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A novel approach is introduced for obtaining precise solutions of the pairing Hamiltonian for tetraquarks,
which utilizes an algebraic technique in infinite dimensions. The parameters involved in the transition phase
are calibrated based on potential tetraquark candidates derived from phenomenology. Our investigation shows
that the rotation and vibration transitional theory delivers a more accurate explanation for heavy tetraquarks
compared to other methods utilizing the same formalism. To illustrate the concept, we compute the spectra of
several tetraquarks, namely charm, bottom, bottom-charm and open charm and bottom systems, and contrast
them with those of other particles.
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I. INTRODUCTION

Scientists have detected a new particle, dubbed X(2900), by analyzing all the data collected so far by the LHCb experiment
at CERN’s Large Hadron Collider [1, 2]. This experiment is renowned for discovering exotic quark combinations, which help
scientists study the strong force, one of the four fundamental forces in the universe. LHCb has identified several tetraquarks,
made up of four quarks (or two quarks and two antiquarks), including the latest discovery of an entirely new type of tetraquark
with a mass of 2.9 GeV/c2, which has only one charm quark. While scientists predicted this particle’s existence in 1964, it is
the first observed instance of a tetraquark with only one charm quark. Quarks cannot exist independently; they form composite
particles, such as mesons (a quark and an antiquark) or baryons (three quarks or three antiquarks), like the proton. The LHCb
detector located at the LHC focuses on studying B mesons, which are composed of a bottom or an anti-bottom quark. These
mesons quickly decay into lighter particles shortly after being produced in proton-proton collisions at the LHC. Tetraquarks
are believed to be pairs of distinct mesons that are temporarily bound together like a ”molecule,” according to some theoretical
models, while others view them as a single cohesive unit of four particles. Identifying and measuring the properties of new
kinds of tetraquarks, such as their quantum spin and parity, will provide a better understanding of these strange inhabitants of
the subatomic realm. The recently discovered particle, called X(2900), contains an anticharm, an up, a down, and an antistrange
quark (c̄uds̄]) and is considered the first open-charm tetraquark, as all previous tetraquark-like states observed by LHCb had a
charm-anticharm pair, resulting in a net-zero ”charm flavour.” [1, 2]

Pairing interactions between fermionic or bosonic systems are common in many physical contexts such as Bose-Einstein
Condensation and Superfluidity, airing correlations in nuclei: from microscopic to macroscopic models, high-temperature su-
perconductors, [3–8]. One example of the application of algebraic methods in hadron physics is the use of such interactions.
[9–14]. We establish explicit extensions of duality relations that relate the Hamiltonians and basis classification schemes asso-
ciated with number-conserving unitary and number-nonconserving quasispin algebras for four-level pairing interactions. The
Hamiltonian of the model can be defined using a linear combination of first- and second-order Casimir operators when one- and
two-body interactions are present. The four-level pairing model describes a finite system that undergoes a second-order quantum
phase transition between the rotation and vibration limits. Recently, we utilized the interacting boson approximation proposed
by Arima and Iachello [15, 16] to calculate wave functions in an interacting sl many-body boson system [17]. It is important to
note that, in general, the building blocks of the boson system are associated with both s and l bosons for single and quadrupole
angular momentum. The bosonic pairing systems exhibit similarities in their Lie algebraic properties, but the differences are
significant in terms of the irreducible representations (irreps) that the eigenstates transform under, which play a critical role in
defining the system’s spectroscopy. Finite pairing systems can be described by two complementary algebraic formulations: (1)
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a unitary algebra consisting of bilinear products of a creation and annihilation operator, and (2) a quasispin algebra that uses
creation and annihilation operators for time-reversed pairs of particles [18–24].

Tetraquarks are exotic hadrons composed of four quarks that can include two quarks and two antiquarks or four quarks of the
same flavor. Despite being first proposed in the 1960s, their existence was only confirmed in 2013 by the Large Hadron Collider
experiments. In recent years, the study of tetraquarks has gained increasing interest due to their unique properties and potential
implications in particle physics [13]. In this context, we propose to apply an algebraic framework to investigate the properties of
heavy tetraquarks [QQ][Q̄Q̄]. Our approach is based on the S U(1, 1) algebraic technique [19, 25, 26] and extends the sl boson
system. We will derive a new solvable model for hadron physics that takes into account the vector quark pairing strengths and
examine the mass spectra of tetraquarks.

