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The masses, current couplings and widths of the fully heavy scalar tetraquarks X4Q = QQQQ,
Q = c, b are calculated by modeling them as four-quark systems composed of axial-vector diquark
and antidiquark. The masses m(′) and couplings f (′) of these tetraquarks are computed in the
context of the QCD sum rule method by taking into account a nonperturbative term proportional
to the gluon condensate 〈αsG

2/π〉. Results m = (6570± 55) MeV and m′ = (18540± 50) MeV are
used to fix kinematically allowed hidden-flavor decay channels of these states. It turns out that, the
processes X4c → J/ψJ/ψ, X4c → ηcηc, and X4c → ηcχc1(1P ) are possible decay modes of X4c. The
partial widths of these channels are evaluated by means of the couplings gi, i = 1, 2, 3 which describe
strong interactions of tetraquark X4c and mesons at relevant vertices. The couplings gi are extracted
from the QCD three-point sum rules by extrapolating corresponding form factors gi(Q

2) to the mass-
shell of a final meson. The mass of the scalar tetraquark X4b is below the ηbηb and Υ(1S)Υ(1S)
thresholds, therefore it does not fall apart to these bottomonia, but transforms to conventional
particles through other mechanisms. Comparing m = (6570± 55) MeV and Γ4c = (110 ± 21) MeV
with parameters of structures observed by the LHCb, ATLAS and CMS collaborations, we interpret
X4c as the resonance X(6600) reported by CMS. Comparisons are made with other theoretical
predictions.

I. INTRODUCTION

Conventional hadron spectroscopy encompasses vari-
ety of quark-antiquark mesons and three-quark (anti-
quark) baryons with different contents and spin-parities.
But existence of multiquark particles composed of more
than three valence partons is not forbidden by any phys-
ical theory or model. Features of such exotic states be-
came object of theoretical studies just after invention
of quark-parton model and non-abelian field theory of
strong interactions.

Quantitative investigations of multiquark hadrons
started from analyses performed by Jaffe in Refs. [1, 2]
using MIT quark-bag model. In Ref. [1] he made an as-
sumption about four-quark q2q2 nature of light mesons
from the lowest scalar nonet to explain the mass hier-
archy of these particles. Another intriguing result is
connected with a state composed of six light quarks
S = uuddss [2]. This double-strange multiquark com-
pound would be stable against strong decays provided
such particle really exists. Then hexaquark S may trans-
form to ordinary hadrons only through weak processes
and, as a result, have mean lifetime τ ≈ 10−10s, which is
considerably longer than that of conventional mesons.

Stability against strong and/or electromagnetic decays
is an important question of exotic mesons’s physics: Sta-
ble four-quark particles (tetraquarks) with long mean
lifetime may be discovered in various hadronic processes
relatively easily. Therefore, theoretical investigations of
such tetraquarks were and remain on agenda of high en-
ergy physics. Compounds containing heavy QQ diquarks
(Q = c or b ) and light antidiquarks are real candidates to

stable exotic mesons. A group of hypothetical particles

QQQ
(′)
Q

(′)
and QQqq were explored already in Refs. [3–

5], in which it was shown that exotic mesons built of only
heavy quarks are unstable particles. But states with con-
tent QQqq may form stable structures if the ratiomQ/mq

is large. Conclusions about stable nature of the isoscalar
axial-vector tetraquark T−

bb;ud
was also made in Ref. [6],

whereas four-quark mesons with heavy diquarks bc and
cc may be either stable or unstable particles.

More detailed analysis of fully heavy four-quark
mesons X4c = cccc, X2bc = bcbc and X4b = bbbb was
performed in Refs. [7–12], in which different features
of these particles were explored by means of numerous
methods and schemes. For instance, in Ref. [7] masses
of fully heavy tetraquarks were found by solving nonrel-
ativistic Schrodinger equation. In accordance with this
article scalar and axial-vector tetraquarks X4c, X2bc are
under the di-J/ψ and J/ψΥ(1S) thresholds, and only
tensor particles can be seen in di-J/ψ and J/ψΥ(1S)
invariant mass distributions. At the same time, all
fully beauty exotic mesons X4b reside below Υ(1S)Υ(1S)
threshold, and cannot be observed in this mass distribu-
tion. Masses of scalar tetraquarksX4c and X4b were esti-
mated also in Ref. [8]. Results obtained there m(X4c) =
(6192 ± 25) MeV and m(X4b) = (18826 ± 25) MeV al-
lowed the authors to study decay channels and produc-
tions of these particles. Because m(X4c) is below di-
J/ψ but above ηcηc thresholds, X4c does not decay to
J/ψJ/ψ mesons, while a process X4c → ηcηc is the kine-
matically allowed mode. Similarly, X4b cannot decay to
a pair of mesons Υ(1S)Υ(1S), whereas X4b → ηbηb is
its possible channel. Interesting predictions about par-
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ticles X4c and X4b were made in Ref. [10], in which
masses of states cccc, and bbbb with different spin-parities
were calculated by applying the sum rule method. It
was demonstrated that masses of the scalar JPC = 0++

tetraquarks X4c and X4b, except ones composed of pseu-
doscalar components, vary inside limits 6.44− 6.59 GeV
and 18.45− 18.59 GeV, respectively. Subsequently, X4c

decays to ηcηc, J/ψJ/ψ, and ηcχc1(1P ) meson pairs,
whereas X4b is stable against strong decays to hidden-
beauty mesons: Presumably a scalar diquark-antidiquark
state X4b built of pseudoscalar components can decay to
ηbηb and Υ(1S)Υ(1S) mesons. In accordance with Ref.
[11], the scalar and tensor X4c, have masses 5.99 GeV
and 6.09 GeV, and decay to mesons ηcηc, whereas di-
J/ψ channel is forbidden for them.

Experimental studies of two charmonia or bottomonia
productions in pp and pp collisions provided valuable in-
formation on nature and decay channels of fully heavy
exotic mesons. Thus, a pair of J/ψ mesons were ob-
served by LHCb, CMS and D0 Collaborations [13–15],
respectively. The J/ψΥ(1S) and Υ(1S)Υ(1S) pairs were
detected and investigated by D0 and CMS experiments
[16, 17]. In the four-quark picture such final states imply
production of intermediate states cccc, bcbc and bbbb with
their subsequent decays to couples of heavy conventional
mesons.

