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Studying the thermodynamics of the systems produced in ultra-relativistic heavy-ion collisions is
crucial in understanding the QCD phase diagram. Recently, a new avenue has opened regarding the
implications of large initial angular momentum and subsequent vorticity in the medium evolution
in high-energy collisions. This adds a new type of chemical potential into the partonic and hadronic
systems, called the rotational chemical potential. We study the thermodynamics of an interacting
hadronic matter under rotation, formed in an ultra-relativistic collision. We introduce attractive
and repulsive interactions through the van der Waals equation of state. Thermodynamic properties
like the pressure (P ), energy density (ε), entropy density (s), trace anomaly ((ε− 3P )/T 4), specific
heat (cv) and squared speed of sound (c2s ) are studied as functions of temperature (T ) for zero and
finite rotation chemical potential. The conserved charge fluctuations, which can be quantified by
their respective susceptibilities, are also studied. The rotational (spin) density corresponding to
the rotational chemical potential is explored. In addition, we explore the possible liquid-gas phase
transition in the hadron gas with van der Waals interaction in the T – ω phase space.

PACS numbers:

I. INTRODUCTION

There have been intense investigations to understand
the behavior of the strongly interacting matter produced
in the ultra-relativistic heavy-ion collisions at the Rel-
ativistic Heavy Ion Collider (RHIC) at BNL and the
Large Hadron Collider (LHC) at CERN. Such matter
can be described by Quantum Chromodynamics (QCD).
According to QCD, a smooth crossover phase transition
is expected at high temperatures (T ) and vanishing bary-
ochemical potentials (µB) region in the QCD phase di-
agram, which is described by the RHIC and LHC ex-
periments. As one goes towards low temperatures, and
high baryochemical potential region, the phase transition
becomes a first-order one. These phase transition lines
meet at a hypothesized critical endpoint (CEP), which
has been one of the most exciting topics of discussion in
the high-energy physics community. To gather valuable
and reliable information about the QCD matter, lattice
QCD (lQCD) has been the most successful theory based
on first principles. However, at non-vanishing chemical
potential, the lQCD breaks down because of the fermion
sign problem [1, 2]. Nevertheless, there have been sig-
nificant attempts to bypass this problem indirectly [3–5],
but the issue still largely persists. The more simplistic
Hadron Resonance Gas (HRG) model effectively explains
the QCD matter behavior and matches the lQCD data up
to temperature (T ≃ 150 MeV) [6–8]. The HRG model
works at both zero baryochemical potential and baryon-
rich environments and successfully explains the hadron
yields from heavy-ion collisions using only two parame-
ters, the temperature, and the baryochemical potential.
However, after T ≃ 150 MeV, the hadrons start to melt,
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and the results from the HRG model start deviating from
the lQCD estimations. The HRGmodel also breaks down
while estimating the higher-order fluctuations and corre-
lations of conserved charges [9]. It has been observed that
repulsive interactions between the hadrons can substan-
tially affect the behavior of thermodynamic and trans-
port properties, particularly the higher order fluctuations
[10, 11]. The repulsive interactions can be incorporated
into the hadron gas by a van der Waals type repulsion
where the hardcore radius of the hadrons serves as the re-
pulsion in the Excluded Volume Hadron Resonance Gas
(EVHRG) model or through a repulsive mean field po-
tential which is introduced in the hadron gas in the Rela-
tivistic Mean-Field Hadron Resonance Gas (RMFHRG)
model. Recently, an interacting hadron resonance gas
model was introduced where both long-distance attrac-
tion and short-distance repulsion between the hadrons
was taken into account through the van der Waals equa-
tion of state [12]. The van der Waals-type interaction
in the hadronic medium delays the melting of hadrons,
and thus, the VDWHRG model can explain the lQCD
data even up to T ∼ 180 MeV. This model, which has
a liquid-gas phase transition, is very effective in estimat-
ing a variety of thermodynamic and transport properties
[13–16].
In order to understand the medium formed in ultra-

relativistic collisions, it is essential to study its thermo-
dynamic properties. The fundamental thermodynamic
quantities, such as pressure (P ), energy density (ε), and
entropy density (s), can give us necessary information
about the system. The scaled pressure, energy density,
and entropy density provide information about the de-
grees of freedom in the medium. Similarly, the speed
of sound tells about the interaction in the medium. A
massless ideal gas gives c2s to be 1/3, whereas the value
for a hadron gas is 1/5. Studying c2s can help us un-
derstand whether the medium is partonic or hadronic or
approaches a massless ideal gas limit. On the other hand,
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the specific heat of a system is estimated via the temper-
ature fluctuations in the system. It gives the measure of
the amount of heat energy needed to raise the system’s
temperature by one unit. It is also expected to diverge
near the critical point and thus is an excellent observable
to study the phase transition. Similarly, trace anomaly
also plays a vital role in the QCD dynamics and phase
transition. It measures the deviation from the massless-
ness of the constituents in the medium. In recent studies
[17–20], various thermodynamic observables were stud-
ied as functions of final state charged particle density in
pseudorapidity (⟨dNch/dη⟩), which shed light on a pos-
sible change in dynamics of the system after a threshold
in ⟨dNch/dη⟩. This suggests that after ⟨dNch/dη⟩ ≃ 10 –
20, small systems like pp and p-Pb mimic the behavior
of heavy-ion collisions.