In recent years, there has been a growing interest in exploring the properties of fully-heavy tetraquarks. Theoretically, several
models have been proposed to describe these states, including the diquark-antidiquark model, the chromomagnetic interaction
model [27]. On the experimental side, various searches have been performed to identify fully-heavy tetraquarks in high-energy
experiments. For instance, the LHCb collaboration searched for deeply bound bbb̄b̄ tetraquark states, but no significant excess
was found in the µ+µ−Υ(1S ) invariant-mass distribution [28]. However, the CMS experiment reported a potential candidate of
a fully bottom tetraquark T4b = [bb][b̄b̄] around 18-19 GeV [29]. Moreover, the LHCb collaboration has recently reported the
observation of a narrow peak and a broad structure in the J/ψ-pair invariant mass spectrum, which could originate from hadron
states consisting of four charm quarks [30]. These experimental results provide valuable information for further theoretical
investigations of fully-heavy tetraquarks.

Various theoretical models have been developed to study fully-heavy tetraquarks, including phenomenological mass formu-
lae [27, 31, 32], QCD sum rules [33–36], QCD motivated bag models [37], NR effective field theories [38, 39], potential mod-
els [40–53], non-perturbative functional methods [54], and even some exploratory lattice-QCD calculations [55]. Some models
predict that QQQ̄Q̄ (Q = c or b) bound states exist and have masses slightly below the respective thresholds of quarkonium
pairs (see, for example, Refs.[27, 31, 33–35, 38, 39, 47]). However, other studies suggest that no stable ccc̄c̄ and bbb̄b̄ tetraquark
bound states exist because their masses are larger than two-quarkonium thresholds (see, for example, Refs.[32, 40, 42, 44, 55]).
A better understanding of the mass locations of fully-heavy tetraquark states is crucial for our comprehension of their underlying
dynamics and for experimental studies.

II. THEORETICAL METHOD

In the context of describing a tetraquark system, diquark clusters play an important role. It is suggested that a tetraquark
system, denoted by T = Q1Q2Q̄3Q̄4, consists of two point-like diquarks. To consider multi-level pairing in this context, we
extend the interacting boson model using algebraic solutions of an sl-boson system [17]. The dynamical symmetry group in this
case is generated by s and l operators, where l represents the configuration of the multiquark states. In the Vibron Model, scalar
s-bosons with spin and parity lπ = 0+ and vector l-bosons with spin and parity lπ = 1− represent elementary spatial excitations.
The generators in the finite-dimensional S U(1, 1) algebra satisfy the following commutation relations.

[S 0(l), S ±(l)] = ±S ±(l) , (1a)

[S +(l), S −(l)] = −2S 0(l). (1b)

We can use the ̂S U(1, 1) algebra to describe the rotation and vibration transitional Hamiltonian of the T4c = [cc][c̄c̄], T4b =

[bb][b̄b̄], and T2bc = [bc][b̄c̄] systems. It is worth mentioning that the quasi-spin algebras have been extensively discussed in
previous studies, such as Refs. [17, 23].

Taking into account the generators of the S U l(1, 1)-algebra for tetraquarks given by Eqs.(1a) and(1b), we can express the
relevant quantities as linear combinations of these generators.

S +(l) =
1
2

l† · l† , (2a)

S −(l) =
1
2

l̃ · l̃ , (2b)

S 0(l) =
1
2

(
l† · l̃ +

2l + 1
2

)
, (2c)

where l† is the creation operator of an l-boson constituting the tetraquark, and l̃ν = (−1)νl−ν.
A complementary relation for tetraquark states can be expressed by

|N; nl νl , n∆JM〉 = |N; κl µl , n∆JM〉 , (3)
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with κl = 1
2νl + 1

4 (2l + 1) and µl = 1
2 nl + 1

4 (2l + 1), where N, nl, νl, J and M are quantum numbers of U(N), U(2l + 1), S O(2l + 1),
S O(3) and S O(2), respectively. The quantum number n∆ is an additional one needed to distinguish different states with the same
J.

The infinite dimensional ̂S U(1, 1) Lie algebra is defined by

S ±n = c2n+1
Q1

S ±(l1) + c2n+1
Q2

S ±(l2) + c2n+1
Q̄3

S ±(l̄3)

+ c2n+1
Q̄4

S ±(l̄4), (4a)

S 0
n = c2n

Q1
S 0(l1) + c2n

Q2
S 0(l2) + c2n

Q̄3
S 0(l̄3)

+ c2n
Q̄4

S 0(l̄4) , (4b)

The real-valued control parameters cQ and cQ̄ play a crucial role in determining the properties of tetraquarks. Specifically, l1
and l2 correspond to the first and second tetraquarks, respectively, while l̄3 and l̄4 correspond to the third and fourth tetraquarks.
Additionally, the integer n can take on values of 1, 2, 3, and so on.

