition 4.6

Finite Geometric
Distribution
Definition 4.7

Binomial
Distribution
Definition 4.8

Limit Finite
Geometric
with K = 2

Lemma 5.4Th
eo
re
m
5.
3

Theorem 5.2

Matched By

Theorem 5.5

Figure 2: This is a roadmap for all of the sub-types of relative probability functions and their relationship
to one another.
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5.1 Absolute Probability as a Special Case

Fortunately, the absolute probability function is a special case of an RPF (through definition 3.3), defined

by P (h1, h2) =
P (h1)
P (h2)

with the exception that if P (h) = 0, then P (h, h) = 1 instead of ∗ in order to satisfy

the identity axiom.

Theorem 5.1. A relative probability function derived from an absolute probability function satisfies the
fundamental axioms.

Proof. For the identity axiom, we have P (h, h) = 1 built into the definition.

For the inverse axiom, we can see that for outcomes h1 and h2, P (h1, h2) = P (h1)
P (h2)

=
(

P (h2)
P (h1)

)−1

=

P (h2, h1)
−1.

For composition, we must show that for all outcomes h1, h2, h3, P (h1, h3) :∼= P (h1, h2) · P (h2, h3)

Start with the case that P (h2) 6= 0. Then P (h1, h2) · P (h2, h3) =
P (h1)
P (h2)

P (h2)
P (h3)

= P (h1)
P (h3)

= P (h1, h3). When

P (h2) = 0, P (h1, h2) · P (h2, h3) = P (h1)
P (h2)

P (h2)
P (h3)

= ∗. Because ∗ matches everything, then the matching

statement holds. Because it holds in both when P (h2) = 0 and P (h2) 6= 0, the theorem holds true always.

5.2 Comparability, Possibility, and Anchors

Definition 5.1. A relative probability function is totally comparable if every pair of outcomes are compa-
rable.

Theorem 5.2. An absolute probability function is totally comparable if and only if P (h) = 0 for at most
one outcome.

Proof. Let P be an absolute probability function with distinct outcomes h1 and h2. If P (h1) = P (h2) = 0,
then P (h1, h2) = 0

0 = ∗. If only outcome h1 is assigned 0, then P (h1, h1) = 1, P (h1, h2) = 0, and
P (h2, h1) = ∞. Any other pairing that does not involve h1 will be the quotient of two positive numbers,
and thus not ∗.

Once it is established that outcomes are comparable to one another, they form groupings. If an outcomes h1

and h2 both have probability 0 (or∞) with respect to h3 then P (h1, h2) is not predetermined by composition.
This leads us to the concept of possibility and impossibility.

Definition 5.2. Outcome h1 is impossible with respect to h2 if P (h1, h2) = 0. Outcome h1 is possible with
respect to h2 if it is comparable and P (h1, h2) > 0.

Anchor outcomes are those outcomes that have a non-zero absolute probability. The anchoring of a distri-
bution ensures that it is well behaved.

Definition 5.3. An anchor of an RPF is an outcome that is possible with respect to every other outcome.
An RPF that has at least 1 anchor is called an anchored RPF.

Theorem 5.3. All absolute probability distributions are anchored.
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Proof. Let P be an absolute probability distribution on Ω. Because
∑

h∈Ω P (h) = 1, there must be at least

one h such that P (h) > 0. Therefore, for any comparison outcome h′, P (h, h′) = P (h)
P (h′) > 0.

Lemma 5.4. Every non-empty, totally comparable RPF is anchored.

Proof. Let P be a non-empty and totally comparable RPF. To prove by contradiction, assume that arbitrary
outcome h is not an achor, and therefore there exists another outcome h′ such that P (h, h′) = 0.

Create a function f : Ω → Ω that finds a potential h′ = f(h) so that P (h, f(h)) = 0.

Let fn be the function f applied n times. Then P (h, fn(h)) = 0 for all n greater than 0. This is by induction
because the case of n = 1 was assumed above, and for the inductive step

P (h, fn+1(h)) :∼= P (h, fn(h)) · P (fn(h), f(fn(h)) = 0 · 0 = 0

Because Ω is finite, repeated applications of f on h must eventually return to an outcome that has already
been visited. In more rigorous terms, there exists an N such that fN(h) = f i(h) for some i < N .

This is a contradiction because P (f i(h), fN (h)) should equal 0 by the argument above, but 1 by the identity
axiom.

A totally comparable RPF contains the maximum amount of information about the relative probability of
its outcomes. Some RPFs have less information but are nevertheless consistent with those that have more.
The following definition describes this relationship.

Definition 5.4. Let P1 and P2 be relative probability functions. P1 is matched by P2 if and only if for all
outcomes h1 and h2,

P1(h1, h2) :∼= P2(h1, h2).

Theorem 5.5. Every anchored RPF is matched by an absolute probability function, given by the following
equation where a is an anchor outcome.

P (h) =
P (h, a)

∑

h′∈Ω P (h′, a)

Proof. We need to show that P (h) is a valid absolute probability function, and that it matches the original
RPF.

Because a is an anchor element, P (h′, a) < ∞. Therefore the sum
∑

h′∈Ω P (h′, a) < ∞.
∑

h′∈Ω P (h′, a)
is also > 0, because it includes the term P (a, a) = 1. The numerator P (h, a) is also < ∞. Therefore,
P (h) /∈ {∞, ∗}.

