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We perform a complete study of the electroweak precision observables and electroweak gauge

boson pair production in terms of the SMEFT up to O(1/Λ4) under the assumption of universal,

C and P conserving new physics. We show that the analysis of data from those two sectors allows

us to obtain closed constraints in the relevant parameter space in this scenario. In particular we

find that the Large Hadron Collider data can independently constrain the Wilson coefficients of

the dimension-six and -eight operators directly contributing to the triple gauge boson vertices. Our

results show that the impact of dimension-eight operators in the study of triple gauge couplings is

small.

I. INTRODUCTION

During the last decade the Large Hadron Collider (LHC) has accumulated a large amount of data that lead to

further tests of the Standard Model (SM) and the search for Physics beyond the Standard Model (BSM). Presently

there is no smoking gun indication of any extension of the SM. Therefore, one can assume that there is a mass gap

between the electroweak scale and the BSM scale. In this scenario, the use of Effective Field Theory (EFT) [1–3] as

the tool to search for hints of new Physics has become customary.

The EFT approach is suited for model–independent analyses since it is based exclusively on the low-energy accessible

states and symmetries. Assuming that the scalar particle observed in 2012 [4, 5] belongs to an electroweak doublet,

we can realize the SU(2)L ⊗ U(1)Y symmetry linearly. The resulting model is the so-called Standard Model EFT

(SMEFT). There have been many analyses of the LHC data using dimension-six SMEFT; see for instance [6–19] and

references therein. In order to access the convergence of the 1/Λ expansion, as well as avoid the appearance of phase

space regions where the cross section is negative [11], it is important to perform the full calculation at order 1/Λ4.

The consistent calculation at order 1/Λ4 requires the introduction of the contributions stemming from dimension-

eight operators. In the most general scenario, the number of dimension-eight operators contributing to the present

observables is extremely large [20] and that precludes a complete general analysis including all effects up to order

1/Λ4. Due to its complexity, the systematic study of the O(1/Λ4) effects is still in its early stages. To date there
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have been a few case studies for Drell-Yan [21–25], t̄tH production [26], the production of electroweak gauge boson

pairs [27], Higgs boson processes [28–32], and the electroweak precision data [32, 33].

With this motivation, we perform a complete study of the electroweak precision observables (EWPO) and elec-

troweak diboson (EWDB) production at order 1/Λ4 including all relevant dimension-six and dimension-eight operators

under the assumption of universal New Physics with conservation of C and P [34] so that the EFT contains only

bosonic operators after field redefinitions. In this case, we show that the analysis of existing data from those two

sectors allows one to obtain closed constraints on the the full relevant parameter space. Furthermore, we argue that

it is still possible to perform the analysis sequentially, obtaining first the constraints on four effective combinations

of Wilson coefficients using the EWPO, and then apply those bounds to reduce the number of Wilson coefficients

which are relevant for the the diboson analysis. Besides demonstrating the feasibility of the analysis and deriving the

corresponding bounds, our main result is to show that in this scenario the impact of dimension-eight operators in our

present determination of the triple gauge couplings (TGC) is small.

This work is organized as follows . The analysis framework employed is presented in Sec. II. Sections III and IV

contain the results of the analysis of EWPO and of the EWDB data respectively. In Sec. V we summarize our

conclusions. We present in the appendices the full expressions of the couplings of the electroweak gauge bosons to

fermions and TGC to order O(1/Λ4) in this scenario.

II. ANALYSIS FRAMEWORK

Following [34], we consider a theory as universal if its EFT can be expressed exclusively in terms of bosonic operators

via field redefinitions. We will also assume conservation of C and P . The requirement of the EFT to be universal

limits the number of operators that have to be considered and in Ref. [34] the independent set of dimension-six

operators for universal theories is explicitly worked out in several bases. In this work we use the Hagiwara, Ishihara,

Szalapski, and Zeppenfeld (HISZ) dimension-six basis [35, 36]. The relevant set of operators left in HISZ basis for

universal theories can be straightforwardly adapted from the results in Ref. [34] for the SILH basis [37] taking into

account the different choice of two of the bosonic operators left in the basis. With this, one finds that in the HISZ

basis universal theories are described by 11 bosonic operators and 5 fermionic operators. The 11 bosonic operators

are:

OΦ,1 = (DµΦ)†ΦΦ†(DµΦ) , OΦ,2 =
1

2
∂µ
(
Φ†Φ

)
∂µ
(
Φ†Φ

)
, OΦ6 = (Φ†Φ)3 ,

OWW = Φ†ŴµνŴ
µνΦ , OBB = Φ†B̂µνB̂

µνΦ , OBW = Φ†B̂µνŴ
µνΦ ,

OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) , OWWW = Tr[Ŵ ν
µ Ŵ

ρ
ν Ŵ

µ
ρ ] ,

OGG = Φ†Φ GaµνG
aµν , OGGG = g3

sf
abcGa νµ Gb ρν Gc µρ , (2.1)

where Φ stands for the SM Higgs doublet and we have defined B̂µν ≡ i(g′/2)Bµν and Ŵµν ≡ i(g/2)σaW a
µν , with gs,

g and g′ being the SU(3)C , SU(2)L and U(1)Y gauge couplings, respectively. σa stands for the Pauli matrices while

fabc are the SU(3)C structure constants.

