
Prospects for GPDs extraction with Double DVCS∗

K. Deja , V. Mart́ınez-Fernández , P. Sznajder , J. Wagner

National Centre for Nuclear Research (NCBJ), 02-093 Warsaw, Poland

B. Pire
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Double deeply virtual Compton scattering (DDVCS) is the process where an electron scatters off a
nucleon and produces a lepton pair. The main advantage of this process in contrast with deeply virtual and
timelike Compton scatterings (DVCS and TCS) is the possibility of directly measuring GPDs for x 6= ±ξ
at leading order in αs (LO). We present a new calculation of the DDVCS amplitude based on the methods
developed by R. Kleiss and W. J. Stirling in the 1980s. These techniques produce expressions for amplitudes
that are perfectly suited for implementation in numerical simulations. Via the PARTONS software, the
correctness of this new formulation has been tested by comparing the DVCS and TCS limits of DDVCS with
independent calculations of DVCS and TCS.

1. Introduction

Generalized parton distributions (GPDs) [1,2] are off-forward matrix elements of quark and gluon
operators that represent a 3D version of the usual parton distribution functions (PDFs). While
PDFs are accessible in inclusive processes (out of which deep inelastic scattering off the nucleon,
DIS, is the golden channel), GPDs appear in exclusive processes such as deeply virtual and timelike
Compton scattering (DVCS - the golden channel for GPDs - and TCS), and double deeply virtual
Compton scattering (DDVCS).

To access GPDs in DDVCS [3, 4] one has to consider the exclusive electroproduction of a lepton
pair,

e(k) +N(p)→ e′(k′) +N ′(p′) + µ+(`+) + µ−(`−) , (1)

which receives contributions not only from pure DDVCS, but also from a QED background known
as Bethe-Heitler (BH) sub-process, vid. Fig. 1.
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Fig. 1: DDVCS (left) and BH diagrams which are denoted as BH1 (middle) and BH2 (right). Crossed-counterparts are not
included.

Present interest in DDVCS is rooted on the possibility of directly accessing GPDs in the region
x 6= ±ξ in a leading order (LO) analysis. This is a consequence of the existence of two virtualities
Q2 = −(k− k′)2 and Q′2 = (`+ + `−)2 which modifies the coefficient function that convolutes with
the GPD with respect to DVCS and TCS. In terms of the skewness ξ and the generalized Björken
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variable ρ,

ξ =
−∆q̄

2p̄q̄
, ρ =

−q̄2

2p̄q̄
, (2)

where p̄ = (p+ p′)/2, q̄ = (q + q′)/2 and ∆ = p′ − p, the DDVCS amplitude depends on the GPDs
via the Compton form factors (CFFs):

CFF ∼ PV

(∫ 1

−1
dx

1

x− ρ
GPD(x, ξ, t)

)
−
∫ 1

−1
dx iπδ(x− ρ)GPD(x, ξ, t)± · · · . (3)

Here, the + (−) sign corresponds to axial (vector) GPDs, the ellipses accounts for x→ −x terms,
PV stands for Cauchy’s principal value and t = ∆2 is the usual Mandelstam variable. As a result,
one can measure GPDs for x = ρ for which ρ 6= ±ξ as long as both vitualities Q2, Q′2 are non-zero.
This is different to DVCS case1 for which the CFFs in the amplitude enter as in Eq. (3) with ρ→ ξ.
This restricts the LO study of GPDs to the line x = ξ.

Although a quite detailed study of the phenomenological peculiarities of DDVCS already exists
[5], we revisit this process in the view of the near future experiments at both fixed target facilities
[6–8] and electron-ion colliders [9, 10]. For this purpose we [11] make use of Kleiss-Stirling (KS)
techniques [12,13], which deals directly with the amplitude and render expressions that are perfectly
suited for implementation in PARTONS platform [14] and so for phenomenological studies.

