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Abstract

We discuss radiative neutrino mass models with a general lepton flavor dependent U(1) gauge

symmetry. The scotogenic model is adopted for neutrino mass generation in which Z2 odd singlet

fermions and an inert scalar doublet are introduced. A lepton flavor dependent local U(1) symmetry

is applied to realize two-zero texture of a Majorana mass matrix of Z2 odd singlet fermions where

we explore minimal construction choosing U(1) charges of the standard model fermions and singlet

fermions. Then we investigate neutrino mass matrix and show some predictions for constructed

models, and discuss some phenomenological implications.
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I. INTRODUCTIONS

One of the big mysteries in particle physics is the non-zero neutrino masses and their flavor

mixings that require physics beyond the standard model (SM). Radiative seesaw mechanism

is the one of the attractive ways for generating neutrino masses and mixings where an active

neutrino mass matrix is induced at loop level and the mass value is suppressed by loop

factor. In particular, scotogenic type of radiative neutrino mass models is interesting since

dark matter (DM) candidate often appears naturally if we assign dark Z2 parity to stabilize

the DM candidate and forbid tree level neutrino mass; e.g. some earlier works are found in

refs. [1–5]).

Besides neutrino mass generation mechanism, introduction of new U(1) gauge (global)

symmetry is also an attractive possibility to extend the SM. In particular, a lepton flavor

dependent U(1) symmetry is interesting since such a symmetry can restrict flavor structure of

leptons and would provide interesting phenomenologies. For example, a predictable neutrino

mass model could be realized if we obtain two-zero texture of neutrino mass matrix as a

consequence of the symmetry [6]. Thus, we expect such predictive models with a lepton

flavor dependent U(1) in which structure of Yukawa couplings associated with neutrino mass

generation is restricted by this symmetry; some related works can be found in Refs. [7–30].

In this work we construct scotogenic models with a lepton flavor dependent U(1)X

gauge symmetry that contains Z2 odd SM singlet fermions NR and an inert doublet η.

For candidates of U(1)X we consider general lepton flavor dependent charge as X =

B − xLe − yLµ − zLτ , with B and Li being Baryon and lepton number (i = e, µ, τ), where

x + y + z = 3 is required to cancel anomalies 1; a few studies of type-I seesaw models with

this kind of gauge symmetry are found in ref. [9, 23]. In constructing models, we adopt the

following criteria for choosing the U(1)X charges and field contents; (1) Yukawa couplings

of the terms LLηNR and LLHeR are diagonal, (2) the Majorana mass matrix of NR has

two-zero structure, (3) only one singlet scalar ϕ has to break U(1)X for minimality, (4) all

three generations of leptons have non-zero U(1)X charge. We then formulate active neutrino

mass matrix induced at one loop level and make numerical analysis to search for allowed

parameter sets.

1 It can be obtained by linear combinations of anomaly free U(1)B−L and U(1)Li−Lj
symmetries.
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QLi uRi dRi LLi eRi NRi H η ϕ

SU(3)c 3 3 3 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2 1

U(1)Y
1
6

2
3 −1

3 −1
2 −1 0 1/2 −1/2 0

U(1)X
1
3

1
3

1
3 {−x,−y,−z} {−x,−y,−z} {−x,−y,−z} 0 0 2

TABLE I: Charge assignments of the quarks, leptons and scalar fields under SU(3)c × SU(2)L ×

U(1)Y ×U(1)X (X = B − xLe− yLµ− zLτ ), where the lower index i is the number of family that

runs over 1 − 3 and Z2 odd is imposed for NR and η. To cancel anomaly {x, y, z} should satisfy

x+ y + z = 3.

This paper is organized as follows. In Sec. II, we introduce our models with lepton

flavor dependent U(1) gauge symmetry, choosing charge assignment for the SM fermions,

and provide a formula of neutrino mass matrix. In Sec.III we carry out numerical analysis

for neutrino mass matrix and search for allowed parameter sets that accommodate neu-

trino oscillation data, and discuss phenomenological implications of the models. Finally, we

conclude several results in Sec. IV.