In addition, studying the correlations and fluctuations
of conserved charges is a reliable method for compre-
hending the physics of the phase transition of strongly
interacting matter. As the fluctuation-dissipation the-
orem relates susceptibilities to fluctuations in a system
near thermal equilibrium, the related susceptibilities in-
dicate inherent statistical fluctuations. Changes in con-
served charges at finite temperatures and chemical po-
tential are sensitive signs that hadronic matter is chang-
ing into quark-gluon plasma (QGP). Moreover, divergent
fluctuations can also indicate the presence of the CEP;
however, the shift from the hadronic to QGP phase is
continuous for the vanishing net baryon chemical poten-
tial.

Recently, it was found that there is a finite hyperon po-
larization in relativistic heavy-ion collisions at the STAR
experiment, which led to the conclusion that finite vor-
ticity is present in the medium [21]. This opens up a
whole new window of exciting consequences. The vor-
ticity or rotation gets coupled with the temperature in
the medium, thus changing the entire dynamics of the
system evolution [22, 23]. The fundamental Euler’s ther-
modynamic equation gets modified in the presence of a
finite rotation, adding a new rotation chemical poten-
tial into the system [24, 25]. Apart from the vorticity
coming from the initial global orbital angular momen-
tum of the colliding heavy ions, there are several other
sources from which vorticity can be generated in a sys-
tem. The smoke-loop type vortex created in the vicin-
ity of fast-moving jets in an expanding fireball also con-
tributes to the vorticity of the system, although they are
not responsible for hyperon polarization [26]. Inhomoge-
neous transverse expansion of fireball may produce trans-
verse vorticity circling the longitudinal axis in the system
[27, 29–33]. Additionally, vorticity can be generated from
the Einstein-de Haas effect [34], where a magnetized
medium creates a finite rotation. This indicates that the
huge magnetic field produced in heavy ion collisions due
to fast-moving spectators may magnetize the medium
and it may generate a large amount of vorticity in the
system, whereas the reverse effect is the famous Barnett
effect [35]. Thus, the analogy between rotation and the

magnetic field is a well-known phenomenon studied in
many physical systems [36, 37]. Similarly, viscosity in the
medium is also responsible for generating finite vorticity
and vice versa [23, 38]. Thus, it is necessary to include
the effect of rotation while studying the medium formed
in an ultra-relativistic collision. Recently, many studies
have been conducted with the introduction of rotation to
understand the QCD phase structure. Vorticity forma-
tion in the ultra-relativistic heavy-ion collision has been
studied from hydrodynamic models such as ECHO-QGP,
PICR, vHLLE, MUSIC, 3-FD, CLVisc in (3+1) dimen-
sional model [40–44]. Event generators, such as AMPT,
UrQMD, and HIJING, have also been used to estimate
kinematic and thermal vorticity [29, 30, 45–48]. More-
over, the non-zero local vorticity can help us probe the
chiral vortical effect (CVE), which is a non-trivial conse-
quence of topological quantum chromodynamics [49, 50].
This effect is the vortical analog of the chiral magnetic
effect (CME) [51, 52] and chiral separation effect (CSE)
[53, 54]. It represents the vector, and axial currents gen-
eration along the vorticity [55–58]. CVE is extremely
important because it induces baryon charge separation
along the vorticity direction, which can be experimen-
tally probed by two-particle correlations [59].