To ensure that the fully-heavy tetraquarks satisfy the correct properties, we impose the condition S −(l)|lw〉 = 0 on the lowest
weight state. The state |lw〉 can be defined as follows:

|lw〉 = |N; κl µl, n∆JM〉, (5)

where N = 2k + νQ1 + νQ2 + νQ̄3
+ νQ̄4

. Hence, we have

S 0
n|lw〉 = Λl

n|lw〉, Λl
n =

∑
l

c2n
l

1
2

(
nl +

2l + 1
2

)
. (6)

The system shows vibrational and rotational transitions due to continuous variations of the pairing strengths, cl, in the closed
interval [0, 1]. The all-heavy tetraquark pairing model undergoes a quantum phase transition. The vibration limit is reached when
cQ1 = cQ2 = cQ̄3 = cQ̄4 = 0, while the rotational limit is attained when cQ1 = cQ2 = cQ̄3 = cQ̄4 = 1. In our analysis, we obtained
diverse values for the control parameters, cQi and cQ̄i

, in the interval [0, 1] with i = 1, . . . , 4, between the two limits.
The Hamiltonian of the heavy tetraquark pairing model is expressed in terms of the Casimir operators Ĉ2 using branching

chains. The first two terms of the Hamiltonian, S +
0 S −0 and S 0

1, are associated with the S U(1, 1) algebra, while the remaining
terms are constant in terms of the Casimir operators. In the duality relation for tetraquarks, the irreducible representations
simplify the quasi-spin algebra chains (4a) and (4b), and the labels for the chains are related via the duality relations. The
Hamiltonian for the heavy tetraquark pairing model is derived by utilizing the generators of the S U(1, 1) algebra. However,
the pairing models of multi-level are also characterized by an overlaid U(n1 + n2 + . . .) algebraic structure with this branching:
U(10)N ⊃ S O(10)ν ⊃ S O(9)ν ⊃ S O(3)s ⊗ S O(3)Q Q ⊗ S O(3)Q̄ Q̄ ⊗ S O(3)J

So, we can define the Hamiltonian with

Ĥ = g S +
0 S −0 + α S 0

1 + β Ĉ2(S O(9))

+ γ1 Ĉ2(S O(3)R) + γ2 Ĉ2(S O(3)Q1Q2 )

+ γ3 Ĉ2(S O(3)Q̄3 Q̄4
) + γ Ĉ2(S O(3)J), (7)

where g, α, β, γ1, γ2, γ3, and γ are real-valued parameters.
To find the non-zero energy eigenstates with k-pairs, we exploit a Fourier Laurent expansion of the eigenstates of Hamiltonians

which contain dependences on several quantities in terms of unknown c-number parameters xi, and thus eigenvectors of the
Hamiltonian for excitations can be written as

|k; νQ1νQ2νQ̄3
νQ̄4

n∆JM〉 =
∑
ni∈Z

an1n2...nk

= xn1
1 xn2

2 xn3
3 . . . xnk

k S +
n1

S +
n2

S +
n3
. . . S +

nk
|lw〉 , (8)

and

S +
ni

=
cQ1

1 − c2
Q1

xi
S +(S 1) +

cQ2

1 − c2
Q2

xi
S +(S 2)

+
cQ̄3

1 − c2
Q̄3

xi
S +(S̄ 3) +

cQ̄4

1 − c2
Q̄4

xi
S +(S̄ 4) . (9)
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The coefficients xi are determined through the following set of equations

α

xi
=

∑
l

c2
l (νl + 2l+1

2 )

1 − c2
l xi

−
∑
j,i

2
xi − x j

. (10)

In the pursuit of finding exact solutions for a spin-spin interaction system, Gaudin utilized a similar structure [56] as an
ansatz, which has now been verified as a consistent operator form in constructing the Bethe ansatz wavefunction for the present
tetraquark system. To obtain the energy spectra, the Bethe ansatz equation (BAE), a non-linear equation, is employed for a
k-pair excitation. The quantum number k-pair excitation pertains to the overall number of bosons N and is linked to seniority
numbers, specifically the quantum number νl of S O(2l + 1). As per equation (4), the allowed seniority numbers for a fixed νl
include nl = νl, νl + 2, νl + 4, and so on. This information is well-established in the field. Our approach to calculating the masses
of heavy tetraquarks follows the procedure outlined in Ref. [19]. To account for the bosonic nature of the excitations (vibrations
and rotations), we use the totally symmetric representation (7) and define the boson number as the total number of vibrational
states in the representation [N].