II. MODEL SETUP

In this section, we introduce models that are based on a general lepton flavor dependent

U(1)X (X = B − xLe − yLµ − zLτ ) gauge symmetry. To cancel anomalies {x, y, z} should

satisfy x + y + z = 3 where x = y = z = 1 corresponds to well known U(1)B−L case. We

choose x and y as free parameter and z = 3 − x − y. A singlet scalar field with U(1)X

charge 2 is introduced to break the U(1)X spontaneously by its vacuum expectation value

(VEV). We also introduce a SU(2) doublet scalar η with hypercharge Y = −1/2 and singlet

fermions NR that are odd under Z2 symmetry; the other fields are all Z2 even. All the

fields in the model are summarized in Tab. I showing their charge assignments. The scalar

potential is written by

V =µ2
HH

†H + µ2
ηη
†η + µ2

ϕϕ
∗ϕ+ λH(H†H)2 + λη(η

†η)2 + λϕ(ϕ∗ϕ)2

+ λHη(H
†H)(η†η) + λ′Hη(Hη)(ηH) + λ̃Hη(Hη)2 + λHϕ(H†H)(ϕ∗ϕ) + λϕη(ϕ

∗ϕ)(η†η).

(1)
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Also the Lagrangian for relevant Yukawa interactions of the model is

LY = y`LLeRH + yηLLNRη + yNN c
RNRϕ+ ỹNN c

RNRϕ
∗ + h.c., (2)

where c indicates charge conjugation. Note that non-zero components of these Yukawa

couplings are determined by our choice of U(1)X charges for fermions.

A. Scalar and gauge boson masses

We require the SM Higgs field and singlet ϕ develop their VEVs to break electroweak

and U(1)X symmetry spontaneously. These fields are written by

H =

 G+

v+h̃+iGZ√
2

 , ϕ1,2 =
vϕ + φ+ iGZ′√

2
, (3)

where G+ and GZ are massless Nambu-Goldstone(NG) bosons which are absorbed by the

SM gauge bosons W+ and Z respectively, and GZ′ corresponds to NG boson absorbed by

extra neutral gauge boson Z ′ from U(1)X . The VEVs are obtained by solving stationary

conditions ∂V
∂v

= ∂V
∂vϕ

= 0 which are explicitly written by

v

(
µ2
H +

λHϕ
2
v2ϕ

)
+ λHv

3 = 0, (4)

vϕ

(
µ2
ϕ +

λHϕ
2
v2
)

+ λϕv
3
ϕ = 0. (5)

After the scalar fields developing VEVs, neutral scalars h̃ and φ mix each other. In the

analysis of this work, we assume the mixing between h̃ and φ is small choosing λHϕ to be

small, for simplicity, and h̃ is identified as the SM Higgs boson.

We require the Z2 odd scalar η not to develop VEV so that Z2 symmetry is not broken.

The real and imaginary part of neutral component in the inert scalar η obtain different

masses after symmetry breaking. From the scalar potential we find the masses as

mηR =

√
µ2
η +

λHη + λ′Hη
2

v2 +
λ̃Hη

2
v2, mηI =

√
µ2
η +

λHη + λ′Hη
2

v2 − λ̃Hη
2
v2. (6)

Thus the mass difference is given by the parameter λ̃Hη as

δm2
η ≡ m2

ηR
−m2

ηI
=
λ̃Hη

2
v2. (7)
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The charged component in η has mass mη± =
√
µ2
η + (λHη + λ′Hη)v2/2.

The U(1)X gauge symmetry is spontaneously broken by the VEV of ϕ. Then Z ′ boson

from U(1)X obtains its mass that is given by

mZ′ = 2gXvϕ, (8)

where gX is gauge coupling constant associated with U(1)X .

B. Majorana mass matrix of NR

The relevant terms associated with Majorana mass of NR are given by

L ⊃ 1

2
M̃NN c

RNR + yNN c
RNRϕ+ ỹNN c

RNRϕ
∗ + h.c. , (9)

where the first term is bare Majorana mass term of NR. Non-zero components of these

terms are determined by the choice of NR charges, i.e. values of {x, y}. After ϕ developing

its VEV, the Majorana mass term for NR is given by

1

2

(
M̃N +

√
2(yN + ỹN)vϕ

)
N c
RNR =

1

2
MNN c

RNR. (10)

The mass matrix is diagonalized as V TMNV where V is a unitary matrix. The mass eigen-

state is given by ψR = V NR.