Five four-fermion operators are generated when applying the equations of motion (EOM) to eliminate bosonic

operators involving the square of derivatives of the gauge strength tensors and four Higgs fields in total analogy with

the SILH basis in Ref. [34]:

Oy = |Φ|2(ΦαJ
α
y + h.c.) , O2y = J†yαJ

α
y ,

O2JW =
∑

f,f ′∈{Q,L}

(
f̄γµ

σa

2
f

)(
f̄ ′γµ

σa

2
f ′
)
, O2JB =

∑
f,f ′∈{Q,L,u,d,e}

(
Yf f̄γµf

) (
Yf ′ f̄ ′γ

µf ′
)
,

O2JG =
∑

f,f ′∈{Q,u,d}

(
f̄γµT

af
) (
f̄ ′γµT af ′

)
, (2.2)
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where Yf are the hypercharges, Q and L are the quark and lepton doublets and u, d and e represent the fermion

singlets. In addition, T a are the Gell-Mann matrices, yf are the Yukawa matrices, and

Jαy = ūy†uQβε
αβ + Q̄αydd+ L̄αyee .

For the dimension-eight operators, we will work in the basis defined in Ref. [38]. For universal theories the potentially

relevant bosonic operators for our analyses belong to the classes Φ6D2, X3Φ2, X2Φ4, and XΦ4D2 with X standing

for a field strength tensor. This includes:

• two operators in the class Φ6D2 related to the dimension-six OΦ,1 and OΦ,2:

O(1)
D2Φ6 = (Φ†Φ)2(DµΦ)†DµΦ and O(2)

D2Φ6 = (Φ†Φ)(Φ†σIΦ)(DµΦ)†σIDµΦ , (2.3)

• two CP conserving operators in class X3Φ2 that contribute to the EWDB analysis are

O(1)
W 3Φ2 = (Φ†Φ)Tr[Ŵµ

ν Ŵ
ν
ρ Ŵ

ρ
µ ] and O(1)

W 2BΦ2 =
g3sW
8cW

εIJKΦ†σIΦBµνW
J ν
ρ WK ρ

µ , (2.4)

• two operators in class XΦ4D2 contributing to anomalous TGC are siblings of dimension-six operators OB and OW :

O(1)
BΦ4D2 = (Φ†Φ)(DµΦ)†B̂µνDνΦ and O(1)

WΦ4D2 = (Φ†Φ)(DµΦ)†ŴµνDνΦ , (2.5)

• four operators in the X2Φ4 class

O(1)
W 2Φ4 = (Φ†Φ)Φ†ŴµνŴ

µνΦ , O(1)
B2Φ4 = (Φ†Φ)2B̂µνB̂

µν , (2.6)

O(1)
BWΦ4 = (Φ†Φ)Φ†ŴµνΦB̂µν , O(3)

W 2Φ4 = Φ†ŴµνΦΦ†ŴµνΦ . (2.7)

In addition some dimension-eight fermionic operators will be generated by the EOM in analogy to the dimension-six

case. Presently there there is no study of the fermionic operators compatible with universal theories for the dimension-

eight basis. So in what follows, we assume that only four-fermion operators are generated in exchanging a subset of

the purely bosonic operators defining the universal basis for fermionic operators.

It is important to notice that not all operators listed above appear in the analysis of EWPO and EWDB data even

after accounting for their finite renormalization contribution to the SM parameters. In this work, we adopt as input

parameters {α̂em , ĜF , M̂Z} and consider the following three relations to define the renormalized parameters

ê =
√

4πα̂em ,

v̂2 =
1

√
2 ĜF

, (2.8)

ĉ2ŝ2 =
πα̂em√

2 ĜF M̂2
Z

,

where ŝ (ĉ) is the sine (cosine) of the weak mixing angle θ̂.

The predictions of SMEFT at order 1/Λ4 and the input parameters in Eq. (2.8) allow us to obtain the SM mixing

angle, electric charge, and the Higgs vev as a function of the input parameters and some of dimension-six and -eight

Wilson coefficients. In this process the operators OWW , OBB , O(1)
W 2Φ4 , and O(1)

B2Φ4 induce an overall renormalization

of the W a and B field wave functions that can be absorbed by a redefinition of the coupling constants. Furthermore,

the contribution of O(1)
D2Φ6 to the Higgs vev cancels against its contribution to the renormalization of the W a and

B field wave functions. Consequently their coefficients drop out of any of the predictions in the EWPO and EWDB

data (see the appendix for the explicit expressions).



4

Altogether the effective Lagrangian considered in this work reads:

Leff = LSM +
fWWW

Λ2
OWWW +

fW
Λ2
OW +

fB
Λ2
OB +

fBW
Λ2
OBW +

fΦ,1

Λ2
OΦ,1 +

f4F

Λ2
O4F

+
f

(2)
D2Φ6

Λ4
O(2)
D2Φ6 +

f
(1)
W 3Φ2

Λ4
O(1)
W 3Φ2 +

f
(1)
W 2BΦ2

Λ4
O(1)
W 2BΦ2 +

f
(1)
BΦ4D2

Λ4
O(1)
BΦ4D2

+
f

(1)
WΦ4D2

Λ4
O(1)
WΦ4D2 +

f
(3)
W 2Φ4

Λ4
O(3)
W 2Φ4 +

f
(1)
BWΦ4

Λ4
O(1)
BWΦ4 +

∆
(8)
4F

Λ4
O(8)

4F , (2.9)

where O4F stands for the part of O2JW that contributes to the muon decay while O(8)
4F is the corresponding dimension-

eight operator. They have been defined so that their contribution to the Higgs field vacuum expectation value in the

SM Lagrangian reads [
2〈Φ†Φ〉 − 1

√
2ĜF

]
fermionic

≡ v̂4

Λ2
∆4F +

v̂6

Λ4
∆

(8)
4F . (2.10)

The predictions for observables at order 1/Λ4 require evaluating the SM contributions, the interference between the

1/Λ2 amplitude (M(6)) with the SM amplitude, the square of the dimension-six amplitude, as well as the interference

of the dimension-eight amplitude M(8) with the SM one, that we represent as:

|MSM|2 +M?
SMM(6) + |M(6)|2 +M?