Pairing in tetraquarks is an interesting phenomenon that affects their rotational and vibrational behavior. The quantum phase
transition occurs between the vibrational and rotational limits in the fully-heavy tetraquark pairing model, and the quark (an-
tiquark) configuration can undergo vibrations and rotations described by the quantum numbers νQi , νQ̄i

, and J. While we will
not consider bending and twisting in this analysis due to their higher mass requirements, we must account for the internal de-
grees of freedom of quarks and antiquarks. To address this complication, we apply the method of pairing strengths, following
Refs.[13, 17]. This scheme illustrates the stringlike configuration of the tetraquark and the vibration-rotation pattern we aim to
identify. Within the two-quark configuration, we must follow the operator Q with Q̄, but since we are dealing with tetraquarks,
we could also have combinations of QQ and Q̄Q̄. To determine the appropriate rotation-vibration pattern, we need to ensure that
the pairing number N = 2k +νQ1 +νQ2 +νQ̄3 +νQ̄4

is satisfied. We can optimize the control parameters to find the exact symmetry
of vibration and rotation that gives us the desired pairing number. By understanding the pairing behavior in tetraquarks, we can
better understand their physical properties and potentially make predictions for future experiments. In summary, our work builds
on previous research in the field, but we introduce new ideas related to pairing in tetraquarks and optimize control parameters to
identify the appropriate symmetry of vibration and rotation.

III. RESULTS

The determination of tetraquark mass in the diquark–anti-diquark pairing model requires solving the eigenvalue problem of
Eq. (7). However, in addition to the spins of diquark and antidiquark clusters, the JPC quantum numbers that define a tetraquark
state also include the total spin, spatial inversion symmetry, and charge conjugation of the system. Recent studies have shown
that the JPC quantum numbers of a Q1Q2Q̄3Q̄4 system can be 0++, 1+−, and 2++, as discussed in Ref. [62]. These quantum labels
are essential for characterizing the properties of the tetraquark system. The total spin of the tetraquark is determined by the
combination of the spins of diquark and antidiquark clusters, and it affects the tetraquark’s stability and decay properties. Spatial
inversion symmetry is related to the tetraquark’s mirror image, and it determines whether the system is symmetric or asymmetric
with respect to spatial inversion. Charge conjugation, on the other hand, is related to the transformation of particles to their
corresponding antiparticles and is a fundamental symmetry of the strong interaction. Understanding the impact of total spin,
spatial inversion symmetry, and charge conjugation on tetraquark states is crucial for predicting their properties and behavior.
By considering these quantum numbers, we can gain insights into the tetraquark’s internal structure and its interactions with
other particles. This knowledge is essential for advancing our understanding of the strong interaction and the behavior of exotic
hadrons. For scalar, vector and tensor systems, we have:

1. Two states for the scalar system:

|0++〉 = |0Q1Q2 , 0Q̄3Q̄4
; J = 0〉 , (11a)

|0++′〉 = |1Q1Q2 , 1Q̄3Q̄4
; J = 0〉 . (11b)

2. Three states for the vector system:

|A〉 = |0Q1Q2 , 1Q̄3Q̄4
; J = 1〉 , (12a)

|B〉 = |1Q1Q2 , 0Q̄3Q̄4
; J = 1〉 , (12b)

|C〉 = |1Q1Q2 , 1Q̄3Q̄4
; J = 1〉 . (12c)

Charge conjugation is a fundamental symmetry of the strong interaction that transforms particles into their corresponding
antiparticles. This symmetry leads to different configurations in which |A〉 and |B〉 can interchange, while |C〉 remains odd.
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In the JP = 1+ configuration, we have one C-even and two C-odd states. This arrangement plays a crucial role in
determining the properties and behavior of the system. Understanding the implications of these configurations is essential
for predicting the tetraquark’s stability and decay properties.

|1++〉 =
1
√

2
(|A〉 + |B〉) , (13a)

|1+−〉 =
1
√

2
(|A〉 − |B〉) , (13b)

|1+−′〉 = |C〉 . (13c)

When considering tetraquarks, it is essential to choose appropriate values for the spin of the quark-antiquark pairs. In
particular, the selection of spin states can impact the overall properties and behavior of the system.

In the case of a tetraquark composed of Q1,Q2, Q̄3, and Q̄4, the appropriate spin states depend on the charge conjugation
of the system. Specifically, when C = +, the only allowed state is one where Q1Q̄3 has a spin of S Q1Q̄3 = 1.

3. One state for the tensor system:

|2++〉 = |1Q1Q2 , 1Q̄3Q̄4
; J = 2〉 , (14)

where this state has also S Q1Q̄3
= 1.

A. The charm system

The pairing tetraquark model considers two phases, rigid and non-rigid, which correspond to rotation and vibration sym-
metries, respectively. While both phases are idealized situations, they must coexist in reality, resulting in the emergence of
vibrational-rotational modes in the transitional region. The parameters in this region are known as the phase parameters, where
cQi = 1 with i = 1, . . . , 4 corresponds to the rotational mode and cQi = 0 corresponds to the vibrational mode. The mass spectrum
of the pairing tetraquark model can be calculated with fixed phase parameters, and the transitional spectra from one phase to
another can be obtained by adjusting the phase parameters within the closed interval [0, 1].

