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Atomic spectroscopy is used to search for the space-time variation of fundamental constants which
may be due to an interaction with scalar and pseudoscalar (axion) dark matter. In this letter, we
study the effects which are produced by the variation of the nuclear radius and electric quadrupole
moment. The sensitivity of the electric quadrupole hyperfine structure to both the variation of
the quark mass and the effects of dark matter exceeds that of the magnetic hyperfine structure by
1-2 orders of magnitude. Therefore, the measurement of the variation of the ratio of the electric
quadrupole and magnetic dipole hyperfine constants is proposed. The sensitivity of the optical
clock transitions in the Yb+ ion to the variation of the nuclear radius allows us to extract, from
experimental data, limits on the variation of the hadron and quark masses, the QCD parameter θ

and the interaction with axion dark matter.

Introduction. – The present paper has two aims. The
first aim is to extract new limits on temporal variation
of the fundamental constants and interactions of dark
matter from existing atomic spectra measurements. The
second aim is to propose new experiments where these
effects of the variation and dark matter interactions are
strongly enhanced. As intermediate steps we consider
variation of the fundamental constants due to interaction
with dark matter fields, dependence of nuclear radius on
variation of hadron parameters and effects of variation of
nuclear radius on atomic spectra. Note that all effects
considered in this paper are related to the variation of
the nuclear radius.
One of the most important unsolved problems in

physics is uncovering the nature of dark matter.
Amongst other things, it is hypothesised that dark mat-
ter is made up of light bosonic particles, which are not
accounted for in the standard model of elementary par-
ticles. The candidate particles in this class are the pseu-
doscalar axion (and axion like particles) and the dilaton-
like scalar particle [1–3]. If the mass of the cold dark
matter is very light (mDM ≪ 1 eV), it may be consid-
ered to be a classical field oscillating harmonically at ev-
ery particular point in space. For axions, we may write
this as

a = a0 cos(ωt+ ϕ), ω ≈ ma , (1)

where ϕ is a (position-dependent) phase and ma is the
mass of the axion. Assuming that axions saturate the
entire dark matter density, the amplitude a0 may be ex-
pressed in terms of the local dark matter density ρDM ≈
0.4 GeV/cm

3
, see e.g. Ref. [4],

a0 =

√
2ρDM

ma
. (2)
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Similar expressions are used to describe the case of a
scalar field dark matter.

Variation of fundamental constants due to interaction

with dark matter fields. – The effects of the interaction
between scalar field dark matter and fermions may be
presented as the apparent variation of fermion masses.
This immediately follows from a comparison of the in-
teraction of a fermion with the scalar field −gfMfφ

nψ̄ψ
and the fermion mass term in the Lagrangian −Mf ψ̄ψ.
Adding these terms gives M ′

f =Mf (1 + gfφ
n), n = 1, 2.

Similarly, the interaction of scalar dark matter with the
electromagnetic field may be accounted for as a vari-
able fine structure constant α′ = α(1 + gγφ

n), see, e.g.,
Refs. [5, 6]. Note that variation of quark and electron
masses and variation of α are determined by different in-
teraction constants and may be treated as independent
effects.
The dependence of atomic transition frequencies on

α and the quark masses was calculated in Refs. [7–12].
Atomic spectroscopy methods have already allowed one
to place improved limits on the interaction strength of
the low mass scalar field φ with photons, electrons and
quarks by up to 15 orders in magnitude [6, 13]. The
experimental results have been obtained by the measure-
ments of the oscillating frequency ratios of electron tran-
sitions in Dy/Cs [14], Rb/Cs [15], Yb/Cs [16], Sr/H/Si
cavity [17], Cs/cavity [18], Yb+/Yb+/Sr [19, 20].
Note that if the interaction is quadratic in φ, we may

replace the scalar field by the pseudoscalar (axion) field
as φ2 always has positive parity [6]. The corresponding
theory has been developed in Ref. [21], in which limits
on the axion interaction from atomic spectroscopy
experiments were obtained (see also [22]).