We consider several models choosing the values of x and y that determine the structure

of Yukawa couplings and Majorana mass matrix of NR. The U(1)X charge structures of

relevant Yukawa interactions and bare Majorana mass term are given by

(
LLeRH

)
U(1)X charge

=
(
LLNRη

)
U(1)X charge

=


0 x− y x− z

−x+ y 0 y − z

−x+ z −y + z 0

 , (11)

(
N c
RNRϕ

(∗))
U(1)X charge

=


−2x± 2 −x− y ± 2 −x− z ± 2

−x− y ± 2 −2y ± 2 −y − z ± 2

−x− z ± 2 −y − z ± 2 −2z ± 2

 , (12)

(
N c
RNR

)
U(1)X charge

=


−2x −x− y −x− z

−x− y −2y −y − z

−x− z −y − z −2z

 , (13)
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where +2 is for ϕ and −2 is for ϕ∗ at the RHS of the second equation. We choose x and

y to obtain simple structure for Yukawa coupling and Majorana mass for realizing high

predictability in neutrino mass generation. The adapted criteria are as follows:

• x 6= 0 and y 6= 0,

• Yukawa coupling matrices y` and yη are diagonal,

• The Majorana mass matrix MN in Eq. (10) has two-zero texture.

For the second criterion, we require x 6= y 6= z. We then find six possible scenarios which

realize two-zero texture of MR, which are summarized as follows.

(1) {x, y} = {−1, 1} →MN :


X X X

X X 0

X 0 0

 , (2) {x, y} = {1,−1} →MN :


X X 0

X X X

0 X 0

 ,

(3) {x, y} = {3, 1} →MN :


0 0 X

0 X X

X X X

 , (4) {x, y} = {3,−1} →MN :


0 X 0

X X X

0 X X

 ,

(5) {x, y} = {1, 3} →MN :


X 0 X

0 0 X

X X X

 , (6) {x, y} = {−1, 3} →MN :


X X X

X 0 0

X 0 X

 ,

(14)

where X indicates a non-zero component of MN and z is given by 3− x− y 2.

C. Neutrino masses

The relevant interaction term for neutrino mass generation is

LY ⊃
1√
2
ỹηLLψR(ηR + iηI) + h.c., (15)

2 We can identify these cases are linear combinations of U(1)B−3Li and U(1)Lj−Lk
.
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νL νL

ϕ

ψk

Δ

H Hϕ

ηR/I

ψk

×	

Mk

FIG. 1: One loop diagram generating active neutrino mass matrix.

where ỹη = yηV . We obtain the neutrino mass matrix at one-loop level by diagram in Fig. 1

such that

(mν)ij =
(ỹ∗η)ki(ỹ

∗
η)kj

32π2
mψk

m
2
ηR

ln

(
m2
ηR

m2
ψk

)
m2
ηR
−m2

ψk

−
m2
ηI

ln

(
m2
ηI

m2
ψk

)
m2
ηI
−m2

ψk

 . (16)

We diagonalize the matrix mν by a unitary matrix UPMNS; UT
PMNSmνUPMNS ≡

diag(m1,m2,m3).

Several observables regarding neutrino physics are as follows. Firstly, we write the mass

square differences

(NH) : ∆m2
atm = m2

3 −m2
1, (IH) : ∆m2

atm = m2
2 −m2

3, (17)

where ∆m2
atm is atmospheric neutrino mass square difference, and NH and IH indicate the

normal hierarchy and the inverted hierarchy, respectively. Solar mass square difference is

also represented by

∆m2
sol = m2

2 −m2
1. (18)

We estimate the value and compare it with experimental data. The PMNS matrix UPMNS is

parametrized by three mixing angles θij(i, j = 1, 2, 3; i < j), one CP violating Dirac phase
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δCP , and two Majorana phases {α21, α32} such that

UPMNS =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13




1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 ,

(19)

where cij and sij stands for cos θij and sin θij respectively. The mixing angles can be derived

in terms of the components of UPMNS as follows:

sin2 θ13 = |(UPMNS)13|2, sin2 θ23 =
|(UPMNS)23|2

1− |(UPMNS)13|2
, sin2 θ12 =

|(UPMNS)12|2

1− |(UPMNS)13|2
. (20)

In addition, we can compute the Jarlskog invariant and δCP from PMNS matrix elements

Uαi:

JCP = Im[Ue1Uµ2U
∗
e2U

∗
µ1] = s23c23s12c12s13c

2
13 sin δCP . (21)

The Majorana phases can be also estimated in terms of other invariants I1 and I2:

I1 = Im[U∗e1Ue2] = c12s12c
2
13 sin

(α21

2

)
, I2 = Im[U∗e1Ue3] = c12s13c13 sin

(α31

2
− δCP

)
. (22)

Moreover, the effective mass for the neutrinoless double beta decay is given by

〈mee〉 = |m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e
iα21 +m3 sin2 θ13e

i(α31−2δCP )|, (23)

where the predicted value can be compared with the current constraints; for example the

strongest constraint is given by KamLAND-Zen [31].

