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It was found that, using nonrelativistic QCD factorization, the predicted χcJ hadroproduction
cross section at large pT can be negative. The negative cross sections originate from terms propor-

tional to plus function in 3P
[1]
J channels, which are remnants of the infrared subtraction in matching

the 3P
[1]
J short-distance coefficients. In this article, we find that the above terms can be factorized

into the nonperturbative 3S
[8]
1 soft gluon distribution function in the soft gluon factorization (SGF)

framework. Therefore, the problem can be naturally resolved in SGF. With an appropriate choice of
nonperturbative parameters, the SGF can indeed give positive predictions for χcJ production rates
within the whole pT region. The production of ψ(2S) is also discussed, and there is no negative
cross section problem.

I. INTRODUCTION

Our current understanding of the inclusive heavy
quarkonium production mechanism relies primarily on
the non-relativistic QCD (NRQCD) factorization [1],
which factorizes the inclusive cross section of a heavy
quarkonium into summation of perturbatively calculable
short-distance coefficients (SDCs) multiplied by nonper-
turbative long-distance matrix elements (LDMEs). Over
the past decade, much theoretical effort has been devoted
to computing the next-to-leading-order (NLO) QCD cor-
rections to the SDCs and determining the NRQCD
LDMEs. With full NLO SDCs and properly fitted
LDMEs, NRQCD has been very successful in describing
the yield of quarkonium states produced at the Tevatron
and the LHC, including the J/ψ, ψ(2S), χcJ , and Υ(nS)
states [2–14].

However, NRQCD factorization still encounters chal-
lenges in describing the inclusive quarkonium production.
In addition to the well-known polarization puzzle and
universality problem [15–30], the negative cross section
problem has recently emerged as a new challenge. Some
studies [31] have reported that the NRQCD predictions
for charmonium yields at the LHC may turn negative
when pT is very large, which is unphysical. It should be
noted that this negative cross section problem is distinct
from the issue of negative pT -integrated quarkonium pro-
duction cross sections discussed in Refs. [32–37]. Let us
consider the pT distribution of χcJ hadroproduction. It is

well known that NLO contributions of 3P
[1]
J for χcJ pro-

duction are large but with negative signs. The negative
values are originated from the remnants of the infrared
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subtraction in matching the 3P
[1]
J SDCs. To describe ex-

perimental data, substantial cancellations between the

contributions of the 3S
[8]
1 and 3P

[1]
J channels are needed

[5, 12]. Such cancellation will cause the χcJ production
rates to become negative at exceptionally high pT , as we
will see in later discussions. In the region where pT is
comparable to the center-of-mass energy

√
s, the pT be-

havior of 3P
[1]
J contributions is sensitive to the remnant

terms of the infrared subtraction. Therefore, to over-
come the substantial cancellation and the negative cross
section problems, one viable approach could be to mod-
ify the infrared subtraction scheme, which amounts to
resum a series of relativistic correction terms comparing
with the NRQCD method. This is precisely what soft
gluon factorization (SGF) does. SGF is a recently pro-
posed factorization approach [38], which is equivalent to
the NRQCD factorization, but with a series of important
relativistic corrections originated from kinematic effects
resummed [39]. In SGF the hadronization of the interme-
diate state to quarkonium is described by the soft gluon
distribution function (SGD), in which the momentum of
soft radiation is kept. As a result, the infrared subtrac-
tion utilized in matching the P -wave short distance hard
parts differs from that used in NRQCD, which is carried
out at the point where the momentum for soft emissions
is zero. Due to this, the negative cross section problem
may be resolved or relieved in the SGF framework. To
investigate this possibility, in this paper we apply the
SGF to study the χc and ψ(2S) production at LHC. For
a comparison we will also present the results in NRQCD
factorization.

The paper is structured as follows: In Sec. II, we
present the collinear factorization formula for calculat-
ing the hadronic production of quarkonium. In Sec. III,
we introduce the SGF of fragmentation functions and
compute the related short distance hard parts. In Sec.
IV, we present our phenomenological results and related
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discussions. Our conclusions are summarized in Sec. V.
Finally, we present the calculation details of the short
distance hard parts in SGF in appendix A.

II. QUARKONIUM PRODUCTION IN
COLLINEAR FACTORIZATION

As we will see, negative cross section can easily appear
at high pT region, and thus we will be only interested
in this region. When pT is large, the production cross
section of a heavy quarkonium H at hadron colliders can
be factorized as [40, 41]

dσA+B→H+X(p) ≈
∑
i,j

fi/A(x1, µF )fj/B(x2, µF )

×
{∑

f

Df→H(z, µF )⊗ dσ̂i+j→f+X(P̂ /z, µF )

+
∑
κ

D[QQ̄(κ)]→H(z, ζ, ζ ′, µF ) (1)

⊗ dσ̂i+j→[QQ̄(κ)]+X(P̂ (1± ζ)/2z, P̂ (1± ζ ′)/2z, µF )
}
,

where
∑
f runs over all parton flavors,

∑
κ runs over all

possible spin and color states of the fragmentingQQ̄-pair,
p is the momentum of the observed heavy quarkonium,
P̂µ = (p+, 0, 0⃗⊥) is a light like momentum whose plus
component equals to the plus component of pµ, z, ζ and
ζ ′ are the light-cone momentum fractions, and µF is the
collinear factorization scale.

The dσ̂’s in Eq. (1) are perturbative calculable hard
parts describing partonic interactions. fi/A is parton
distribution function (PDF), Df→H is the single par-
ton fragmentation function (FF) which gives the leading
power (LP) contribution in 1/p2T expansion, D[QQ̄(κ)]→H

is the double parton FF [40, 41] which gives the next-
to-leading power (NLP) contribution. The hard parts
for producing a single parton have been computed up
to NLO in αs [42], and that for producing a heavy QQ̄
pair at leading-order (LO) have been obtained in [41, 43].
PDFs have been extracted from other experimental data
and they are ready for our use. Finally for the FFs,
the µF dependence is controlled by evolution equations.
The evolution kernels are perturbatively calculable [40],
but the input FFs at an given initial factorization scale
µ0

>∼ 2mQ , where mQ is the heavy quark mass, are in
principle nonperturbative. Since µ0 ≫ ΛQCD, it is plau-
sible to further factorize these input FFs, e.g., using the
NRQCD factorization approach or the SGF approach.

