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Chiral perturbative relation for neutrino masses

in the type-I seesaw mechanism
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In this letter, we perform a perturbative analysis by the lightest singular value mD1 of the Dirac
mass matrix mD in the type-I seesaw mechanism. A mass relation M1 = m2

D1/|(mν)11| is obtained
for the lightest mass M1 of the right-handed neutrino νR1 and the mass matrix of the left-handed
neutrinos mν in the diagonal basis of mD. This relation is rather stable under renormalization
because it is gauge-invariant in the SM and associates with the approximate chiral symmetry of
νR1.

If diagonalization of the Yukawa matrices of leptons Yν,e has only small mixings, the element
(mν)11 is close to the effective mass mee of the neutrinoless double beta decay. By assuming
mD1 ≃ mu,e ≃ 0.5 MeV, the lightest mass is about M1 & O(100) TeV in the normal hierarchy and
M1 ∼ O(10) TeV in the inverted hierarchy. Such a νR1 with a tiny Yukawa coupling yν1 ∼ O(10−5)
can indirectly influence various observations.

On the other hand, the famous bound of the thermal leptogenesis M1 & 109 GeV that requires
mD1 & 30 MeV seems to be difficult to reconcile with a simple unified theory without a special
condition.

I. INTRODUCTION

Chiral symmetries have played an important role in the development of particle physics [1–3]. Even
in the flavor physics, chiral symmetries are associated with small fermion masses of the Standard Model

(SM). Due to the tiny singular values of the first generation, diagonalized Yukawa matrices Y diag
u,d,e have

approximate chiral symmetries U(1)1L × U(1)1R;

R(θL)Y
diag
u,d,eR(θR) ≃ Y diag

u,d,e , (1)

where R(θ) ≡ diag(eiθ , 1 , 1) and θL,R are arbitrary real parameters.
Breaking of these chiral symmetries is sufficiently small because the ratios of SM fermion masses mf

for a given renormalization scale are about O(10−2) [4],

mu

mc

∼
1

500
,

md

ms

∼
1

20
,

me

mµ

∼
1

200
. (2)

With some grand unified theories in mind, it is natural to assume that the Dirac mass matrix mD also
has such approximate chiral symmetries. Thus, in this letter, we perform a chiral perturbative analysis
[5] by the smallest singular value mD1 of mD in the type-I seesaw mechanism [6–9].

II. CHIRAL PERTURBATIVE ANALYSIS BY mD1

For the singular value decomposition (SVD) mD = UDmdiag
D V T

D , it does not lose generality to consider
the diagonal basis of mD by field redefinitions of unitary matrices UD and VD [10]. If the mass matrix
mν of left-handed neutrinos νLi is regular and invertible, the mass matrix MR of right-handed neutrinos
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νRi in the type-I seesaw mechanism is reconstructed as

MR = mT
Dm−1

ν mD =





mD1 0 0
0 mD2 0
0 0 mD3



m−1
ν





mD1 0 0
0 mD2 0
0 0 mD3



 , (3)

where mDi are the singular values of mD.
In the limit of mD1 → 0, mD and MR have U(1)1R chiral symmetry associated with the lepton number

of νR1 [11, 12];

mD R(θR) = mD , MR R(θR) = MR . (4)

These conditions are equivalent to mD and MR having no eigenvector components in the massless modes
[13];

mD





1
0
0



 = MR





1
0
0



 =





0
0
0



 . (5)

Conversely, if MR has a certain chiral symmetry, mD has the same symmetry [13]. The proof is as

follows. SVDs of two matrices (with rank two) MR = VMdiag
R V T and mD = UDmdiag

D V T
D lead to

V





0 0 0
0 M2 0
0 0 M3



V T = VD





0 0 0
0 mD2 0
0 0 mD3



UT
Dm−1

ν UD





0 0 0
0 mD2 0
0 0 mD3



V T
D , (6)

where Mi are singular values of MR. By performing production of matrices between two mdiag
D ,





0 0 0
0 M2 0
0 0 M3



 = V †VD





0 0 0
0 ∗ ∗
0 ∗ ∗



V T
D V ∗ , (7)

where ∗ denotes any matrix element. Since this is also a SVD of MR, V
†VD must be a unitary matrix in

the 2-3 subspace;

V †VD =





1 0 0
0 ∗ ∗
0 ∗ ∗



 . (8)