III. NUMERICAL ANALYSIS AND PHENOMENOLOGY

In this section, we carry out numerical analysis to fit the neutrino data and find some

predictions of the models. Then some implications for phenomenology are discussed.

A. Numerical analysis

The relevant free parameters for neutrino mass are Yukawa coupling yηi , the elements

of Majorana mass matrix mij ≡ (MN)ij, inert scalar boson mass mηR and mass difference

δm2
η = m2

ηR
−m2

ηI
. Note that we choose yηi and one of the non-zero element of mij to be

real that can be achieved by phase redefinition of fermions without loss of generality. For

8



Model (1) Model (2)

Model (3) Model (4)

Model (5) Model (6)

FIG. 2: The correlations between δCP and α21 in NH case for each model. The blue, green, yellow,

and red color points correspond to σ ≤ 1, 1 < σ ≤ 2, 2 < σ ≤ 3, and 3 < σ ≤ 5 interval,

respectively in χ2 analysis.

Yukawa coupling we factor out y1 as (y1, y2, y3) = y1(1, ŷ2, ŷ3), and y1 is chosen to fit ∆m2
atm.

Then we scan relevant free parameters in the range of

{|mij|,mηR} ∈ [102, 105] GeV, {ŷ2, ŷ3} ∈ [10−3, 102], δm2
η ∈ [10−2, 1]v2, (24)

where perturbativity condition of Yukawa coupling, yi .
√

4π, is also imposed. For each

parameter point, neutrino masses and mixings are estimated using Eq. (16), and χ2 value is

calculated using neutrino data from NuFit 5.2 [32] for {sin θ12, sin θ23. sin θ13,∆m2
atm,∆msol}.
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Model (1) Model (2)

Model (3) Model (4)

Model (5)

FIG. 3: The correlations between δCP and α21 in IH case for each model. The colors of points are

the same as Fig. 2; it is the same in following plots.

We then search for the parameter sets which realize χ2 value giving σ . 5 confidence level

and explore some predictions regarding neutrino measurements such as CP phases, 〈mee〉

and
∑
mi. As a result we find possible parameter sets except for IH case in model (6).

In Fig. 2, we show the correlation between δCP and α21 in NH case for each model. The

blue, green, yellow, and red color points correspond to σ ≤ 1, 1 < σ ≤ 2, 2 < σ ≤ 3, and

3 < σ ≤ 5 interval, respectively in χ2 analysis. For models except for (5), the Majorana

phase α21 tends to be around [150, 200] [deg] with a few points outside the region where
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we find some specific patterns for the correlation between α21 and δCP . In model (5), we

have more points giving α21 around [0, 30] [deg] and [320, 360] [deg], and few points around

[150, 200] [deg] where correlation between the phases is less clear. In Fig. 3, we also show

the correlation between δCP and α21 in IH case for each model. For model (1), we find α21

tends to be around [100, 250] [deg] and the correlation between the phases is not clear. For

model (2) and (5), we find specific prediction regarding δCP and α21 where these values are

localized at around {α21, δCP} = {5, 90}[deg] and {270, 355}[deg]. On the other hand, for

model (3) and (4), we find the possible range of the phases are wide and their correlations

are not strong.

In Fig. 4, we show the correlation between
∑
mi and 〈mee〉 in NH case for each model.

In the plots, the horizontal lines are constraints from KamLAND-Zen [31] where dashed

one is the strongest constraint with energy-density functional (EDF) theory for nuclear

matrix element and the dotted one is the weakest constraint with quasiparticle random-phase

approximation (QRPA). In addition, the vertical dashed line corresponds to
∑
mi = 120

meV that is upper bound obtained from cosmology [33]. For models except for (5),
∑
mi

tends to be around [60, 80] meV where some points give larger value; in particular some

amount of points in model (2) provide
∑
mi ∈ [140, 210] meV. On the other hand model (5)

provides more points in larger
∑
mi region up to 400 meV. Also 〈mee〉 value tends to be small

as 〈mee〉 . 1 meV except for models (2) and (5). Some points in model (2) and many points

in model (5) provide 〈mee〉 = O(10) meV to O(100) meV. Note that in model (5) we do not

have points satisfying
∑
mi < 120 meV and σ < 1. Also many points in model (5) and few

points in other models are excluded by the strongest constraints on 〈mee〉 by KamLnd-Zen

(allowed by the weakest constrains). In Fig. 5, we show the correlation between
∑
mi and