There are several studies on the effect of magnetic fields
on the QCD phase diagram. In [60], the authors have
coupled the linear sigma model to quarks to study the
chiral transition as well as to Polyakov loops to consider
the confinement. Taking a constant uniform magnetic
field, they investigated how the magnetic field affects the
chiral and deconfinement transitions. It was shown that
the chiral condensate is enhanced by the magnetic field,
and the transition temperature rises as a result. This
phenomenon is commonly known as magnetic catalysis.
Numerous studies that involve the Nambu-Jona-Lasinio
model and its extended versions, such as the PNJL [61],
and EPNJL [62] models came to similar conclusions re-
garding the rise in Tc and the strength of the transi-
tions. However, in contrast to this, the lattice QCD re-
sults [63, 64], showed that the magnetic field actually sup-
presses rather than increases the critical temperature for
the chiral phase transition of QCD. Since rotation in the
medium adds another kind of chemical potential, it can
affect the phase transition, and hence, it will be intrigu-
ing to observe how rotation affects the QCD phase dia-
gram. In ref. [65], the authors explore the deconfinement
from a rapidly rotating hot and dense hadronic matter,
similarly, in ref. [66, 67], the authors investigate the chi-
ral phase transition in a system of fermions under rota-
tion using the Nambu-Jona Laisino (NJL) model. Here
the authors have shown the importance of angular ve-
locity in determining the phase transition from hadronic
to quark degrees of freedom. Their results are presented
by a phase diagram in the temperature-angular momen-
tum T − ω plane along with the phase diagram in the
temperature-chemical potential T − µB plane. Recent
studies show that the rotational motion of QGP may re-
sult in a negative moment of inertia and hence becomes
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unstable [68]. Moreover, a rotating plasma can produce
inhomogeneity in the medium [69, 70]. However, for a
system of homogenous hadronic matter, this instability
can be ignored. Similarly, the quark deconfinement has
been studied in rotating neutron stars in [71]. The au-
thors in ref. [72] have studied the chiral phase transition
along with the spin polarization in a three-flavor NJL
model. Apart from this, the rotation effect has been ex-
plored in the mesonic condensation of the isospin matter
[73]. The authors in [74] have also studied a combined ef-
fect of rotation and magnetic field on pion condensation.
They have demonstrated increased condensation upon in-
creasing the rotation (angular velocity). These kinds of
studies suggest that introducing angular velocity in the
medium adds another kind of chemical potential known
as rotational chemical potential. Similar to baryon chem-
ical potential, this rotational chemical potential can also
lead to a phase transition.

Given the above information, it would be interesting
to understand what effect rotation plays in quantifying
a hadronic system’s thermodynamic properties. In this
work, we take rotation into account and estimate var-
ious thermodynamic properties and charge fluctuations
in an interacting hadron gas for the first time. We also
look for a possible criticality in the rotating medium for
a liquid-gas phase transition. The structure of this work
is as follows. The section II gives a detailed calculation
of the thermodynamic observables and the susceptibili-
ties within the scope of a VDWHRG model that includes
rotation. We briefly examine the results in section III
and provide a summary in section IV.

II. FORMULATION

In this work, we have assumed a system of relativistic
gas of massive fermions and bosons having half-integral

and integral spin (S), rotating with a constant angular
velocity vector ω. The density operator for rotational
grand canonical ensemble having large volume V and an-
gular momentum J is given as [75–80]

ρ̂ω =
1

Zω
exp[(−Ĥ + µQ̂+ ω · Ĵ)/T ]PV , (1)

where Ĥ is the Hamiltonian operator, Q̂ is a generic con-
served charges, µ is the relevant chemical potential, and
Zω is the partition function of the rotating system given
as

Zω = tr exp[(−Ĥ + µQ̂+ ω · Ĵ)/T ]PV . (2)

The PV is the projector onto localized states |hV ⟩,
PV =

∑
hV

|hV ⟩⟨hV |. The partition function in Eq. (2)
can be written as a product of single-particle partition
functions. The calculation of Eq. (2) then reduces to
compute matrix elements of the single-particle Hamilto-
nian, charge, and angular momentum compatible opera-

tors ĥ, q̂, ĵ, respectively like this [75, 76]:

⟨p±, τ±| exp[−(ĥ+ µq̂ + ω · ĵ)/T ]PV |p±, σ±⟩

= (e(ϵ−µq)/T ± 1)−1⟨p±, τ±| exp[ω · ĵ/T ]PV |p±, σ±⟩,
(3)

where p± is the single particle four-momentum. The σ±
and τ± are level of polarization states. The ± corre-
sponds to fermions and bosons, respectively. An analyt-
ical extension from imaginary values of ω can be used
to derive the matrix elements on the right-hand side of
Eq. (3). After replacing ω/T with −iϕ, we have a ro-
tation Rω̂(ϕ) around the axis ω of an angle ϕ. A more
detailed explanation can be found in the Ref. [75, 76].

The matrix element can be rewritten in terms of the rotational matrix Rω̂(ϕ) as

⟨p±, τ±| exp[ω · ĵ/T ]PV |p±, σ±⟩ = ⟨p±, τ±|Rω̂(ϕ)PV |p±, σ±⟩. (4)

Expanding the matrix element of the right-hand side,

⟨p±, τ±|Rω̂(ϕ)PV |p±, σ±⟩ =
∑
σ′
±

∫
d3p′ ⟨p±, τ±|R̂ω̂(ϕ)|p′±, σ′

±⟩⟨p′±, σ′
±|PV |p±, σ±⟩. (5)

The matrix element representation of the rotation involves a Dirac delta and a Wigner matrix. Thus,

⟨p±, τ±|R̂ω̂(ϕ)|p′±, σ′
±⟩ = δ3 (p± − Rω̂(ϕ)(p±

′))DS([Rω̂(ϕ)(p
′
±)]

−1Rω̂(ϕ)[p
′
±])τ±σ′

±
. (6)

It’s difficult to determine the PV matrix element over momentum eigenstates. A theoretical quantum field framework
can be used to perform the calculation [79]