The discovery of the doubly charmed baryon Ξ++
cc =

ccu by the LHCb Collaboration [18] gave strong impetus
to investigations of doubly and fully heavy tetraquarks.
Thus, the mass of Ξ++

cc was used as an input parameter
to estimate the mass of the axial-vector tetraquark T−

bb;ud

[19]. Conclusions about strong-interaction stable nature
of the tetraquarks bbud, bbus, and bbds were made on
the basis of heavy-quark symmetry as well [20]. Weak
decays of stable double-heavy tetraquarks were explored
in numerous publications [21–30]. In our articles [23–
29], we calculated masses and current couplings of the
tetraquarks bbud, bbus and bcud with spin-parities JP =
0+, 1+, as well as parameters of the scalar state bsud. We
evaluated full width of these structures by considering
their numerous semileptonic and nonleptonic weak decay
channels.

The class of fully heavy exotic mesonsQQQ
(′)
Q

(′)
were

also explored in Refs. [31–35]. Predictions some of these
papers [33, 34] confirm in a modified form the results
discussed above. But there are also publications which
contradict to such conclusions. In fact, using lattice sim-
ulations the authors of Ref. [31] did not find evidence
for tetraquarksX4b with different spin-parities below the
lowest thresholds in relevant channels.

Recently, LHCb reported new structures in the di-J/ψ
mass distribution extracted from pp data at c.m. energies
7, 8, and 13 TeV [36]. The LHCb observed a threshold
enhancement in nonresonant di-J/ψ production from 6.2
to 6.8 GeV with center at 6.49 GeV. A narrow peak at
6.9 GeV, and a resonance around 7.2 GeV were seen as

well. The narrow state labeled X(6900) has parameters

mLHCb
1 = (6905± 11± 7) MeV,

ΓLHCb
1 = (80± 19± 33) MeV, (1)

when assuming no interference with nonresonant single-
parton scattering (NRSPS) continuum, and

mLHCb
2 = (6886± 11± 11) MeV,

ΓLHCb
2 = (168± 33± 69) MeV, (2)

while ones takes into account interference of NRSPS with
a threshold enhancement.
This experimental information was detailed and ex-

tended by the ATLAS and CMS Collaborations [37,
38]. The ATLAS announced three resonances X(6200),
X(6600), and X(6900) in the di-J/ψ channel with the
parameters

mATL
0 = 6220± 50+40

−50 MeV,

ΓATL
0 = 310± 120+70

−80 MeV, (3)

mATL
1 = 6620± 30+20

−10 MeV,

ΓATL
1 = 310± 90+60

−110 MeV, (4)

and

mATL
2 = 6870± 30+60

−10 MeV,

ΓATL
2 = 120± 40+30

−10 MeV. (5)

The resonance X(7300) with the mass and width

mATL
3 = 7220± 30+20

−30 MeV,

ΓATL
3 = 100+130+60

−70−50 MeV, (6)

was fixed in the J/ψψ′ channel. The resonancesX(6200)
andX(6600) belong to an enhancement in a 6.2−6.8 GeV
region observed by LHCb. It seems reasonable to sup-
pose that LHCb fixed a superposition of these structures.
The resonance X(7300) is close to structure at 7.2 GeV
reported by LHCb.
ResonancesX(6600),X(6900) andX(7300) discovered

by CMS and analyzed in the no-interference model have
the following masses and widths

mCMS
1 = (6552± 10± 12) MeV,

ΓCMS
1 = (124+32

−26 ± 33) MeV, (7)

mCMS
2 = (6927± 9± 4) MeV,

ΓCMS
2 = (122+24

−21 ± 18) MeV, (8)

and

mCMS
3 = (7287+20

−18 ± 5) MeV,

ΓCMS
3 = (95+59

−40 ± 19) MeV, (9)
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respectively. Summing up, we can state that there are
four resonances in the range 6.2− 7.3 GeV discovered by
different collaborations in the di-J/ψ and J/ψψ′ mass
distributions.

Observations made by LHCb stimulated further de-
tailed studies of fully heavy exotic mesons [39–48]. Need-
less to say, that all models and technical tools available
in high energy physics were activated to explore these
problems. Interesting results concerning properties of
fully heavy tetraquarks were obtained using the sum rule
method in Refs. [39–43]. For example, depending on
a type of interpolating current, the mass of the scalar
tetraquark cccc was found within limits 6.44− 6.47 GeV
[39]. Fully heavy diquark-antidiquark and hadronic
molecules were analyzed also in Ref. [42], in which the
resonance X(6900) was interpreted as a molecule χc0χc0
or/and a tetraquark built of pseudoscalar ingredients.

The LHCb data were considered in Ref. [46] in the
framework of a coupled-channel approach: It was ar-
gued that in the di-J/ψ system exists a near-threshold
state X(6200) with spin-parities 0++ or 2++. Coupled-
channel effects may also generate a pole structure iden-
tified in Ref. [48] with the resonance X(6900). Analysis
performed there allowed the authors also to predict exis-
tence of a bound state X(6200), and broad and narrow
resonances X(6680) and X(7200), respectively.

Information of the ATLAS and CMS Collaborations
considerably clarified status of structures above the di-
J/ψ threshold, and generated new interesting assump-
tions about their nature [49–54]. Indeed, in Ref. [49] the
X(6200) was assigned to be the ground-level tetraquark
state with JPC = 0++ or 1+−, whereas its first radial
excitation was interpreted as X(6600). Using the rel-
ativized Godfrey-Isgur diquark model, the authors of
Ref. [52] proposed to consider the resonances starting
from X(6200) as the 1S, 1P/2S, 1D/2P , and 2D/3P/4S
tetraquark states. Similar interpretations were suggested
in the context of the relativistic quark model as well [50].

As is seen, there are numerous alternatives to de-
scribe structures reported by the different collaborations.
In present article, we address problems of these new
data, and explore the fully charmed tetraquark X4c with
JPC = 0++ by calculating its mass, current coupling and
width. We modelX4c as a diquark-antidiquark structure,
and apply the two-point sum rule method to calculate a
relevant correlation function including a nonperturbative
term ∼ 〈αsG

2/π〉. It turns out, that processes X4c →
J/ψJ/ψ, X4c → ηcηc, and X4c → ηcχc1(1P ) are allowed
decay modes of X4c. To calculate their partial widths,
we make use of the three-point sum rule approach, and
compute strong form factors gi(q

2), i = 1, 2, 3 describing
interaction of particles at vertices X4cJ/ψJ/ψ, X4cηcηc,
and X4cηcχc1(1P ), respectively. Predictions for strong
couplings gi, obtained after extrapolation of gi(q

2) to the
mass-shell of a final meson, are used to calculate widths
of aforementioned decay channels and to estimate full
width Γ4c of the tetraquark X4c. Such detailed infor-
mation places interpretation of X4c on strong bases and

leads to reliable conclusions. We evaluate also the mass
m′ of the state X4b and show that in the axial–axial
model X4b is stable against strong decays to two bot-
tomonia. It is worth noting that in the present paper we
do not consider other mechanisms of X4c and X4b decays
to conventional particles [44, 45].
This article is structured in the following way: In Sec-

tion II, we calculate masses and current couplings of
the tetraquarks X4c and X4b. Strong decay of X4c to
J/ψJ/ψ is considered in Sec. III. Partial widths of the
processes X4c → ηcηc and X4c → ηcχc1(1P ) are com-
puted in Sec. IV. Here, we find also the full width Γ4c of
the tetraquark X4c. Last section is reserved for discus-
sion of results and concluding notes. Appendix contains
the explicit expression of the heavy-quark propagator,
and the perturbative part of the spectral density used in
mass computations.