〈mee〉 in IH case for each model. For model (1),
∑
mi tends to be around [100, 170]. Models

(3)[(4)] provide
∑
mi ∈ [110, 300[400]] meV. Model (2) and (5) tend to provide points in

larger
∑
mi region as [160, 460] meV. On the other hand 〈mee〉 value tends to be O(10) meV

to O(100) meV for models (1), (3) and (4), and O(100) meV for models (2) and (5). Except

for model (1) the most of the points are disfavored by cosmological constraint
∑
mi < 120

meV, and also many allowed points are excluded by the strongest constraints on 〈mee〉 by

KamLnd-Zen while they are allowed by the weakest constrains; in other words these cases

are promising to be tested in near future experiments searching for neutrinoless double beta

decay.
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Model (1)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (2)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (3)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (4)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (5)

KamLanD-Zen(QRPA)

KamLanD-Zen(EDF)

Model (6)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

FIG. 4: The correlations between
∑
mi and 〈mee〉 in NH case for each model. In the plots, the

horizontal lines are constraints from KamLAND-Zen where dashed one is the strongest constraint

with energy-density functional (EDF) theory for nuclear matrix element and the dotted one is the

weakest constraint with quasiparticle random-phase approximation (QRPA). The vertical dashed

line corresponds to
∑
mi = 120 meV that is upper bound obtained from cosmology.

In Figs. 6 and 7 we show correlation between
∑
mi and δCP for NH and IH cases respec-

tively. For NH case, we don’t find large difference among models except for model (5) that

gives points for
∑
mi < 120 meV when 90[deg] . δCP . 230[deg]. For IH case, we have

more different patterns among models where models (2) and (5) provide similar pattern with

δCP being localized around 90[deg] and 270[deg]. The model (1) almost satisfies
∑
mi ≤

12



Model (1)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (2)

KamLanD-Zen(EDF)

KamLanD-Zen(QRPA)

Model (3)

KamLanD-Zen(QRPA)

KamLanD-Zen(EDF)

Model (4)

KamLanD-Zen(QRPA)

KamLanD-Zen(EDF)

Model (5)

KamLanD-Zen(QRPA)

KamLanD-Zen(EDF)

FIG. 5: The correlations between
∑
mi and 〈mee〉 in IH case for each model. The horizontal and

vertical lines are the same as Fig. 4.

120 meV.

We also comment on the hierarchical structure of the Yukawa coupling yi for the allowed

parameter sets. For NH case, we find

• Model (1) : Hierarchy among yi is not fixed.

• Model (2) : |y1| � {|y2|, |y3|}.

• Model (3) : Hierarchy among |yi| is not fixed.
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Model (1) Model (2)

Model (3) Model (4)

Model (5) Model (6)

FIG. 6: The correlations between
∑
mi and δCP in NH case for each model. The vertical line is

the same as Fig. 4.

• Model (4) : Hierarchy among |yi| is not fixed, but we have more points for |y1| �

|y3| < |y2|.

• Model (5) : Most points indicate |y1| ∼ |y2| ∼ |y3| and few points correspond to

|y1| � {|y2|, |y3|}.

• Model (6) : Hierarchy among |yi| is not fixed, but we have more points for |y1| �

|y3| < |y2|.

For IH case we find

14



Model (1) Model (2)

Model (3) Model (4)

Model (5)

FIG. 7: The correlations between
∑
mi and δCP in IH case for each model. The vertical line is

the same as Fig. 4.

• Model (1) : |y1| ∼ |y2| and |y3| can be |y3|/|y1| � 1 to |y3|/|y1| ∼ 90.

• Model (2) :|y1| ∼ |y2| and |y3| can be |y3|/|y1| � 1 to |y3|/|y1| ∼ 20.

• Model (3) : |y1| ∼ |y2| ∼ |y3|.

• Model (4) : |y1| ∼ |y3| . |y2|.

• Model (5) : |y2| < |y1| < |y3|.

These structures determine strength of Yukawa interactions L̄ηNR and it could be tested
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from decay pattern of new particles η and ψi at collider experiments. Exploring such a

possibility is beyond the scope of this analysis.