2. Formulation à la Kleiss-Stirling

In 1980s, Kleiss and Stirling developed some spinor techniques to compute scattering amplitudes
as an alternative to the usual approach based on dealing with traces of Dirac-gamma matrices. In
that regard, the following products of spinors for two light-like vectors a and b become the building
blocks of the amplitudes and define two scalars (± stand for helicities):

s(a, b) = ū(a,+)u(b,−) = −s(b, a) , (4)

t(a, b) = ū(a,−)u(b,+) = [s(b, a)]∗ . (5)

Explicit computation of these bilinears show that s(a, b) acquires the simple form:

s(a, b) = (a2 + ia3)

√
b0 − b1
a0 − a1

− (a↔ b) , (6)

as long as a · κ0 6= 0 and b · κ0 6= 0 with κµ0 = (1, 1, 0, 0).

In turn, we can define two functions that will play a key role on the computation: the contraction
of two currents

f(λ, k0, k1;λ
′, k2, k3) =ū(k0, λ)γµu(k1, λ)ū(k2, λ

′)γµu(k3, λ
′)

=2[s(k2, k1)t(k0, k3)δλ−δλ′+ + t(k2, k1)s(k0, k3)δλ+δλ′−

+ s(k2, k0)t(k1, k3)δλ+δλ′+ + t(k2, k0)s(k1, k3)δλ−δλ′−] , (7)

and the contraction of a current with a light-like vector a:

g(s, `, a, k) = ū(`, s)/au(k, s) = δs+s(`, a)t(a, k) + δs−t(`, a)s(a, k) . (8)

1 Or TCS with ξ → −ξ



main printed on April 10, 2023 3

2.1. Example: BH1 à la KS

Making use of the quantities defined above, for the case of the middle diagram in Fig. 1 which
corresponds to the first BH contribution, namely BH1, the amplitude of this sub-process reads (up
to propagators and factor ie4):

iM̃BH1 =(F1 + F2)
∑
L

f(s`, `−, `+; s, k′, L)
(
Ys2s1f(s, L, k; +, r′s2 , rs1) + Zs2s1f(s, L, k;−, r′−s2 , r−s1)

)
− F2

2M
J (2)
s2s1

∑
L,R

f(s`, `−, `+; s, k′, L)g(s, L,R, k) (9)

where F1, F2 are the electromagnetic form factors, M is the target mass and J (2) is a combination
of scalars in Eqs. (4) and (5) dependent on the spin and momentum of the target in its final (s2, p

′)
and initial (s1, p) states. Y,Z are complex phases dependent on the target states too. Sums run over
two sets of light-like momenta2, namely L ∈ {k′, `−, `+} and R ∈ {r1, r2, r′1, r′2} where p = r1 + r2
and p′ = r′1+r′2. Eq. (9) can be clearly interpreted in terms of contractions of leptonic and hadronic
currents as well as momenta via definitions (7) and (8).

3. DVCS and TCS limits

In this section we numerically check our results against DVCS and TCS limits, which were pre-
viously worked out in [15, 16] and implemented in the PARTONS framework. In these tests we
consider Goloskokov-Kroll GPD model, see for example Ref. [17], the renormalization and factor-
ization scales are µ2R = µ2F = Q2 + Q′2, while the skewness and generalized Bjorken variables are
evaluated at t = 0, which is equivalent to drop terms proportional to t/(Q2+Q′2). Without denying
the importance of NLO corrections to the amplitudes [18, 19], we stay at the Born order level for
the time being. The cross-sections are given as a function of seven variables out of which three
are angles: φ which describes the azimuthal direction of the final-state hadron with respect to the
electron beam plane, and φ` and θ` which represent azimuthal and polar orientations of the muon
in the produced lepton pair center of mass frame, respectively. The first one is given according to
Trento’s convention [20], while the other two are considered in BDP frame [16].