II. SPECTROSCOPIC PARAMETERS OF THE

TETRAQUARKS X4c AND X4b

In this section, we calculate the masses m(′) and cur-
rent couplings f (′) of the tetraquarks X4c and X4b by
means of the QCD two-point sum rule approach [55, 56].
It is a powerful nonperturbative method developed to in-
vestigate features of conventional mesons and baryons,
but can also be applied to study multiquark hadrons,
such as tetraquarks and pentaquarks.
To derive the sum rules necessary for extracting the

masses and current couplings of the scalar tetraquarks
X4c and X4b, we begin from analysis of the two-point
correlation function

Π(p) = i

∫
d4xeipx〈0|T {J(x)J†(0)}|0〉. (10)

where, T is the time-ordered product of two currents,
and J(x) is the interpolating currents for these states.
We model the tetraquarks X4c and X4b as structures

formed by the axial-vector diquark QTCγµQ and axial-

vector antidiquark QγµCQ
T
. Corresponding interpolat-

ing current is given by the formula

J(x) = QTa (x)CγµQb(x)Qa(x)γ
µCQ

T

b (x), (11)

where a, and b are color indices. In Eq. (11) Q(x) denotes
either c or b quark fields, and C is the charge conjugation
matrix. The current J(x) describes the tetraquark with
spin-parities JPC = 0++.
In what follows, we write down formulas for the

tetraquark X4c: Expressions for the state X4b can be
obtained from them trivially. The physical side of the
sum rule ΠPhys(p)

ΠPhys(p) =
〈0|J |X4c(p)〉〈X4c(p)|J

†|0〉

m2 − p2
+ · · · , (12)

is derived from Eq. (10) by inserting a complete set of
intermediate states with quark content and spin-parities
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of the tetraquark X4c, and performing integration over
x. Let us note that in ΠPhys(p) the ground-state term is
written down explicitly, whereas contributions of higher
resonances and continuum states are shown by the dots.
The correlation function ΠPhys(p) can be simplified us-

ing the matrix element

〈0|J |X4c(p)〉 = fm, (13)

which leads to the following expression

ΠPhys(p) =
f2m2

m2 − p2
+ · · · . (14)

The correlator ΠPhys(p) has simple Lorentz structure
proportional to I, therefore the invariant amplitude
ΠPhys(p2) is given by right-hand side of Eq. (14).
The QCD side of the sum rule ΠOPE(p) has to be com-

puted in the operator product expansion (OPE) with
certain accuracy. For these purposes, one substitutes
the current J(x) into the correlator Π(p), contracts rele-
vant quark fields, and replaces contractions by the heavy
quark propagators. These manipulations lead to the for-
mula

ΠOPE(p) = i

∫
d4xeipx

{
Tr
[
γµS̃

b′b
c (−x)γνS

a′a
c (−x)

]

×
[
Tr
[
γν S̃aa

′

c (x)γµSbb
′

c (x)
]
− Tr

[
γν S̃ba

′

c (x)γµ

×Sab
′

c (x)
]]

+Tr
[
γµS̃

a′b
c (−x)γνS

b′a
c (−x)

]

×
[
Tr
[
γν S̃ba

′

c (x)γµSab
′

c (x)
]
− Tr

[
γν S̃aa

′

c (x)γµSbb
′

c (x)
]]}

,

(15)

where

S̃c(x) = CSTc (x)C, (16)

with Sc(x) being the c-quark propagator. The explicit
expression of the heavy quark propagator SQ(x) can be
found in Appendix.
In the case under analysis, the QCD side of the sum

rules depends exclusively on the propagators of heavy
quarks. The heavy quark propagator SabQ (x) apart from
a perturbative term contains also components which are
linear and quadratic in the gluon field strength. It does
not depend on light quark or mixed quark-gluon vacuum
condensates which are sources of main nonperturbative
contributions to correlation functions.
The ΠOPE(p) has simple Lorentz structure ∼ I as well.

In what follows, the corresponding invariant amplitude
will be denoted by ΠOPE(p2). Having equated two func-
tions ΠPhys(p2) and ΠOPE(p2), applied the Borel trans-
formation to suppress contributions of higher resonances
and continuum states, and subtracted these contributions
by employing the assumption about quark-hadron dual-
ity [55, 56], we find the required sum rules for the mass
and coupling of the tetraquark X4c.

Calculation of the function ΠOPE(p2) is a next step in
our efforts to derive the sum rules for m and f . Analy-
ses demonstrate that after the Borel transformation and
continuum subtraction the amplitude Π(M2, s0) has the
form

Π(M2, s0) =

∫ s0

16m2
c

dsρOPE(s)e−s/M
2

. (17)

Here, ρOPE(s) is a two-point spectral density, which is
found as an imaginary part of the invariant amplitude
ΠOPE(p2). The function ρOPE(s) contains a perturba-
tive term ρpert.(s) and a dimension-4 nonperturbative
contribution proportional to 〈αsG

2/π〉. In Appendix, we
write down the analytical expression for ρpert.(s), and re-
frain from presenting a dimension-4 term which is rather
lengthly.
Then, the sum rules for m and f are given by the

formulas

m2 =
Π′(M2, s0)

Π(M2, s0)
(18)

and

f2 =
em

2/M2

m2
Π(M2, s0), (19)

respectively. In Eq. (18), we use the notation
Π′(M2, s0) = dΠ(M2, s0)/d(−1/M2).
The sum rules Eqs. (18) and (19) depend on the gluon

vacuum condensate and on masses of c and b quarks,
numerical values of which are listed below

〈
αsG

2

π
〉 = (0.012± 0.004) GeV4,

mc = (1.27± 0.02) GeV,

mb = 4.18+0.03
−0.02 GeV. (20)

Choosing working windows for parameters M2 and s0
is another problem of the sum rule computations. They
should be fixed in such a way that to meet a constraint
imposed on the pole contribution (PC), and ensure con-
vergence of the operator product expansion. Because, in
the present article we consider only a nonperturbative
term ∼ 〈αsG

2/π〉, the pole contribution plays a decisive
role in determining of M2 and s0. To estimate PC, we
use the expression

PC =
Π(M2, s0)