Dependence of the nuclear radius on hadron and quark

masses. – Ref. [19] proposed that the dependence of the
electronic atomic transition frequencies on the nuclear ra-
dius (and subsequently on the hadronic parameters) may
be used in the search for dark matter fields. Previously,
in Ref. [23], the dependence on the nuclear radius and
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hadronic parameters was studied in hyperfine transitions
with the aim of searching for the variation of the funda-
mental constants.
Calculations of the dependence of nuclear energy lev-

els and nuclear radii on fundamental constants were per-
formed in Refs. [24, 25]. Specifically, in Table VI of
Ref. [25], the sensitivity coefficients of nuclear radii to
the variation of hadron masses for several light nuclei
have been presented. These results may be extended to
all nuclei. This is due to the fact that nuclear radii in
all nuclei are quite accurately described by a universal
formula RN = A1/3r0, so in fact it is sufficient to calcu-
late the dependence of r0 in any nucleus. The sensitivity
coefficients are defined by the relation

δr0
r0

=
∑

h

Kh
δmh

mh
. (3)

The sum over hadrons in Refs. [24, 25] includes con-
tributions of π, nucleon, ∆ and vector mesons. The
sensitivity to the pion mass is given by the coefficient
Kπ = 1.8 and the sensitivity to the nucleon mass is given
by KN = −4.8.
Subsequently, the variation of hadron masses may be

related to variation of the quark mass, see e.g. Ref. [26]:

δmh

mh
= Kh,q

δmq

mq
, (4)

where mq = (mu + md)/2 corresponds to the average
light quark mass. The sensitivity coefficient for the pion
mass is an order of magnitude bigger than that for other
hadrons since the pion mass vanishes for zero quark mass

(mπ ∝ m
1/2
q ) while other hadron masses remain finite.

Indeed, according to Ref. [26] for the pion Kπ,q = 0.498,
while for nucleons KN,q = 0.06. The sensitivity coeffi-
cients to the quark mass for light nuclei have been calcu-
lated in Ref. [25]. The average value is given by

δr0
r0

= 0.3
δmq

mq
. (5)

Note that here there are partial cancellations of different
contributions, so the sensitivity is smaller than that
following from pion mass alone. Refs. [24, 25] have also
presented calculations of the dependence of the nuclear
energies and radii on variation of the fine structure
constant α.

Limits on the drift of the nuclear radius and quark

mass. – Now, using these results, along with the measure-
ment of the drift of ratio of optical transition frequencies
in Yb+ clock transitions from Ref. [20], we can extract
limits on the drift of the quark mass. This experiment
measured the ratio of the 2S1/2(F = 0) ↔ 2F7/2(F = 3)

electric octupole (E3) and 2S1/2(F = 0) ↔ 2D3/2(F =
2) electric quadrupole (E2) transition frequencies, and
was used to measure the drift of the fine structure con-
stant α. However, due to the dependence of atomic tran-
sition frequencies on the nuclear radius their results are

also sensitive to any variation of the quark mass, see Eq.
(5).
The dependence of atomic transition frequencies on the

nuclear radius has been calculated for many atomic tran-
sitions with the aim to find isotope shifts. For E2 tran-
sitions in Yb+ such calculations have been performed in
Refs. [27, 28]. For E3 transitions the dependence may be
found using the measured ratio of isotope shifts for E3
and E2 transitions [29]. The result of such calculations is
in excellent agreement with the result of the calculation
of the sensitivity of the ratio of the E3 and E2 Yb+ tran-
sition frequencies to the variation of the nuclear radius
from Ref. [19],

δ(νE3/νE2)

νE3/νE2

= 2.4 · 10−3
δ
〈

r2n
〉

〈r2n〉
. (6)

Using the measurements of the drift of atomic transi-
tion frequencies from Ref. [20],

δ(νE3/νE2)

νE3/νE2

= −1.2(1.8) · 10−18 yr−1 , (7)

we obtain

δ
〈

r2n
〉

〈r2n〉
= −0.50(0.75) · 10−15 yr−1 . (8)

Using Eq. (5), we obtain the variation of the quark mass
as

δmq

mq
= −0.83(1.25) · 10−15 yr−1 . (9)

This result is an improvement compared to the best
limit obtained from measurements of the Cs/Rb hyper-
fine transition frequency ratio, 7.1(4.4) · 10−15 yr−1, pre-
sented in Eq. (3) and in the fit of all available limits in
Table III of Ref. [30].
Note that when discussing the variation of dimension-

ful parameters, we should show the units we measure
them in as units can also vary. For example, the SI
units of frequency and time are defined by the Cs atom
hyperfine structure constant which has a complicated
dependence on the fundamental constants - see Eq.
(20). In other words, we should consider the variation
of dimensionless parameters which do not depend on
any measurement units. Nuclear properties depend
on the quark mass and ΛQCD. As we keep ΛQCD

constant, we may say that we measure the variation of
the dimensionless parameter Xq = mq/ΛQCD, i.e. we
measure the quark mass in units of ΛQCD - see Refs.
[10, 25]. A similar choice of units is assumed for the
variation of hadron masses, considered below.