The NRQCD factorization for FFs has been exten-
sively studied. The SDCs for all double parton FFs have
been calculated up to O(αs) in Refs. [44–46]. The SDCs
for all single parton FFs are available up to O(α2

s) [47–57]
(see [44–46] for a summary and comparison). And part
of them are calculated to O(α3

s) [49, 58–67]. It is well

known that in matching the LO SDCs of 3P
[1,8]
J chan-

nels in NRQCD factorization, the soft divergences that

appear in the full-QCD expression for the P -wave frag-
mentation process are subtracted by the transition rate

of QQ̄ state 3S
[8]
1 into 3P

[1,8]
J . The subtraction is per-

formed at the point where the momentum of soft radi-
ation in the transition is zero, i.e., z = 1. After the
subtraction, some terms proportional to 1/(1 − z)+ are
remained. These terms cause the P -wave gluon frag-
mentation functions to strongly peak at z → 1 and then
become negative, leading to negative contributions to the
cross sections. Especially, they drive the cross sections
negative at rather large pT , as we will see later.
In Ref. [68], one of the current authors and collabora-

tors showed that, by including LP and NLP contributions
of 1/p2T expansion, very simple LO calculation based on
the formula Eq. (1) can already reproduces the compli-
cated NLO NRQCD results for both color-singlet and
color-octet channels. As SGF is equivalent to NRQCD,
the same conclusion should hold for SGF. Following this,
in present paper we consider only the LO contribution
to hadronic χc and ψ(2S) production, i.e., we take LO
PDFs, LO FFs (evaluated with LO kernels) and LO hard
parts in Eq. (1). For simplify, we do not consider the

contribution from the 3S
[1]
1 channel in ψ(2S) production

as its contribution is much smaller than the theoretical
uncertainties [12].

III. FRAGMENTATION FUNCTIONS IN SGF

In SGF approach, according to Refs. [38, 69], the FFs
at scale µ0 can be factorized as

Df→H(z, µ0)

=
∑
n,n′

∫
dx

x
D̂f→QQ̄[nn′](ẑ;MH/x,mQ, µ0, µΛ)

× F[nn′]→H(x,MH ,mQ, µΛ), (2a)

D[QQ̄(κ)]→H(z, ζ, ζ ′, µ0)

=
∑
n,n′

∫
dx

x
D̂[QQ̄(κ)]→QQ̄[nn′](ẑ, ζ, ζ

′;MH/x,mQ, µ0, µΛ)

× F[nn′]→H(x,MH ,mQ, µΛ), (2b)

where ẑ = z/x, D̂f→QQ̄[nn′] and D̂[QQ̄(κ)]→QQ̄[nn′] are the
perturbatively calculable short distance hard parts that

produce a QQ̄ pair with quantum numbers n = 2S+1L
[c]
J,Jz

and n′ = 2S′+1L
′[c′]
J′,J′

z
in the amplitude and the complex-

conjugate of the amplitude, respectively. MH is the
mass of heavy quarkonium H which satisfies p2 = M2

H .
F[nn′]→H is the SGD, which describes the hadronization

of an intermediate QQ̄ pair into heavy quarkonium by
radiate soft gluons. The SGDs are defined as

F[nn′]→H(x,MH ,mQ, µΛ) = p+
∫

db−

2π
e−ip

+b−/x

× ⟨0|[Ψ̄KnΨ]†(0)[a†HaH ][Ψ̄Kn′Ψ](b−)|0⟩S, (3)
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where x is the light-cone momentum fraction which de-
fined as x = p+/P+

c , and Pc is the total momentum of the
intermediate QQ̄ pair. Ψ stands for Dirac field of heavy
quark and the subscript “S” means the field operators in
the above definition are the operators obtained in small
momentum region. In additional, we define “S” to select
only leading power terms in (Pc − p)+ = (1 − x)P+

c ex-
pansion [69]. Kn are projection operators corresponding
to the intermediate state n, whose explicit definition are
given in Ref. [38].

In Eq. (2), it was suggested to expanding m2
Q around

M2
H/(4x

2) in the short distance hard parts [38, 69],

D̂f→QQ̄[nn′](ẑ;MH/x,mQ, µ0, µΛ)

=
∑
i=0

D̂
(i)

f→QQ̄[nn′]
(ẑ;MH/x, µ0, µΛ)

(
m2
Q −

M2
H

4x2

)i
,

D̂[QQ̄(κ)]→QQ̄[nn′](ẑ, ζ, ζ
′;MH/x,mQ, µ0, µΛ)

=
∑
i=0

D̂(i)

[QQ̄(κ)]→QQ̄[nn′]
(ẑ, ζ, ζ ′;MH/x, µ0, µΛ)

×
(
m2
Q −

M2
H

4x2

)i
, (4)

which defines a velocity expansion in SGF. Here we only
consider the hard parts at leading order in the velocity
expansion, and then we have n = n′. For convenience,
we denote

[2S+1L
[c]
J,λ] ≡ [2S+1L

[c]
J,λ

2S+1L
[c]
J,λ]. (5)

Similar to the definition of polarized NRQCD LDMEs
presented in [46], it is convenient to define polarized
SGDs as follows:

F[nλ]→H(x,MH ,mQ, µΛ)

=
1

Nnλ

∑
|Jz|=λ

F
[2S+1L

[c]
J,Jz

]→H
(x,MH ,mQ, µΛ), (6)

where nλ denotes 2S+1L
[c]
J,λ, λ = L, T, TT, · · · correspond

to |Jz| = 0, 1, 2, · · · , respectively. Nnλ
is the number of

polarization states for nλ. We have [46]

N3S
[8]
1,L

= N1S
[8]
0

= N3P
[1,8]
0,0

= N3P
[1,8]
1,L

= N3P
[1,8]
2,L

= 1,

N3S
[8]
1,T

= N3P
[1,8]
1,T

= N3P
[1,8]
2,T

= d− 2,

N3P
[1,8]
2,TT

=
1

2
(d− 1)(d− 2)− 1, (7)

where d is the space-time dimension. One can also define
the following unpolarized SGD

F
[3S

[8]
1 ]→H

(x,MH ,mQ, µΛ)

=
∑
Sz

F
[3S

[8]
1,Sz

]→H
(x,MH ,mQ, µΛ). (8)

For χc and ψ(2S) production, we need to calcu-

late the short distance hard parts for g → QQ̄[3S
[8]
1,λ],

g → QQ̄[1S
[8]
0 ], g → QQ̄[3P

[1,8]
J,λ ], [QQ̄(κ)] → QQ̄[3S

[8]
1,λ],

[QQ̄(κ)] → QQ̄[1S
[8]
0 ] and [QQ̄(κ)] → QQ̄[3P

[1,8]
J,λ ] at LO,

where κ = v[1,8], a[1,8]. Following the strategy for the cal-
culation presented in Ref. [69], we computed these short
distance hard parts. The calculation details are given in
appendix A, and the obtained results are summarized as
follows

D̂
LO,(0)

g→QQ̄[3S
[8]
1,T ]

(z,MH , µ0, µΛ)

=
παs

(N2
c − 1)

8

M3
H

δ(1− z), (9a)

D̂
LO,(0)

g→QQ̄[1S
[8]
0 ]

(z,MH , µ0, µΛ)

=
8α2

s

M3
H

N2
c − 4

2Nc(N2
c − 1)

[
(1− z) ln[1− z]− z2 + 3

2
z
]
, (9b)

D̂
LO,(0)

g→QQ̄[3P
[1]
0 ]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

2

9

[ 1

36
z(837− 162z + 72z2 + 40z3 + 8z4)

+
9

2
(5− 3z) ln(1− z)

]
, (9c)

D̂
LO,(0)

g→QQ̄[3P
[1]
1,T ]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

2

27
z(9 + 9z2 + 5z3 + z4), (9d)

D̂
LO,(0)

g→QQ̄[3P
[1]
1,L]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

1

27
z(9 + 18z2 + 10z3 + 2z4), (9e)