SMM(8) . (2.11)

Notice that M(8) includes dimension-eight vertices as well as the contribution of the insertion of two dimension-six

couplings in the amplitude.

III. EWPO ANALYSIS

Our EWPO analysis includes 14 observables of which 12 are Z observables [39]:

ΓZ , σ0
h , A`(τpol) , R0

` , A`(SLD) , A0,l
FB ,

R0
c , R0

b , Ac , Ab , A0,c
FB , and A0,b

FB (SLD/LEP-I) ,

supplemented by two W observables

MW , ΓW

that are, respectively, its average W -boson mass taken from [40]1, its width from LEP2/Tevatron [42]2. The correla-

tions among these inputs [39] are taken into consideration in the analyses. The SM predictions and their uncertainties

due to variations of the SM parameters were extracted from [43].

The statistical analysis of the EWPO data is made by means of a binned log-likelihood function defining a χ2

function which depends on seven Wilson coefficients,

χ2
EWPO ≡ χ2

EWPO

(
fBW , fΦ,1,∆4F , f

(1)
BWΦ4 , f

(2)
D2Φ6 ,∆

(8)
4F , f

(3)
W 2Φ4

)
. (3.1)

In fact, EWPO cannot constrain the seven Wilson coefficients independently. This is so because, as described in the

Appendix A, the corrections to the Z interaction to fermions to order Λ−4 can be expressed in terms of the following

1 In order to be conservative we did not take into account the recent CDF measurement of the W mass [41].
2 We do not include the average leptonic W branching ratio because it does not include any additional constraint for universal EFT.
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three combinations of Wilson coefficients:

∆̃4F = ∆4F +
v̂2

Λ2
∆

(8)
4F ,

f̃BW = fBW +
v̂2

2Λ2
f

(1)
BWΦ4 , (3.2)

f̃Φ,1 = fΦ,1 +
v̂2

Λ2
f

(2)
D2Φ6 .

The corrections to the W mass and coupling to fermions further involve the addition of only one operator O(3)
W 2Φ4 .

Using these variables we incorporate in our calculation some higher order terms in the 1/Λ expansion in the spirit of

geometric SMEFT [33, 44].

These three coefficient combinations and f
(3)
W 2φ4 are directly related to the contributions to the oblique S, T , U

parameters [45], and δGF at linear order in Wilson coefficients of operators up to dimension-eight:

αS = −ê2 v̂
2

Λ2
f̃BW , αT = − v̂2

2Λ2
f̃Φ,1 , αU = ê2 v̂

4

Λ4
f

(3)
W 2Φ4 ,

δGF

ĜF
=
v̂2

Λ2
∆̃4F . (3.3)

It is interesting to notice that there is a contribution to the oblique parameter U at dimension-eight. Thus, effectively

the EWPO chi-squared function is:

χ̃2
EWPO ≡ χ̃2

EWPO(f̃BW , f̃Φ,1, f
(3)
W 2Φ4 , ∆̃4F ) . (3.4)

Figure 1 shows the one- and two-dimensional projections of ∆χ̃2
EWPO as a function of the coefficients f̃BW v̂

2/Λ2,

f̃Φ,1v̂
2/Λ2, δGF /ĜF , and f

(3)
W 2Φ4 v̂

4/Λ4. The panels in the top row contain the one-dimension marginalized projection

of ∆χ̃2
EWPO, where the dashed line stands for the O(1/Λ2) analysis while the green solid one also contains the

dimension-six squared contribution. The full analysis that includes the dimension-eight contribution is represented

by the blue line. As seen in the figure, the results at linear dimension-six and dimension-six squared are identical,

which is expected given the precision of the data.

From Fig. 1 we also see that once the dimension-eight coefficient f
(3)
W 2Φ4 is included the bounds on f̃Φ,1v̂

2/Λ2

and δGF /ĜF weaken by about a factor 3–4. The main reason is that when f
(3)
W 2Φ4 is also included in the analysis

cancellations can occur. In particular as can be seen in Eqs. (A2)–(A4) for

f̃Φ,1 = −2∆̃4F =
ê2

2ŝ2

v̂2

Λ2
f

(3)
W 2Φ4 (3.5)

the linear contributions from f̃Φ,1 (i.e. T ), ∆̃4F (δGF /ĜF ) and f
(3)
W 2Φ4 (U), cancel both in the Z observables and

in MW . Therefore, along this direction in the parameter space, the bounds on these three quantities dominantly

come from the contribution of ΓW in Eq. (A6), but this observable is less precisely determined. Hence the strong

correlations we observe in the corresponding two-dimensional allowed regions in Fig. 1. Nevertheless, the limits are

still quite stringent; see Table I.

EWPO 95% CL allowed range

Coupling dimension 6 dimension 8
v̂2

Λ2 f̃BW [−0.018, 0.044] [−0.018, 0.044]

v̂2

Λ2 f̃Φ,1 [−0.0028, 0.0018] [−0.080, 0.081]

δGF

ĜF
[−0.0016, 0.0017] [−0.038, 0.044]

v̂4

Λ4 f
(3)

W2Φ4 — [−0.40, 0.36]

TABLE I: 95% CL allowed ranges for the effective couplings entering in the EWPO with the analysis done including only the

dimension-six contributions (left column) and also the dimension-eight contributions (right column).
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FIG. 1: One- and two-dimensional projections of ∆χ̃2
EWPO for the coefficients f̃BW v̂

2/Λ2, f̃Φ,1v̂
2/Λ2, δGF /ĜF , and f

(3)

W2Φ4 v̂
4/Λ4,

as indicated in each panel after marginalizing over the undisplayed parameters.