B. Implications to phenomenology

Here we discuss some phenomenological implications in the model. We have Z ′ boson in

the model that interacts with the SM fermions f with lepton flavor dependent way. The

decay width for Z ′ → f̄f is given by

Γ(Z ′ → f̄f) = Nc
g2XQ

2
X

12π

(
1 +

2m2
f

m2
Z′

)√
1−

4m2
f

m2
Z′
, (25)

where mf and QX are a mass and a U(1)X charge of fermion f , and Nc is the number of

color. The Z ′ boson can be produced at the LHC via qq̄ → Z ′ the same as Z ′ in U(1)B−L

case. We then consider mZ′ is sufficiently larger than masses of the SM fermions; typically

mZ′ > 5 TeV to avoid current constraints from the LHC data [34, 35]. Assuming other new

particles, {ψi, ηI/R, η±}, are heavier than mZ′/2, the branching ratios (BRs) of the Z ′ decay

are given by

BR(Z ′ → q̄q) : BR(Z ′ → ν̄ν) : BR(Z ′ → e+e−) : BR(Z ′ → µ+µ−) : BR(Z ′ → τ+τ−)

= 1 :
3

2
(x2 + y2 + z2) : 3x2 : 3y2 : 3z2, (26)

where three generations of neutrinos are summed for BR of Z ′ → ν̄ν. Therefore we can

distinguish the models if we observe Z ′ decaying into leptons and investigate ratio of BRs.

The ratios of BRs for leptonic modes are summarized in Table II.

A DM candidate in the model is the lightest neutral particle that is Z2 odd; the lightest

component of ψi or ηI/R. The physics of DM candidates is mostly the same as the original

scotogenic model. The difference is that we have Z ′ interaction in the models. We thus

have more freedom to fit relic density of DM in the models tuning Z ′ mass and new gauge

coupling gX . Here we leave detailed analysis in our future work.

IV. SUMMARY AND DISCUSSION

We have discussed scotogenic models with a general lepton flavor dependent U(1)X gauge

symmetry where X = B − xLe − yLµ − zLτ with x+ y + z = 3 to cancel anomalies. Flavor
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(χ2)NHmin (χ2)IHmin

∑
mi/meV (NH [IH]) 〈mee〉/meV (NH [IH]) BRee : BRµµ : BRττ

model (1) 2.13 0.539 113 [113] 0.00648 [24.1] 1 : 1 : 9

model (2) 3.46 2.76 67.5 [357] 0.0332 [122] 1 : 1 : 9

model (3) 2.72 0.228 66.5 [288] 0.00487 [89.0] 9 : 1 : 1

model (4) 2.82 0.208 66.1 [210] 0.000387 [73.3] 9 : 1 : 1

model (5) 3.13 0.830 292 [215] 89.2 [77.1] 1 : 9 : 1

model (6) 1.06 79.6 65.2 [−−] 0.0171 [−−] 1 : 9 : 1

TABLE II: Summary of the benchmarks giving minimal χ2 showing
∑
mi and 〈mee〉 for NH and

IH cases, and BRs of Z ′ → ¯̀̀ , in each model.

structures of Yukawa couplings and the Majorana mass matrix of the SM singlet fermions

are restricted by the U(1)X charge assignments. In the analysis of this study, we have chosen

the U(1)X charges and field contents as follows; (1) Yukawa couplings of the terms L̄LηNR

and L̄LHeR are diagonal, (2) The Majorana mass matrix of NR has two-zero textures, (3)

only one singlet scalar ϕ has to break U(1)X for minimality, (4) all three generations of

leptons have non-zero U(1)X charges. Then we have found the six models that satisfy the

above criteria.

We have carried out numerical analysis of neutrino mass matrix which is induced at one-

loop level for each texture, and searched for allowed parameter sets which can accommodate

neutrino data. Some specific correlations are found for CP phases α21 and δCP due to the

two-zero texture of Majorana mass matrix of NR. We have also shown
∑
mi and 〈mee〉

where characteristic predicted region are found depending on the models. It is found that

the most points in the NH case of model (5) and the IH cases except for model (1) are

disfavored by cosmological constraint on sum of neutrino masses. Also many allowed points

in the IH cases and the NH case of model (5) are excluded by the strongest constraints on

〈mee〉 by KamLnd-Zen (allowed by the weakest constrains); in other words these cases are

promising to be tested in near future experiments searching for neutrinoless double beta

decay.

These models have Z ′ boson that provide specific ratios of BRs for decay Z ′ → f̄f due

to our charge assignment. In particular, the ratios of BRs for leptonic modes show a specific

pattern for each model. Thus exploring the BRs, we can test the models in addition to
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predictions in neutrino sector, which are summarized in Table II. The DM in the models

also interacts with Z ′ and DM physics would be modified from original scotgenic model

where we leave detailed analysis in future work.
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