D̂
LO,(0)

g→QQ̄[3P
[1]
2,TT ]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

2

3z4

[2
9
z(108− 216z + 333z2 − 225z3 + 72z4

+ 9z6 + 5z7 + z8)− 6(z5 − 6z4 + 14z3 − 16z2

+ 10z − 4) ln(1− z)
]
, (9f)

D̂
LO,(0)

g→QQ̄[3P
[1]
2,T ]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

1

3z4

[2
9
z(−864 + 1728z − 1368z2 + 504z3

− 27z4 + 9z6 + 5z7 + z8)− 48(z4 − 5z3 + 10z2

− 10z + 4) ln(1− z)
]
, (9g)

D̂
LO,(0)

g→QQ̄[3P
[1]
2,L]

(z;MH , µ0, µΛ)

=
32α2

s

M5
HNc

1

9z4

[1
9
z(3888− 7776z + 4212z2 − 324z3

− 27z4 + 18z6 + 10z7 + 2z8)− 216(z − 2)(z − 1)2

× ln(1− z)
]
, (9h)

D̂
LO,(0)

g→QQ̄[3P
[8]
J,λ]

(z;MH , µ0, µΛ)
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=
N2
c − 4

2(N2
c − 1)

D̂
LO,(0)

g→QQ̄[3P
[1]
J,λ]

(z;MH , µ0, µΛ), (9i)

D̂
LO,(0)

[QQ̄(v[8])]→QQ̄[3S
[8]
1,L]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
1

N2
c − 1

2

MH

1

2
δ(ζ)δ(ζ ′)δ(1− z), (9j)

D̂
LO,(0)

[QQ̄(a[8])]→QQ̄[1S
[8]
0 ]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
1

(N2
c − 1)

2

MH

1

2
δ(ζ)δ(ζ ′)δ(1− z), (9k)

D̂
LO,(0)

[QQ̄(v[1])]→QQ̄[3P
[1]
0 ]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
8

M3
H

1

6
δ′(ζ)δ′(ζ ′)δ(1− z), (9l)

D̂
LO,(0)

[QQ̄(a[1])]→QQ̄[3P
[1]
1,L]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
8

M3
H

δ(ζ)δ(ζ ′)δ(1− z), (9m)

D̂
LO,(0)

[QQ̄(v[1])]→QQ̄[3P
[1]
2,L]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
8

M3
H

1

3
δ′(ζ)δ′(ζ ′)δ(1− z), (9n)

D̂
LO,(0)

[QQ̄(s[8])]→QQ̄[3P
[8]
J,λ]

(z, ζ, ζ ′;MH , µ0, µΛ)

=
1

N2
c − 1

D̂
LO,(0)

[QQ̄(s[1])]→QQ̄[3P
[1]
J,λ]

(z, ζ, ζ ′;MH , µ0, µΛ),

(9o)

where s could be v or a. Here we only listed the nonvan-
ishing LO hard parts. The contributions of t[1,8] channels
for double parton FFs are neglected, due to the partonic
SDCs dσ̂i+j→[QQ̄(t[1,8])]+X vanishes at LO [O(α3

s)] [41].
In contrast to the NRQCD SDCs, the P -wave short dis-
tance hard parts presented above do not include terms
proportional to 1/(1− z)+. These plus distributions cor-
respond to the leading-power order in the momentum of

the emitted soft gluons, which are factorized into the 3S
[8]
1

SGD in SGF.
In the SGF formula Eq. (1), a factorization scale µΛ is

introduced. The freedom to choose µΛ results from the
RG equations obeyed by the SGDs [69]. For simplify, here
we do not consider the evolution of SGDs and directly
provide a model for them at the scale µΛ = MH . We
adopt following model [70, 71] for the SGDs

Fmod(x) =
NHΓ(MHb/Λ̄)(1− x)b−1xMHb/Λ̄−b−1

Γ(MHb/Λ̄− b)Γ(b)
. (10)

Here NH determines the normalization, Λ̄ characterizes
the average radiated momentum in the hadronization
process, and b is related to the second moment of model
function, i.e.,∫ 1

0

dxFmod(x) = NH , (11a)∫ 1

0

dxMH(1− x)Fmod(x) = NHΛ̄, (11b)

∫ 1

0

dx
(
MH(1− x)

)2

Fmod(x) =
NHΛ̄2(b+ 1)

b+ Λ̄/MH
, (11c)

whereMH(1−x) denotes the radiated momentum in the
hadronization, and Λ̄ should be O(ΛQCD). These param-
eters are depend on the QQ̄ state n. The normalization
factor NH [n] is related to the NRQCD LDME ⟨OH(n)⟩
defined in [46]. Up to the lowest order in velocity expan-
sion, we have [38]

NH [n] ≈ ⟨OH(n)⟩. (12)

Similar to the LDMEs in NRQCD, we assume that these
normalization factors satisfy the spin symmetry relations

Nχc0 [3S
[8]
1 ] = 3Nχc0 [3S

[8]
1,T ] = 3Nχc0 [3S

[8]
1,L]

= Nχc1 [3S
[8]
1,T ] = Nχc1 [3S

[8]
1,L]

=
3

5
Nχc2 [3S

[8]
1,T ] =

3

5
Nχc2 [3S

[8]
1,L],

NχcJ [3P
[1]
J,λ] = Nχc0 [3P

[1]
0 ],

Nψ(2S)[3S
[8]
1 ] = 3Nψ(2S)[3S

[8]
1,T ] = 3Nψ(2S)[3S

[8]
1,L],

Nψ(2S)[3P
[8]
J,λ] = Nψ(2S)[3P

[8]
0 ]. (13)

These relations reduce the number of normalization fac-
tors required, and we select Nχc0 [3S

[8]
1 ], Nχc0 [3P

[1]
0 ],

Nψ(2S)[3S
[8]
1 ], Nψ(2S)[1S

[8]
0 ], and Nψ(2S)[3P

[8]
0 ] as the free

parameters, which can be determined through fitting to
experimental data.

IV. PHENOMENOLOGICAL RESULTS

A. General setup

Before going ahead, we provide some details regarding
our fitting procedure. We use LO PDFs, LO SDCs and
LO FFs in Eq. (1). We use CTEQ6L1 [72] as the input

LO PDF, and use LO αs with nf = 5 and Λ
(5)
QCD =

165 MeV. The LO [O(α2
s)] SDCs for LP are known in

[42], and the complete LO [O(α3
s)] SDCs for NLP are

taken from Ref. [41, 43]. To facilitate comparison, we
evaluate the LO FFs in both the NRQCD factorization
and the SGF approaches. We fix the charm quark mass
to mQ = mc = 1.5 GeV and choose the factorization
scale in Eq. (1) to be µF = pT . To resum the leading
logarithms of p2T /m