IV. DIBOSON ANALYSIS

The electroweak production of WZ, WW and Wγ pairs, as well as the vector boson fusion production of Z’s (Zjj),

collectively denoted by EWDB, allow us to study the triple couplings of electroweak gauge bosons. In this work we

consider the EWDB data shown in Table II which comprise a total of 73 data points.

The theoretical predictions needed for the EWDB data are obtained by simulating at leading order the

W+W−, W±Z, W±γ, and Zjj channels that receive contributions from TGC. To this end, we use Mad-

Graph5 aMC@NLO [53] with the UFO files for our effective Lagrangian generated with FeynRules [54, 55].

We employ PYTHIA8 [56] to perform the parton shower and hadronization, while the fast detector simulation is

carried out with Delphes [57]. Jet analyses are performed using FASTJET [58].

The results of the analysis can be qualitatively understood in terms of the effective γW+W− and ZW+W− TGC
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Channel (a) Distribution # bins Data set Int Lum

WZ → `+`−`′± M(WZ) 7 CMS 13 TeV, 137.2 fb−1 [46]

E
W

D
B

d
a
ta WW → `+`(′)− + 0/1j M(`+`(′)−) 11 CMS 13 TeV, 35.9 fb−1 [47]

Wγ → `νγ d2σ
dpT dφ

12 CMS 13 TeV, 137.1 fb−1 [48]

WW → e±µ∓ + /ET (0j) mT 17 (15) ATLAS 13 TeV, 36.1 fb−1 [49]

WZ → `+`−`(′)± mWZ
T 6 ATLAS 13 TeV, 36.1 fb−1 [50]

Zjj → `+`−jj dσ
dφ

12 ATLAS 13 TeV, 139 fb−1 [51]

WW → `+`(′)− + /ET (1j) dσ
dm

`+`−
10 ATLAS 13 TeV, 139 fb−1 [52]

TABLE II: EWDB data from LHC used in the analyses. For the W+W− results from ATLAS run 2 [49] we combine the data

from the last three bins into one to ensure gaussianity.

introduced in Ref. [59]

LWWV = −igWWV

{
gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+κVW
+
µ W

−
ν V

µν +
λV

M̂2
W

W+
µνW

− νρV µ
ρ

}
, (4.1)

where gWWγ = ê, gWWZ = êĉ/ŝ, and M̂W = êv̂/2ŝ. In the SM gγ1 = gZ1 = κγ = κZ = 1 and λZ = λγ = 0.

After including the direct contribution from the dimension-six and dimension-eight operators, electromagnetic gauge

invariance still enforces gγ1 = 1, while the other effective TGC couplings read:

∆gZ1 =
ê2

ŝ2ĉ2

[
1

8

v̂2

Λ2

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)]
,

∆κγ =
ê2

ŝ2

[
1

8

v̂2

Λ2

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2 + fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)]
,

∆κZ =
ê2

ŝ2

[
1

8

v̂2

Λ2

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)
− ŝ2

8ĉ2
v̂2

Λ2

(
fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)]
, (4.2)

λγ =
3ê2

2ŝ2

M̂2
W

Λ2

[
fWWW +

v̂2

2Λ2
f

(1)
W 3Φ2

]
− M̂4

W

2Λ4
f

(1)
W 2BΦ2 ,

λZ =
3ê2

2ŝ2

M̂2
W

Λ2

[
fWWW +

v̂2

2Λ2
f

(1)
W 3Φ2

]
+
M̂4
W

2Λ4

ŝ2

ĉ2
f

(1)
W 2BΦ2 .

The complete analysis of diboson production at fixed order 1/Λ4 depends on not only the direct SMEFT contri-

butions to TGC in (4.2), but also on the indirect contributions from OBW , OΦ,1, O4F , O(1)
BWΦ4 , O(2)

D2Φ6 , and O(8)
4F ,

through renormalization of the SM gauge couplings to fermions and TGC. In appendix B we list the complete expres-

sions and show that, in fact, the indirect effects involve the same there combinations (3.2) and are therefore bounded

by the EWPO. In light of the constraints derived in the previous section, in what follows we will neglect the effect of

those operators in the EWDB data analysis.

For the direct effects, Eq. (4.2) explicitly shows that the contributions of the dimension-eight operators O(1)
WΦ4D2 ,

O(1)
BΦ4D2 and O(1)

W 3Φ2 to the TGC couplings have the same structure of the contributions from the dimension-six

operators OW , OB and OWWW , respectively. Conversely, O(1)
W 2BΦ2 contributes a purely O(1/Λ4) to λγ 6= λZ .

Following an approach equivalent to that employed for the analysis of EWPO we can define three effective coeffi-

cients,

f̃W = fW +
v̂2

2Λ2
f

(1)
WΦ4D2 ,

f̃B = fB +
v̂2

2Λ2
f

(1)
BΦ4D2 , (4.3)

f̃WWW = fWWW +
v̂2

2
f

(1)
W 3Φ2 .
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FIG. 2: One- and two-dimensional projections of ∆χ̃2
EWDB for the effective coefficients f̃W v̂

2/Λ2, f̃B v̂
2/Λ2, f̃WWW v̂

2/Λ2, and

f
(1)

W2BΦ2 v̂
4/Λ4 as indicated in each panel after marginalizing over the undisplayed parameters.

which, together with f
(1)
W 2BΦ2 , effectively parametrize the relevant contributions to the EWDB analysis.