To determine the phase coefficients, we can look at the meson-meson thresholds, such as ηc(1S )ηc(1S ) and J/ψ(1S )J/ψ(1S )
for JPC = 0++, ηc(1S )J/ψ(1S ) for JPC = 1+−, and J/ψ(1S )J/ψ(1S ) for JPC = 2++, from a transitional theory perspective.

Our numerical values for the coefficients are cQ1 = 0.92, cQ2 = 1, and cQ̄3
= cQ̄4

= 0. These values yield the following mass
values:

|0++′〉 = |1cc, 1c̄c̄; J = 0〉 : M = 5.978 GeV , (15)
|1+−′〉 = |1cc, 1c̄c̄; J = 1〉 : M = 6.155 GeV , (16)
|2++〉 = |1cc, 1c̄c̄; J = 2〉 : M = 6.263 GeV , (17)

for the T4c tetraquark system. As shown in the (Fig. 1) , we overall calculate the mass for T4c tetraquark system.

B. The bottom system

The scenario presented here bears some resemblance to the earlier case. However, this time, according to the transitional
theory, the extraction phase coefficients must be computed with regard to the meson-meson thresholds, such as ηb(1S )ηb(1S )
and Υ(1S )Υ(1S ) for JPC = 0++, ηb(1S )Υ(1S ) for JPC = 1+−, and Υ(1S )Υ(1S ) for JPC = 2++. Our numerical values for the
coefficients are cQ1 = 0.97, cQ2 = 1, cQ̄3 = 1, and cQ̄4 = 0. These values yield the following mass values:

|0++′〉 = |1bb, 1b̄b̄; J = 0〉 : M = 18.752 GeV , (18)
|1+−′〉 = |1bb, 1b̄b̄; J = 1〉 : M = 18.805 GeV , (19)
|2++〉 = |1bb, 1b̄b̄; J = 2〉 : M = 18.920 GeV , (20)

for the T4b tetraquark system.
As shown in the (Fig. 2) , we overall calculate the mass for T4b tetraquark system.
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FIG. 1: The predicted mass spectrum of the T4c tetraquarks. All spectroscopies are in GeV.

FIG. 2: The predicted mass spectrum of the T4b tetraquarks. All spectroscopies are in GeV.

C. The bottom-charm system

This study also considers the T2bc = [bc][b̄c̄] tetraquark structure, which combines c quarks with b quarks. Here, the [bc]
diquark spin may be either 0 or 1, allowing for the possibility of all states analyzed in the previous section. Once again, the best
method for extracting the control parameters in T2bc tetraquarks, based on the transitional theory, is to utilize the corresponding
meson-meson families. This method yields the following values: cQ1 = cQ2 = 1, and cQ̄3 = cQ̄4 = 0. The computed masses can
be classified into the following categories:

(i) The JPC = 0++ contains two scalar states with masses

|0++〉 = |0bc, 0b̄c̄; J = 0〉 : M = 12.359 GeV , (21)
|0++′〉 = |1bc, 1b̄c̄; J = 0〉 : M = 12.503 GeV . (22)
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FIG. 3: The predicted mass spectrum of the T2bc tetraquarks. All spectroscopies are in GeV.

(ii) The JPC = 1+− contains two states with masses

|1+−〉 =
1
√

2
(|0bc, 1b̄c̄; J = 1〉

− |1bc, 0b̄c̄; J = 1〉) : M = 12.896 GeV , (23)

|1+−′〉 = |1bc, 1b̄c̄; J = 1〉 : M = 12.016 GeV . (24)

(iii) The JPC = 1++ contains one state with mass

|1++〉 =
1
√

2
(|0bc, 1b̄c̄; J = 1〉

+ |1bc, 0b̄c̄; J = 1〉) : M = 12.155 GeV . (25)

(iv) The JPC = 2++ contains one state with mass

|2++〉 = |1bc, 1b̄c̄; J = 2〉 : M = 12.897 GeV . (26)

As shown in the figure (Fig. 3) , we overall calculate the mass for T2bc tetraquark system.

D. The open charm and bottom system

In the most recent research, a thorough investigation was conducted on open charm (OC) and bottom (OB) tetraquarks com-
prising bottom and charm quarks, including cqq̄q̄, cqs̄q̄, css̄q̄, and css̄s̄ for charm, and bqq̄q̄, bqs̄q̄, bss̄q̄, and bss̄s̄ for bottom.
The outcomes for the masses of these tetraquraks are summarized in Figs. 1, and the available experimental data is compared in
Table. 1. Based on the method used in this study, the resulting values are demonstrated in the Caption of Fig. 1. Our numerical
values are cQ1 = 0.83, cQ2 = 1, cQ̄3