2
c , we evolve the single parton FFs

from the initial scale µ0 to the scale µF = pT
1. We

1 Here we do not include the evolution of double parton FFs, be-
cause the solution of the corresponding RGEs is still absent. Nev-
ertheless, this should be tolerable because logarithms are impor-
tant only in the region where pT is very large, but then the dou-
ble parton contribution is suppressed comparing with the single
parton contribution.
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compute the evolved FFs by using the method described
in Ref. [12]. In the calculation, we use the LO evolution
kernel with nf = 3. In NRQCD factorization, we choose
initial scale µ0 = 2mc and set NRQCD factorization scale
µΛ = mc as usual. In SGF, we take µ0 = MH and set
SGF factorization scale µΛ = MH . For H = χcJ , we
choose MH = 3.5 GeV, and for H = ψ(2S) we choose
MH = mψ(2S) = 3.686 GeV [73].
We use the data on the χc1 and χc2 transverse momen-

tum distributions provided by ATLAS Collaboration [74]
at
√
s = 7 TeV to perform the fits of the parameters

Nχc0 [3S
[8]
1 ], Nχc0 [3P

[1]
0 ] in SGF, as well as the NRQCD

LDMEs ⟨Oχc0(3S
[8]
1 )⟩ and ⟨Oχc0(3P

[1]
0 )⟩. We determine

the parameters and LDMEs for ψ(2S) by fitting to the
cross section data provided by ATLAS and CMS Collab-
orations [75, 76]. Due to the factorization formula Eq. (1)
is applied in the large pT region, only the data with pT ≥
12GeV are considered in the fitting. Following Ref. [12],
in the fitting we take the uncertainties in the theoreti-
cal expressions for the charmonium cross sections to be
30% of the central values in magnitude, which account for
uncalculated corrections of higher orders in velocity ex-
pansion. Some branching ratios are used in the fits, they
are B(χc0 → J/ψγ) = 0.0128, B(χc1 → J/ψγ) = 0.36,
B(χc2 → J/ψγ) = 0.2, B(ψ(2S) → µ+µ−) = 0.0075,
B(ψ(2S) → J/ψπ+π−) = 0.34, B(J/ψ → µ+µ−) =
0.0593 [73].

B. Production of χcJ

In NRQCD factorization, through the least-χ2 fit to
the measured data, we obtain

⟨Oχc0(3S
[8]
1 )⟩ = (4.84± 1.14)× 10−3GeV3, (14a)

⟨Oχc0(3P
[1]
0 )⟩

m2
c

= (6.11± 2.01)× 10−3GeV3, (14b)

with χ2/d.o.f = 0.53/8. The above values of NRQCD
LDMEs are consistent with the those obtained in
Ref. [12]. The χc1 and χc2 cross sections obtained from
the fit are depicted in Fig. 1 against ATLAS data [74],
where the contributions of the individual channels to the
cross sections are also presented. It is evident that signifi-
cant cancellations occur between the contributions of the
3S

[8]
1 and 3P

[1]
J channels in NRQCD factorization. This

kind of cancellation can make the perturbative expansion
unstable and may even lead to negative cross sections at
large pT . To see this more clear, we define the ratio

r(χc0) ≡
⟨Oχc0(3S

[8]
1 )⟩

⟨Oχc0(3P
[1]
0 )⟩/m2

c

, (15)

and rewrite the cross sections as

dσ(χcJ) =(2J + 1)dσ̂[3S
[8]
1 ]
⟨Oχc0(3P

[1]
0 )⟩

m2
c
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FIG. 1. The differential cross sections for prompt χc1 and
χc2 at the LHC center of mass energy

√
s = 7 TeV and in

the rapidity range |y| < 0.75 compared with ATLAS mea-
surements [74]. B = B(χcJ → J/ψγ)×B(J/ψ → µ+µ−).

×
[
r(χc0) +

dσ̂[3P
[1]
J ]

dσ̂[3S
[8]
1 ]

]
. (16)

According to the fit we have r(χc0) = 0.79+0.12
−0.06. To

achieve a positive production rate of χcJ at high pT , it is
necessary to have

dσ̂[3P
[1]
J ]

dσ̂[3S
[8]
1 ]

> −r(χc0). (17)

However, as showed in the upper panel of Fig. 2, we find

the ratios dσ̂[3P
[1]
J ]/dσ̂[3S

[8]
1 ](J = 0, 1, 2) decrease as pT

increases. Moreover, for pT larger than about 1700 GeV,
all three ratios fall below the lower bound of −r(χc0).
Consequently, at large pT all cross sections become neg-
ative, as showed in the lower panel of Fig. 2, which has
also been pointed out in Ref. [31].

It is worth noting that the cross section in the very
high pT region is greatly influenced by the behavior of
fragmentation functions near z = 1. In this regime, the

pT behavior of 3S
[8]
1 channel is mainly dominated by the

delta function δ(1 − z), while that of 3P
[1]
J channel is

primarily governed by the terms proportional to 1/(1 −
z)+. The absolute value of the latter decreases more
slowly as pT increases compared to the former, leading

to an increase in the ratios −dσ̂[3P [1]
J ]/dσ̂[3S

[8]
1 ].

In SGF, after convolving SGDs with short distance
hard parts in Eq. (9), we arrive at a form that similar
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FIG. 2. Upper panel: the comparison between the ratios

dσ̂[3P
[1]
J ]/dσ̂[3S

[8]
1 ] and −r(χc0). Lower panel: the pT distri-

butions for χcJ production when the LDMEs take the central
values in Eq. (14). Here

√
s = 7TeV, |y| < 0.75.

to Eq. (16),

dσ(χcJ) =(2J + 1)dσ̂′[3S
[8]
1 ]

Nχc0 [3P
[1]
0 ]

m2
c

×
[
r′(χc0) +

dσ̂′[3P
[1]
J ]

dσ̂′[3S
[8]
1 ]

]
. (18)

Here

r′(χc0) ≡
Nχc0 [3S

[8]
1 ]

Nχc0 [3P
[1]
0 ]/m2

c

. (19)

The coefficients dσ̂′[3S
[8]
1 ] and dσ̂′[3P

[1]
J ] depend on the

nonperturbative parameters b and Λ̄. The behavior of
FFs near z = 1 is dominated by the nonperturbative
SGDs. Thus in the very high pT region, the pT behav-

ior of the ratio dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ] is very sensitive to

the parameters b and Λ̄. Unfortunately, there is yet no
first-principle way to determine these parameters. From
Eq. (11) we find that when b > 1, the second moment of
the model is O(NHΛ̄2) and is not sensitive to b. There-
fore, for simplify here we assume that the parameter b
is same for all channels and we set b = 6. To quali-

tatively analyze the effect of Λ̄ on dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ],

we first fix Λ̄[3S
[8]
1 ] = 0.4 GeV and vary Λ̄[3P

[1]
J ]. In

Fig. 3 we show the ratios for Λ̄[3P
[1]
J ] = 0.36, 0.32, 0.28,

0.24 GeV(J = 0, 1, 2). We find that the coefficient in 3P
[1]
1

channel is always positive, and those in 3P
[1]
0 and 3P

[1]
2

channels are negative. Additionally, for a fixed Λ̄[3S
[8]
1 ],

there exist a scale Λ̄min such that when Λ̄[3P
[1]
J ] ≥ Λ̄min,

the minimum value of the ratio for J = 0 is located at
pT < 100GeV, and when Λ̄[3P

[1]
J ] < Λ̄min, the position

of minimum value turns to be pT ∼ 3000GeV. To ob-
tain a positive cross section for χcJ production within

the whole pT region, a suitable choice is Λ̄[3P
[1]
J ] ≥ Λ̄min.