We next check that the values of P (h) sum to 1 as follows:

∑

h∈Ω

P (h) =
∑

h∈Ω

P (h, a)
∑

h′∈Ω P (h′, a)
=

∑

h∈Ω P (h, a)
∑

h′∈Ω P (h′, a)
= 1

Cancellation of these equal sums is justified because we have shown previously that they cannot be 0 or ∞.
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Therefore, P (h) is a valid absolute probability function. We show that the RPF is matched by it though the
following calculation:

P (h1, h2) :∼= P (h1, a) · P (a, h2) =
P (h1, a)

∑

h′∈Ω P (h′, a)
÷

P (h2, a)
∑

h′∈Ω P (h′, a)
=

P (h1)

P (h2)
(1)

5.3 Mutual Possibility

Definition 5.5. Outcomes h1 and h2 are mutually possible if they are comparable and 0 < P (h1, h2) < ∞.
In other words, h1 and h2 are each possible with respect to the other.

Theorem 5.6. Mutual possibility is an equivalence relation, being reflexive, symmetric and transitive.

Proof. Reflexive: P (h, h) = 1 by the identity axiom.

Symmetric: P (h1, h2) = P (h2, h1)
−1, which means that each can be in {0,∞, ∗} if and only if the other is

as well.

Transitive: The composition axiom states that P (h1, h3) :∼= P (h1, h2) · P (h2, h3). If the factors in the
constraint (P (h1, h2) and P (h2, h3)) are positive and finite, then their product is also positive and finite.

Definition 5.6. An RPF is totally mutually possible if all of its outcomes7 are mutually possible or equiva-
lently are all anchors.

It is helpful to make diagrams of possibility and impossibility through a directed graph. In these graphs,
each outcome is represented by a point, and an arrow from A to B means that B is possible with respect to
A. A bidirectional arrow means that A and B are mutually possible. Totally mutually possible RPFs have
a simple diagram where all the outcomes are connected as in figure 3.

Figure 3: A totally mutually possible RFP has - unsurprisingly - a complete graph of mutual possibility.

Theorem 5.7. A non-empty totally mutually possible RPF is equal to an absolute probability function.

Proof. If P is totally mutually possible, then all of its outcomes are anchors. Therefore, we can use theorem
5.5 to find a matching absolute probability function

P (h) =
P (h, a)

∑

h′∈Ω P (h′, a)

7This is one of the few definitions that cannot later be upgraded from outcomes to events. The empty event e = {} for
example will be impossible with respect to any outcome by theorem 6.2.
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Because every element of Ω is an anchor, we can let a = h and get

P (h) =
P (h, h)

∑

h′∈Ω P (h′, h)
=

1
∑

h′∈Ω P (h′, h)

Theorem 5.5 states that P (h1, h2) :∼=
P (h1)
P (h2)

, but since the constraint P (h1)
P (h2)

is never ∗, they must be equal.

5.4 Possibility Classes

In order to analyze the general case of RPFs, we need to consider classes of mutual possibility.

Theorem 5.8. The relationship of being possible is both reflexive and transitive, or in other words a preorder.

Proof. It is reflexive because P (h, h) = 1. If P (h1, h2) > 0 and P (h2, h3) > 0 then their product is also
greater than zero, and by composition, equal to P (h1, h3). Thus h1 is also possible with respect to h3.

If we consider the equivalence classes of mutual possibility and their relationship to one another, then we
have a partial order. Figures 4 and 5 are both examples of a graph of outcomes grouped by mutually possible
equivalence classes. Figure 4 is anchored while figure 5 is not.

Figure 4: A diagram of an anchored RPF with its mutually possible classes. Each point is an outcome, and
each circle is mutually possible class. The anchor class (shaded) is the maximal class in the partial order.

Theorem 5.9. Consider two distinct equivalence classes of mutually possible outcomes in an RPF and call
them C1, C2 ⊆ Ω. Any pair of outcomes h1 ∈ C1 and h2 ∈ C2 will have the same relative probability P (h1, h2)
as any other pair of outcomes in C1 × C2.

Proof. P (h1, h2) must be in {0,∞, ∗} because otherwise h1 and h2 would be mutually possible and in the
same equivalence class. Let h′

1 ∈ C1 and h′
2 ∈ C2 be alternative representatives from equivalences classes C1

and C2. Then 0 < P (h′
1, h1) < ∞ and 0 < P (h2, h

′
2) < ∞ due to the definition of mutual comparability.

Thus with composition we get

P (h′
1, h

′
2) :

∼= P (h′
1, h1) · P (h1, h2) · P (h2, h

′
2) = P (h1, h2)
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Figure 5: A diagram for a single RPF that is not anchored. We cannot turn this into an absolute probability
function.

Finally, we look at totally comparable RPFs, where mutually possible components form a total order (see
figure 6). We’ve established in the proof of theorem 5.9 that the relative probability of outcomes from one
equivalence class to another are constant and either 0, ∞ or ∗. If the RPF is totally comparable, then it can
only be 0 or ∞, providing a transitive, binary relation and thus a total order.

Figure 6: A diagram of a totally comparable RPF that is not totally mutually possible. The mutually
possible components form a total order, with the anchored component on top and the graph forming a line.

6 From Outcomes to Events

Our next task is to upgrade P to operate on the event level. This is more difficult than it seems. For
example, we may wish to declare that the probability of event e1 with respect to e2 is going to be additive
on e1 as follows:

P (e1, e2) =
∑

h1∈e1

P (h1, e2) (2)

Equation 2 looks uncontroversial, but it actually contradicts the fundamental axioms! If we let e1 = ∅, then
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we have an empty sum on the right hand side of the equation, and we get P (∅, e2) = 0. Likewise, if we allow
e2 to be empty, we get P (e1,∅) = P (∅, e1)

−1 = 0−1 = ∞. Both of these statements make sense until they
collide in P (∅,∅) = 0 = ∞, and what’s worse is that this is also equal 1 under the identity axiom!