Therefore, the first eigenvector of V and VD coincide in this limit, and the two mass matrices share
the same chiral symmetry. Of course this U(1)1R symmetry must be broken because the massless νR1

contradicts observations.
On the other hand, it appears unreasonable that the kernels of mD and MR, which can be given

arbitrarily in a model, must coincide. This point can rather be considered as a constraint on the seesaw
mechanism. In the basis where MR is diagonal, a parameterization of mD

mD =





A1 B1 C1

A2 B2 C2

A3 B3 C3



 ≡ (A ,B ,C) , (9)

yields the natural representation [14] of mν given by

mν = mDM−1
R mT

D =
1

M1
A⊗A

T +
1

M2
B ⊗B

T +
1

M3
C ⊗C

T . (10)

If the kernels of mD and MR do not coincide, such as limits Ai → 0 and M2 → 0, the matrix mν have
two extremely different mass scales. If we expect mν to be non-hierarchical, magnitudes of AiAj/M1
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and BiBj/M2 must be comparable. This means that the chiral symmetries associated with the first
generation must coincide, and moreover, its breaking parameter ǫR is common to some extent;

A2
i

B2
i

∼
M1

M2
∼ ǫ2R . (11)

Next we analyze the mass matrix MR (3) treating mD1 as a perturbation. For (MR)ij =
mDi(m

−1
ν )ijmDj , let MR0 be the unperturbed mass matrix with mD1 = 0. Clearly matrix elements

of MR0 are limited to the 2-3 submatrix, and a unitary matrix V0 that diagonalizes MR0 rotates the
subspace.
The full matrix MR in the diagonalized basis of MR0 is

V †
0 MRV

∗
0 =





(δ2MR)11 (δMR)12 (δMR)13

(δMR)12 M
(0)
2 0

(δMR)13 0 M
(0)
3



 ≡ M ′ , (12)

where M
(0)
i are the singular values of MR0 without perturbation and

(δ2MR)11 = m2
D1(m

−1
ν )11 , (13)

(δMR)1(2,3) = mD1(m
−1
ν )12mD2(V0)

∗
2(2,3) +mD1(m

−1
ν )13mD3(V0)

∗
3(2,3) . (14)

From these expressions, corrections of the diagonalization occur in the first order of mD1, and the lightest
massM1 does in the second order. As long as the smallness of perturbationmD1 allows the approximation

M2,3 ≃ M
(0)
2,3 , the diagonalization of Eq. (12) is evaluated in a similar way to the seesaw mechanism,

M1 ≃

∣

∣

∣

∣

∣

(δ2MR)11 −
(δMR)

2
12

M
(0)
2

−
(δMR)

2
13

M
(0)
3

∣

∣

∣

∣

∣

. (15)

This is consistent with a formal solution of perturbed SVD to the second order [13]. Although this

expression diverges in the limit of M
(0)
2,3 → 0, the approximation M

(0)
2,3 ≃ M2,3 does not hold in this

situation, and the diagonalization must be done correctly. The applicability of this perturbation theory
will be discussed later.
This result can also be considered from another viewpoint. Multiplying Eq. (15) by M

(0)
2 M

(0)
3 leads to

M1M
(0)
2 M

(0)
3 ≃ |M ′

11M
′
22M

′
33 −M ′

12M
′
21M

′
33 −M ′

13M
′
31M

′
22| = |DetM ′| = |DetMR| . (16)

The determinant and the minor determinant detMR0 which is restricted to the heavier two generations
are,

|DetMR| = M1M2M3 = Π3
i=1m

2
Di |Detm−1

ν | , (17)

| detMR0| = M
(0)
2 M

(0)
3 = Π2

i=1m
2
Di | detm

−1
ν | . (18)

The cofactor of the inverse matrix detm−1
ν = (mν)11/Detmν yields

M1 ≃

∣

∣

∣

∣

DetMR

detMR0

∣

∣

∣

∣

= m2
D1

∣

∣

∣

∣

Detm−1
ν

detm−1
ν

∣

∣

∣

∣

=
m2

D1

|(mν)11|
. (19)

Therefore, the lightest mass M1 is expressed by the matrix element of mν in the basis where mD is
diagonal. The right-hand side contains a basis-dependent quantity, because the minor determinant is
evaluated in a particular basis.
This relation is equivalent to the result of integrating out heavy neutrinos by ∂L/∂νR2,3 = 0. Removing

the heavy generations like the seesaw mechanism, we obtain

M1 =

∣

∣

∣

∣

∣

∣

(MR)11 −

3
∑

α,β=2

(MR)1α(M
−1
R0 )αβ(MR)β1

∣

∣

∣

∣

∣

∣

(20)