⟨p′±, σ′
±|PV |p±, σ±⟩ =

1

2

√
ε

ε′

∫
V

d3x eix·(p±−p±
′)
(
DS([p′±]

−1[p±]) +DS([p′±]
†[p±]

†−1)
)
σ′
±σ±

⟨0|PV |0⟩, (7)

where ⟨0|PV |0⟩ is the vaccum expectation of the projector PV and tends to 1 for large volume. Substituting the Eqs.
(6) and (7) in Eq. (5), we have
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⟨p±, τ±|R̂ω̂(ϕ)PV |p±, σ±⟩ =
∫
V

d3x eix·(p±−Rω̂(ϕ)−1(p±)) 1

2

(
DS([p±]

−1Rω̂(ϕ)[p±]) +DS([p±]
†Rω̂(ϕ)[p±]

†−1)
)
τ±σ±

(8)
Taking advantage of the unitarity of the Wigner rotation, i.e.,

DS([Rω̂(ϕ)(p
′
±)]

−1Rω̂(ϕ)[p
′
±]) = DS([Rω̂(ϕ)(p

′
±)]

†Rω̂(ϕ)[p
′
±]

†−1) (9)

and the unitarity of R itself as an SL(2,C) matrix. The analytical prolongation of equation (8) to imaginary angles
yields the final expression for the matrix element in Eq. (3) as:

⟨p±, τ±| exp[ω · ĵ/T ]PV |p±, σ±⟩ =
∫
V

d3x eix·(p±−Rω̂(iω/T )−1(p±))

× 1

2

(
DS([p±]

−1Rω̂(iω/T )[p±]) +DS([p±]
†Rω̂(iω/T )[p±]

†−1)
)
τ±σ±

(10)

The equilibrium single-particle phase space distribution can be calculated with the help of the matrix element in Eq.
(10). The spacial integral form in Eq. (3) allows us to write the phase-space distribution as:

f(x,p)τ±σ± =(e(ε−µq)/T ± 1)−1eix·(p±−Rω̂(iω/T )−1(p±))

× 1

2

(
DS([p±]

−1Rω̂(iω/T )[p±]) +DS([p±]
†Rω̂(iω/T )[p±]

†−1)
)
τ±σ±

(11)

A non-relativistic thermodynamic equilibrium rotating system is possible when the rotation is rigid [75, 77]. That
is, for a system of size x, we can define a constant angular velocity vector, ω, so as to have the rigid velocity, v = ω×x,
which in the relativistic system adds another constraint of |ω×x| ≪ 1 in natural units. Therefore the ratio between ω
and T is very small for a proper macroscopic system (and in fact, for the majority of practical reasons), i.e.: ℏω

kBT ≪ 1.

As a result, the lowest order term in ω/T is a good approximation for the difference between the momenta in the
exponent of Eq. (11).

p± − Rω̂(iω/T )
−1(p±) = p± −

[
cosh

ω

T
p± − i sinh

ω

T
ω̂ × p± + (1− cosh

ω

T
)p± · ω̂ω̂

]
≃ i

ω

T
ω̂ × p± (12)

This results in the phase-space distribution function in Eq. (11) becoming;

f(x,p±)τ±σ± = (e(ε−µq)/T ± 1)−1e−x·(ω×p±)/T 1

2

(
DS([p±]

−1Rω̂(iω/T )[p±]) +DS([p±]
†Rω̂(iω/T )[p±]

†−1)
)
τ±σ±

= (e(ε−µq)/T ± 1)−1ep±·(ω×x)/T 1

2

(
DS([p±]

−1Rω̂(iω/T )[p±]) +DS([p±]
†Rω̂(iω/T )[p±]

†−1)
)
τ±σ±

= (e(ε−µq)/T ± 1)−1e(p±·v)/T 1

2

(
DS([p±]

−1Rω̂(iω/T )[p±]) +DS([p±]
†Rω̂(iω/T )[p±]

†−1)
)
τ±σ±

(13)

where we have used the definition of v = ω × x

The single-particle phase-distribution in Eq. (13) for
the ideal rotating relativistic fermions and bosons par-
ticles is the unnormalized one, and we need to take the
trace of the matrix in Eq. (13) to obtain the so-called
phase-space density in (x,p):

f(x,p) =
∑
σ±

f(x,p)σ±σ±

= (e(ε−µq)/T ± 1)−1e(p·v)/Tχ
(ω
T

)
,

(14)

being:

χ
(ω
T

)
≡ trDS(Rω̂(iω/T )) =

sinh(S + 1
2 )

ω
T

sinh( ω
2T )

, (15)

where the q is the conserved charge.