Another problem arises when an event is internally incomparable, meaning that it contains outcomes that
are incomparable with each other. Perhaps there are interesting things we can say about such events, but
here we will constrain ourselves to totally comparable RPFs in order to avoid such questions.

Definition 6.1. Let P be a totally comparable RPF. P measures the probability of two events relative to
each other using the following rules:

(i) P (e1, e2) obeys the fundamental axioms of relative probability.

(ii) P (e1, e2) sums over any reference outcome r as follows:

P (e1, e2) :∼=

∑

h1∈e1
P (h1, r)

∑

h2∈e2
P (h2, r)

. (3)

Because we no longer have access to absolute probability, the best we can do is measure it relative to a
reference outcome r. This ratio might be indeterminate, so we use the matching relation instead of equality.
Fortunately, we can show that there exists at least one reference outcome that will constrain P (e1, e2) in
statement 3 so long as e1 and e2 are not both empty.

Proof. Lemma 5.4 states that all totally comparable RPFs have anchor outcomes, and therefore (by the same
argument) every event must contain internal anchors, defined as an anchor for the RPF that is restricted
to outcomes in that event. Choose an internal anchor a from one of the events, say e1. Then the sum
∑

h1∈e1
P (h1, a) will be non-infinite8, and non-zero because P (a, a) = 1 is a term in the sum. Therefore, the

constraint as a whole cannot be indeterminate.

If both events are empty then they cannot have internal anchors, but by the identity axiom P (∅,∅) = 1.

These requirements again seem reasonable, but how can we know for sure that they provide a complete and
consistent definition of P : F × F → M? The following must be shown:

(i) If two distinct reference outcomes for r in statement 3 yield constraints on P , then they must be equal.

(ii) The constraint in statement 3 does not violate the fundamental axioms.

Proof. For i:

Let r1 and r2 be distinct reference outcomes that constrain P (e1, e2). Then we want to check that

∑

h1∈e1
P (h1, r1)

∑

h2∈e2
P (h2, r1)

=

∑

h1∈e1
P (h1, r2)

∑

h2∈e2
P (h2, r2)

(4)

Neither expression is a wildcard, and none of the individual terms are either. The key to this argument is
in the value of P (r1, r2).

8For anchor a, P (a, h) > 0 but this also means that P (h, a) < ∞.
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Assume P (r1, r2) = 0.

If
∑

h1∈e1
P (h1, r1) is finite, then

∑

h1∈e1
P (h1, r2) must be matched by

∑

h1∈e1
P (h1, r1) ·P (r1, r2) which is

0. By the same argument,
∑

h2∈e2
P (h2, r2) is also 0. Since they can’t both be zero, one of the sums involving

r1 on the right hand side is infinite. Therefore P (e1, e2) is either ∞ or 0. Let’s say it is P (e1, e2) = 0. Then
∑

h2∈e2
P (h2, r1) = ∞ and by the argument above

∑

h1∈e1
P (h1, r2) = 0. Because the right hand side is not

∗ - it must resolve to zero as well.

By analogous arguments, equation 4 must also hold when P (e1, e2) = ∞ or P (r1, r2) = ∞ or both.

Next assume that P (r1, r2) /∈ {0,∞}. Multiply the left hand side of equation 4 by 1 = P (r1,r2)
P (r1,r2)

and distribute
to get:

∑

h1∈e1
P (h1, r1) · P (r1, r2)

∑

h2∈e2
P (h2, r1) · P (r1, r2)

=

∑

h1∈e1
P (h1, r2)

∑

h2∈e2
P (h2, r2)

For ii:

The identity, inverse, and composition axioms follow from the fact that statement 3 is a ratio with identical
expressions for e1 in the numerator and e2 in the denominator. Therefore, if it resolves it is just a ratio of
positive numbers, which follow the fundamental axioms.

Theorem 6.1. If events e1 and e2 are not both empty, the following formula calculates the relative probability
of events:

P (e1, e2) =
∑

h1∈e1

1
∑

h2∈e2
P (h2, h1)

.

Proof. Find a suitable reference outcome r and multiply by 1 = P (h1,r)
P (h1,r)

.

∑

h1∈e1

1
∑

h2∈e2
p(h2, h1)

:∼=
∑

h1∈e1

P (h1, r)
∑

h2∈e2
P (h2, h1)P (h1, r)

=

∑

h1∈e1
P (h1, r)

∑

h2∈e2
P (h2, r)

Since both P (e1, e2) and
∑

h1∈e1
1∑

h2∈e2
p(h2,h1)

match
∑

h1∈e1
P (h1,r)

∑
h2∈e2

P (h2,r)
which is not ∗ for appropriate reference

r, they must be equal.

We then derive the absolute probability function as

P (e) = P (e,Ω) =
∑

h∈e

1
∑

h′∈Ω p(h′, h)

Theorem 6.2. The empty event ∅ has probability 0 relative to any non-empty event.

Proof. Let e be a non-empty event, and let h be an outcome in e.

P (∅, e) :∼=

∑

h1∈∅
P (h1, h)

∑

h2∈e P (h2, h)
=

0
∑

h2∈e P (h2, h)
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The sum
∑

h2∈e P (h2, h) cannot itself be zero because P (h, h) is one of its terms. Therefore, P (∅, e) = 0

7 Composing Relative Probability Functions

Let P0, P1, ..., PK−1 be relative probability functions on outcome spaces Ω0,Ω1, ...,ΩK−1 respectively so that
each Pk is a function of type Ωk × Ωk → M∗.