= 0 and cQ̄4
= 0, cQ1 = 0.86, cQ2 = 1, cQ̄3

= 0 and cQ̄4
= 0 cQ1 = 0.89, cQ2 = 1, cQ̄3

= 0
and cQ̄4

= 0 and cQ1 = 0.92, cQ2 = 1, cQ̄3
= 0 and cQ̄4

= 0 for open charms cqq̄q̄, cqs̄q̄, css̄q̄, and css̄s̄, respectively. In contrast,
numerical values are cQ1 = 0.91, cQ2 = 1, cQ̄3

= 0.15 and cQ̄4
= 0, cQ1 = 0.93, cQ2 = 1, cQ̄3

= 0.15 and cQ̄4
= 0 cQ1 = 0.93,

cQ2 = 1, cQ̄3
= 0.29 and cQ̄4

= 0 and cQ1 = 0.93, cQ2 = 1, cQ̄3
= 0.37 and cQ̄4

= 0 for open bottom bqq̄q̄, bqs̄q̄, bss̄q̄, and bss̄s̄,
respectively.

As shown in the (Fig. 4) , finally we calculate the mass for open charm and bottom tetraquark systems.

IV. DISCUSSION

The calculation process involves a fixed set of Hamiltonian parameters while allowing the phase parameters to fluctuate during
the transition. In Ref.[14], the authors demonstrated that the boson number’s quantum value could be obtained by taking the
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FIG. 4: The predicted mass spectrum of the open charm and bottom tetraquarks. All spectroscopies are in GeV.

N → ∞ limit. It was found that taking N to be a large number was sufficient to account for all known and unknown states up to
the maximum value of the quantum number of the angular momentum and other relevant quantum numbers for the applications.
In this current research, we are utilizing the same approach as in Ref.[14], setting N = 100 to ensure that all states up to the
maximum quantum number are considered.

The Hamiltonian’s pattern is comparable to the O(4) restriction proposed in mesons, where the control parameter is set to
1. Our study indicates that the control parameters cQ̄3 and cQ̄4 cannot be considered as 1 in the presence of heavy antiquarks,
except for T4b tetraquarks. This is due to the fact that the T4b tetraquark’s mass is two to three times more substantial than that
of T2bc and T4c tetraquarks. For heavy mass tetraquarks, pairing strength plays a significant role, as evidenced by the larger cQ1

value in the T2bc case than in the T4c case. The same reasoning applies to the open and bottom tetraquark system.
The Hamiltonian’s parameters for the discussed structures are presented in the Figures’ captions. During the transition phase,

we set α to be 1.5. As the pairing model’s vibrational-rotational transition is a second-order quantum phase transition, the masses
of the wave functions in the tetraquark’s vibrational model are smooth with respect to parameter changes. This enables us to
determine them in the transition region.

In Table I, we present the difference between the calculated masses of the tetraquarks and the threshold for meson-pairing.
The values of ∆ represent the difference between the tetraquark mass Mtetra and its lowest meson-meson threshold Eth. If ∆ is
negative, it implies that the tetraquark state lies below the fall-apart decay threshold and should therefore be stable. On the other
hand, a state with a small positive ∆ could be observed as a resonance due to suppression by phase space. The states with high
positive ∆ values are considered broad and difficult to detect in experimental analyses.

Our investigation indicates that slightly deviating the control parameter cQ1 from 1 is more suitable for determining the
tetraquark masses, especially for the extensive T2bc families. Additionally, for T4b = [bb][b̄b̄] states, the dominant contribution
comes from the pairing of cQ̄3 and cQ̄4 quarks, indicating that phase parameters for Q̄3 and Q̄4 quarks become significant in
computing tetraquark masses at high energy, around 18 − 19,GeV. On the other hand, at low energy, there is a competition
between Q1 and Q2.

The energy spectra of the fully-heavy tetraquarks under study, where cQi values are in the range of 0.9− 1.0, can be attributed
to a rotational phase, based on the definition mentioned above. It is worth noting that a change of ±15% in all coefficients
results in a maximum variation of 30%, 23%, and 17% in the masses of the T4c, T4b, and T2bc tetraquark systems, respectively.
However, it should be emphasized that the masses of the remaining tetraquark states undergo lesser modifications.

Our study on the vibrational and rotational transitions in open and bottom tetraquarks suggests that a slight deviation of
the control parameter from the vibration limit is more appropriate for determining the tetraquark masses, particularly for the
open bottom families. This finding emphasizes the importance of choosing the correct control parameter for accurate mass
spectroscopy.

Furthermore, we observed that in open bottom tetraquark states, the dominant contribution comes from the pairing of the
third quarks, indicating that the phase parameters for these quarks play a crucial role in computing tetraquark masses at high
energies around 5-6 GeV. In contrast, for open charm tetraquarks, there is a competition between the first and second quarks.
These observations suggest that the pairing of quarks and the interplay of their phase parameters can significantly impact the
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TABLE I: Masses of fully-heavy tetraquark systems as computed within the theoretical framework presented herein. The meson-meson
threshold is Eth, and ∆ = M − Eth represents the energy distance of the tetraquark with respected its lowest meson-pair threshold. The notation
s and a indicates scalar and axial-vector diquarks.