Π(M2,∞)
, (21)

and require fulfillment of the constraint PC ≥ 0.5.
The PC is employed to fix the higher limit of the Borel

parameter M2. The lower limit for M2 is found from
a stability of the sum rules’ results under variation of
M2, and from prevalence of the perturbative term. Two
values of M2 extracted by this method fix boundaries of
the region where M2 can be varied. Calculations for the
tetraquark X4c show that the intervals

M2 ∈ [5.5, 7] GeV2, s0 ∈ [49, 50] GeV2, (22)
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0.8

1.0

M2(GeV2)

P
C

FIG. 1: The pole contribution PC as a function of the Borel
parameterM2 at different s0. The limit PC = 0.5 is shown by
the horizontal line. The red triangle shows the point, where
the mass m of the tetraquark X4c has been extracted from
the sum rule.

are appropriate for the parametersM2 and s0, and com-
ply with limits on PC and nonperturbative term. Thus,
at M2 = 7 GeV2 the pole contribution is 0.51, whereas

atM2 = 5.5 GeV2 it becomes equal to 0.82. At the min-
imum of M2 = 5.5 GeV2, contribution of the nonpertur-
bative term is negative and forms 2% of the correlation
function. To demonstrate dynamics of the pole contribu-
tion, Fig. 1 we plot PC as a function of M2 at different
s0. It is seen, that the pole contribution exceeds 0.5 for
all values of the parameters M2 and s0 from Eq. (22).

We extract the mass m and coupling f of the
tetraquark X4c by calculating them at different M2 and
s0, and determining their mean values averaged over the
regions Eq. (22). Our predictions for m and f read

m = (6570± 55) MeV,

f = (5.61± 0.39)× 10−2 GeV4. (23)

The results in Eq. (23) correspond to sum rules predic-
tions at approximately middle point of the regions in Eq.
(22), i.e., to predictions at the point M2 = 6.1 GeV2

and s0 = 49.5 GeV2, where the pole contribution is
PC ≈ 0.70. This fact guarantees the dominance of PC in
the obtained results, and confirms ground-state nature of
the tetraquark X4c. Dependence of m on the parameters
M2 and s0 is depicted in Fig. 2.

s0=50.0 GeV
2

s0=49.5 GeV
2

s0=49.0 GeV
2

5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
5.0

5.5

6.0

6.5

7.0

7.5

8.0

M2(GeV2)

m
(G
e
V
)

M
2=7.00 GeV2

M
2=6.25 GeV2

M
2=5.50 GeV2

49.0 49.2 49.4 49.6 49.8 50.0
5.0

5.5

6.0

6.5

7.0

7.5

8.0

s0(GeV
2)

m
(G
e
V
)

FIG. 2: Mass of the tetraquark X4c as a function of the Borel parameter M2 (left), and as a function of the continuum
threshold s0 (right).

The mass m of the tetraquark X4c obtained in present
article nicely agrees with the mass of the resonance
X(6600) fixed by the ATLAS and CMS collaborations,
and belong to the wide threshold enhancement 6.2 −
6.8 GeV in J/ψJ/ψ mass distribution seen by LHCb.
Therefore, at this level of our knowledge, we consider the
tetraquarkX4c as a candidate to the X(6600) state. But,
for more detailed comparisons with ATLAS and CMS
data, and credible statements about its nature, we need

to evaluate the full width of X4c.
In the case of the tetraquark X4b a similar analysis

yields the following working intervals for the Borel and
continuum subtraction parameters

M2 ∈ [17.5, 18.5] GeV2,

s0 ∈ [375, 380] GeV2. (24)

The pole contribution in the interval for M2 changes
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within limits

0.72 ≥ PC ≥ 0.66. (25)

At M2 = 17.5 GeV2 the dimension-4 term constitutes
≃ −1.5% of the result. The mass and current coupling
of X4b are

m′ = (18540± 50) MeV,

f ′ = (6.1± 0.4)× 10−1 GeV4. (26)

Behavior of m′ as a function of M2 and s0 is shown in
Fig. 3.
Fully beauty scalar tetraquarks were investigated in

numerous articles. The mass m′ of the scalar 4b state
was found equal to 18754 MeV, (18826 ± 25) MeV,
and 18450 − 18590 MeV in Refs. [7, 8, 10], respec-
tively. These results were obtained by solving nonrel-
ativistic Schrodinger equation, using a phenomenologi-
cal approach or the QCD sum rule method. An esti-
mate 18750 MeV for the mass of the 4b ground-state
particle was made in the context of a relativized di-
quark model with one-gluon-exchange and confining po-
tentials [33]. A diffusion Monte Carlo method used to
solve nonrelativistic many-body system led to the result
m′ = (18690 ± 30) MeV [34]. Considerably larger mass
19315 MeV was predicted for the JPC = 0++ diquark-
antidiquark state in Ref. [50].

These results differ from each other not only quanti-
tatively, but imply also different mechanisms for decays
of these particles. Thus, there are two important thresh-
olds for fully beauty tetraquarks, i.e., the 2ηb and 2Υ(1S)
thresholds that amount to 18798 MeV and 18921 MeV,
respectively. Possible decay modes of 4b four-quark com-
pounds to ordinary mesons and leptons are determined
by their positions in this mass scale.

Our result m′ = 18540 MeV for the mass of X4b is
consistent with prediction of Ref. [10] calculated also in
the framework of the sum rule method. It is below the
lowest 2ηb threshold in the sector of fully beauty ordinary
mesons. In other words, X4b is stable against strong de-
cays to conventional bb mesons. Similar conclusions were
drawn also in Refs. [7, 10]. Such structures transform to
conventional particles due to bb annihilation to a gluon
or a light quark-antiquark pair, through two and three
gluons produced by a bb pair which later are converted
into light hadrons [44]. In Ref. [44] the width of the fully
beauty tetraquark with the mass below the 2ηb threshold
was estimated around of 8.5 MeV. Hence, the tetraquark
X4b has a finite width though it does not fall apart to
2ηb and 2Υ(1S) final states, but processes that generate
this width are beyond the scope of the present work.
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2
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2
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2
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FIG. 3: The same as in Fig. 2, but for the mass m′ of the tetraquark X4b.

III. DECAY X4c → J/ψJ/ψ

The mass of the tetraquarkX4c exceeds the two-meson
thresholds both in J/ψJ/ψ and ηcηc channels, therefore
S-wave processes X4c → J/ψJ/ψ and X4c → ηcηc are
allowed decay modes of this particle. Another channel

which will be considered in the present article is P -wave
decay mode X4c → ηcχc1(1P ).