We can combine all of these relative probability functions together with a top level probability function P⊤

(pronounced “P-Top”) with outcome space Ω⊤ = {Ω0,Ω1, ...ΩK−1}. The outcome space is hierarchical as
shown in figure 7.

Ω⊤

Ω0

h0,0 h0,1 . . . h0,|Ω0|−1

Ω1

h1,0 . . .

. . .

. . . . . .

ΩK−1

. . . hK−1,|ΩK−1|−1

Figure 7: A tree diagram for a set of RPFs being composed by a top-level RPF.

Now let Ω be the set of all outcomes Ω0 ∪Ω1 ∪ . . .ΩK−1. We can create a new relative probability function
P acting on outcome space Ω with the following rules:

• If the two outcomes fall under the same component, then their relative probabilities do not change:

P (hk,i, hk,j) = Pk(hk,i, hk,j) (5)

• If the two outcomes fall under different components, then their relative probabilities are given as follows.

P (hk1,i, hk2,j) = Pk1
(hk1,i,Ωk1

) · P⊤(Ωk1
,Ωk2

) · Pk2
(Ωk2

, hk2,j) (6)

Note the use of composition to traverse up and down the tree. One could of course imagine this tree being
many levels, and having a different height for each branch.

Theorem 7.1. Composed function P as defined above respects the fundamental axioms.

Proof. The axioms are already obeyed by each component internally, but they also need to hold when the
two inputs to P are in different components. An outcome is always in the same component as itself, so the
identity axiom immediately follows from equation 5.
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The inverse law can be proven by calculation.

P (hk1,i, hk2,j)
−1 = (Pk1

(hk1,i,Ωk1
) · P⊤(Ωk1

,Ωk2
) · Pk2

(Ωk2
, hk2,j))

−1

= Pk1
(hk1,i,Ωk1

)−1 · P⊤(Ωk1
,Ωk2

)−1 · Pk2
(Ωk2

, hk2,j)
−1

= Pk1
(Ωk1

, hk1,i) · P⊤(Ωk2
,Ωk1

) · Pk2
(hk2,j ,Ωk2

)

= Pk2
(hk2,j,Ωk2

) · P⊤(Ωk2
,Ωk1

) · Pk1
(Ωk1

, hk1,i)

= P (hk2,j , hk1,i)

(7)

Composition can be shown similarly - now naming the 3 separate indices in components k1, k2, k3 as i1, i2, i3
respectively.

P (hk1,i1 , hk2,i2) · P (hk2,i2 , hk3,i3)

= Pk1
(hk1,i1 ,Ωk1

) · P⊤(Ωk1
,Ωk2

) · Pk2
(Ωk2

, hk2,i2) · Pk2
(hk2,i2 ,Ωk2

) · P⊤(Ωk2
,Ωk3

) · Pk3
(Ωk3

, hk3,i3)

:∼= Pk1
(hk1,i1 ,Ωk1

) · P⊤(Ωk1
,Ωk2

) · P⊤(Ωk2
,Ωk3

) · Pk3
(Ωk3

, hk3,i3)

:∼= Pk1
(hk1,i1 ,Ωk1

) · P⊤(Ωk1
,Ωk3

) · Pk3
(Ωk3

, hk3,i3)

:∼= Pk1
(hk1,i1 , hk3,i3)

(8)

Theorem 7.2. P is totally comparable if and only if the following are true:

(i) P⊤ and Pk for all k ∈ {0, 1, ...,K − 1} are totally comparable.

(ii) All components except at most one are totally mutually possible.

(iii) If there is a component that is not totally mutually possible, then every element of P⊤ is possible with
respect to that component.

Proof. First assume the conditions to show that the total comparability of P follows.

If all the components are totally comparable, then any two outcomes in the same component are always
going to be comparable in the overall RPF. We only need to prove that outcomes in different components
are comparable. Starting with equation 6,

P (hk1,i, hk2,j) = Pk1
(hk1,i,Ωk1

) · P⊤(Ωk1
,Ωk2

) · Pk2
(Ωk2

, hk2,j) (9)

The only way that P (hk1,i, hk2,j) = ∗ is if both 0 and ∞ are factors of the constraint Pk1
(hk1,i,Ωk1

) ·
P⊤(Ωk1

,Ωk2
) · Pk2

(Ωk2
, hk2,j)

Because there is at most one component that is not totally mutually possible by ii, we can say that either
Pk1

(hk1,i,Ωk1
) = 0 or Pk2

(hk2,j ,Ωk2
) = 0, or possibly neither, but not both.

Using equation 3 with the factor Pk1
(hk1,i,Ωk1

) and k1 itself as the reference outcome, we get

Pk1
(hk1,i,Ωk1

) :∼=

∑

h1∈{k1}
P (h1, k1)

∑

h∈Ωk1

P (h2, k1)
=

1
∑

h∈Ωk1

P (h2, k1)
.

The sum in the denominator cannot be zero since P (k1, k1) = 1 will be one of its terms. Therefore the
factors Pk1

(hk1,i,Ωk1
) and Pk2

(hk2,j ,Ωk2
) also must be finite.
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If the term Pk1
(hk1,i,Ωk1

) = 0, then the only way the entire right hand side can be ∗ is if P⊤(Ωk1
,Ωk2

) = ∞.
But this can’t be true because by iii we assumed that Ωk2

is possible with respect to Ωk1
, the sole component

with impossible outcomes. An analogous argument can be made if Pk2
(hk2,j ,Ωk2

) = 0.