Structure Configuration JPC Mtetra in this work (GeV) Threshold Eth (GeV) ∆ (GeV)

T4c=[cc][c̄c̄] AĀ
0++ 5.978 ηc(1S )ηc(1S ) 5.968 0.01

J/ψ(1S )J/ψ(1S ) 6.194 -0.216
1+− 6.155 ηc(1S )J/ψ(1S ) 6.081 0.074
2++ 6.263 J/ψ(1S )J/ψ(1S ) 6.194 0.069

T4b=[bb][b̄b̄] AĀ
0++ 18.752 ηb(1S )ηb(1S ) 18.797 -0.045

Υ(1S )Υ(1S ) 18.920 -0.168
1+− 18.808 ηb(1S )Υ(1S ) 18.859 -0.051
2++ 18.920 Υ(1S )Υ(1S ) 18.920 0.0

T2bc=[bc][b̄c̄]

AĀ

0++ 12.503

ηb(1S )ηc(1S ) 12.383 0.12
J/ψ(1S )Υ(1S ) 12.557 -0.054

B±c B∓c 12.550 -0.047
B∗±c B∗∓c 12.666 -0.163

1+− 12.016

ηc(1S )Υ(1S ) 12.444 -0.428
J/ψ(1S )ηb(1S ) 12.496 -0.48

B±c B∗∓c 12.608 -0.592
B∗±c B∗∓c 12.666 -0.65

2++ 12.897 J/ψ(1S )Υ(1S ) 12.557 0.34
B∗±c B∗∓c 12.666 0.231

1
√

2
(AS̄ ± S Ā)

1++

12.155

J/ψ(1S )Υ(1S ) 12.557 -0.402
B±c B∗∓c 12.608 -0.453
B∗±c B∗∓c 12.666 -0.511

1+− 12.896

ηc(1S )Υ(1S ) 12.444 0.452
J/ψ(1S )ηb(1S ) 12.496 0.4

B±c B∗∓c 12.608 0.288
B∗±c B∗∓c 12.666 0.23

S S̄ 0++ 12.359

ηc(1S )ηb(1S ) 12.383 -0.024
J/ψ(1S )Υ(1S ) 12.557 -0.198

B±c B∓c 12.550 -0.191
B∗±c B∗∓c 12.666 -0.307

mass spectroscopy of multiquark systems.
Our findings provide insights into the properties of fully-heavy tetraquarks and highlight the importance of considering the

multiquark dynamics for a more comprehensive understanding of hadron spectroscopy. Further studies on other types of multi-
quarks and the inclusion of other degrees of freedom, such as pentaquarks and hexaquarks, may lead to a better understanding
of the underlying physics and shed light on the nature of hadronic matter.

The comparison between our results obtained from the pairing model and the predictions of previous theoretical calculations
are presented in Tables II and IV. Our findings show that the pairing model provides reasonable agreement with the other works,
implying that it has the potential to play a crucial role in predicting fully-heavy tetraquark mesons. However, future work could
aim to further improve the understanding of multiquark dynamics by including the large-N limit of the pure pairing Hamiltonian.

V. SUMMARY

The aim of this study was to investigate the mass spectra of tetraquarks in the transition region between vibration and rotation
using the algebraic framework. To achieve this, a solvable extended transitional Hamiltonian based on S U(1, 1) algebra is
proposed, which can describe both partial high energy states and quantum phase transition. The extracted mass spectra of various
tetraquarks were in agreement with previous research and other theoretical approaches. However, it is important to consider other
degrees of freedom, such as penta or hexa quarks, in future studies. Furthermore, the solvable technique introduced in this work
could potentially be applied to diagonalize more complex multiquark systems. This approach is currently being applied to
investigate other types of multiquarks in the following manuscript.
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TABLE II: Comparison of our results with theoretical predictions for the masses of T4b = [bb][b̄b̄], and T4c = [cc][c̄c̄] tetraquarks. All results
are in GeV.