= m2
D1

∣

∣

∣

∣

∣

∣

(m−1
ν )11 −

3
∑

α,β=2

(m−1
ν )1α(m

−1
ν )−1

αβ(m
−1
ν )β1

∣

∣

∣

∣

∣

∣

=
m2

D1

|(mν)11|
, (21)
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where (m−1
ν )−1

αβ denotes an inverse matrix of (m−1
ν ) when it is restricted to the 2-3 submatrix. By the

simple normalization mD1 ∼ mu,d,e ∼ 1MeV and |(mν)11| ∼ 1meV,

M1 ≃
( mD1

1MeV

)2
(

1meV

|(mν)11|

)

106GeV . (22)

III. APPLICABLE LIMIT OF PERTURBATIVITY

This mass relation diverges in the limit of (mν)11 → 0, indicating that the perturbation theory is not

valid for too small (mν)11. Since this limit corresponds to detm−1
ν = 0 and M

(0)
2 (orM

(0)
3 ) = 0, the second

(or third) term in Eq. (15) causes the divergence. First, let us consider the applicability of the chiral
perturbation theory from general observation. By using dimensionless parameters ǫL,R representing the
chiral symmetry breaking of mν and MR, Eq. (3) is denoted as

MR =





ǫ2R ǫR ǫR
ǫR ∗ ∗
ǫR ∗ ∗



 =





mD1 0 0
0 mD2 0
0 0 mD3









ǫ2L ǫL ǫL
ǫL ∗ ∗
ǫL ∗ ∗





−1 



mD1 0 0
0 mD2 0
0 0 mD3



 , (23)

where O(1) coefficients are omitted. Because of the constraint ǫR ǫL ∝ mD1, the smaller breaking
parameter ǫL yields the larger ǫR. Therefore, for the approximate chiral symmetry of MR to be a
good description, the smallness of mD1 must not be cancelled by m−1

ν . This property is due to the
commutativity of the left and right chiral transformations in the diagonalized basis of mD.
More specifically, this validity of the perturbation theory can be shown as conditions on the matrix

elements. To this end, we examine another mass relation of M2 by a similar perturbative analysis for
mD2 ≪ mD3;

M2 ≃
| detmD|2| detm−1

ν |

m2
D3|(m

−1
ν )33|

= m2
D2

∣

∣

∣

∣

detm−1
ν

(m−1
ν )33

∣

∣

∣

∣

= m2
D2

∣

∣

∣

∣

(mν)11

det′ mν

∣

∣

∣

∣

, (24)

where det′ denotes a minor determinant restricted to 1-2 submatrix. A normalization for mD2 ∼ 100MeV
leads to

M2 ∼
( mD2

100MeV

)2
∣

∣

∣

∣

(mν)11 10meV

det′ mν

∣

∣

∣

∣

109GeV . (25)

Indeed, the limit of m11 → 0 yields M2 → 0 and breaks the perturbation theory (of the first generation).
Conditions to prevent such a breakdown are

M1

M2
≃

m2
D1

m2
D2

∣

∣

∣

∣

det′ mν

(mν)211

∣

∣

∣

∣

. 0.1 ,
mD1

mD2
. 0.3

∣

∣

∣

∣

∣

(mν)11
√

det′ mν

∣

∣

∣

∣

∣

. (26)

In order to make M1 larger, (mν)11 and det′ mν in Eq. (26) must be small simultaneously. In this case,
the 1-2 submatrix of mν approaches singular;

mν ∼ (mν)22





ǫ2 ǫ ∗
ǫ 1 ∗
∗ ∗ ∗



 , (27)

where ǫ ∼
∣

∣

∣(mν)11/
√

det′ mν

∣

∣

∣ is a small dimensionless parameter and O(1) coefficients are ignored. Since

the perturbability for M1/M3 provides a similar restriction for the 1-3 element, a heavy M1 requires that
m−1

ν compensates for the smallness of mD1 as

m−1
ν ∼





ǫ−2 ǫ−1 δ−1

ǫ−1 ∗ ∗
δ−1 ∗ ∗



 , ǫ &
mD1

mD2
, δ &

mD1

mD3
, (28)
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where δ is another small parameter. Eventually, M1 will only be heavy when approximate chiral symme-
tries of mD and mν are almost identical;

R(θL)mν ≃ mν , R(θL)mD ≃ mD . (29)

If the breaking parameter ǫ (δ) is smaller than mD1/mD2 (3), the perturbation theory for M1/M2 (3) is no
longer valid. This feature is similar to the discussion around Eq. (11), and it indicates that MR and/or
mν share the chiral symmetry associated with mD1.
Moreover, Eq. (29) requires the zero eigenvector v0 of mD is close to that of mν . In the basis where

mν is diagonalized by the MNS matrix, v0 is close to (0 , 1 ,−1) or (−2 , 1 , 1) for the normal hierarchy
(NH) or the inverted hierarchy (IH). Since this is equivalent to mD having no v0 component, the form of
mD in the case of NH is

mD ≃





A2 B2 C2

A2 B2 C2

A2 B2 C2



+





0 0 0
A3 B3 C3

−A3 −B3 −C3



 . (30)

Thus, it is difficult to impose a strong hierarchy of |(mD)33| ≫ |(mD)ij |.