Therefore, the right hand side of the equation is not ∗ and P is totally comparable.

In the opposite direction, we show that if any of the conditions are broken, then P is not totally comparable.
Breaking condition i would introduce an explicit ∗ into equation 6. If there are multiple components with
impossible outcomes breaking condition ii, then it would introduce a 0 into the first term of equation 6 and
an ∞ into the third term, yielding ∗.

And finally, if only condition iii is broken, it would (with appropriate choices of h1 and h2) introduce a 0
into the first term of equation 6 and an ∞ into the second term of equation 6.

Therefore, if any of these conditions are broken, P is not totally comparable.

8 Bayesian Inference on Relative Distributions

Bayesian inference is the practice of updating ones beliefs about the state of the world given new data.

A relative probability function represents a belief over the set of potential hypotheses in Ω, meaning that
Bayesian inference can be performed on RPFs. The initial belief is called the prior and the updated belief is
called the posterior. Once a formula for the posterior is is worked out, the practitioner might then want to
search the hypothesis space Ω for an outcome that is either most likely (maximum a posteriori) or very good
with respect to the posterior distribution. They might also wish to randomly sample one or more outcomes
h ∈ Ω from the posterior weighted according to the relative probabilities.

Almost all of these sampling and search methods rely on an algorithm that starts at one or more initial
hypotheses and iterately updates using the relative probability of a current outcome and its nearby outcomes.
Examples include hill climbing, simulated annealing, Newton-Raphson, Markov Chain Monte Carlo, and
the No U-Turn sampler. The role of these algorithms in supervised machine learning has been previously
discussed by Local Maximum Labs in “Sampling Bias Correction for Supervised Machine Learning[11]”.
Because relative probability simplifies Bayes rule and is ideal for many sampling and selection algorithms,
statisticians and engineers should consider using the RPF framework for these purposes.

Start with the Bayesian inference formula for conditional probability for h ∈ Ω assuming that we receive
data D.

P (h|D) =
P (D|h) · P (h)

P (D)
P (D) =

∑

h∈Ω

P (D|h) · P (h)

Now we convert to relative probability by looking at two hypotheses h1 and h2 and the ratio of their posterior
probabilities.

P (h1|D)

P (h2|D)
=

P (D|h1) · P (h1)

P (D)
÷

P (D|h2) · P (h2)

P (D)
=

P (D|h1) · P (h1)

P (D|h2) · P (h2)
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Notice that each component is now represented by a ratio. By making the appropriate substitutions, we can
express this entirely in terms of RPFs.

For the ratio of prior probabilities, substitute the relative prior: P (h1)
P (h2)

→ P (h1, h2)

For the ratio of posterior probabilities, substitute the relative posterior: P (h1|D)
P (h2|D) → P (h1, h2|D)

The liklihood ratio, also known as the bayes factor, may not look like a relative probability, but the formula
to expand conditional probability suggests that it is:

P (D|h1)

P (D|h2)
=

P (D∩h1)
P (D)

P (D∩h2)
P (D)

=
P (D ∩ h1)

P (D ∩ h2)

Let PD represent the likelihood ratio of the different hypotheses. The likelihood ratio PD(h1, h2) encodes a
description of how the different hypotheses rate the likelihood of data.

The substitution for the likelihood ratio is now as follows: P (D|h1)
P (D|h2)

→ PD(h1, h2)

These substitutions create a Bayes rule for relative probability:

P (h1, h2|D) = PD(h1, h2)P (h1, h2) (10)

Bayesian inference is now reduced to a term-by-term multiplication of two different RPFs: PD(h1, h2) and
P (h1, h2). Fortunately, the product of two RPFs also obey the fundamental axioms.

Theorem 8.1. Let P1 and P2 be relative probability functions on Ω. Define P (h1, h2) = P1(h1, h2) ·
P2(h1, h2). Then, P is also an RPF because it obeys the fundamental axioms.

Proof. Identity: P (h1, h1) = P1(h1, h1)P2(h1, h1) = 1 · 1 = 1

Inverse:

P (h1, h2) = P1(h1, h2) · P2(h1, h2) = P1(h2, h1)
−1 · P2(h2, h1)

−1 = (P1(h2, h1) · P2(h2, h1))
−1 = P (h2, h1)

−1

Composition:

P (h1, h2)P (h2, h3) = P1(h1, h2)P2(h1, h2)P1(h2, h3)P2(h2, h3) :∼= P1(h1, h3)P2(h1, h3) = P (h1, h3)

8.1 Degeneration of Mutually Possible Beliefs

The Cromwell rule in Bayesian inference cautions against setting the probability of outcomes equal to 0 in
a prior belief. For relative probability, this corresponds to a preference for totally mutually possible RPFs.
If an outcome were considered impossible with respect to another, this would be a permanent belief that
cannot be changed through evidence.
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Theorem 8.2. If an outcome is impossible with respect to another outcome in the posterior distribution, it
will either remain impossible or become incomparable in the posterior. In other words, if P (h1, h2) = 0, then
P (h1, h2|D) ∈ {0, ∗}.

Proof. Assume P (h1, h2) = 0. Then P (h1, h2|D) = PD(h1, h2)P (h1, h2) = PD(h1, h2) · 0. This final term
would normally simplify to 0, but will be ∗ if PD(h1, h2) ∈ {∞, ∗}.