A. van der Waals HRG model

In contrast to the QGP phase, where the degrees of
freedom are basically quarks and gluons, the hadronic
phase is described by the confined state of the quarks
and gluons. The ideal HRG model deals with a system
of non-interacting point particles with hadronic degrees
of freedom. The thermodynamic pressure for ith particle
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is given by [81, 82],

P id
i =

gi
2π2

∫ ∞

0

p2dp
p2

3Ei

1

exp[(Ei − µi)/T ]± 1
. (16)

Here, the degeneracy of ith hadronic species is given by gi,
whereas Ei =

√
p2 +m2

i gives the free particle energy of
the ith hadron, mi being the mass of the ith hadron. The
± sign corresponds to baryons and mesons, respectively.
The chemical potential is denoted by µi, and is given by,

µi = BiµB + SiµS +QiµQ, (17)

where µB , µS , and µQ, respectively, represent the
baryon chemical potential, strangeness chemical poten-
tial, and charge chemical potential. The baryon number,
strangeness, and electric charge of the ith hadron are de-
noted by Bi, Si, and Qi, respectively.

In a rotating medium of hadron gas, the pressure for
a single hadronic species is equivalent to the one defined
in Eq. (16) multiplied by a factor e(p·v)/Tχ(ωT ), given as

P id
i =

gi
2π2

∫ ∞

0

p2dp
p2

3Ei

e(p·v)/T

exp[(Ei − µi)/T ]± 1
χ
(ω
T

)
,

(18)

where χ(ωT ) is given by the Eq. (15). Respecting the
causality condition ω × x ≪ 1, we can safely neglect the
x dependency and fix the system size, x = R, to be 5 fm
throughout the work. Also, for the values of ω we have
used in this study, the Lorentz factor is close to unity and
will have a negligible impact on the results. Hence, it is
neglected in the current formalism. The total pressure
of the hadron gas is then obtained by summing over the
pressure of all hadron species as;

P =
∑
i

P id
i . (19)

Different thermodynamic quantities for a single hadronic
species, such as energy density εi, number density ni,
and entropy density si, can be written as

εidi (T, µi) =
gi
2π2

∫ ∞

0

Ei p
2dp e(p·v)/T

exp[(Ei − µi)/T ]± 1
χ(

ω

T
) (20)

nid
i (T, µi) =

gi
2π2

∫ ∞

0

p2dp e(p·v)/T

exp[(Ei − µi)/T ]± 1
χ(

ω

T
) (21)

sidi (T, µi) =± gi
2π2

∫ ∞

0

p2dp
p2

3Ei

e(p·v)/T

exp[(Ei − µi)/T ]± 1

×

[
1

T 2

( (Ei − µi)

1± exp[−(Ei − µi)/T ]
− p · v

)
χ(

ω

T
)

+
∂

∂T
χ
(ω
T

)]
(22)

Along with this, we also compute another density related
to angular velocity (the so-called rotational chemical po-
tential ω) known as spin density. In the presence of ro-
tation in the medium, the Euler equation of thermody-
namic variables becomes [25],

ε+ P = sT + nµ+wω. (23)

Therefore the new spin density w can be calculated as,

w =
∂P

∂ω

∣∣∣∣
T,µ

=
gi
2π2

∫ ∞

0

p2dp
p2

3Ei

e(p·v)/T

exp[(Ei − µi)/T ]± 1

×
[ 1
T
px χ

(ω
T

)
+

∂

∂ω
χ
(ω
T

) ]
.

(24)

Moreover, the nth-order susceptibilities of conserved
charges can be calculated from the relation,

χn
x =

∂n(P/T 4)

∂(µx

T )n
, (25)

where the corresponding conserved charges, such as the
baryon number, electric charge, and strangeness number,
are represented by the letter x.
The Ideal HRG model does not include interactions

among the hadrons and, therefore, is unable to ex-
plain different thermodynamic quantities estimated from
lQCD at high temperatures and baryon densities. Now
to introduce the interaction in the medium, we start with
the van der Waals equation, which, in canonical ensemble
representation, can be written as [15, 83](

P +

(
N

V

)2

a

)(
V −Nb

)
= NT (26)

where the VDW parameters a and b, both positive, de-
scribe the attractive and repulsive interactions, respec-
tively, among the hadrons. P, V, T, and N, respectively,
stand for pressure, volume, temperature, and the number
of particles in the system.
Writing number density, n ≡ N/V, the above equation

can be simplified as

P (T, n) =
nT

1− bn
− an2, (27)

The two terms in the above equation represent the
correction factor to the ideal case due to repulsion and
attraction separately. The excluded volume correction,
or the correction for repulsive interactions, is incorpo-
rated in the first term by changing the total volume V to
an effective volume that is accessible to particles using
the appropriate volume parameter b = 16πr3/3, where
r is the particle’s hardcore radius. In contrast, the sec-
ond term accounts for the attractive interactions between
particles. For a = 0, Eq. (27) reduces to the EVHRG
equation of state, where only repulsive interactions are
included. And for both a = 0, & b = 0, it reduces to the
ideal HRG.
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This method is then applied to the GCE, where the
VDW equation of state takes the form [15, 81, 82]