We begin our investigations from analysis of the pro-
cess X4c → J/ψJ/ψ. The partial width of this decay is
determined by the strong coupling g1 of the particles at
the vertex X4cJ/ψJ/ψ. In the context of the QCD sum
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rule method g1 can be extracted from the three-point
correlation function

Πµν(p, p
′) = i2

∫
d4xd4yeip

′ye−ipx〈0|T {JJ/ψµ (y)

×JJ/ψν (0)J†(x)}|0〉, (27)

where J
J/ψ
µ (x) is the interpolating currents for the J/ψ

meson. The J(x) is given by Eq. (11), while for J
J/ψ
µ (x)

we use

JJ/ψµ (x) = ci(x)γµci(x), (28)

where i = 1, 2, 3 are the color indices. The 4-momentum
of the tetraquark X4c is p, whereas momenta of the J/ψ
mesons are p′ and q = p− p′, respectively.
We follow the standard prescriptions of the sum rule

method and express the correlation function Πµν(p, p
′)

in terms of involved particles’ phenomenological param-
eters. Isolating the ground-state contribution to the cor-
relation function (27) from effects of higher resonances
and continuum states, for the physical side of the sum
rule ΠPhys

µν (p, p′), we get

ΠPhys
µν (p, p′) =

〈0|J
J/ψ
µ |J/ψ(p′)〉

p′2 −m2
1

〈0|J
J/ψ
ν |J/ψ(q)〉

q2 −m2
1

×〈J/ψ(p′)J/ψ(q)|X4c(p)〉
〈X4c(p)|J

†|0〉

p2 −m2
+ · · · , (29)

with m1 being the mass of the J/ψ meson.
The function ΠPhys

µν (p, p′) can be simplified by employ-
ing the matrix elements of the tetraquark X4c and J/ψ
meson. The matrix element of X4c is given by Eq. (13),

whereas for 〈0|J
J/ψ
µ |J/ψ(p)〉 we use

〈0|JJ/ψµ |J/ψ(p)〉 = f1m1εµ(p), (30)

where f1 and εµ are the decay constant and polarization
vector of the J/ψ meson, respectively. We also model the
vertex 〈J/ψ(p′)J/ψ(q)|X4c(p)〉 by the expression

〈J/ψ(p′)J/ψ(q)|X4c(p)〉 = g1(q
2) [q · p′ε∗(p′) · ε∗(q)

−q · ε∗(p′)p′ · ε∗(q)] , (31)

which has the gauge-invariant form.
After these transformations ΠPhys

µν (p, p′) is given by the
formula

ΠPhys
µν (p, p′) = g1(q

2)
fmf2

1m
2
1

(p2 −m2) (p′2 −m2
1) (q

2 −m2
1)

×

[
1

2

(
m2 −m2

1 − q2
)
gµν − qµp

′
ν

]
+ · · · , (32)

where the ellipses stand for contributions of higher res-
onances and continuum states. The correlator Eq. (32)
contains different Lorentz structures, which may be used
to construct the sum rule for g1(q

2). We choose to work
with the term ∼ gµν and denote the relevant invariant
amplitude by ΠPhys(p2, p′2, q2).

Parameters Values (in MeV units)

m1[mJ/ψ] 3096.900 ± 0.006

f1[fJ/ψ ] 409 ± 15

m2[mηc ] 2983.9 ± 0.4

f2[fηc ] 320 ± 40

m3[mχc1 ] 3510.67 ± 0.05

f3[fχc1 ] 344 ± 27

TABLE I: Masses and decay constants of cc mesons, which
have been used in numerical computations.

The correlation function Πµν(p, p
′) calculated in terms

of heavy quark propagators reads

ΠOPE
µν (p, p′) = −2i2

∫
d4xd4yeip

′ye−ipx

×
{
Tr
[
γµS

ib
c (y − x)γαS̃

ja
c (−x)γν S̃

bj
c (x)γαSaic (x− y)

]

−Tr
[
γµS

ia
c (y − x)γαS̃

jb
c (−x)γν S̃

bj
c (x)γαSaic (x− y)

]}
.

(33)

◆◆

QCD sum rules

Fit Function
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1
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e
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1
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FIG. 4: The sum rule predictions and fit function for the
strong coupling g1(Q

2). The red diamond denotes the point
Q2 = −m2

1.

The invariant amplitude ΠOPE(p2, p′2, q2) which corre-
sponds to the term∼ gµν in Eq. (33) constitutes the QCD
side of the sum rule. Having equated these two invariant
amplitudes, carried out the doubly Borel transformations
over variables p2 and p′2 and performed continuum sub-
traction, one finds the sum rule for g1(q

2)

g1(q
2) =

2

fmf2
1m

2
1

q2 −m2
1

m2 −m2
1 − q2

×em
2/M2

1 em
2

1
/M2

2 Π(M2, s0, q
2). (34)

Here, Π(M2, s0, q
2) is the amplitude ΠOPE(p2, p′2, q2) af-

ter the Borel transformation and subtraction procedures:
It can be expressed in terms of the spectral density
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ρ(s, s′, q2) calculated as an imaginary part of relevant
component of the correlation function ΠOPE

µν (p, p′),

Π(M2, s0, q
2) =

∫ s0

16m2
c

ds

∫ s′
0

4m2
c

ds′ρ(s, s′, q2)

×e−s/M
2

1 e−s
′/M2

2 , (35)

where M
2 = (M2

1 ,M
2
2 ) and s0 = (s0, s

′
0) are the Borel

and continuum threshold parameters, respectively.
The form factor g1(q

2) depends on the masses and cur-
rent couplings (decay constant) of the tetraquarkX4c and
the meson J/ψ which appear in the numerical computa-
tions as input parameters. Their values are moved to
Table I, which contains also spectroscopic parameters of
ηc and χc1(1P ) mesons required to investigate two other
decays ofX4c. The masses all of the mesons are borrowed
from Ref. [57]. For the decay constant of the meson J/ψ,
we employ the experimental value reported in Ref. [58].
As fηc and fχc1

, we use predictions made in Refs. [59, 60]
on the basis of the sum rule method, respectively.
To carry out numerical computations it is necessary

also to choose the working regions for the parametersM2

and s0. The constraints imposed on M
2 and s0 are stan-

dard restrictions of the sum rule calculations and were
explained in the previous section. ForM2

1 and s0, associ-
ated with the X4c channel, we use the working windows
from Eq. (22). The parameters (M2

2 , s
′
0) for the J/ψ

channel are changed inside borders

M2
2 ∈ [4, 5] GeV2, s′0 ∈ [12, 13] GeV2. (36)

It is known that the sum rule method leads to reliable
predictions in the deep-Euclidean region q2 < 0. For our
purposes, it is convenient to introduce a new variable
Q2 = −q2 and denote the obtained function by g1(Q

2).
A range of Q2 studied by the sum rule analysis covers
the region Q2 = 1− 10 GeV2. The results of calculations
are plotted in Fig. 4. But the width of the decay X4c →
J/ψJ/ψ is determined by the form factor g1(q

2) at the
mass shell q2 = m2

1. Stated differently, one has to find
g1(Q

2 = −m2
1).