Following this approach we perform the statistical analysis of the EWDB data using a binned chi-squared function

defined in terms of these effective coefficients

χ̃2
EWDB

(
f̃W , f̃B , f̃WWW , f

(1)
W 2BΦ2

)
. (4.4)

Fig. 2 depicts the one- and two-dimensional marginalized 68% and 95% CL allowed regions for f̃W v̂
2/Λ2, f̃B v̂

2/Λ2,

f̃WWW v̂
2/Λ2, and f

(1)
W 2BΦ2 v̂

4/Λ4 after marginalizing over the remaining fit parameters. The light pink (blue) regions

in these panels correspond to the 68% (95%) CL allowed regions of the O(1/Λ2) analysis; see the three lower panels.

This analysis yields the marginalized 95% CL, allowed intervals for the Wilson coefficients of the three relevant

dimension-six operators displayed in the left column of Table III.

The dark red (blue) shaded regions in Fig. 2 represent the two-dimensional allowed regions at 68% (95%) C.L.

including also the dimension-six squared and the dimension-eight contributions. The corresponding one dimensional
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EWDB 95% CL allowed range

Coupling dimension 6 (dimension 6)2 dimension 8
v̂2

Λ2 f̃B [−3.3, 1.8] [−0.75, 0.83] [−0.73, 0.86]

v̂2

Λ2 f̃W [−0.11, 0.085] [−0.079, 0.16] [−0.080, 0.16]

v̂2

Λ2 f̃WWW [−0.22, 0.16] [−0.049, 0.045] [−0.048, 0.049]

v̂4

Λ4 f
(1)

W2BΦ2 — — [−1.9, 4.2]

TABLE III: 95% CL allowed ranges for the effective couplings entering in the EWDB analysis including only up to the

dimension-six contributions (left column), up to the dimension-six squared contributions (central column) and including also

the dimension-eight contributions (right column).

projections are given in the blue lines in the upper panels. For the sake of comparison we also show the corresponding

results including only the dimension-six squared contributions. These are the black dashed lines in the one-dimensional

projections in the upper panels and the dotted line contours in the three lower panels. From the figure we see that

including the 1/Λ4 effects lead to stronger bounds on the effective coefficients f̃B and f̃WWW while the bound for

f̃W is slightly looser and shifted; see also the central and right columns of Table III. We traced the counter-intuitive

behaviour of the bounds on f̃W to the WZ datasets. Removing WZ production from the fit leads to stronger limits

at the O(1/Λ4) also for f̃W .

The results in Fig. 2 also show that the dimension-six squared terms are dominant over the dimension-eight one. Or

in other words, the inclusion of the relevant dimension-eight operator in this analysis, O(1)
W 2BΦ2 , has very little impact

on the results. The physical reason for this can be traced to the different dependence on the partonic center-of-mass

energy (Ŝ) of the contribution to the relevant squared amplitudes from dimension-six squared and dimension-eight

terms. As it is well-known, the anomalous TGCs spoil the cancellations that take place in the SM allowing the

scattering amplitudes to grow with the partonic center-of-mass energy. The fastest growing amplitudes are (for

Ŝ � mW,Z):

M
(
d−d̄+ →W+

0 W
−
0

)
= −i ê2

24ŝ2ĉ2
Ŝ

Λ2
sin θ

[
3ĉ2 fW − ŝ2 fB +

v̂2

2Λ2

(
3ĉ2 f

(1)
WΦ4D2 − ŝ2 f

(1)
BΦ4D2

)]
,

M
(
d+d̄− →W+

±W
−
±
)

= i
ê2

48ŝ2ĉ2
Ŝ

Λ2
sin θ

v̂2

Λ2
f

(1)
W 2BΦ2 ,

M
(
d−d̄+ →W+

±W
−
±
)

= −i3ê
4

8ŝ4

Ŝ

Λ2
sin θ

[
fWWW +

v̂2

2Λ2

(
f

(1)
W 3Φ2 +

ŝ2

18ĉ2
f

(1)
W 2BΦ2

)]
,

M
(
d+d̄− →W+

0 W
−
0

)
= −i ê

2

12ĉ2
Ŝ

Λ2
sin θ

(
fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)
,

M
(
u−ū+ →W+

0 W
−
0

)
= i

ê2

24ŝ2ĉ2
Ŝ

Λ2
sin θ

[
3ĉ2 fW + ŝ2 fB +

v̂2

2Λ2

(
3ĉ2 f

(1)
WΦ4D2 + ŝ2 f

(1)
BΦ4D2

)]
,

M
(
u+ū− →W+W−

)
= i

ê2

6ĉ2
Ŝ

Λ2
sin θ

(
fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)
, (4.5)

M
(
u+ū− →W+

±W
−
±
)

= −i ê4

24ŝ2ĉ2
Ŝ

Λ2
sin θ

v̂2

Λ2
f

(1)
W 2BΦ2 ,

M
(
u−ū+ →W+

±W
−
±
)

= i
3ê4

8ŝ4

Ŝ

Λ2
sin θ

[
fWWW +

v̂2

2Λ2

(
f

(1)
W 3Φ2 −

ŝ2

18ĉ2
f

(1)
W 2BΦ2

)]
,
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as well as

M
(
d−ū+ → Z±W

−
±
)

= i
3ĉê4

4
√

2ŝ4

Ŝ

Λ2
sin θ

[
fWWW +

v̂2

2Λ2

(
f

(1)
W 3Φ2 +

ŝ2

6ĉ2
f

(1)
W 2BΦ2

)]
,

M
(
d−ū+ → Z0W

−
0

)
= i

ê2

4
√

2ŝ2

Ŝ

Λ2
sin θ

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)
, (4.6)

M
(
d−ū+ → γ±W

−
±
)

= i
3ê4

4
√

2ŝ3

Ŝ

Λ2
sin θ

[
fWWW +

v̂2

2Λ2

(
f

(1)
W 3Φ2 −

1

6
f

(1)
W 2BΦ2

)]
,

where we indicated the particle polarization as a subscript and we denoted by θ the polar scattering angle in the

center of mass system. Therefore, dimension-six squared contribution to the amplitude squared grows as Ŝ2, while

the dimension-eight contribution – which enters in the interference with the SM amplitude – grows as Ŝ.