P (T, µ) = P id(T, µ∗)− an2(T, µ), (28)

where, P (T, µ) is the VDW pressure and reduces to ideal
one, P id(T, µ) when there is no interaction. The particle
number density of the VDW hadron gas, n(T,µ) is given
by

n(T, µ) =

∑
i n

id
i (T, µ∗)

1 + b
∑

i n
id
i (T, µ∗)

. (29)

Here, i runs over all hadrons and resonances in the inter-
acting medium, and µ∗ is the modified chemical potential
given by

µ∗ = µ− bP (T, µ)− abn2(T, µ) + 2an(T, µ). (30)

Using Eq. (28), the µ∗ can also be written as

µ∗ = µ− bn(T, µ)T

1− bn(T, µ)
+ 2an(T, µ). (31)

Additional thermodynamical variables like energy den-
sity ε(T, µ) and entropy density s(T, µ) can now be cal-
culated as,

ε(T, µ) =

∑
i ϵ

id
i (T, µ∗)

1 + b
∑

i n
id
i (T, µ∗)

− an2(T, µ). (32)

s(T, µ) =
sid(T, µ∗)

1 + bnid(T, µ∗)
, (33)

As formulated initially, the VDWHRG model includes
interactions confined to all pairings of baryons or anti-
baryons [12, 15, 81, 82]. Considering the fact that anni-
hilation processes dominate short-range interactions be-
tween baryon-antibaryon pairs, the interaction between
them was neglected [12, 84]. Previously, all meson-
related interactions, such as meson-meson or meson-
(anti)baryon interactions, are neglected as the inclu-
sion of these interactions suppresses the thermodynamic
quantities in the crossover region at vanishing bary-
ochemical potential in comparison with LQCD data [12].
However, by assuming a hard-core radius rM for mesons,
a more realistic formalism that takes into account meson-
meson interactions was developed by selecting the VDW
parameters that best fit the LQCD data [14]. As a re-
sult, the VDWHRG model’s total pressure is expressed
as [12–15, 81, 82]

P (T, µ) = PM (T, µ) + PB(T, µ) + PB̄(T, µ), (34)

where the pressure contributions made by mesons
and (anti)baryons, respectively, are denoted by
PM (T, µ), PB(B̄)(T, µ), and are given by,

PM (T, µ) =
∑
i∈M

P id
i (T, µ∗M ), (35)

PB(T, µ) =
∑
i∈B

P id
i (T, µ∗B)− an2

B(T, µ), (36)

PB̄(T, µ) =
∑
i∈B̄

P id
i (T, µ∗B̄)− an2

B̄(T, µ). (37)

Here, mesons, baryons, and anti-baryons are each repre-
sented by M , B, and B̄. Due to the excluded volume
correction, mesons have a modified chemical potential of
µ∗M , whereas baryons and anti-baryons have modified
chemical potentials of µ∗B and µ∗B̄ , respectively, as a
result of VDW interactions [14]. Taking a simple case
of vanishing electric charge and strangeness chemical po-
tentials, where µQ = µS = 0, the modified chemical po-
tential for mesons and (anti)baryons can be determined
from Eq. 17 and Eq. 30 as;

µ∗M = −bPM (T, µ), (38)

µ∗B(B̄) = µB(B̄) − bPB(B̄)(T, µ)− abn2
B(B̄) + 2anB(B̄),

(39)
where nM , nB and nB̄ are the modified number densities
of mesons, baryons, and anti-baryons, respectively, which
are given by

nM (T, µ) =

∑
i∈M nid

i (T, µ∗M )

1 + b
∑

i∈M nid
i (T, µ∗M )

, (40)

nB(B̄)(T, µ) =

∑
i∈B(B̄) n

id
i (T, µ∗B(B̄))

1 + b
∑

i∈B(B̄) n
id
i (T, µ∗B(B̄))

. (41)

There are different approaches to estimate the VDW
parameters. They can be obtained by reproducing the
ground state of the nuclear matter [81]. Alternatively,
one can obtain the parameters by fitting lattice QCD re-
sults for different thermodynamic quantities [14, 15]. The
parameters in the model are now set to a = 0.926 GeV
fm3 and b = (16/3)πr3, where the r being the hardcore
radius of each hadron, given as rM = 0.2 fm for mesons,
and rB,(B̄) = 0.62 fm, for (anti)baryons [14]. Using this
information, we now proceed to estimate various thermo-
dynamic quantities in a rotating hadron resonance gas
with VDW interactions.