If a Bayesian setup allows an outcome to be declared impossible with respect to another from one piece of
evidence, and the reverse from another piece of evidence, those outcomes will become permanently incom-
parable. This failure mode will be familiar to those machine learning practitioners who have ever received a
model full of NaNs.

Theorem 8.3. If two outcomes are incomparable in a prior distribution, they will be incomparable in the
posterior distribution. In other words, if P (h1, h2) = ∗, then P (h1, h2|D) = ∗.

Proof. Assume P (h1, h2) = ∗. Then P (h1, h2|D) = PD(h1, h2)P (h1, h2) = PD(h1, h2) · ∗ = ∗

8.2 Example: A Noisy Channel

Here is an example of how relative probability gives us an interesting way of looking at statistical inference
problems.

Suppose we are to receive a message in the outcome space Ω = {0, 1, ...,K − 1}. There is a probability of
p that the message goes through correctly. Otherwise, it gets scrambled and we receive a value in Ω drawn
from the uniform distribution9. We receive the same message several times for redundancy, and we count ck
as the number of times the message was received as k.

The indicator function can be used to get the absolute probability of receiving h1 given that the real message
was h2.

P (received h1|message h2) = p[h1 = h2] +
1− p

K

We then use this to construct an RPF for the likelihood ratio if we receive a single message, k.

Pk(h1, h2) =
p[h1 = k] + 1−p

K

p[h2 = k] + 1−p
K

=
pK[h1 = k] + 1− p

pK[h2 = k] + 1− p

If we receive multiple messages in the count vector c, we get the following likelihood formula:

Pc(h1, h2) =
∏

k∈Ω

(

pK[h1 = k] + 1− p

pK[h2 = k] + 1− p

)ck

9We could still have gotten lucky and received the correct value.
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Every factor of the product where k /∈ {h1, h2} will be 1 and have no effect. Therefore we can remove all
those terms from the product.

Pc(h1, h2) =

(

pK[h1 = h1] + 1− p

pK[h2 = h1] + 1− p

)ch1

(

pK[h1 = h2] + 1− p

pK[h2 = h2] + 1− p

)ch2

=

(

pK + 1− p

1− p

)ch1

(

1− p

pK + 1− p

)ch2

=

(

1 +
pK

1− p

)ch1
−ch2

(11)

Because the prior is uniform, the posterior is just equal to the likelihood.

P (h1, h2|c) = Pc(h1, h2) · P (h1, h2) =

(

1 +
pK

1− p

)ch1
−ch2

We now have an insight: the relative probability between two hypotheses is exponential on the difference
between their counts. Formulating these problems in terms of relative probability often leads to easily
interpretable results, even before converting into absolute probability (which may or may not be required).
Using a different prior would be as easy as appending an additional term to the formula for P (h1, h2|c).

8.3 Digital Representation

Even if an inference problem starts with a mutually possible prior, the posterior could end up as any RPF
including all types in figure 2. How can we represent an RPF digitally in a data structure that could account
for all of these various possibilities?

Mutual possibility classes from section 5.4 provide a good framework for organizing an RPF. Every outcome
is a member of a mutual possibility class, and has a relative probability within that class.

To that end, we need to maintain a mapping from outcomes to classes, and a partial order of all the mutual
possibility classes. The data structure for this purpose could be as simple as listing the outbound edges for
each class (illustrated by the graphs in figures 4, 5, and 6). There needs to be a method to compare two
classes, and the comparison will return one of four values: greater, lesser, equal, or incomparable - or in
numerical terms {∞, 0, 1, ∗}.

Each comparison might require a traversal of the mutual possibility graph which could get expensive in
certain situations. The choice of data structure for partial orders comes with tradeoffs. For small outcome
spaces graph traversal will usually be adequate. When Bayesian inference is performed, the mutual possibility
classes will sometimes need to be split up - either vertically as some items in a class become impossible with
respect to others - or horizontally as they become incomparable. The data structure should be able to
account for this as well.

Let Ω be the outcome space, and let C be the set of mutually possible classes on Ω with respect to the RPF.
We maintain three functions

• α : Ω → C assigns outcomes to possibility classes.

• ℓ : Ω → (−∞,∞) provides a log value for an outcome within its mutual possibility class. This allows
us to use the full range of floating point numbers available on our machine.

• Q : C × C → {∞, 0, 1, ∗} compares two probability classes.
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From these, we can compute the value of an RPF with the following formula:

P (h1, h2) = Q(α(h1), α(h2)) · e
ℓ(h1)−ℓ(h2)

The simplest RPF to represent in this form is the uniform RPF. In this case, there is a single possibility
class so C = {0}, and ℓ is constant so it can be set as ℓ(h) = 0. No data is needed for Q because it has an
identity rule where Q(0, 0) = 1. In fact, Q is itself an RPF on C where instead of providing values in M∗ it
provides values in the subspace {∞, 0, 1, ∗}.

9 Topology and Limits in Relative Probability Space

One of the benefits of relative probability spaces is their properties with respect to limits. This section will
show that limits of totally comparable RPFs are also totally comparable RPFs. In other words, the space
of RPFs is topologically closed.

This effort caps off a significant argument in favor of relative probability. RPFs hold on to certain pieces
information under the limit operation, while absolute probability does not. Some background in topology10

required for this section.

9.1 Relative Probability Spaces

Definition 9.1. RPF∗(K) is the set of relative probability functions of size K (where Ω = {0, 1, ...,K− 1}).
Likewise RPF(K) is the set of all totally comparable RPFs of size K.

Because the set of absolute distributions with |Ω| = K is embedded in RK as seen in figure 1, its topological
properties are well understood. The simplex is closed, bounded, and compact.