The mass relation (22) leads to significant phenomenological consequences.

1. For the thermal leptogenesis [15] by νR1, the famous lower limit of the mass M1 & 109GeV [16, 17]
implies that

mD1 & 30MeV . (31)

Therefore, except in a special condition that amplifies the mass M1, a simple unified theory with
mD1 ∼ 1MeV and the type-I seesaw mechanism seems to be difficult to reconcile with the thermal
leptogenesis by νR1. This feature is expected in wide parameter regions of many models1.

2. If diagonalization of the Yukawa matrices of leptons Yν,e has only small mixings, the value (mν)11
is close to the effective mass mee of the neutrinoless double beta decay [19]. Although NH has a
canceling region mee ≃ 0, there is no chiral symmetry because m1 ∼ 3 meV, and the chiral pertur-
bation theory simply breaks down. Since the lepton mass is not susceptible to renormalization, mD1

is expected to be about mD1 ≃ 0.5MeV from singular values at the GUT scale mu ≃ me ≃ 0.5MeV.
Therefore, the lightest mass is about M1 & O(100)TeV in NH and M1 ∼ O(10)TeV in IH.

3. Although the lightest TeV-scale right-handed neutrino νR1 only has a tiny Yukawa coupling yν1 ∼
O(10−5) and a very weak Higgs interaction, such a νR1 may be indirectly involved in the anomaly
called IceCube gap [20].

If mν has a good chiral symmetry, this relation can be applied for mν . A similar discussion for the

seesaw formula mν = mdiag
D M−1

R mdiag
D and perturbatively small mD1 leads to ,

m1 =

∣

∣

∣

∣

Detmν

detmν0

∣

∣

∣

∣

= m2
D1

∣

∣

∣

∣

DetM−1
R

detM−1
R

∣

∣

∣

∣

=
m2

D1

|(MR)11|
, (32)

and |(MR)11| ∼ 1PeV holds for m1 ∼ 1meV. However, we need to be careful about this argument. For
a strongly hierarchical MR with M3 ≫ M1,2, the lightest mass m1 comes from 1/M3 by the sequential
dominance [21] and Eq. (32) is not the correct relationship. Since MR seems to be much closer to a
singular matrix than mν , the mass relation appears safer to consider only for m−1

ν .
In both cases of NH and IH, the eigenvectors associated with the lightest mass m1 or 3 are not in the

direction (1, 0, 0). Since chiral symmetries of left-handed fields seem not to be shared between mD and
mν , it is natural to think that the smallness of mD1 rather ensures the hierarchy of m2/m3 in NH.
Finally, this mass relation must be almost stable against quantum corrections because it is associated

with the approximate chiral symmetry [3] of the right-handed neutrino νR1 and the gauge charges of
SM cancel out between mν and mD. Thus, this is considered a general constraint on the type-I seesaw
mechanism.

1 Note that such a bound is inconsistent with the existence of long-lived particles [18], and it does not immediately rule
out the possibility of leptogenesis.
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IV. SUMMARY

In this letter, we perform a perturbative analysis by the lightest singular value mD1 of the Dirac mass
matrix mD in the type-I seesaw mechanism. The lightest mass M1 of the right-handed neutrino νR1 is
expressed as M1 = m2

D1/|(mν)11| by the mass matrix of the left-handed neutrinos mν in the diagonal
basis of mD. A similar relationship M2 ∝ mD2 is also obtained for the second generation.
This chiral perturbation theory breaks down when m−1

ν cancels the hierarchy of mD and it corresponds
to a situation where an approximate chiral symmetry mν and mD for the left-hand field νL1 is almost
identical.
Since mD1 ∼ 0.5MeV leads to M1 & O(100)TeV for NH and M1 ∼ O(10)TeV for IH, such a light

TeV-scale right-handed neutrino with a tiny Yukawa coupling of yν1 ∼ O(10−5) can indirectly influence
various observations. On the other hand, the famous bound of the thermal leptogenesis M1 & 109 GeV
that requires mD1 & 30 MeV seems to be difficult to reconcile with a simple unified theory without a
special condition.
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