Limits on the drift of the hadron masses and the QCD

parameter θ. – For some applications, such as considering
the limit on variation of the QCD parameter θ, it is con-
venient to consider the problem at the hadron level, with-
out going to the quark level. In Ref. [25], the sensitivity of
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the nuclear radius to the masses of the pion, nucleon, vec-
tor meson and delta has been calculated. In the following
estimate, we do not include contributions from the vec-
tor meson and delta as their contributions are smaller.
These contributions also have opposing signs, meaning
they partially cancel each other out making their contri-
bution less reliable. The variation of the nuclear radius
may be written in terms of the pion and nucleon mass as

δr0
r0

= 1.8
δmπ

mπ
− 4.8

δmN

mN
= 1.2

δmπ

mπ
, (10)

where in the last equality we have used the following
result from Ref. [21]

δmN

mN
= 0.13

δmπ

mπ
. (11)

From Eqs. (8,10) we can obtain a limit on the drift of
the pion mass

δmπ

mπ
= −0.21(0.31) · 10−15 yr−1 . (12)

The pion mass depends on the QCD parameter θ. The
shift of the pion mass due to a small θ relative to the
pion mass for θ = 0 is given by [31]:

δmπ

mπ
= −0.05θ2 . (13)

Using Eqs. (12,13) we obtain constrains on the linear
drift of θ2:

dθ2

dt
= 4(6) · 10−15 yr−1 (14)

Limit on the interaction with the axion dark matter

field. – Standard model spinor fields ψ, photon Fµν and
gluon Gl

µν fields can have the following interaction ver-
tices with a pseudoscalar field a:

V =
Cf

fa
∂µaψ̄γ5γ

µψ + Cγ
a

fa
F̃µνFµν + Cg

a

fa
G̃l µνGl

µν .

(15)
Here Cf , Cγ and Cg are some dimensionless constants
which are of order O(1) for the QCD axion model, but are
arbitrary for the general pseudoscalar (axion-like) parti-
cle. In particular, upon the substitution Cg = g2/(32π2),
or

θ =
32π2Cga

g2fa
(16)

the last term in Eq. (15) reduces to the standard QCD
θ-term

g2θ

32π2
G̃l µνGl

µν , (17)

where θ = a/fa, fa is the axion decay constant, g is the
strong interaction coupling constant, Gl

µν is the gluon

field strength and G̃l µν is its dual. Thus, the classical
axion dark matter field a = a0 cos(mat+ ϕ) may be in-
terpreted as a dynamical QCD parameter θ = a/fa [1–3].

According to Ref. [19], the measurement of the oscilla-
tion of the ratio of frequencies νE3 and νE2 in Yb+ clock
transitions may be used to study the axion dark matter
field a = a0 cos(mat+ ϕ). This is due to the dependence
of the nuclear radius on θ. However, our result for the
dependence of the nuclear radius on the pion mass Eq.
(10) is 6 times bigger in magnitude and has a different
sign: our coefficient is β = 1.2 while the coefficient in
Ref. [19] is β = −0.2. Therefore, according to our cal-
culations, the limits on the axion interaction should be
6 times stronger than those presented on the exclusion
plot on Fig. 2 of Ref. [19].

Note that the sign of β may be determined without
calculation. An increase in the pion mass leads to a
decrease of the interaction range, i.e. a decrease of the
effect of pion exchange potentials and a decrease of
nuclear binding which leads to an increase in the nuclear
radius. Thus, β must be positive. The difference in sign
is due to the assumption in Ref. [19] that the nuclear
radius is proportional to the nucleon radius. However,
the internucleon distance r0 is actually determined
by the position of the minimum of the internucleon
potential. Similarly, the sign of the coefficient -4.8
describing the dependence of r0 on the nucleon mass mp

is explained by the decrease of kinetic energy p2/2mp,
increase of binding energy and decrease of r0 if the
nucleon mass increases.

Variation of the nuclear electric quadrupole moment
and quadrupole hyperfine structure due to scalar and ax-

ion dark matter. – The variation of the nuclear ra-
dius also leads to the variation of the nuclear electric
quadrupole moment Q and quadrupole hyperfine struc-
ture constant B which are proportional to r20 . Using Eq.
(5) we obtain the following for the effect of the quark
mass, with Kq = 0.3

δB

B
= 0.6

δmq

mq
. (18)

We see that the sensitivity of the quadrupole constant
B to quark mass variation is 1-2 orders of magnitude
higher than the sensitivity of the magnetic hyperfine con-
stant A calculated in [10]. Indeed, the dependence of
the magnetic moment on quark mass in Cs is given by
Kq = 0.009, whilst in Rb it is given by Kq = −0.016 [10].
One may measure the variation of the ratio of B/A in the
same atom and achieve a significant improvement in the
sensitivity to the variation of the quark mass, θ and the
interaction with the scalar/axion dark matter field. The
variation of the magnetic hyperfine constant ratio in Cs
and Rb and the corresponding effect of the scalar dark
matter field have been measured in Refs. [15, 30].