For relative probability distributions, there is no obvious way to embed it into K-dimensional euclidean
space11. The relative probability space is more complicated, because at the corners and edges of the simplex
lurk entire subspaces where zero-probability outcomes are still being compared in different configurations.

Fortunately, RPF(K) can still be embedded into a much larger euclidean space. Any P ∈ RPF(K) is a
function of type Ω × Ω → M that satisfies the fundamental properties. Therefore RPF(K) can at least be

embedded into MK2

.

A topology can be defined by a basis of open sets, and for euclidean space (and metric spaces more generally)
the basis is the set of open balls on Rn.

Definition 9.2. An open ball of size ǫ around point x ∈ Rn is the set of all points y such that |x− y| < ǫ.

Open balls do not work as a basis on the set M because an open ball around ∞ would contain only ∞
when we instead want them to also contain some interval (x,∞]. This is remedied by using the following
transformation between M and [0, 1]. We take this transformation to be continuous, or topology conserving,
so that the topology of M is defined by the topology of [0, 1].

10Mendelson (1990) [12] and Bradley et al. (2020) [13] the formal definitions and theorems which we will work off of here.
11Though it should be possible! See section 10.3.
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Definition 9.3. The inverse odds transform is the function odds−1 : M → [0, 1] with odds−1(0) = 0 and
odds−1(∞) = 1 defined by

odds−1(x) =
x

x+ 1

The inverse odds transformation establishes M as topologically equivalent to the closed interval [0, 1]. Now

RPF(K) can be embedded into a bounded region of euclidean space, namely [0, 1]K
2

by applying inverse odds
to it. The result won’t follow the fundamental axioms, but it will respect all of the topological properties.
Appendix A provides an alternative way to define a topology on RPF(K).

9.2 Limit Points and Compactness

We now present an argument for the closure of RPF(K) under limits.

Definition 9.4. x is a limit point of set A if any open set containing x also contains points in A. Equivalently
for euclidean space, any open ball containing x also intersects with A.

Theorem 9.1. Let P be a limit point of RPF(K). Then P satisfies all of the fundamental axioms and is
therefore a member of RPF(K). In other words, RPF(K) is topologically closed.

Proof. Let P be a limit point of RPF(K). We can show that for each fundamental axiom, if P doesn’t
satisfy the axiom then some open ball around P also doesn’t satisfy the axiom.

Identity: If P doesn’t satisfy the identity axiom, then P (h, h) 6= 1 for some outcome h. The inverse odds
transform maps the value 1 to 1

2 , so a choice of ǫ less than |odds−1(P (h, h))− 1
2 | will contain only elements

P ′ where P ′(h, h) 6= 1.

Inverse: A similar argument applies here if for some pair h1 and h2, P (h1, h2) 6= P (h1, h2). An ǫ can be
selected that is small enough so that P (h1, h2) is never equal to P (h1, h2)

Composition: Suppose P (a, c) :≇ P (a, b) · P (b, c). This can only be true if P (a, c) 6= P (a, b) · P (b, c). But
then this gap allows us to make the same argument from before; for some sufficiently small ǫ-ball around P ,
the composition axiom will still be false.

This means that only functions P which satisfy the fundamental axioms can be limit points to RPF(K), and
therefore RPF(K) contains all its limit points and is closed.

We can now prove that RPF(K) is compact thanks to the Heine-Borel theorem, stated as follows (wording
from Bradley [13]).

Theorem 9.2 (Heine-Borel Theorem). A subset of Rn is compact if and only if it is closed and bounded.

Theorem 9.3. RPF(K) is compact.

Proof. Theorem 9.1 states that RPF(K) is closed, and by the odds transform it is also bounded. By the
Heine-Borel theorem, it is compact.
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10 Future Work

10.1 Expansions to infinite spaces

The obvious extension to this work is to expand relative probability to a generalized space which may be
infinite, and thus capture all of the variety of probability distributions that one might wish to define. Section
6 provides a good framework for this which would start by modifying statement 3 to ask for an additive
property. The relative probability function would then become a relative probability distribution.

This process raises certain questions.

1. Relative probability would provide an interesting basis for the theory of finitely additive probability
measures, or charges[14]. If we do not require countable additivity and instead opt for the weaker finite
additivity, this would allow for constructions like a fair countable lottery (also known as a De Finetti
Lottery[15]). In the interest of studying limits of RPFs, this would be desirable. Finite additivity may
also be a better mathematical model for computational methods in probability, on which additions
must always be finite.

2. If we derive a notion of probability density, then can these densities at a particular pair of events be used
to compare the relative probability of those events? What specific properties of the relative probability
distribution are required to make this work? Can we start with a density function and work upwards?

It appears possible to use these ideas to create a unified version of the Hausdorff measure - which finds the
size of an object given its dimension. Instead of considering it to be multiple measures, we can have a single
measure where bounded sets of equal dimension are mutually possible, and smaller-dimensional objects are
mutually impossible with respect to larger dimensional objects.

10.2 Relationship to Category Theory

Category theorists will recognize that an RPF describes a thin category where any pair of objects have at
most one morphism connecting them (per direction). The relative probability axioms can be analyzed and
approached through the lens of category theory in order to learn more about them.