This indicates that in the hadronization of QQ̄[3P
[1]
J ] to

χcJ the average radiated momentum should not too close
to zero, which is different from the picture in NRQCD
factorization. On the other hand, to investigate the cor-

relation between Λ̄min and Λ̄[3S
[8]
1 ], we vary Λ̄[3S

[8]
1 ] = 0.6,

0.55, 0.5, 0.45, 0.4, 0.35 GeV and roughly estimate

the Λ̄min for each corresponding Λ̄[3S
[8]
1 ]. Our analysis

suggests that Λ̄min ≈ 0.7Λ̄[3S
[8]
1 ]. The ratios for each

(Λ̄[3S
[8]
1 ], Λ̄[3P

[1]
J ]) = (Λ̄[3S

[8]
1 ], Λ̄min) pair are showed in

Fig. 4.

Based on the discussion above, we set Λ̄[3S
[8]
1 ] =

0.4 GeV and Λ̄[3P
[1]
J ] = 0.3 GeV for the χcJ production.

Subsequently, we determine the parameters Nχc0 [3S
[8]
1 ]

and Nχc0 [3P
[1]
0 ] by fitting the experimental data, which

results in

Nχc0 [3S
[8]
1 ] = (3.75± 0.53)× 10−3GeV3, (20a)

Nχc0 [3P
[1]
0 ]

m2
c

= (2.25± 0.75)× 10−2GeV3, (20b)

with χ2/d.o.f = 0.63/8. We also obtain r′(χc0) =
0.17+0.10

−0.06. The fitted cross sections are shown in Fig. 5.
In SGF, there is no substantial cancellations between the

contributions of the 3S
[8]
1 and 3P

[1]
J channels. Moreover,

the contribution of 3P
[1]
1 channel in the χc1 cross sec-

tion is always positive. We also find that in the experi-
mental pT region, the χc2 cross section is dominated by

the contribution of 3S
[8]
1 channel, and the color-singlet

contribution can be neglected. This indicates that the

parameter Nχc0 [3S
[8]
1 ] is mainly determined by the dif-

ferential cross section for prompt χc2 production. In
the upper panel of Fig. 6, the pT dependence of ra-

tios dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ] is compared to −r′(χc0). Unlike

NRQCD factorization, there is a wide range of r′(χc0) in

which dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ] is larger than −r′(χc0). In this

value range, one can ensure that the cross section of χcJ
production are positive within the entire pT region. In
the lower panel of Fig. 6, we show the differential cross
sections when the central values in Eq. (20) are taken.
Therefore, the negative cross section problem in NRQCD
factorization can be resolved in the SGF framework.

C. Production of ψ(2S)

For the ψ(2S) production, the color-singlet contribu-
tion is neglectable as have been mentioned before. In
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[1]
J ]/dσ̂′[3S

[8]
1 ]. Here we fix Λ̄[3S

[8]
1 ] = 0.4GeV and vary

Λ̄[3P
[1]
J ] = 0.36, 0.32, 0.28, 0.24GeV. Here

√
s = 7TeV, |y| < 0.75.

.

500 1000 1500 2000 2500 3000

0.2

0.1

0.0

0.1

0.2

d
′ [3 P

[1
]

J
]/d

′ [3 S
[8

]
1

]

3P[1]
0

500 1000 1500 2000 2500 3000
pT(Gev)

3P[1]
1

(0.35,0.24)Gev
(0.40,0.28)Gev
(0.45,0.32)Gev

500 1000 1500 2000 2500 3000

3P[1]
2

(0.50,0.36)Gev
(0.55,0.40)Gev
(0.60,0.44)Gev

FIG. 4. The pT distribution for the ratio dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ] with Λ̄[3P

[1]
J ] = Λ̄min ≈ 0.7Λ̄[3S

[8]
1 ]. We vary (Λ̄[3S

[8]
1 ], Λ̄[3P

[1]
J ]) =

(0.35, 0.24), (0.4, 0.28), (0.45, 0.32), (0.5, 0.36), (0.55, 0.4), (0.6, 0.44)GeV. Here
√
s = 7TeV, |y| < 0.75.

NRQCD factorization, the determination of the LDMEs
is complicated and involved. Similar to the previous stud-
ies [2, 4, 9], we find that in the region where 12 GeV ≤
pT ≤ 100 GeV, the SDC of 3P

[8]
0 can be nicely decom-

posed into a linear combination of the SDCs of 3S
[8]
1 and

1S
[8]
0 ,

dσ̂[3P
[8]
0 ] = r0

dσ̂[1S
[8]
0 ]

m2
c

+ r1
dσ̂[3S

[8]
1 ]

m2
c

, (21)

with r0 = 5.94 and r1 = −1.85. Based on this relation,
we are able to extract two linear combinations of the
three color-octet LDMEs within convincing precision,

M
ψ(2S)
0 ≡ ⟨Oψ(2S)(1S[8]

0 )⟩+ r0
⟨Oψ(2S)(3P [8]

0 )⟩
m2
c

, (22a)

M
ψ(2S)
1 ≡ ⟨Oψ(2S)(3S[8]

1 )⟩+ r1
⟨Oψ(2S)(3P [8]

0 )⟩
m2
c

. (22b)

In SGF, we set Λ̄[3S
[8]
1 ] = 0.7 GeV, Λ̄[1S

[8]
0 ] = Λ̄[3P

[8]
0 ] =

0.5 GeV ≈ 0.7Λ̄[3S
[8]
1 ] for ψ(2S) production. By con-

volving the SGDs with the short distance hard parts, we

arrive at

dσ(ψ(2S)) =dσ̂′[3S
[8]
1 ]Nψ(2S)[3S

[8]
1 ] + dσ̂′[1S

[8]
0 ]

×Nψ(2S)[1S
[8]
0 ] + dσ̂′[3P

[8]
0 ]

Nψ(2S)[3P
[8]
0 ]

m2
c

. (23)

Similar to the case of NRQCD factorization, in the region

where 12 GeV ≤ pT ≤ 100 GeV, the coefficient dσ̂′[3P
[8]
0 ]

can also be decomposed as

dσ̂′[3P
[8]
0 ] = r′0

dσ̂′[1S
[8]
0 ]

m2
c

+ r′1
dσ̂′[3S

[8]
1 ]

m2
c

, (24)

with r′0 = 1.629 and r′1 = −0.032. And we construct
following two parameters

M
′ψ(2S)
0 ≡ Nψ(2S)[1S

[8]
0 ] + r′0

Nψ(2S)[3P
[8]
0 ]

m2
c

, (25a)

M
′ψ(2S)
1 ≡ Nψ(2S)[3S

[8]
1 ] + r′1

Nψ(2S)[3P
[8]
0 ]

m2
c

. (25b)

In this paper we are interested in the sign of the total
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√
s = 7 TeV, |y| < 0.75.
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FIG. 6. Upper panel: the comparison between the ratios

dσ̂′[3P
[1]
J ]/dσ̂′[3S

[8]
1 ] and −r′(χc0). Lower panel: the pT distri-

butions for χcJ production with Nχc0 [3S
[8]
1 ], Nχc0 [3P

[1]
0 ]/m2

c

take the central values in Eq. (20). Here
√
s = 7 TeV,

|y| < 0.75.