To solve this problem, we use a fit function G1(Q
2)

that at momenta Q2 > 0 gives the same values as the
sum rule calculations, but can be extrapolated to the
region of Q2 < 0. In this paper, we employ the functions
Gi(Q

2), i = 1, 2, 3

Gi(Q
2) = G0

i exp

[
c1i
Q2

m2
+ c2i

(
Q2

m2

)2
]
, (37)

with parameters G0
i , c

1
i and c2i .

Calculations prove that G0
1 = 1.17 GeV−1, c11 = 2.55,

and c21 = −2.79 give nice agreement with the sum rule’s
data for g1(Q

2) shown in Fig. 4. At the mass shell q2 =
m2

1 the function G1(Q
2) is equal to

g1 ≡ G1(−m
2
1) = (5.8± 1.2)× 10−1 GeV−1. (38)

i Channels gi (GeV−1) Γi (MeV)

1 X4c → J/ψJ/ψ (5.8± 1.2) × 10−1 43± 13

2 X4c → ηcηc (2.9± 0.6) × 10−1 51± 15

3 X4c → ηcχc1(1P ) 10.9± 2.8⋆ 16± 6

TABLE II: Decay channels of the tetraquark X4c, strong cou-
plings gi, and partial widths Γi. The coupling g3 marked by
a star is dimensionless.

The partial width of the process X4c → J/ψJ/ψ can be
obtained by employing the following expression

Γ [X4c → J/ψJ/ψ] = g21
λ

8π

(
m4

1

m2
+

2λ2

3

)
, (39)

where λ = λ(m,m1,m1) and

λ(a, b, c) =

√
a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2)

2a
.

(40)
Then it is easy to find

Γ [X4c → J/ψJ/ψ] = (43± 13) MeV. (41)

IV. PROCESSES X4c → ηcηc AND X4c → ηcχc1(1P )

The decays X4c → ηcηc and X4c → ηcχc1(1P ) can be
explored in a similar manner. The strong coupling g2
that describes the vertex X4cηcηc can be extracted from
the correlation function

Π(p, p′) = i2
∫
d4xd4yeip

′ye−ipx〈0|T {Jηc(y)

×Jηc(0)J†(x)}|0〉, (42)

where the current Jηc(x) is

Jηc(x) = ci(x)iγ5ci(x). (43)

Separating from each other the ground-state contri-
bution and effects of higher resonances and continuum
states, we write the correlation function (42) in the fol-
lowing form

ΠPhys(p, p′) =
〈0|Jηc |ηc(p

′)〉

p′2 −m2
2

〈0|Jηc |ηc(q)〉

q2 −m2
2

×〈ηc(p
′)ηc(q)|X4c(p)〉

〈X4c(p)|J
†|0〉

p2 −m2
+ · · · , (44)

where m2 is the mass of the ηc meson. We define the ver-
tex composed of a scalar and two pseudoscalar particles
by means of the formula

〈ηc(p
′)ηc(q)|X4c(p)〉 = g2(q

2)p · p′. (45)
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To express the correlator ΠPhys(p, p′) in terms of physical
parameters of particles X4c and ηc, we use the matrix
element Eq. (13) and

〈0|Jηc |ηc〉 =
f2m

2
2

2mc
, (46)

with f2 being the decay constant of the ηc meson. Then,
the correlation function ΠPhys(p, p′) takes the form

ΠPhys(p, p′) = g2(q
2)

fmf2
2m

4
2

4m2
c (p

2 −m2) (p′2 −m2
2)

×
m2 +m2

2 − q2

2(q2 −m2
2)

+ · · · . (47)

The function ΠPhys(p, p′) has a Lorentz structure that is
proportional to I, hence rhs of Eq. (47) is the correspond-

ing invariant amplitude Π̃Phys(p2, p′2, q2).
Using the heavy quark propagators, we can find the

QCD side of the sum rule

ΠOPE(p, p′) = 2i2
∫
d4xd4yeip

′ye−ipx

×
{
Tr
[
γ5S

ia
c (y − x)γαS̃

jb
c (−x)γ5S̃

bj
c (x)γαSaic (x− y)

]

−Tr
[
γ5S

ia
c (y − x)γαS̃

jb
c (−x)γ5S̃

aj
c (x)γαSbic (x− y)

]}
.

(48)

The sum rule for the strong form factor g2(q
2) equals to

g2(q
2) =

8m2
c

fmf2
2m

4
2

q2 −m2
2

m2 +m2
2 − q2

×em
2/M2

1 em
2

2
/M2

2 Π̃(M2, s0, q
2), (49)

with Π̃(M2, s0, q
2) being the invariant amplitude

Π̃OPE(p2, p′2, q2) corresponding to the correlator
ΠOPE(p, p′) after the Borel transformations and contin-
uum subtractions.
We carry out numerical computations using Eq. (49),

parameters of the meson ηc from Table I, and working re-
gions for M2 and s0. The Borel and continuum subtrac-
tion parameters M2

1 and s0 in the X4c channel is chosen
as in Eq. (22), whereas for M2

2 and s′0 which correspond
to the ηc channel, we employ

M2
2 ∈ [3.5, 4.5] GeV2, s′0 ∈ [11, 12] GeV2. (50)

The interpolating function G2(Q
2) has the parameters

G0
2 = 0.65 GeV−1, c12 = 3.19, and c22 = −3.34. For the

strong coupling g2, we get

g2 ≡ G2(−m
2
2) = (2.9± 0.6)× 10−1 GeV−1. (51)

The width of the process X4c → ηcηc is determined by
means of the formula

Γ [X4c → ηcηc] = g22
m2

2λ̃

8π

(
1 +

λ̃2

m2
2

)
, (52)

where λ̃ = λ(m,m2,m2). Finally, we obtain

Γ [X4c → ηcηc] = (51± 15) MeV. (53)

Treatment of the P -wave decay X4c → ηcχc1(P ) does
not generate additional technical details, and is per-
formed in a usual manner. The three-point correlator
to be considered in this case is

Πµ(p, p
′) = i2

∫
d4xd4yeip

′ye−ipx〈0|T {Jχc1

µ (y)

×Jηc(0)J†(x)}|0〉, (54)

where Jχc1
µ (y) is the interpolating current for the meson

χc1(1P )

Jχc1

µ (y) = cj(x)γ5γµcj(x). (55)

In terms of the physical parameters of the particles the
correlation function has the form

ΠPhys
µ (p, p′) = g3(q

2)
fmf2m

2
2f3m3

2mc (p2 −m2) (p′2 −m2
3)

×
1

q2 −m2
2

[
m2 −m2

3 − q2

2m2
3

p′µ − qµ

]
+ · · · . (56)

In Eq. (56) m3 and f3 are the mass and decay con-
stant of the meson χc1(1P ). To derive the correlator
ΠPhys
µ (p, p′), we have used the known matrix elements of

the tetraquark X4c and meson ηc, as well as new matrix
elements

〈0|Jχc1

µ |χc1(p
′)〉 = f3m3ε

∗
µ(p

′), (57)

and

〈ηc(q)χc1(p
′)|X4c(p)〉 = g3(q

2)p · ε∗(p′), (58)

where ε∗µ(p
′) is the polarization vector of χc1(1P ).