Notice that, unlike EWPO, which correspond to squared amplitudes for fixed center-of-mass energy (either MZ or

MW ), EWDB data correspond to squared amplitudes at different center-of-mass energies. Thus, since at order 1/Λ4,

the dimension-six squared and the dimension-eight contributions exhibit different energy dependence, the approximate

analysis performed in terms of the effective couplings (4.3), does not exhaust the potential of the data to constrain

the Wilson coefficients of all the operators involved. It is then possible to perform an analysis in terms of the seven

Wilson coefficients contributing to the amplitudes of the EWDB data because in fact to order 1/Λ4 the χ2 function

depends independently on them:

χ2
EWDB

(
fW , fB , fWWW , f

(1)
W 2BΦ2 , f

(1)
WΦ4D2 , f

(1)
BΦ4D2 , f

(1)
W 3Φ2

)
. (4.7)

We present in Fig. 3 the one- and two-dimensional marginalized 68% and 95% C.L. allowed regions for the seven

Wilson coefficients in Eq. (4.7) for several analyses differing by the order in 1/Λ used in the calculations. We list the

corresponding 95% CL allowed ranges in Table IV. Notice that the O(1/Λ2), [O(1/Λ4) (dim-6)2] analysis is identical

to the one described above as dimension-6 [(dimension-6)2] and leads to the limits on the Wilson coefficients fW , fB
and fWWW given on left (central) column in Table III and the light shaded regions in Fig. 2 (dotted contours) in the

three lowest panels. We reproduce these regions and ranges in Fig. 3 and Table IV for clarity and completeness.

From the figure we see that including the O(1/Λ4) terms strengthens the constraints obtained at order 1/Λ2 for

the operators OB and OWWW while it weakens the bounds on OW , as expected from the results obtained in the

approximate analysis in Fig. 2.

The comparison with the analysis performed including only dimension-six squared terms in the evaluation of the

1/Λ4 contribution (see dashed lines) shows that the dimension-six Wilson coefficient whose determination is most

quantitatively affected by the inclusion of the independent effects of the four dimension-eight Wilson coefficients is

fW . The reason for this is the anti-correlation between fW and f
(1)
WΦ4D2 that is apparent in the second panel of the

fourth row; see Eq. (4.2). In other words, the EWDB data analyzed provides a weaker discrimination between the

dimension-six and the dimension-eight contribution to f̃W . On the contrary the corresponding two-dimensional plots

in Fig. 3 show that no large correlations are present between fB and f
(1)
BΦ4D2 , nor between fWWW and fW 3BΦ2 . The

only other large correlation is observed between the dimension-eight coefficients f
(1)
W 2BΦ2 and fW 3Φ2 both contributing

at the same order to λγ and λZ . At the linear order on these coefficients the stronger sensitivity comes from the Wγ

channel which bounds the combination 6fW 3Φ2 − f (1)
W 2BΦ2 (see Eq. (4.2)) leading to the positive correlation observed.

V. SUMMARY AND CONCLUSIONS

We have studied the impact of O(1/Λ4) corrections in the EWPO and EWDB data analyses assuming a universal, C

and P conserving new physics scenario. The universality assumption reduces the number of dimension-eight operators

contributing to the processes making a complete analysis possible. As described in Sec. II, in the HISZ basis for the
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FIG. 3: One- and two-dimensional 68% and 95% CL projections of ∆χ2
EWDB for fB v̂

2/Λ2, fW v̂
2/Λ2, fWWW v̂

2/Λ2,

f
(1)

BΦ4D2 v̂
2/Λ4, f

(1)

WΦ4D2 v̂
2/Λ4, f

(1)

W3Φ2 v̂
2/Λ4, and f

(1)

W2BΦ2 v̂
2/Λ4 as indicated in the panels after marginalizing over the remaining

fit parameters.

dimension-six SMEFT the universal theories are described by 11 bosonic operators and five fermionic operators, the

latter being generated by the application of the EOM in the reduction of the basis. At dimension eight there are

ten potentially relevant bosonic operators and one expects a fermionic operator generated by the EOM. Of those, we

find that there are six (nine) dimension-six (-eight) operators contributing to the EWPO and EWDB observables (see

Eq. (2.9)).

The analysis of EWPO involves three dimension-six and four dimension-eight operators whose Wilson coefficients
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Coefficient EWPB 95% CL allowed range

O(Λ−2) O(Λ−4) (dim-6)2 O(Λ−4) (dim-6)2 + dim-8
v̂2

Λ2 fB [−3.3, 1.8] [−0.75, 0.83] [−0.89, 0.89]

v̂2

Λ2 fW [−0.11, 0.085] [−0.079, 0.16] [−0.18, 0.18]

v̂2

Λ2 fWWW [−0.22, 0.16] [−0.049, 0.045] [−0.05, 0.05]

v̂4

Λ4 f
(1)

W2BΦ2 — — [−2.6, 5.0]

v̂4

Λ4 fBΦ4D2 — — [−6.48, 7.8]
v̂4

Λ4 fWΦ4D2 — — [−0.33, 0.66]
v̂4

Λ4 fW3Φ2 — — [−0.47, 0.51]

TABLE IV: 95% C.L. allowed range for the Wilson coefficients present in the EWDB data analysis performed with predictions

obtained at different orders in the 1/Λ2 expansion.

cannot be independently bound. However, we find that it is possible to eliminate the blind directions by redefining

three effective coefficients which are just a shift of the three Wilson coefficients of the dimension-six operators cor-

rected by their corresponding dimension-eight siblings – see Eq. (3.2)– and which contain the sibling dimension-eight

contribution to the universal parameters S, T, and ∆GF . In addition the analysis contains a purely dimension-eight

contribution to the universal parameter U . The fit to EWPO performed in terms of these four parameters results in

strong constraints on f̃BW , f̃Φ,1, ∆̃4F , and f
(3)
W 2Φ4 ; see Table I.