contributions from 3S
[8]
1 and 3P

[8]
J channels. For this pur-

pose, we need to determine the value range of quantities

r(ψ(2S)) ≡ ⟨Oψ(2S)(3S[8]
1 )⟩

⟨Oψ(2S)(3P [8]
0 )⟩/m2

c

,

r′(ψ(2S)) ≡ Nψ(2S)[3S
[8]
1 ]

Nψ(2S)[3P
[8]
0 ]/m2

c

. (26)

We assume thatNψ(2S)[3S
[8]
1 ], Nψ(2S)[1S

[8]
0 ], Nψ(2S)[3P

[8]
0 ]

and all of the three NRQCD color-octet LDMEs are pos-
itive. Using the ATLAS and CMS yields data [75, 76],
we extract

M
ψ(2S)
0 = (2.92± 0.49)× 10−2GeV3, (27a)

M
ψ(2S)
1 = (0.11± 0.02)× 10−2GeV3, (27b)

with χ2/d.o.f = 16.58/86. And

M
′ψ(2S)
0 = (7.37± 1.51)× 10−2GeV3, (28a)

M
′ψ(2S)
1 = (0.85± 0.11)× 10−2GeV3, (28b)

with χ2/d.o.f = 15.21/86. By varying 0 ≤
⟨Oψ(2S)(1S[8]

0 )⟩ ≤ M
ψ(2S)
0 and 0 ≤ Nψ(2S)[1S

[8]
0 ] ≤

M
′ψ(2S)
0 , we further obtain the lower bounds of r(ψ(2S))

and r′(ψ(2S)), i.e.,

r(ψ(2S)) ≥ 2.01, r′(ψ(2S)) ≥ 0.17. (29)

In Fig. 7, we show the comparison between r(ψ(2S))

and dσ̂[3P
[8]
0 ]/dσ̂[3S

[8]
1 ] in the upper panel , and show the

comparison between r′(ψ(2S)) and dσ̂′[3P
[8]
0 ]/dσ̂′[3S

[8]
1 ] in

the lower panel. We observe that both NRQCD factor-
ization and SGF allow for a wide range of parameters

that result in positive contributions of 3S
[8]
1 + 3P

[8]
J for

the entire pT range. However, the SGF result is qualita-
tively better than that of NRQCD factorization due to

that dσ̂′[3P
[8]
0 ]/dσ̂′[3S

[8]
1 ] is larger than the upper bound

of −r′(ψ(2S)).

V. SUMMARY

In this paper, we study the hadroproduction of χcJ
and ψ(2S) using the SGF approach. Our general frame-
work is the LP+NLP collinear factorization, with only
the LO contribution considered. Our results show that
the fit to experimental data in SGF is as good as that
in NRQCD factorization. We confirm that the NRQCD
predictions for χcJ production rates at the LHC turn
negative at sufficiently large pT . These negative cross
sections originate from terms proportional to 1/(1− z)+
in the 3P

[1]
J gluon FFs, which are remnants of the infrared

subtraction in matching the 3P
[1]
J SDCs and correspond

to the leading-power order in emitted soft gluon momen-
tum. At the threshold limit z → 1, these terms contain
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tio dσ̂[3P
[8]
0 ]/dσ̂[3S

[8]
1 ] and −r(ψ(2S)) in NRQCD factor-

ization. Lower panel: The comparison between the ra-

tio dσ̂′[3P
[8]
0 ]/dσ̂′[3S

[8]
1 ] and −r′(ψ(2S)) in SGF. The lower

bounds of −r(ψ(2S)) and −r′(ψ(2S)) go to −∞. Here√
s = 7 TeV, |y| < 0.75.

nonperturbative effects. In SGF, these terms are factor-

ized into the nonperturbative 3S
[8]
1 SGD, resulting in a

distinct infrared subtraction scheme from NRQCD. We
also calculate the short distance hard parts for relevant
FFs in SGF, and indeed, the P -wave short distance hard
parts are free of the plus distributions.

In our phenomenological study, we employed a simple
model for the nonperturbative SGD, which depends on
three parameters: b, Λ̄, and NH . Currently, there is no
first-principles method to determine these parameters.

We fixed the parameter b and varied Λ̄[3S
[8]
1 ] and Λ̄[3P

[1]
J ].

Based on our numerical results, we suggest the constraint

Λ̄[3P
[1]
J ] ≥ 0.7Λ̄[3S

[8]
1 ], which indicates that the soft gluon

emission in the hadronization of QQ̄[3P
[1]
J ] to χcJ cannot

be ignored in the current factorization framework. With

an appropriate choice of Λ̄[3S
[8]
1 ] and Λ̄[3P

[1]
J ], there are

wide ranges of the parameters Nχc0 [3S
[8]
1 ] and Nχc0 [3P

[1]
0 ]

that yield a positive cross section of χcJ . Similarly, we

also calculated the contributions of 3S
[8]
1 +3P

[8]
J for ψ(2S)

production. We found that in both NRQCD factorization
and SGF, there is a wide range of allowed parameters

that yield positive contributions of 3S
[8]
1 + 3P

[8]
J at the

entire pT region. Based on these results, we conclude
that the negative cross section problem in NRQCD can
be resolved in SGF.
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Appendix A: The short distance hard parts in SGF

In this Appendix, we provide the necessary details for
obtaining the short distance hard parts in Eq. (9). In

Eq. (3), the projection operators Kn for n = 3S
[8]
1,Sz

, 1S
[8]
0

and 3P
[1,8]
J,Jz

are given by [38]

Kn(rb−) =
√
MH

MH + 2mQ

MH + /p

2MH
Γn
MH − /p
2MH

, (A1)

with

Γn =ϵµSz
γµC[8], for n = 3S

[8]
1,Sz

,

Γn =γ5C[8], for n = 1S
[8]
0 , (A2)

Γn =EµνJ,Jzγµ
(
− i

2

←→
D ν

)
C[1,8], for n = 3P

[1,8]
J,Jz

.

The color operators C[c] in above are defined as

C[1] = 1c√
Nc

, (A3a)

C[8] =
√
2T āΦl(rb

−)āa, (A3b)

where 1c and T
ā are the identity matrix and the genera-

tor of the fundamental (triplet) representation of SU(3).
The introduction of gauge link Φl(rb

−)āa is to enable
gauge invariance of SGDs. The gauge link is defined
along the lµ = (0, 1, 0⃗⊥) direction,

Φl(rb
−) = P exp

[
−igs

∫ ∞

0

dξl ·A(rb− + ξl)

]
, (A4)

where P denotes path ordering, Aµ(x) is the matrix-
valued gluon field in the adjoint representation:
[Aµ(x)]ac = ifabcAµb (x). In Eq. (A2), Dµ is the gauge

covariant derivative with Ψ
←→
D µΨ = Ψ(DµΨ)− (DµΨ)Ψ.

And ϵSz
, EJ,Jz are the polarization tensors for 3S

[8]
1,Sz

state

and 3P
[1,8]
J,Jz

state.