C

BA

6 3

2

1
6

1
3

1
2

1 1

1

The recent work of Censi et al.[16] concerns negative information in categories, which corresponds to the
wildcard element ∗. It represents regions of the probability function that remain incomparable. This work
could be used to subsume, develop, and refine the indeterminate wildcard concept.
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10.3 Embedding in Lower Dimensional Euclidean Space

Absolute probability functions have this advantage where they can be embedded into a simplex in RK . For
relative probability functions it is not so straightforward but it should still be possible given that RPF(K) is

a (K-1)-dimensional set that can be embedded into [0, 1]K
2

. For example, the space RPF(3) can be mapped
as a hexagon, where each point can be assigned a probability based on its distance between two parallel sides
as in figure 8.

P (a) = 1

P
(c
)
=
0

P
(b)

=
1

P (a) = 0

P
(c
)
=
1

P
(b)

=
0

Figure 8: A triangle probability simplex embedded into R2 as a hexagon.

In this case, the triangular simplex has been truncated. For higher order simplices, this appears to become
increasingly unwieldy unless some simplifying trick is developed. If it is successfully done, then a cleaner
representation for members of RPF(K) becomes available.

11 Conclusion

Modeling probability as a “relative” measure takes on a new significance given the proliferation of compu-
tational methods. The nice properties of RPFs include formula simplification, closure under limits, and the
ability to model non-standard distributions.

Should practitioners regularly use the language of relative probability when describing and deploying proba-
bilistic models? It may not be beneficial in every situation, but they should certainly consider it! Computa-
tional techniques for Bayesian inference and machine learning in many cases remove the need to normalize
the distributions involved, so why not make it official?

Appendices

A Topology and Limits in Relative Probability Space

In section 9, we established a topology on RPF(K) by embedding it into Euclidean space, and demonstrated
its compactness. Here is an alternative topology that defines a basis of open sets directly. While this is not
used in the context of this paper, it shows promise in providing a more natural framework for topological
proofs and simplex partitioning.
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The notion of an open set changes when a topological space is restricted to a lower dimension. For example,
on the real number line R, the open interval (0, 1) is an open set. However, once it is embedded into R2,
it is now a line segment in a plane and no longer open (see figure 9). For example, the set {(x, y) : x ∈
(0, 1) and y ∈ (−ǫ,+ǫ)} given an ǫ > 0 is such an open set on R2. The line segment (0, 1) is open in R

because it is the restriction of this open set on R2.

x

y

0 1

−ε

ε

Figure 9: The small box that is the interior of the dotted rectangle is an open set in R2, and therefore its
restriction to R - the line segment - is an open set in R. But the line segment is not open in R2.

Likewise, an open set on RPF(K) will not be an open set on RPF(K + 1). Starting with RPF(2), we find a
totally comparable RPF that corresponds 1:1 with the magnitude space.

Theorem A.1. Let Ω = {0, 1} have two elements, with relative probability function P . Then, P is completely
determined by P (0, 1).

Proof. Let q = P (0, 1). By the inverse symmetric property, P (1, 0) = q−1. These values completely deter-
mine P on the outcome level.

This gives us both a topology and a compactness proof for RPF(2) because it is isomorphic to M. Its basis
for open sets are the open intervals of M, including those intervals that include 0 and ∞. For K > 2, we
will need more powerful tools, namely open patches. The set of open patches, which come in several flavors,
will be a basis for the open sets on RPF(K).

Definition A.1. An interior open patch of RPF(K) is one of the following:

1. If K = 2, a subset parameterized by an interior open interval of magnitudes. {P |a < P (h1, h2) < b}
for some a, b ∈ M

2. If K > 2, a composition of interior patches with composing function P⊤ also being an interior patch.

Interior open patches contain only totally mutually possible functions as illustrated in figure 10.

Definition A.2. A facet12 patch of RPF(K) is one of the following:

1. If K = 2, an interval of the form {P |0 < P (h1, h2) < a} for some a ∈ M

2. If K > 2, a composition where P⊤ is drawn from an interior open patch, and all but one of the
components are drawn from interior open patches. The final component - the facet component - is itself
drawn from a facet patch.

Definition A.3. An exterior open patch is a one of the following:

1. A facet patch.

12A facet of a simplex is a subset where one parameter is equal to zero - equivalent to a face on a 3D object.
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Figure 10: An interior open patch captures a contiguous set inside the probability simplex. Above is an
example of a composite probability distribution where the diagram on the left shows how P⊤ and P0 are
composed, and the right shows how the interior segments on both interact to form a patch.

2. A composition where P⊤ is a facet patch. The facet component is itself drawn from any open patch,
and all the other components are drawn from interior open patches.

As seen in figure 11, exterior open patches touch the hyperfaces (facets) of the simplex as well as the vertices
and edges. As the number of dimensions increases and the composition diagram changes, more permutations
are possible.

)

A B

C
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(

PT

P0
)
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C

(
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P0
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(

)(

PT

P0P0
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Figure 11: Exterior open patches. On the left is the facet patch, because it only touches a side (facet) of the
simplex and not a corner. In the center is an exterior open patch where the facet component P0 is itself a
facet patch (touching an edge and a corner), and on the right is an exterior open patch that touches a corner
only because P0 is an interior open patch. Note that the point containing the corner at C in the middle
and right diagram is only half filled because the patch contains some values where P (C) = 1 and not others,
depending on the relative probability between A and B.

Definition A.4. An open patch is a subset of RPF(K) that is either an interior or exterior open patch.

Now let the open patches be a basis for an open set thus defining a topology on RPF(K).

Definition A.5. An open set of RPF(K) is any (potentially infinite) union of open patches on RPF(K), or
any finite intersection of open patches on RPF(K).

These open patches are useful building blocks to building recursive proofs of compactness and other topo-
logical properties we might want to prove in the future.
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