At O(1/Λ4) EWDB analysis involves six (seven) dimension-six (-eight) operators of which three (four) contribute

directly to the TGC while three (three) enter indirectly via the finite renormalization of the SM parameters. The

indirect contributions can be cast in terms of three effective couplings bounded by the EWPO (see Appendix B)

allowing us to neglect them in the EWDB analysis.

The direct contributions to the TGC can be expressed in terms of three effective coefficients which are just a shift

of the three Wilson coefficients of the corresponding three dimension-six operators corrected by their corresponding

dimension-eight siblings (i.e. rescaled by Φ†Φ); see Eq. (4.3). In addition there is a genuine dimension-eight contri-

bution to the difference between the λγ and λZ couplings. We performed an effective analysis of the EWDB data in

terms of these four coefficients and showed that the bulk of O(1/Λ4) impact on the analysis is due to the dimension-six

squared contribution |M(6)|2; see Fig. 2 and Table III. This is so because of the different dependence on the partonic

center-of-mass energy of dimension-six squared terms which give a pure quadratic TGC contribution to the amplitude

squared, and the dimension-eight contribution which enters in the interference with the SM amplitude.

Profiting from the different energy dependence of the dimension-six squared and the dimension-eight contributions

it is possible to perform an analysis of the EWDB data which allows us to constrain the seven Wilson coefficients

independently. The result of this analysis is presented in Fig. 3 and Table IV. The results show that the bounds on the

three Wilson coefficients of the dimension-six operators are only slightly looser than in the effective four-parameter

analysis, while the bounds on the four Wilson coefficients of the dimension-eight operators are all of similar order and

all substantially weaker than those on their dimension-six siblings.

In summary, we have shown that, for the universal scenario, the analysis of the EWPO and the EWDB data allows

us to constrain the full parameter space of operators up to O(Λ−4). Within the present precision of EWDB data

and with our choice of basis, it is still consistent to perform the analysis sequentially: first obtain the constraints

on the relevant Wilson coefficients using the EWPO and then apply those bounds to reduce the number of Wilson

coefficients which are relevant for the the diboson analysis. That said, the LHC continues to accumulate data on

EWDB production, and consequently, we anticipate stronger bounds on the TGC couplings in the future. At some

point, it will be necessary to perform a combined analysis of EWPO+EWDB data taking into account the indirect

contributions due to the finite renormalization to the TGC in analogy with study of TGC and possible anomalous

fermionic couplings [60].
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Appendix A: Corrections to the Z and W couplings

We parametrize the Z coupling to fermion (f) pairs as

ê

ŝĉ

(
ĝf (1 + ∆g1) +Qf ∆g2

)
(A1)

where ĝf = T f3 − ŝ2Qf , T f3 is the fermion third component of isospin and Qf is its charge. After the renormalization

of the SM parameters, we obtain at order 1/Λ4

∆g1 = −1

4

v̂2

Λ2

[
2

(
∆4F +

v̂2

Λ2
∆

(8)
4F

)
+ fΦ,1 +

v̂2

Λ2
f

(2)
D2Φ6

]
− 1

32

v̂4

Λ4

[
−12(∆4F )2 + 4∆4F fΦ,1 − 3(fΦ,1)2

]
' −1

4

v̂2

Λ2

[
2∆̃4F + f̃Φ,1

]
− 1

32

v̂4

Λ4

[
−12(∆̃4F )2 + 4∆̃4F f̃Φ,1 − 3(f̃Φ,1)2

]
. (A2)

In the last line we have used that to order 1/Λ4 the corrections linear in the Wilson coefficients depend on the

four combinations in Eq. (3.2) and therefore neglecting terms of O(1/Λ6) we can rewrite ∆g1 in terms of those

combinations. In the same way we find:

∆g2 =
v̂2

Λ2

1

2ĉ2

[
− ŝ2ĉ2

(
2∆̃4F + f̃Φ,1

)
+
ê2

2
f̃BW

]
+
v̂4

Λ4

1

8ĉ32

{
ŝ2

2

4

[
(1 + 3ĉ4)

(
(∆̃4F )2 +

1

4
(f̃φ,1)2

)
− (3 + ĉ4)∆̃4F f̃φ,1

]
− ê

2

2

(
ĉ4f̃BW f̃φ,1 − 2∆̃4F f̃BW + ê2(f̃BW )2

)}
(A3)

with ĉn = cos(nθ̂) and ŝn = sin(nθ̂).