The QCD side ΠOPE
µ (p, p′) is given by the formula

ΠOPE
µ (p, p′) = 2i3

∫
d4xd4yeip

′ye−ipx

×
{
Tr
[
γµγ5S

ia
c (y − x)γαS̃

jb
c (−x)γ5S̃

bj
c (x)γαSaic (x− y)

]

−Tr
[
γµγ5S

ia
c (y − x)γαS̃

jb
c (−x)γ5S̃

aj
c (x)γαSbic (x− y)

]}
.

(59)

The sum rule for g3(q
2) is derived using the invari-

ant amplitudes corresponding to terms ∼ p′µ in both

ΠPhys
µ (p, p′) and ΠOPE

µ (p, p′). In numerical analysis, M2
2

and s′0 in the χc1 channel are chosen in the following way

M2
2 ∈ [4, 5] GeV2, s′0 ∈ [13, 14] GeV2. (60)

For the parameters of the fit function G3(Q
2), we get

G0
3 = 24.08, c13 = 2.98, and c23 = −4.26. Then, the strong

coupling g3 is equal to

g3 ≡ G3(−m
2
2) = 10.9± 2.8. (61)
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The width of the decay X4c → ηcχc1(P ) can be cal-
culated by means of the expression

Γ [X4c → ηcχc1(P )] = g23
λ̂3

24πm2
3

, (62)

where λ̂ = λ(m,m2,m3). For the width of this process,
we obtain the estimate:

Γ [X4c → ηcχc1(P )] = (16± 6) MeV. (63)

The widths all of three decays are collected in Table II.
Based on these results, it is not difficult to find that

Γ4c = (110± 21) MeV, (64)

which nicely agrees with CMS datum ΓCMS
1 .

V. DISCUSSION AND CONCLUDING NOTES

In the present article, we have performed detailed anal-
ysis of the tetraquark X4c by calculating the mass m
and full width Γ4c of this scalar diquark-antidiquark
state. Our findings are in agreements with the ex-
perimental data mCMS

1 = (6552 ± 10 ± 12) MeV and
ΓCMS
1 = (124+32

−26 ± 33) MeV of the CMS Collabora-

tion. The mass of X4c is compatible also with mATL
1

if one takes into account existing experimental and the-
oretical errors. We have interpreted the ground-level 1S
tetraquark X4c built of axial-vector constituents as the
resonance X(6600).
The partial width of the decay X4c → ηcηc is com-

parable with Γ [X4c → J/ψJ/ψ]. The new fully charmed
resonances were observed in the di-J/ψ mass distribution
through 4µ final states. It is known that decays to lep-
ton pairs e+e− and µ+µ− are among important modes
of the J/ψ meson [57]. But, the ηc meson’s main chan-
nels are decays to hadronic resonances, for example, to
ρρ mesons. Naturally, the process X4c → ηcηc could not
be seen in 4µ events.
There are numerous publications, in which proper-

ties of the tetraquark X4c were studied using various
methods (for complete list of relevant publications see,
Ref. [50]). These investigations intensified after dis-
covery of resonances X(6200), X(6600), X(6900) and
X(7300). Comparing our result for the mass of X4c with
(6.46± 0.16) GeV and 6.46+0.13

−0.17 GeV from Refs. [10, 39],
we see that though m exceeds them, within ambiguities
of calculations all predictions are comparable with each
other. But what is more important, decays to J/ψJ/ψ
pairs are kinematically allowed channels for these struc-
tures.
The first resonance X(6200) in the list of the fully

charmed states may be a manifestation of the hadronic
molecule ηcηc in the J/ψJ/ψ spectrum. But to be de-
tected the mass of ηcηc must exceed the di-J/ψ thresh-
old ≃ 6195 MeV. In Ref. [42] the authors predicted

Mηcηc = 6029 ± 198 MeV that in upper limit over-
shoots the di-J/ψ threshold. Alternatively, appearance
of the near-threshold state X(6200) may be explained by
coupled-channel effects [46].
The next structure, X(6900), can be considered in

the diquark-antidiquark model provided it composed of
pseudoscalar components. In fact, the mass of such
tetraquark was estimated around (6.82± 0.18) GeV and
(6.80 ± 0.27) GeV in Refs. [10, 42], respectively. The
hadronic molecule χc0χc0 with the mass ≃ 6.93 GeV is
an alternative candidate to the resonance X(6900) [42].
More detailed analyses of assumptions about a

diquark-antidiquark or hadronic molecule nature of the
resonances X(6200) and X(6900) were performed in our
articles [61, 62]. In these works, we applied the sum rule
method to investigate the diquark-antidiquark state T4c
built of pseudoscalar constitutes cTaCcb and caCc

T
b , as

well as hadronic molecules ηcηc and χc0χc0 . In Ref. [62]
it was demonstrated that the molecule ηcηc with the mass
(6264± 50) MeV and full width (320± 72) MeV is a nat-
ural candidate to the resonance X(6200). Our prediction
for the mass of this molecule is larger than Mηcηc , but
has some overlapping region with it.
The mass of the tetraquark T4c amounts to (6928 ±

50) MeV and is compatible with previous sum rule
predictions and relevant LHCb-ATLAS-CMS data, es-
pecially with the result of the CMS Collaboration for
X(6900) [61]. The full width of T4c was evaluated by
taking into account its allowed decay channels and found
equal to (128 ± 22) MeV in agreement with the CMS
measurements. The parameters of the molecule χc0χc0
are equal to (6954 ± 50) MeV and (138 ± 18) MeV, re-
spectively [62]. It may also be interpreted as a resonance
X(6900), or considered as its part in the tetraquark-
molecule mixing model.
As is seen, though diquark-antidiquark states and

hadronic molecules have different internal organizations,
both of them may be used to model X resonances. Such
”universality” of the X structures is connected mainly
with errors of measurements reported by different col-
laborations. To make a choice between different models
for X particles, one needs more precise data on their pa-
rameters.
The heaviest state X(7300) from this list is presum-

ably a radially excited X4c(2S) tetraquark. An argu-
ment in favor of such assumption came from the ATLAS
Collaboration, which fixed the resonances X(6600) and
X(7300) in the J/ψJ/ψ and J/ψψ′ mass distributions,
respectively. In other words