III. RESULTS AND DISCUSSION

We explore the effect of rotation in the hadron gas
by considering an interacting hadron gas model, namely,
the VDWHRG model, with attractive and repulsive in-
teractions between the hadrons. The model takes into
the contributions of all hadrons and resonances up to a
mass cut-off of 2.25 GeV available in the particle data
group [87]. The van der Waals parameters are obtained
by fitting thermodynamic quantities like energy density
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FIG. 1: (Color Online) Variation of different thermodynamical quantities as functions of temperature for µB = 0 GeV, and for
certain values of rotation chemical potentials. The red triangles are the Wuppertal-Budapest lattice QCD data [85], and the
shaded region are the HotQCD lattice data [86].

and pressure in the VDWHRG model to the available
lattice QCD data [14]. Notably, the van der Waals pa-
rameters should, in principle, change with respect to a
change in rotation. However, as it is non-trivial to have a
and b as functions of ω, we neglect the dependency in the
current study. We then estimate various thermodynamic
quantities at finite rotation by taking the obtained a and
b values from the fitting. It is also noteworthy to men-
tion that the thermodynamic quantities like pressure in a
rotating medium may not be uniform and can have com-
ponents parallel and perpendicular to the angular mo-
mentum vector. However, for simplicity, the formalism
here considers all the thermodynamic observables to be
isotropic in nature throughout the medium, as done in
several earlier works [65, 67, 88, 89].

Fig. 1 shows the variation of P/T 4, ε/T 4, s/T 3,
(ε − 3P )/T 4, cv/T

3, and c2s with temperature at zero
baryochemical potential for certain values of ω. The
red triangles are the lQCD results from the Wuppertal-
Budapest collaboration [85], and the shaded region shows
the lattice results from Hot QCD collaboration [86], at
µB = 0.0 GeV. All the calculations are done for µB =
0.0 GeV. Our results at ω = 0 fm−1, represented by a
solid black line, are in good agreement with the lQCD

estimations. From the upper-left panel of fig.1, we ob-
serve that P/T 4 increases with temperature for all ω val-
ues. At a given temperature, P/T 4 is higher for a higher
value of ω. Similar trends can be observed in ε/T 4, s/T 3,
(ε−3P )/T 4 as well as in cv/T

3 plots. However, the slopes
of the spectra differ for each observable. In the trace
anomaly plot, we observe a peak that shifts towards low
temperatures with an increase in ω. This peak signi-
fies the conformal symmetry breaking at which the con-
stituent particles become massless. The behavior of c2s
is also crucial to understand the phase transition region.
In VDWHRG, there appears a minimum in c2s, which is
in agreement with lQCD, and this minimum can be in-
terpreted as a signature of the transition from hadrons
to quark degrees of freedom. By increasing the value of
rotational chemical potential, the minima shift towards
the lower temperature regime, suggesting that the phase
transition temperature decreases in the presence of rota-
tion.

In order to understand the effect of spin and rota-
tion on the basic thermodynamic quantities, we plot the
scaled pressure as a function of ω for various spin parti-
cles in fig. 2. The temperature is taken to be constant
at T = 155 MeV. We observe that the contribution to
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FIG. 2: (Color Online) Pressure for different spin particles as
a function of ω at a constant temperature, T = 155 MeV.

pressure is dominated by the spin-0 particles, followed
by the spin-1, spin-1/2, and spin-3/2 particles. This is
due to the fact that the contribution to pressure comes
mainly from the Boltzmann factor in the distribution
function. Thus, the lesser massive particles will domi-
nantly contribute. The spin-0 particles, which consist of
pions, kaons, etc., contribute the most, followed by vector
mesons such as ρ and ϕ. Finally, the spin-1/2 baryons,
such as protons and neutrons, and spin-3/2 baryons, such
as Σ∗, Ξ∗, will contribute to the pressure, respectively.
With the increase in angular velocity, the contribution
to pressure increases from all spin particles for the same
reason as already mentioned.

In addition to the speed of sound, the entropy density,
number density, etc., are observables that show discon-
tinuities at the first-order phase transition. Our study
deals with the van der Waals interaction in the hadronic
phase. Therefore a liquid-gas phase transition is ex-
pected at T − µB plane, which is estimated in various
works [14, 15, 82] with different van der Waals param-
eters. Since rotation adds another chemical potential
to the system, it is useful to see if the angular veloc-
ity alone can lead to a phase transition. Fig. 3 shows the
behaviour of scaled entropy density in the T − ω phase
space with µB = 0.0 GeV. Here, the angular velocity (ω)
is taken in the units of GeV to take into account small
iterations. The temperature is taken at an interval of 0.5
MeV for calculation. One can observe a smooth trend
of the scaled entropy density at high temperatures and
low rotational chemical potential. However, the smooth
curve at comparatively low ω starts changing its shape
as one approaches high ω values. At around T ≃ 113
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FIG. 3: (Color Online) Variation of scaled entropy density for
µB = 0 GeV at low temperature and higher angular velocity
values is shown.
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FIG. 4: (Color Online) Scaled net spin density (w = ∂P
∂ω

) as
a function of temperature for different values of ω.