As for the W observables

∆MW

M̂W

=
1

4ĉ2

v̂2

Λ2

[
ê2f̃BW − 2ŝ2∆̃4F − ĉ2f̃Φ,1

]
+

ê2

8ŝ2

v̂4

Λ4
f

(3)
W 2Φ4

+
1

8ĉ32

v̂4

Λ4

[
− ŝ4(2 + 3ĉ2)(∆̃4F )2 +

1

4
ĉ4(−2 + 5ĉ2)(f̃Φ,1)2 − 1

16
ê4 (7− 6ĉ2 + 3ĉ4)

ŝ2
(f̃BW )2

− ĉ
2

4
(9− 6ĉ2 + 5ĉ4)∆̃4F f̃Φ,1 +

1

4
ê2(7− 2ĉ2 + 3ĉ4)∆̃4F f̃BW −

1

2
ê2ĉ2(−2 + 3ĉ2)f̃Φ,1f̃BW

]
(A4)

where M̂W = êv̂
2ŝ

. And we parametrize the W coupling to left-handed fermions as

ê

ŝ
(1 + ∆gW ) (A5)

where

∆gW =
1

4ĉ2

v̂2

Λ2

[
ê2f̃BW − 2ĉ2∆̃4F − ĉ2f̃Φ,1

]
+

1

8ĉ32

v̂4

Λ4

[
ê2 ĉ

3
2

ŝ2
f

(3)
W 2Φ4 + ĉ4(−2 + 5ĉ2)(∆̃4F )2 − 1

16

(7− 6ĉ2 + 3ĉ4)

ŝ2
ê4(f̃BW )2

+
1

4
ĉ4(−2 + 5ĉ2)(f̃Φ,1)2 − 1

4
ĉ2(7− 6ĉ2 + 3ĉ4)∆̃4F f̃Φ,1 +

1

4
ê2(5− 2ĉ2 + ĉ4)∆̃4F f̃BW

−1

2
ê2ĉ2(−2 + 3ĉ2)f̃Φ,1f̃BW

]
(A6)
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Appendix B: Corrections to TGC

The renormalization of the SM parameters give rise to indirect contributions to TGC in addition to the direct

contributions from the dimension-six and -eight operators to the TGC. Using the parametrization for the γW+W−

and ZW+W− TGC given in Eq. (4.1), we find that up to order 1/Λ4 (and neglecting terms of O(1/Λ6)) the coupling

to W+
µνW

−µZν reads

gZ1 = 1 +
1

2

v̂2

Λ2

[
ê2

4ŝ2ĉ2

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)
− 1

ĉ2
∆̃4F +

1

2

ê2

ĉ2ĉ2
f̃BW −

1

2ĉ2
f̃Φ,1

]
+

1

16ĉ32

v̂4

Λ4

[
(1 + 2ĉ2 + 3ĉ4)

(
(∆̃4F )2 +

1

4
(f̃Φ,1)2

)
− ê4

ĉ2
(f̃BW )2

+2
ê2

ĉ2
∆̃4F f̃BW − (3− 2ĉ2 + ĉ4)∆̃4F f̃Φ,1 − ê2 ĉ4

ĉ2
f̃BW f̃Φ,1

]
− ê2

4ŝĉŝ4

v̂4

Λ4

(
∆̃4F − ê2f̃BW +

1

2
(1 + 2ĉ2)f̃Φ,1

)
fW , (B1)

The couplings to W+
µ W

−
ν V

µν are respectively

κγ = 1 +
1

8

ê2

ŝ2

v̂2

Λ2

[(
fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)
+

(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)
− 2f̃BW

]
(B2)

− ê
2

32

v̂4

Λ4

1

ŝ2ĉ2

(
2(1− ĉ2)∆̃4F − 2ê2f̃BW + (1 + ĉ2)f̃Φ,1

)
(fB + fW − 2f̃BW )

+
ê2

4ŝ2

v̂4

Λ4
f

(3)
W 2Φ4

and

κZ = 1 +
1

8

ê2

ŝ2

v̂2

Λ2

[(
fW +

v̂2

2Λ2
f

(1)
WΦ4D2

)
− ŝ2

ĉ2

(
fB +

v̂2

2Λ2
f

(1)
BΦ4D2

)
+

4ŝ2

ĉ2
f̃BW −

4ŝ2

ê2ĉ2
∆̃4F −

2ŝ2

ê2ĉ2
f̃Φ,1

]
+

1

16ŝ2ĉ32

v̂4

Λ4

[
ŝ2(1 + 2ĉ2 + 3ĉ4)

(
(∆̃4F )2 +

1

4
(f̃Φ,1)2

)
− ê4(2− 2ĉ2 + ĉ4)(f̃BW )2

+ŝ2(3− 2ĉ2 + ĉ4)
(

2ê2∆̃4F f̃BW − ∆̃4F f̃φ,1

)
− ê2ŝ2(−1 + 2ĉ2 + ĉ4)f̃BW f̃Φ,1 (B3)

+fW

(
ê2ĉ22(−2 + ĉ2)∆̃4F + ê2 ĉ

2
2

2
(2 + ĉ2)

(
ê2

ĉ2
f̃BW − f̃Φ,1

))
+fB ê

2 ŝ
2ĉ32
2ĉ2

(
f̃Φ,1 − 2∆̃4F +

ê2

ŝ2
f̃BW

)
+ 4ê2ĉ32f

(3)
W 2Φ4

]
And the couplings to W+

µνW
− νρV µ

ρ are:

λγ =
3

2

ê2

ŝ2

M̂2
W

Λ2

[(
fWWW +

v̂2

2Λ2
f

(1)
W 3Φ2

)
+

1

2ĉ2

v̂2

Λ2
fWWW

(
ê2f̃BW −

(
2∆̃4F + f̃Φ,1

)
ĉ2
) ]
− M̂4

W

2Λ4
f

(1)
W 2BΦ2 ,

(B4)

λZ =
3

2

ê2

ŝ2

M̂2
W

Λ2

[(
fWWW +

v̂2

2Λ2
f

(1)
W 3Φ2

)
− v̂

2

Λ2

ŝ2(2 + ĉ2)

ŝ2ŝ4
fWWW

(
4∆̃4F ĉ

2 + 2f̃Φ,1ĉ
2 − 2ê2f̃BW

)]
+
M̂4
W

2Λ4

ŝ2

ĉ2
f

(1)
W 2BΦ2 ,

where M̂W = êv̂/2ŝ.
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