According to Ref. [46], we use following projection op-

erators to sum over the polarizations of 3S
[8]
1 state and

3P
[1,8]
J,Jz

state,

Pββ
′σσ′

0 ≡
∑

|Jz|=0

Eβσ0,Jz
E∗β

′σ′

0,Jz
=

1

d− 1
PβσPβ

′σ′
, (A5a)
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Pββ
′σσ′

1,T ≡
∑

|Jz|=1

Eβσ1,Jz
E∗β

′σ′

1,Jz

=
1

2

(
Pββ

′

⊥ Pσσ
′

∥ + Pββ
′

∥ Pσσ
′

⊥ − Pβσ
′

⊥ Pβ
′σ

∥ − Pβσ
′

∥ Pβ
′σ

⊥

)
,

(A5b)

Pββ
′σσ′

1,L ≡
∑

|Jz|=0

Eβσ1,Jz
E∗β

′σ′

1,Jz

=
1

2

(
Pββ

′

⊥ Pσσ
′

⊥ − Pβσ
′

⊥ Pβ
′σ

⊥

)
, (A5c)

Pββ
′σσ′

2,TT ≡
∑

|Jz|=2

Eβσ2,Jz
E∗β

′σ′

2,Jz

=
1

2

(
Pββ

′

⊥ Pσσ
′

⊥ + Pβσ
′

⊥ Pβ
′σ

⊥

)
− 1

d− 2
Pβσ⊥ Pβ

′σ′

⊥ , (A5d)

Pββ
′σσ′

2,T ≡
∑

|Jz|=1

Eβσ2,Jz
E∗β

′σ′

2,Jz

=
1

2

(
Pββ

′

⊥ Pσσ
′

∥ + Pββ
′

∥ Pσσ
′

⊥ + Pβσ
′

⊥ Pβ
′σ

∥ + Pβσ
′

∥ Pβ
′σ

⊥

)
,

(A5e)

Pββ
′σσ′

2,L ≡
∑

|Jz|=0

Eβσ2,Jz
E∗β

′σ′

2,Jz

=
d− 2

d− 1

(
Pβσ∥ −

1

d− 2
Pβσ⊥

)(
Pβ

′σ′

∥ − 1

d− 2
Pβ

′σ′

⊥

)
.

(A5f)

Where

Pαα
′

⊥ ≡
∑

|Sz|=1

ϵαSz
ϵ∗α

′

Sz

= −gαα
′
+
pαlα

′
+ pα

′
lα

p · l
− p2

(p · l)2
lαlα

′
, (A6a)

Pαα
′

∥ ≡
∑

|Sz|=0

ϵαSz
ϵ∗α

′

Sz

=
pαpα

′

p2
− pαlα

′
+ pα

′
lα

p · l
+

p2

(p · l)2
lαlα

′
, (A6b)

Pαα
′
≡

∑
Sz

ϵαSz
ϵ∗α

′

Sz
= −gαα

′
+
pαpα

′

p2
. (A6c)

Following the matching procedure, to determine the
short distance hard part in Eq. (2), we replace the
quarkonium H by a on-shell QQ̄ pair with certain quan-
tum number n and momenta

pQ =
1

2
p+ q, pQ̄ =

1

2
p− q. (A7)

where q is half of the relative momentum of the QQ̄ pair.
On-shell conditions p2Q = p2

Q̄
= m2

Q result in

p · q = 0, q2 = m2
Q − p2/4. (A8)

To project the final-state QQ̄ pair to the state n, we
replace spinors of the QQ̄ by the projector [38]∫

dd−2Ω

NΩ

2√
MH(MH + 2mQ)

(/pQ̄ −mQ)

×
MH − /p
2MH

Γ̃n
MH + /p

2MH
(/pQ +mQ), (A9)

here Ω is the solid angle of relative momentum q in the
QQ̄ rest frame, and NΩ is given by

NΩ =

∫
dd−2Ω. (A10)

For different states n, the operators Γ̃n are given by

Γ̃n =ϵ∗µSz
γµC̃[8], for n = 3S

[8]
1,Sz

,

Γ̃n =γ5C̃[8], for n = 1S
[8]
0 , (A11)

Γ̃n =
(d− 1)qα

q2
E∗αµJ,Jz

γµC̃[1,8], for n = 3P
[1,8]
J,Jz

,

where q2 = −q2, and

C̃[1] = 1c√
Nc

, (A12a)

C̃[8] =

√
2

N2
c − 1

T a. (A12b)

We first consider the single parton FFs. Basing on
Eq. (2), we can derive following matching relations for
the short distance hard parts at LO in αs

D̂
LO,(0)

g→QQ̄[3S
[8]
1,λ]

(z;MH , µ0, µΛ)

=DLO

g→QQ̄[3S
[8]
1,λ]

(z;MH ,mQ, µ0)
∣∣∣
m2

Q=M2
H/4

, (A13a)

D̂
LO,(0)

g→QQ̄[1S
[8]
0 ]

(z;MH , µ0, µΛ)

=DLO

g→QQ̄[1S
[8]
0 ]

(z;MH ,mQ, µ0)
∣∣∣
m2

Q=M2
H/4

, (A13b)

D̂
LO,(0)

g→QQ̄[3P
[1,8]
J,λ ]

(z;MH , µ0, µΛ)

=
[
DLO

g→QQ̄[3P
[1,8]
J,λ ]

(z;MH ,mQ, µ0)

−
∑

λ′=T,L

∫
dx

x2
D̂LO

g→QQ̄[3S
[8]

1,λ′ ]
(ẑ;MH/x,mQ, µ0, µΛ)

× FLO
[3S

[8]

1,λ′ ]→QQ̄[3P
[1,8]
J,λ ]

(x;MH ,mQ, µΛ)
]∣∣∣
m2

Q=M2
H/4

.

(A13c)

Here we have used [38]

FLO[n]→QQ̄[n](x;MH ,mQ, µΛ) = δ(1− z), (A14)

for n = 3S
[8]
1,Sz

, 1S
[8]
0 and 3P

[1,8]
J,Jz

. The short distance hard

part for 3S
[8]
1,λ can be taken from [69], which read as

D̂LO

g→QQ̄[3S
[8]
1,T ]

(z;MH ,mQ, µ0, µΛ) =
παsµ

2ϵ
c

(N2
c − 1)

8

M3
H

×
(2− 2ϵ

3− 2ϵ
+

2mQ

(3− 2ϵ)MH

)2

δ(1− z), (A15a)
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D̂LO

g→QQ̄[3S
[8]
1,L]

(z;MH ,mQ, µ0, µΛ) =0, (A15b)

here µc is the dimensional regularization scale. Expand-
ing m2

Q around M2
H/4, we then obtain

D̂
LO,(0)

g→QQ̄[3S
[8]
1,T ]

(z,MH , µ0, µΛ) =
παs

(N2
c − 1)

8

M3
H

δ(1− z),

(A16a)

D̂
LO,(0)

g→QQ̄[3S
[8]
1,L]

(z,MH , µ0, µΛ) =0. (A16b)

The calculation of D̂
LO,(0)

g→QQ̄[1S
[8]
0 ]

is straightforward. Using

the results of perturbative FFs listed in [44], we derive

D̂
LO,(0)

g→QQ̄[1S
[8]
0 ]