Let us start by stating the dependence of the elec-
tric quadrupole hyperfine constant B on the fundamental
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constants:

B ∝ eQ

a3
∼ e2r20

a3B
, (19)

where aB is the Bohr radius. The dependence of the
magnetic hyperfine constant is given by the following ex-
pression:

A ∝ µBµN

a3B
∼ e2~2gN
mempc2a3B

, (20)

where µB and µN are the Bohr and nuclear magnetons
and gN is the nuclear magnetic g-factor. Therefore, the
ratio of the electric quadrupole and magnetic dipole con-
stants may be written as

B

A
∝ r20mempc

2RB(Zα)

gN~2RA(Zα)
. (21)

Here, we have added the relativistic factors RB(Zα) and
RA(Zα) for the electric quadrupole and magnetic dipole
constants respectively, which are presented e.g in the pa-
per [10] and the book [32]. These factors may be of inter-
est if one searches for the variation of the fine structure
constant α. Oscillations of α and the electron and quark
masses may be due to linear or quadratic interaction of
the scalar field φ = φ0 cos(mφt+ ϕ) with photons, elec-
trons and quarks [5, 6]. Therefore, measurements of the
ratio B/A may be used to search for scalar dark matter
(and axion dark matter in the case of interaction with
φ2).

The dependence of the magnetic hyperfine constant
A on hadron parameters is different for different nuclei
and rather weak [10, 21]. Thus, in performing a zeroth
order approximation we may neglect this dependence and
present general estimates which are valid for all nuclei.
The dominating effect comes from the variation of r20 in
Eq. (21). Using Eqs. (5,10,13,18), we obtain

δ(B/A)

B/A
≈ 0.6

δmq

mq
≈ 2.4

δmπ

mπ
≈ −0.12θ2 . (22)

Substituting θ = a/fa, we see that measurements of B/A
may be used to search for the axion dark matter field
a = a0 cos(mat+ ϕ).

Atoms and ions with nuclear spin I > 1/2 in a state
with electron angular momentum J > 1/2 have both
electric quadrupole and magnetic dipole hyperifine inter-
actions. In principle, any such systems are suitable for
the measurements of B/A variation, with the sensitivity
defined by Eqs. (21,22).

An interesting possibility may be the measurement
of the variation of the electric quadrupole hyperfine

structure in diamagnetic polar molecules. In this case,
the nuclear electric quadrupole moment interacts with
the electric field of the polar molecule. There is no
electron angular momentum involved and no magnetic
hyperfine structure. This may reduce systematic effects.
One can measure, for example, the variation of the
ratio of the frequency of the transition between the
components of electric quadrupole hyperfine structure
in such molecules to the transition frequency in Cs or
Rb clocks which is defined by the magnetic hyperfine
constant. A similar electric quadrupole interaction exists
in solids where a large number of atoms reduces the
statistical error.

Summary. – Atomic spectroscopy allows one to search
for the space-time variation of fundamental constants and
low mass scalar and pseudoscalar (axion) dark matter
fields, which may be a source of such variation. The
effects of varying fundamental constants include a varia-
tion in the nuclear radius. One method of placing con-
straints on the variation in the nuclear radius is via a
measurement of the variation in optical clock transition
frequencies. Our calculation of the sensitivity of the Yb+

transition frequencies to the variation of the nuclear ra-
dius agrees with that from Ref. [19]. Using the measure-
ments of the drift of atomic transition frequencies from
Ref. [20], we place constraints on the variation of the
nuclear radius. We use this result and nuclear calcula-
tions to significantly improve limits on the variation of
the quark masses. We then obtain limits on the varia-
tion of the QCD parameter θ and on the interaction with
axion and scalar dark matter.
Any variation in the nuclear radius leads to a variation

in the nuclear electric quadrupole moment, and thus a
variation in the quadrupole hyperfine structure constant
B. The sensitivity of the quadrupole constant B to
the variation of quark masses and to the interaction
with dark matter is 1-2 orders of magnitude higher than
the sensitivity of the magnetic hyperfine constant A,
considered in previous publications. This implies that
one may measure the variation of the ratio B/A in the
same atom, and achieve a significant improvement in
the sensitivity to the variation of the quark mass, θ
and the interaction with the scalar/axion dark matter
fields. As such, we estimate the dependence of B/A
on these quantities. One can also measure variation of
the ratio of the frequency of the transition between the
components of electric quadrupole hyperfine structure in
a diamagnetic molecule to the transition frequency in Cs
or Rb clocks which is defined by the magnetic hyperfine
constant.
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