In Fig. 2, CFF H is depicted as a function of ξ as it reaches the DVCS limit (Q′2 = 0). Points
corresponding to proper DVCS are computed with an independent code available in PARTONS and,
as it is shown, DDVCS’ CFF H approaches DVCS value without discontinuities. Same conclusion
is reached when TCS limit and other CFFs are considered.
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Fig. 2: Left: Imaginary part of CFF H(ξ, t = −0.15 GeV2) as a function of the skewness ξ for subsequently smaller values of
Q′2 and comparison with DVCS CFF H (Q′2 = 0). Value of the spacelike virtuality is taken to be Q2 = 1.5 GeV2. Right:
zoom in the region ξ ∈ (0.01, 0.04).

2 Electron, muon and antimuon are considered massless.
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As Q′2 → 0, DVCS cross-section is recovered from DDVCS. The relation between these two pro-
cesses comes as ∫

dΩ`
d7σ

dxBdQ2dQ′2d|t|dφdΩ`︸ ︷︷ ︸
DDVCS

Q′2→0−−−−→
(

d4σ

dxBdQ2d|t|dφ

)
︸ ︷︷ ︸

DVCS

N
Q′2

, (10)

where we have integrated-out the lepton pair and accounted for the splitting of the outgoing virtual
photon into the pair via the factor N = αem/(3π) [21]. Prescription (10) holds also for BH1
contribution.

The same way, as Q2 → 0 DDVCS tends to TCS. In this case, one needs to consider the photon
flux, Γ, calculated under the equivalent-photon approximation (EPA) [22,23] and integrate over φ:∫

dφ
d7σ

dxBdQ2dQ′2d|t|dφdΩ`︸ ︷︷ ︸
DDVCS

Q2→0−−−−→
(

d4σ

dQ′2d|t|dΩ`

)
︸ ︷︷ ︸

TCS

d2Γ

dxBdQ2
, (11)

where
d2Γ

dxBdQ2
=

αem

2πQ2

(
1 +

(1− y)2

y
− 2(1− y)Q2

min

yQ2

)
ν

ExB
. (12)

Here,

ν =
Q2

2MxB
and Q2

min =
(yme)

2

1− y
(13)

are the energy carried away by the incoming virtual photon and the minimum value of the spacelike
virtuality for which me is the electron mass, respectively. Prescription (11) holds also for BH2
contribution.

The comparison for cross-sections is shown in Fig. 3 for DDVCS against DVCS and TCS, and in
Fig. 4 for the BH backgrounds. Also here, proper DVCS and TCS processes are evaluated with
independent codes available in PARTONS. These codes are numerical implementations of works
published in Refs. [15] and [16].
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Fig. 3: Pure DVCS (left) and TCS (right) contributions to the cross-section versus the corresponding limit of DDVCS. For left
plot: xB = 0.2, t = −0.25 GeV2, Q2 = 40 GeV2 and incoming electron beam energy E = 160 GeV. For right plot: xB = 10−4,
t = −0.25 GeV2, Q′2 = 33 GeV2, θ` = 1.04π/4 rad and E = 160 GeV.

Testing for different ratios of |t|/Q2 and |t|/Q′2, we conclude that the slight disagreement observed
in Fig. 3 is the result of kinematical higher-twists. These effects come from the different frames used
to describe DDVCS, DVCS and TCS. Because there is no twist expansion for pure QED processes,
BH contributions in Fig. 4 show a perfect matching.

As a final remark, on top of these consistency checks, we are working on the predictions for cross-
sections and asymmetries assessing the measurability of DDVCS in both current (JLab12) and
future experiments (JLab20+, EIC) [11].
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Fig. 4: BH contribution to the DVCS (left) and TCS (right) cross-sections versus the corresponding limit of DDVCS. For left
plot: xB = 0.04, t = −0.1 GeV2, Q2 = 10 GeV2 and incoming electron beam energy E = 160 GeV. For right plot: xB = 10−4,
t = −0.1 GeV2, Q′2 = 3 GeV2, θ` = 1.04π/4 rad and E = 160 GeV.
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