(z,MH , µ0, µΛ) =
8α2

s

M3
H

N2
c − 4

2Nc(N2
c − 1)

×
[
(1− z) ln[1− z]− z2 + 3

2
z
]
. (A17)

The computation of perturbative FFs DLO

g→QQ̄[3P
[1,8]
J,λ ]

in Eq. (A13) has been well studied in the literature (e.g.,
Ref. [65] ). Using the projection operators in Eq. (A5),
we obtain

DLO

g→QQ̄[3P
[1]
0 ]

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

2

9

[(
− 1

ϵIR
− 1

6
− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+
z
(
26z2 − 111z + 93

)
4

1

(1− z)+
+

9 (5− 3z)

2

× ln(1− z)
]
+O(q2), (A18a)

DLO

g→QQ̄[3P
[1]
1,T ]

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

1

3

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+ 2z
(
z2 − z + 1

) 1

(1− z)+

]
+O(q2), (A18b)

DLO

g→QQ̄[3P
[1]
1,L]

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

1

3

[(
− 1

ϵIR
+

5

2
− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+ z
(
2z2 − z + 1

) 1

(1− z)+

]
+O(q2), (A18c)

DLO

g→QQ̄[3P
[1]
2,TT ]

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

2

3z4

[(
− 1

ϵIR
+ 2− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+ 2z4
1

(1− z)+
− 2z(z5 − 7z4 + 26z3 − 37z2 + 24z

− 12)− 6
(
z5 − 6z4 + 14z3 − 16z2 + 10z − 4

)
× ln(1− z)

]
+O(q2), (A18d)

DLO

g→QQ̄[3P
[1]
2,T ]

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

1

3z4

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+ 2z4
1

(1− z)+
− 2z(z5 + 4z4 − 55z3 + 152z2

− 192z + 96)− 48(z4 − 5z3 + 10z2 − 10z + 4)

× ln(1− z)
]
+O(q2), (A18e)

DLO

g→QQ̄(3P
[1]
2,L)

(z;MH ,mQ, µ0)

=
32α2

sµ
2ϵ
c

M5
HNc

1

9z4

[(
− 1

ϵIR
− 7

6
− ln

4πµ2
ce

−γE

M2
H

)
δ(1− z)

+ 2z4
1

(1− z)+
− z(2z5 + 5z4 + 38z3 − 468z2

+ 864z − 432)− 216(z − 2)(z − 1)2 ln(1− z)
]

+O(q2), (A18f)

DLO

g→QQ̄(3P
[8]
J,λ)

(z;MH ,mQ, µ0)

=
N2
c − 4

2(N2
c − 1)

DLO

g→QQ̄(3P
[1]
J,λ)

(z;MH ,mQ, µ0). (A18g)

We now turn to the calculation of SGDs in Eq. (A13).
At LO, the diagrams for F

[3S
[1]

1,λ′ ]→QQ̄[3P
[1,8]
J,λ ]

are shown in

Fig. 8, here we only need to consider the case of λ′ = T .
According to the definition Eq. (3), we expand the ampli-

(a) (b)

Pc

k

pQ

pQ̄

FIG. 8. Feynman diagrams for the SGDs F
[3S

[1]
1,T

]→QQ̄[3P
[1,8]
J,λ

]

at LO. The double solid line represents the gauge link along
l direction.

tudes in terms of the soft momentum k, and keeping only
the leading terms in the expansion. In addition, accord-
ing to Eq. (A13), we can expand m2

Q in the amplitudes

aroundM2
H/4 and neglect the terms of O(q2) before per-

forming phase space integration. Thus we derive

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
J,λ]

(x,MH ,mQ, µΛ)

=
p+

d− 2

∫
ddPc
(2π)d

ddk

(2π)d
δ(P+

c −
p+

x
)(2π)dδd(Pc − p− k)

× 2πδ(k2)θ(k+)MαβσρM∗
α′β′σ′ρ′Pαα

′

⊥ Pββ
′σσ′

J,λ (−gρρ
′
),

(A19)
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where the amplitudeM is given by

Mαβσρ =
d

dqσ
[A(1)

αβρ +A
(2)
αβρ]|q=0 +O(q2),

A(1)
αβρ =gsTr

[
T aΠbαΠ̃β

] (p/2 + q)ρ
(p/2 + q) · k + iε

,

A(2)
αβρ =gsTr

[
ΠbαT

aΠ̃β

] −(p/2− q)ρ
(p/2− q) · k + iε

, (A20)

with

Πbα =

√
MH

MH + 2mQ

MH + /p

2MH
(
√
2T bγα)

MH − /p
2MH

,

Π̃β =
2√

MH(MH + 2mQ)
(/pQ̄ −mQ)

MH − /p
2MH

×
( 1c√

Nc
γβ

)MH + /p

2MH
(/pQ +mQ). (A21)

Performing the k-integration, we obtain

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
0 ]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

8

9

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

− 1

6

)
× δ(1− x) + 2x

1

(1− x)+

]
+O(q2), (A22a)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
1,T ]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

4

3

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

)
× δ(1− x) + 2x

1

(1− x)+

]
+O(q2), (A22b)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
1,L]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

4

3

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

+
5

2

)
× δ(1− x) + 2x

1

(1− x)+

]
+O(q2), (A22c)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
2,TT ]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

8

3

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

+ 2
)

× δ(1− x) + 2x
1

(1− x)+

]
+O(q2), (A22d)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
2,T ]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

4

3

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

)
× δ(1− x) + 2x

1

(1− x)+

]
+O(q2), (A22e)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
2,L]

(x,MH ,mQ, µΛ)

=
αs
M2
Hπ

N2
c − 1

Nc

4

9

[(
− 1

ϵIR
− ln

4πµ2
ce

−γE

M2
H

− 7

6

)
× δ(1− x) + 2x

1

(1− x)+

]
+O(q2). (A22f)

The SGDs F
[3S

[1]
1,T ]→QQ̄[3P

[8]
J,λ]

can be calculated similarly,

with results given as

FLO
[3S

[1]
1,T ]→QQ̄[3P

[8]
J,λ]

(x,MH ,mQ, µΛ)

=
N2
c − 4

2(N2
c − 1)

FLO
[3S

[1]
1,T ]→QQ̄[3P

[1]
J,λ]

(x,MH ,mQ, µΛ). (A23)

Substituting Eqs. (A23), (A22), (A18) and (A15) into
Eq. (A13), we can obtain the P -wave short distance hard
parts that given in Eq. (9). We find that both the infrared
divergences and the terms proportional to 1/(1 − z)+
in the perturbative FFs are correctly subtracted by the
SGDs.
Finally, for the double parton FFs, we have following

matching relation

D̂LO,(0)
[QQ̄(κ)]→[QQ̄[n]]

(z, ζ, ζ ′;MH , µ0, µΛ)

=DLO[QQ̄(κ)]→[QQ̄[n]](z, ζ, ζ
′;MH ,mQ, µ0)|m2

Q=M2
H/4

.

(A24)

Using the results of perturbative double parton FFs cal-
culated in [44–46], we immediately obtain the results in
Eq. (9).
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