MeV, a discontinuity appears for ω ≃ 0.019 GeV. A clear
first-order phase transition is observed as one approaches
higher ω values. This suggests that the rotation has the
same effect in achieving a liquid-gas phase transition as
the baryon chemical potential [15]. Therefore, a hadron
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FIG. 5: (Color Online) The baryon number susceptibility (left panel), charge susceptibility (middle panel), and strangeness
susceptibility (right panel) as functions of temperature for different values of ω.

gas can be liquified either by increasing baryon density
and lowering the temperature or by increasing the angu-
lar velocity while decreasing the temperature of the gas.
Compared to Ref. [14], where the critical point is around
T = 65 MeV for T − µB plane, here the temperature for
the critical point is higher, though the VDW parameters
are the same. This shows that the phase transition in
the presence of a rotational chemical potential appears
more quickly than that for the baryochemical potential
case. In the holographic QCD approach, a similar effect
was found, where the deconfinement critical temperature
decreases with an increase in rotation [90]. However,
the recent lattice QCD results [91] show that the decon-
finement temperature increases with rotation. The dis-
crepancy between the lattice results and other effective
models may be due to the absence of non-perturbative
gluonic effects in the effective model calculations. It is
to be noted that the authors in Ref. [65] have used a
parametrized relation equating the thermodynamic pres-
sure of hadrons to that of quark-gluon gas to estimate
the deconfinement transition temperature, Tc, and it is
observed that the Tc decreases with the rotation. In our
work, we observe similar effects as the effective models,
but in the case of liquid-gas phase transition, by studying
the s/T 3 variable for different values of µB and ω, where
the Tc decreases with an increase in rotation.

Fig. 4 shows the temperature dependence of normal-
ized dimensionless spin density estimated in the VD-
WHRG model using Eq. 24. Similar to number density,
which can be defined as the change in pressure (or free
energy) with respect to chemical potential, spin density
can also be defined as the change in the pressure as a
function of rotational chemical potential. The net spin
density in a system is defined as the density of hadrons
of positive spin minus the density of hadrons of negative
spin. It is observed that much like other thermodynamic
densities, such as number density and entropy density,
spin density also increases with an increase in tempera-
ture. Moreover, at a particular temperature, the value of

spin density increases with increased rotational chemical
potential.
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FIG. 6: (Color Online) Various susceptibilities as functions of
ω at a constant temperature, T = 155 MeV.

We also estimate the susceptibilities of various con-
served quantities to show their dependence on rotational
chemical potential. Fluctuations of conserved charges
like net baryon density, electric charge, and strangeness
are essential probes for hadronization and can help us
locate the phase boundary. Large fluctuations in these
quantities are one of the essential signatures of the critical
endpoint. Since the rotation can affect the phase transi-
tion and hence the critical point, it is essential to see its
effect on the fluctuations of different conserved charges.
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We have used Eq. 25 to calculate the second-order sus-
ceptibilities of different conserved quantities. Fig. 5
shows the temperature dependence of second-order fluc-
tuations of conserved quantities, namely, baryon density,
electric charge, and strangeness, respectively, from left to
right. The red triangles are the results of lQCD calcu-
lations from the Wuppertal-Budapest collaboration [85]
whereas the shaded region represents the lQCD results
of HotQCD collaboration [86]. The solid black line, cal-
culated in the VDWHRG model at zero baryochemical
potential and zero rotation, agrees with lattice results
for baryon and charge susceptibility. However, the results
for strangeness susceptibility are slightly suppressed than
those of lattice results. The fluctuations in every con-
served quantity increase with an increase in rotational
chemical potential. It is observed that for higher ω, a
more prominent peak appears in the case of baryon den-
sity fluctuations. However, the trends seem to be satu-
rated in the case of charge susceptibilities, and a mono-
tonic increasing behavior is observed for strangeness fluc-
tuations within the range of studied ω. Fig. 6 shows the
variation of all three susceptibilities as a function of rota-
tional chemical potential at a fixed temperature T = 155
MeV. It is observed that all the susceptibilities increase
with ω almost in a similar manner.

IV. SUMMARY

In this work, we estimate the effect of rotation on the
thermodynamic properties of an interacting hadron res-
onance gas. We observe that rotation has a similar effect
on the thermodynamic properties as the baryon chemical
potential. The rotational chemical potential enhances all
observables like pressure, energy density, entropy density,
etc. We also observe that the rotation in a system could
lead to a first-order liquid-gas phase transition, although
the initial angular momentum required for it would be

so high that within LHC energy, it may not be possi-
ble. In addition, we estimate the spin density associated
with the rotational chemical potential and its behaviour
as a function of temperature. The effect of rotation on
fluctuations in conserved quantities is also explored, and
one can find that it enhances the second-order fluctua-
tions in all conserved quantities. In view of our study, we
must pay attention to the effect of rotation produced in
a non-central heavy-ion collision while studying the par-
ticle dynamics and the thermodynamics of the system.

Recent studies focusing on vorticity and polarization
in the medium formed in ultra-relativistic collisions lead
us to an exciting pathway. As the scientific community
shifts its attention to rotational dynamics in the evolving
QCD medium, myriad unique consequences can be un-
ravelled. Moreover, it will be interesting to see the results
of the lattice calculation by taking care of the rotation
into the system.
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