X(7300) → J/ψψ′,

X(6600) → J/ψJ/ψ, (65)

are decay modes of these resonances. The mass gap
between ψ′ and J/ψ is around 590 MeV, whereas for
X(7300) and X(6600) the mass difference equals to 600
MeV (ATLAS) and 735 MeV (CMS). Then, it is natural
to suppose that X(7300) is the first radially excited state
of X(6600). Originally, similar hypothesis was made in
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Ref. [63], while considering the main decay channels of
the resonances Zc(3900) and Zc(4330):

Zc(4330) → ψ′π,

Zc(3900) → J/ψπ. (66)

It was supposed that Zc(4330) is first radial excitation of
the tetraquark Zc(3900). This idea was later confirmed
by calculations carried out using the diquark-antidiquark
model and sum rule method [64, 65]. In light of this anal-
ysis the assumption about 2S excited nature of X(7300)
looks plausible. Results of our investigations seem sup-
port this assumption and will be reported very soon.
We have calculated also the mass of the fully beauty

scalar state X4b. It turned out that, its mass m′ =
(18540±50) MeV is smaller than the ηbηb threshold, and
hence X4b does not decay to a pair of hidden-bottom
mesons and cannot be observed in ηbηb or Υ(1S)Υ(1S)
mass distributions. The stability of X4b in these chan-
nels was already predicted in Refs. [7, 10]. Its transfor-
mation to ordinary mesons can proceed through subpro-

cesses bb → qq(ss) and bb → 2g(3g) that result in the
decay X4b → B+B− and other similar processes [44].
The weak leptonic and nonleptonic decays of X4b are also
among its possible transitions to conventional mesons.
It is clear that controversial character of conclusions

about nature of the fully heavy resonances is connected
with different models and schemes employed for their in-
vestigations. In some of these articles, for instance, X4b

can decay to a pair of pseudoscalar mesons ηbηb, but is
stable against Υ(1S)Υ(1S) mode, whereas in other pub-
lications X4b is stable in both of these channels. In the
case of fully charmed states a same resonance due to large
experimental errors, may be interpreted within both the
molecule and diquark-antidiquark models.
We would like to emphasize that a large part of con-

clusions about the ground-state and excited states X4c

and X4b was drawn using information on masses of these
structures. In our view, in scenarios with four-quark
mesons one has to calculate also their widths, otherwise
statements made by relying only on the masses of these
structures remain not fully convincing.

Appendix: Heavy quark propagator SabQ (x) and spectral density ρpert.(s, α, β, γ)

In the current article, for the heavy quark propagator SabQ (x) (Q = c, b), we employ

SabQ (x) = i

∫
d4k

(2π)4
e−ikx

{
δab (/k +mQ)

k2 −m2
Q

−
gsG

αβ
ab

4

σαβ (/k +mQ) + (/k +mQ)σαβ
(k2 −m2

Q)
2

+
g2sG

2

12
δabmQ

k2 +mQ/k

(k2 −m2
Q)

4
+ · · ·

}
. (A.1)

Here, we have used the notations

Gαβab ≡ GαβA λAab/2, G2 = GAαβG
αβ
A , (A.2)

where GαβA is the gluon field-strength tensor, and λA are the Gell-Mann matrices. The indices A,B,C run in the
range 1, 2, . . . 8.
The invariant amplitude Π(M2, s0) obtained after the Borel transformation and subtraction procedures is given by

the expression

Π(M2, s0) =

∫ s0

16m2

Q

dsρOPE(s)e−s/M
2

,

where the spectral density ρOPE(s) is determined by the formula

ρOPE(s) = ρpert.(s) + 〈αsG
2/π〉ρDim4(s). (A.3)

The components ρpert.(s) and ρDim4(s) of the spectral density are

ρpert.(Dim4)(s) =

∫ 1

0

dα

∫ 1−a

0

dβ

∫ 1−a−β

0

dγρpert.(Dim4)(s, α, β, γ), (A.4)

where the variables α, β, and γ are Feynman parameters.
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The function ρpert.(s, α, β, γ) has the form

ρpert.(s, α, β, γ) =
Θ(L1)N

2
1

64π6N8
2N

5
3 (1− γ − β)2

{
−6m4

Q(β + γ − 1)2N4
2N

3
3 +m2

QN
2
2N3

{
3Lsα

[
N2

2 (N3 − Lα)

+LN2αγ(−N3(2N3 + (β + γ − 1)2) + 4N3α(β + γ − 1)− 2α2(L2 − 2N3)) + L2α2γ2
(
N3(N3 + (γ + β − 1)2)

−2N3α(β + γ − 1) + α2(L2 − 2N3)
)]

+ 2N1

[
−LN2

3α− Lα(γ(β + γ − 1) + α(γ + β − 1) + α2)

×(β(γ + β − 1) + α(β + γ − 1) + α2) +N3

(
γβ(β + γ − 1)2 + α(β + γ − 1)2 + α2(β + γ − 1)(2β + 2γ − 1)

+4α3(β + γ − 1) + 2α4
)]}

− 3Lα(Lα−N3)
{
2L2s2α2γ(N3 − Lα)(N2 − Lαγ) + 2LN1sα

[
2L2α2γ2(N3 − Lα)3

+N2
2 (N3 + γ(β + γ − 1)− αL) + LN2αγ(−3N3 − γ(β + γ − 1) + 3αL) +N2

1 (−LN3α+ (β2 + (β + α)(α + γ − 1))

×(γ2 + (γ + α)(α + β − 1))
]}}

, (A.5)

In expressions above, Θ(z) is the Unit Step function. We have used also the following notations

N1 = sαβγ
[
γ3 + 2γ2(β + α− 1) + α(β + α− 1) + γ

(
1 + β2 − 3α+ 2α2

+β(−2 + 3α))]−m2
Q

[
βα2(α+ β − 1)2 + γ4(α + β) + γα(α+ β − 1)2(2β + α)

+2γ3(β2 + α(α− 1) + β(2α− 1)) + γ2(β3 + β2(5α− 2) + α(1 − 3α+ 2α2) + β(1 − 6α+ 6α2))
]
,

N2 = βα(α + β − 1) + γ2(α+ β) + γ
[
β2 + α(α − 1) + β(2α− 1)

]
,

N3 = γ2 + (γ + α)(β + α− 1), L = α+ β + γ − 1, L1 = N1/N
2
2 . (A.6)
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