Reference bbb̄b̄ ccc̄c̄
0++ 1+− 2++ 0++ 1+− 2++

This paper 18.752 18.808 18.920 5.978 6.155 6.263
[58] 18.460-18.490 18.320-18.540 18.320-18.530 6.460-6.470 6.370-6.510 6.370-6.510
[63] 18.690 - - - - -
[64] 18.748 18.828 18.900 5.883 6.120 6.246
[65] 18.750 - - < 6.140 - -

[66],[67] 18.754 18.808 18.916 5.966 6.051 6.223
[68, 69] 18.826 - 18.956 6.192 - 6.429
[70, 71] 18.840 18.840 18.850 5.990 6.050 6.090

[72] 19.178 19.226 19.236 - - -
[73] 19.237 19.264 19.279 6.314 6.375 6.407
[74] 19.247 19.247 19.249 6.425 6.425 6.432

[75, 76] 19.322 19.329 19.341 6.487 6.500 6.524
[60] 19.329 19.373 19.387 6.407 6.463 6.486
[77] 19.255 19.251 19.262 6.542 6.515 6.543
[57] 20.155 20.212 20.243 6.797 6.899 6.956

[78, 79] - - - 5.969 6.021 6.115
[80] - - - 6.695 6.528 6.573
[81] - - - 6.480 6.508 6.565
[82] 19.666 19.673 19.680 6.322 6.354 6.385
[83] - - - 6.510 6.600 6.708
[84] 18.981 18.969 19.000 6.271 6.231 6.287
[85] 19.314 19.320 19.330 6.190 6.271 6.367

[59] set. I 18.723 18.738 20.243 5.960 6.009 6.100
[59] set. II 18.754 18.768 18.797 6.198 6.246 6.323

[61] 19.226 19.214 19.232 6.476 6.441 6.475

TABLE III: Comparison of our results with theoretical predictions for the masses of T2bc = [bc][b̄c̄] tetraquarks. All results are in GeV.

Reference AĀ 1
√

2
(AĀ ± AĀ) S S̄

0++ 1+− 2++ 1++ 1+− 0++

This paper 12.503 12.016 12.897 12.155 12.896 12.359
[66] 12359 12424 12566 12485 12488 12471
[64] 12374 12491 12576 12533 12533 12521
[65] < 12620 - - - - -
[86] 12746 12804 12809 - 12776 -
[60] 12829 12881 12925 - - -
[75] 13035 13047 13070 13056 13052 13050
[57] 13483 13520 13590 13510 13592 13553
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TABLE IV: Comparison of our results with theoretical predictions for OC and OB tetraquark states with diquark-antidiquark in ground 1S
state. All results are in GeV.

JP Diquark content Experiment [89] Mass OC [87] OB [87] OC [88] OB [88] OC (This work) OB (This work)

Meson Mass cqq̄q̄ bqq̄q̄ cqq̄q̄ bqq̄q̄ cqq̄q̄ bqq̄q̄
0+ S S̄ D∗0(2.400) 2.403

2.318 2.729 6.063 2.399 5.758 2.320 5.047
1+ S Ā 2.838 6.077 2.558 5.950 2.473 5.433
1+ AS̄ D1(2.430) 2.427 2.767 6.164 2.473 5.782 2.481 5.937
0+ AĀ 2.575 6.046 2.503 5.896 2.506 6.079
1+ AĀ 2.747 6.118 2.580 5.937 2.603 6.176
2+ AĀ 2.969 6.226 2.698 6.007 2.715 6.237

cqs̄q̄ bqs̄q̄ cqs̄q̄ bqs̄q̄ cqs̄q̄ bqs̄q̄
0+ S S̄ Ds(2.632) 2.6325 2.873 6.196 2.619 5.997 2.653 5.556
1+ S Ā 2.957 6.210 2.723 6.125 2.705 5.789
1+ AS̄ 2.911 6.274 2.678 6.021 2.682 6.012
0+ AĀ 2.692 6.150 2.689 6.086 2.676 6.010
1+ AĀ 2.866 6.226 2.757 6.118 2.787 6.378
2+ AĀ D∗s j(2.860) 2.862 3.087 6.337 2.863 6.177 2.862 6.360

css̄q̄ bss̄q̄ css̄q̄ bss̄q̄ css̄q̄ bss̄q̄
0+ S S̄ 3.001 6.317 2.753 6.108 2.750 5.893
1+ S Ā 3.085 6.330 2.870 6.238 2.795 6.110
1+ AS̄ 3.035 6.394 2.830 6.134 2.811 6.106
0+ AĀ 2.827 6.272 2.839 6.197 2.820 6.247
1+ AĀ 2.994 6.347 2.901 6.228 2.868 6.257
2+ AĀ 3.207 6.456 2.998 6.284 2.925 6.573

css̄s̄ bss̄s̄ css̄s̄ bss̄s̄ css̄s̄ bss̄s̄
1+ S Ā 3.201 − 3.025 6.383 3.350 6.127
1+ AS̄ − 6.504 - - 3.332 6.251
0+ AĀ 2.942 6.376 3.003 6.353 3.349 6.358
1+ AĀ 3.111 6.455 3.051 6.372 3.256 6.380
2+ AĀ 3.322 6.566 3.135 6.411 3.539 6.439
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